## Complex Analysis

Armin Rainer

Fakultät für Mathematik, Universität Wien, Oskar-MorgensternPlatz 1, A-1090 Wien, Austria

E-mail address: armin.rainer@univie.ac.at

## Preface

These are lecture notes for the course Komplexe Analysis held in Vienna in Spring 2015 (two semester hours). The presentation is based loosely on [5. Other sources are [1], [2, 4], 6], and [7].

Most of the illustrations were made available by courtesy of Andreas Kriegl.

## Contents

Preface ..... ii
Preliminaries ..... 1

1. Complex numbers ..... 1
2. Topological prerequisites ..... 4
3. Review of 1 -forms ..... 9
Complex differentiation ..... 11
4. Holomorphic functions ..... 11
5. Conformal mappings ..... 16
Power series ..... 19
6. Convergent sequences and series of functions ..... 19
7. Convergent power series ..... 21
8. Analytic functions ..... 22
Elementary transcendental functions ..... 25
9. Exponential, trigonometric, and hyperbolic functions ..... 25
10. The complex logarithm ..... 31
Complex integration ..... 37
11. Integration along paths ..... 37
12. Index ..... 39
13. Primitives and integrability ..... 41
14. Cauchy's theorem for star-shaped domains ..... 44
15. Cauchy's integral formula ..... 47
Power series representation and applications ..... 49
16. Holomorphic functions are analytic ..... 49
17. Local properties of holomorphic functions ..... 50
18. Cauchy's estimates and Liouville's theorem ..... 52
19. The open mapping theorem and the maximum modulus principle ..... 53
20. Convergent sequences of holomorphic functions ..... 54
Biholomorphic mappings ..... 57
21. Biholomorphic mappings ..... 57
22. Fractional linear transformations ..... 58
23. Automorphism groups ..... 60
The global Cauchy theorem ..... 63
24. Homology and the general form of Cauchy's theorem ..... 63
25. The calculus of residues ..... 66
26. Homotopy and simply connected domains ..... 69
Bibliography ..... 73

Index

## Preliminaries

## 1. Complex numbers

A complex number has the form $z=x+i y$, where $x, y \in \mathbb{R}$ and $i$ is an imaginary number that satisfies $i^{2}=-1$. We call $x=\operatorname{Re} z$ the real part and $y=\operatorname{Im} z$ the imaginary part of $z$. The complex numbers with zero imaginary part are precisely the real numbers, those with zero real part are called purely imaginary. The set of complex numbers is denoted by $\mathbb{C}$,

$$
\begin{equation*}
\mathbb{C}=\{x+i y: x, y \in \mathbb{R}\}, \quad i^{2}=-1 \tag{1.1}
\end{equation*}
$$

Assuming that the usual rules of arithmetic apply to complex numbers we observe that addition and multiplication preserve $\mathbb{C}$,

$$
\begin{gathered}
(x+i y)+(u+i v)=(x+u)+i(y+v) \\
(x+i y) \cdot(u+i v)=(x u-y v)+i(x v+y u) .
\end{gathered}
$$

If $x+i y=u+i v$ then $(x-u)^{2}=-(y-v)^{2}$ and thus $x=u$ and $y=v$.
In the previous paragraph we have tacitly made the assumption that there is a field extension of $\mathbb{R}$ in which the equation $z^{2}+1=0$ is solvable. Let us now show that this assumption is justified.
1.1. Theorem. The set $\mathbb{R}^{2}$ with the addition

$$
(x, y)+(u, v)=(x+u, y+v)
$$

and the multiplication

$$
(x, y) \cdot(u, v)=(x u-y v, x v+y u)
$$

forms a field in which the equation $z^{2}+1=0$ has two solutions.
Proof. It is easy to check that $\left(\mathbb{R}^{2},+, \cdot\right)$ is a field. The subfield $\{(x, 0): x \in \mathbb{R}\}$ is isomorphic to $\mathbb{R}$. The element $i:=(0,1)$ satisfies $i^{2}=(0,1)^{2}=(-1,0)=-1$. Hence $\pm i$ are the solutions of the equation $z^{2}+1=(z+i)(z-i)=0$.

The field $\left(\mathbb{R}^{2},+, \cdot\right)$ of Theorem 1.1 is by definition the field $\mathbb{C}$ of complex numbers. We arrive at the representation (1.1) if we set $i:=(0,1)$ and denote elements $(x, 0)$ simply by $x$,

$$
(x, y)=(x, 0)+(0,1) \cdot(y, 0)=x+i y
$$

The complex numbers can be visualized as the usual Euclidean plane by identifying $z=x+i y \in \mathbb{C}$ with the point $(x, y) \in \mathbb{R}^{2}$. Then the $x$-axis and the $y$-axis are called real and imaginary axis, respectively.

Addition of complex numbers corresponds to addition of the corresponding vectors in $\mathbb{R}^{2}$. We shall see below that multiplication corresponds to a rotation composed with a dilation.


Figure 1. Addition of complex numbers.

The complex conjugate of $z=x+i y \in \mathbb{C}$ is defined by

$$
\bar{z}:=x-i y .
$$

It is obtained by a reflection across the real axis. We have

$$
\overline{z+w}=\bar{z}+\bar{w}, \quad \overline{z w}=\bar{z} \cdot \bar{w}, \quad \overline{\bar{z}}=z, \quad \operatorname{Re} z=\frac{z+\bar{z}}{2}, \quad \operatorname{Im} z=\frac{z-\bar{z}}{2 i}
$$

and $z \in \mathbb{R}$ if and only if $z=\bar{z}$. Thus conjugation $z \mapsto \bar{z}$ is a field automorphism $\mathbb{C} \rightarrow \mathbb{C}$ that is an involution and that fixes each point in $\mathbb{R}$.

The absolute value $|z|$ of a complex number $z=x+i y$ is defined as the distance of $(x, y) \in \mathbb{R}^{2}$ to the origin,

$$
|z|:=\sqrt{x^{2}+y^{2}} .
$$

Then it is easily seen that

$$
|\bar{z}|=|z|, \quad|z|^{2}=z \bar{z}, \quad|\operatorname{Re} z| \leq|z|, \quad|\operatorname{Im} z| \leq|z|
$$

and that $|\cdot|: \mathbb{C} \rightarrow \mathbb{R}$ is a valuation on $\mathbb{C}$, that is

- $|z| \geq 0$, and $|z|=0$ if and only if $z=0$,
- $|z w|=|z||w|$,
- $|z+w| \leq|z|+|w|$.

So $\mathbb{C}($ and $\mathbb{R})$ together with the absolute value $|\cdot|$ is a valued field.
1.2. Proposition. The field $\mathbb{C}$ is isomorphic to
(1) the field of all matrices $\left(\begin{array}{cc}x & -y \\ y & x\end{array}\right), x, y \in \mathbb{R}$, with matrix addition and multiplication,
(2) the quotient field $\mathbb{R}[X] /\left(X^{2}+1\right)$.

Proof. In the first case the isomorphism is given by $x+i y \mapsto\left(\begin{array}{cc}x & -y \\ y & x\end{array}\right)$.
The set $\mathbb{R}[X]$ of polynomials in the variable $X$ with real coefficients is an integral domain (since $\mathbb{R}$ is a field) ${ }^{1}$ The quotient ring $\mathbb{R}[X] /\left(X^{2}+1\right)$ is a field, since the polynomial $X^{2}+1$ is irreducible over $\mathbb{R}$. The field isomorphism is given by $a+i b \mapsto a+b X$.

[^0]

Figure 2. Polar coordinates.

We may infer that multiplication corresponds to a rotation composed with a dilation. In fact, if we represent $(a, b),(x, y) \in \mathbb{R}^{2}$ in polar coordinates

$$
\begin{aligned}
& a=r \cos \varphi, b=r \sin \varphi, \quad r>0, \varphi \in \mathbb{R} \\
& x=s \cos \psi, y=s \sin \psi, \quad s>0, \psi \in \mathbb{R}
\end{aligned}
$$

then the multiplication of $z=a+i b$ with $w=x+i y$ amounts to

$$
\begin{aligned}
\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)\left(\begin{array}{cc}
x & -y \\
y & x
\end{array}\right) & =r s\left(\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right)\left(\begin{array}{cc}
\cos \psi & -\sin \psi \\
\sin \psi & \cos \psi
\end{array}\right) \\
& =r s\left(\begin{array}{cc}
\cos (\varphi+\psi) & -\sin (\varphi+\psi) \\
\sin (\varphi+\psi) & \cos (\varphi+\psi)
\end{array}\right)
\end{aligned}
$$

The angles $\varphi$ and $\psi$ which are determined uniquely up to addition of terms of the form $2 \pi k, k \in \mathbb{Z}$, are called the $\operatorname{arguments} \varphi=\arg z$ and $\psi=\arg w$ of $z$ and $w$. Thus

$$
\arg (z w)=\arg (z)+\arg (w) .
$$

Multiplying two complex numbers hence means adding the arguments and multiplying the absolute values.


Figure 3. Multiplication of complex numbers.
We denote by

$$
\langle z, w\rangle:=\operatorname{Re}(z \bar{w})=x u+y v, \quad z=x+i y, w=u+i v
$$

the inner product in the real vector space $\mathbb{C} \cong \mathbb{R}^{2}$ with respect to the basis $\{1, i\}$. We have, for all $z, w, a \in \mathbb{C}$,

$$
\langle z, z\rangle=|z|^{2}, \quad\langle a z, a w\rangle=|a|^{2}\langle z, w\rangle, \quad\langle z, w\rangle=\langle\bar{z}, \bar{w}\rangle .
$$

It is easy to check that

$$
\langle z, w\rangle^{2}+\langle i z, w\rangle^{2}=|z|^{2}|w|^{2} ;
$$

in particular, we get the Cauchy-Schwarz inequality

$$
|\langle z, w\rangle| \leq|z||w|, \quad z, w \in \mathbb{C}
$$

Moreover, we have

$$
|z+w|^{2}=|z|^{2}+|w|^{2}+2\langle z, w\rangle .
$$

Two vectors $z$ and $w$ are said to be orthogonal if $\langle z, w\rangle=0$. Note that $\langle z, c z\rangle=$ $\operatorname{Re}(c z \bar{z})=|z|^{2} \operatorname{Re} c$ and thus $z$ and $c z$ are orthogonal if and only if $c \in i \mathbb{R}$.

By the Cauchy-Schwarz inequality, $-1 \leq \frac{\langle z, w\rangle}{|z||w|} \leq 1$ if $z, w \in \mathbb{C} \backslash\{0\}$. There exists a unique real number $\varphi \in[0, \pi]$ such that

$$
\cos \varphi=\frac{\langle z, w\rangle}{|z||w|}
$$

$\varphi$ is called the angle between $z$ and $w$; we write $\varangle(z, w)=\varphi$.

## 2. Topological prerequisites

2.1. The metric space $\mathbb{C}$. The mapping $d: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{R}, d(z, w)=|z-w|$, is a metric on $\mathbb{C}$, that is

- $d(z, w) \geq 0$, and $d(z, w)=0$ if and only if $z=w$,
- $d(z, w)=d(w, z)$,
- $d(z, w) \leq d(z, v)+d(v, w)$.

It is called the Euclidean metric on $\mathbb{C}$. The open balls in the metric space $(\mathbb{C}, d)$ are the open disks

$$
D_{r}(a):=\{z \in \mathbb{C}:|z-a|<r\}, \quad r>0, a \in \mathbb{C}
$$

with center $a$ and radius $r$. The unit disk will be denoted by $\mathbb{D}:=D_{1}(0)$. A subset $U \subseteq \mathbb{C}$ is open (in $\mathbb{C}$ ) if for each $a \in U$ there exists $r>0$ such that $D_{r}(a) \subseteq U$. The empty set $\emptyset$ and $\mathbb{C}$ are open. Arbitrary unions and finite intersections of open sets are open. The interior $\stackrel{\circ}{S}:=\bigcup\{U: U \subseteq S, U$ open $\}$ of an arbitrary set $S \subseteq \mathbb{C}$ is open. A subset $A \subseteq \mathbb{C}$ is closed (in $\mathbb{C}$ ) if its complement $\mathbb{C} \backslash A$ is open. The closed disks

$$
\bar{D}_{r}(a):=\{z \in \mathbb{C}:|z-a| \leq r\}, \quad r>0, a \in \mathbb{C}
$$

are closed. Finite unions and arbitrary intersections of closed sets are closed. The closure $\bar{S}:=\bigcap\{A: S \subseteq A, A$ closed $\}$ of an arbitrary set $S \subseteq \mathbb{C}$ is closed.

A set $W$ is a neighborhood of a set $S \subseteq \mathbb{C}$ if there is an open subset $U \subseteq \mathbb{C}$ such that $S \subseteq U \subseteq W$. The Hausdorff separation property (which holds in every metric space) states that any two distinct points in $\mathbb{C}$ have disjoint neighborhoods, in particular, if $z \neq w \in \mathbb{C}$ then $D_{r}(z) \cap D_{r}(w)=\emptyset$ for $r:=|z-w| / 2$.

A sequence $\left(z_{n}\right)_{n}$ in $\mathbb{C}$ is a convergent if there exists $z \in \mathbb{C}$ such that each neighborhood of $z$ contains almost all (i.e. all except finitely many) $z_{n}$; then $z=\lim _{n \rightarrow \infty} z_{n}$ is called the limit of the sequence; we will also write $z_{n} \rightarrow z$. Equivalently,

$$
z=\lim _{n \rightarrow \infty} z_{n} \Leftrightarrow \forall \epsilon>0 \exists n_{0} \in \mathbb{N} \forall n \geq n_{0}:\left|z_{n}-z\right|<\epsilon
$$

Non-convergent sequences are called divergent. For instance, $\lim _{n \rightarrow \infty} z^{n}=0$ for every $z \in \mathbb{D}$, while the sequence $z^{n}$ is divergent if $|z|>1$.

The Hausdorff separation property implies that the limit of a convergent sequence is unique. Note that a set $S \subseteq \mathbb{C}$ is closed if and only if the limit of each convergent sequence $\left(z_{n}\right)$ with $z_{n} \in S$ belongs to $S$. A set $S \subseteq \mathbb{C}$ is said to be
dense in $\mathbb{C}$ if $\bar{S}=\mathbb{C}$, or equivalently, if for each $z \in \mathbb{C}$ there is a sequence $z_{n} \in S$ such that $z_{n} \rightarrow z$.

A point $z \in \mathbb{C}$ is called accumulation point of a set $S \subseteq \mathbb{C}$ if for each neighborhood $U$ of $z$ we have $U \cap(S \backslash\{z\}) \neq \emptyset$. If $z$ is an accumulation point of $S$ then there exists a sequence $z_{n} \in S \backslash\{z\}$ so that $\lim z_{n}=z$.
2.2. Convergent sequences and series of complex numbers. Every convergent sequence of complex numbers is bounded, i.e., there exists $M>0$ so that $\left|z_{n}\right|<M$ for all $n$. If $z_{n}$ and $w_{n}$ are convergent sequences we have:
(1) For all $a, b \in \mathbb{C}$ the sequence $a z_{n}+b w_{n}$ is convergent and

$$
\lim \left(a z_{n}+b w_{n}\right)=a \lim z_{n}+b \lim w_{n}
$$

(2) The sequence $z_{n} w_{n}$ is convergent and

$$
\lim \left(z_{n} w_{n}\right)=\lim z_{n} \lim w_{n}
$$

(3) If $\lim w_{n} \neq 0$, then $z_{n} / w_{n}$ (for sufficiently large $n$ ) is convergent and

$$
\lim \left(z_{n} / w_{n}\right)=\lim z_{n} / \lim w_{n}
$$

(4) The sequence $\left|z_{n}\right|$ is convergent and $\lim \left|z_{n}\right|=\left|\lim z_{n}\right|$.
(5) The sequence $\overline{z_{n}}$ is convergent and $\lim \overline{z_{n}}=\overline{\lim z_{n}}$.

These rules can be proved in the same way as for real sequences (since the absolute value has the same properties on $\mathbb{C}$ and on $\mathbb{R}$ ). Moreover:
(6) A complex sequence $z_{n}$ is convergent if and only if the real sequences $\operatorname{Re} z_{n}$ and $\operatorname{Im} z_{n}$ are convergent. In that case $\lim z_{n}=\lim \operatorname{Re} z_{n}+i \lim \operatorname{Im} z_{n}$.
This follows from (1) and (5), since $\operatorname{Re} z_{n}=\frac{1}{2}\left(z_{n}+\overline{z_{n}}\right)$ and $\operatorname{Im} z_{n}=\frac{1}{2 i}\left(z_{n}-\overline{z_{n}}\right)$.
The field $\mathbb{C}$ is complete. That means that every Cauchy sequence $z_{n}$ is convergent. A Cauchy sequence in $\mathbb{C}$ is a sequence $z_{n}$ satisfying

$$
\forall \epsilon>0 \exists k \in \mathbb{N} \forall m, n \geq k:\left|z_{m}-z_{n}\right|<\epsilon
$$

Every convergent sequence is a Cauchy sequence (thanks to $\left|z_{n}-z_{m}\right| \leq\left|z_{n}-z\right|+$ $\left|z-z_{m}\right|$ where $z=\lim z_{n}$ ). Conversely, completeness of $\mathbb{R}$ implies that every Cauchy sequence is convergent: the inequalities

$$
\left|\operatorname{Re} z_{m}-\operatorname{Re} z_{n}\right| \leq\left|z_{m}-z_{n}\right|, \quad\left|\operatorname{Im} z_{m}-\operatorname{Im} z_{n}\right| \leq\left|z_{m}-z_{n}\right|
$$

imply that $\operatorname{Re} z_{n}$ and $\operatorname{Im} z_{n}$ are Cauchy sequences if $z_{n}$ is a Cauchy sequence. Since $\mathbb{R}$ is complete, they converge to real numbers $a, b$. By (1), the sequence $z_{n}$ converges to $a+i b$ in $\mathbb{C}$.

Given a sequence $\left(a_{k}\right)_{k \geq j}$ of complex numbers, we call the sequence $\left(s_{n}\right)_{n \geq j}$ of partial sums $s_{n}:=\sum_{k=j}^{n} a_{k}$ an (infinite) series, and write $\sum_{k=j}^{\infty} a_{k}, \sum_{k \geq j} a_{k}$ or just $\sum a_{k}$. A series $\sum a_{k}$ is convergent if the sequence of partial sums $\left(s_{n}\right)$ converges, and we write $\sum a_{k}=\lim s_{n}$, otherwise it is called divergent. A series $\sum a_{k}$ is convergent if and only if

$$
\begin{equation*}
\forall \epsilon>0 \exists \ell \in \mathbb{N} \forall m, n \geq \ell:\left|\sum_{k=m+1}^{n} a_{k}\right|<\epsilon \tag{2.1}
\end{equation*}
$$

this precisely means that $s_{n}$ is a Cauchy sequence since $s_{n}-s_{m}=\sum_{k=m+1}^{n} a_{k}$.
The basic example is the geometric series $\sum_{k \geq 0} z^{k}$ with partial sums

$$
\sum_{k=0}^{n} z^{k}=\frac{1-z^{n+1}}{1-z}, \quad \text { for } z \neq 1
$$

Since $\lim z^{n+1}=0$ if $|z|<1$ we obtain

$$
\sum_{k=0}^{\infty} z^{n}=\frac{1}{1-z}, \quad \text { for }|z|<1
$$

The terms $a_{k}$ of every convergent series $\sum a_{k}$ must converge to 0 , because $a_{k}=s_{k}-s_{k-1}$. The rules (1) and (5) imply: if $\sum_{k \geq j} a_{k}$ and $\sum_{k \geq j} b_{k}$ are convergent series and $a, b \in \mathbb{C}$ then $\sum_{k \geq j}\left(a a_{k}+b b_{k}\right)$ is convergent with

$$
\sum_{k \geq j}\left(a a_{k}+b b_{k}\right)=a \sum_{k \geq j} a_{k}+b \sum_{k \geq j} b_{k},
$$

and $\sum_{k \geq j} \bar{a}_{k}$ is convergent with

$$
\overline{\sum_{k \geq j} a_{k}}=\sum_{k \geq j} \bar{a}_{k}
$$

Consequently, $\sum a_{k}$ is convergent if and only if $\sum \operatorname{Re} a_{k}$ and $\sum \operatorname{Im} a_{k}$ are convergent; in that case

$$
\sum_{k \geq j} a_{k}=\sum_{k \geq j} \operatorname{Re} a_{k}+i \sum_{k \geq j} \operatorname{Im} a_{k} .
$$

A series $\sum a_{k}$ is called absolutely convergent if the series $\sum\left|a_{k}\right|$ is convergent. An absolutely convergent series $\sum a_{k}$ is convergent and satisfies $\left|\sum a_{k}\right| \leq$ $\sum\left|a_{k}\right|$; this is a consequence of (2.1) and $\left|\sum_{k=m+1}^{n} a_{k}\right| \leq \sum_{k=m+1}^{n}\left|a_{k}\right|$.

Another simple consequence of 2.1 is the majorant criterion which states that $\sum a_{k}$ is absolutely convergent if $\left|a_{k}\right| \leq b_{k}$ (hence $b_{k} \in \mathbb{R}$ and $b_{k} \geq 0$ ) and $\sum b_{k}$ is convergent. It implies, in view of $\max \{|\operatorname{Re} a|,|\operatorname{Im} a|\} \leq|a| \leq|\operatorname{Re} a|+|\operatorname{Im} a|$, that a series $\sum a_{k}$ is absolutely convergent if and only if $\sum \operatorname{Re} a_{k}$ and $\sum \operatorname{Im} a_{k}$ are absolutely convergent.

The terms of absolutely convergent series can be arbitrarily reordered: a series $\sum_{k \geq 0} a_{k}$ is absolutely convergent if and only if it is unconditionally convergent, i.e., $\sum_{k \geq 0} a_{\sigma(k)}=\sum_{k \geq 0} a_{k}$ for every bijection $\sigma: \mathbb{N} \rightarrow \mathbb{N}$. For a proof we refer to [3. Satz 32.3]. ${ }^{2}$

Given two series $\sum_{k \geq 0} a_{k}$ and $\sum_{k \geq 0} b_{k}$, we call every series $\sum_{k \geq 0} c_{k}$ such that each product $a_{k} b_{\ell}$ appears exactly once in the sequence $c_{0}, c_{1}, \ldots$ a product series of $\sum_{k>0} a_{k}$ and $\sum_{k \geq 0} b_{k}$. The most important product series is the Cauchy product $\sum_{k \geq 0} \sum_{i+j=k} \bar{a}_{i} b_{j}$. If $\sum_{k \geq 0} a_{k}$ and $\sum_{k \geq 0} b_{k}$ are absolutely convergent series, then every product series $\sum_{k \geq 0} c_{k}$ is absolutely convergent and satisfies

$$
\left(\sum_{k \geq 0} a_{k}\right)\left(\sum_{\ell \geq 0} b_{\ell}\right)=\sum_{m \geq 0} c_{m}
$$

Let us prove this. For each $\ell$ there exists $m$ such that $c_{0}, c_{1}, \ldots, c_{\ell}$ appear among the products $a_{i} b_{j}, 0 \leq i, j \leq m$. Thus

$$
\sum_{k=0}^{\ell}\left|c_{k}\right| \leq\left(\sum_{i=0}^{m}\left|a_{i}\right|\right)\left(\sum_{j=0}^{m}\left|b_{j}\right|\right) \leq\left(\sum_{i=0}^{\infty}\left|a_{i}\right|\right)\left(\sum_{j=0}^{\infty}\left|b_{j}\right|\right)<\infty .
$$

Hence $\sum_{k=0}^{\infty} c_{k}$ is absolutely convergent, and therefore unconditionally convergent, whence

$$
\sum_{k=0}^{\infty} c_{k}=\lim _{n \rightarrow \infty}\left(\sum_{i=0}^{n} a_{i}\right)\left(\sum_{j=0}^{n} b_{j}\right)=\left(\sum_{i=0}^{\infty} a_{i}\right)\left(\sum_{j=0}^{\infty} b_{j}\right) .
$$

[^1]2.3. Compact sets. A set $K \subseteq \mathbb{C}$ is compact if any of the following equivalent conditions holds:

- $K$ is closed and bounded.
- Every sequence in $K$ has a subsequence that converges to a point in $K$.
- Every open covering of $K$ has a finite subcovering.

Every open set $U \subseteq \mathbb{C}$ is a countable union of compact subsets of $U$.
If $K_{1} \supseteq K_{2} \supseteq \cdots$ is a nested sequence of non-empty compact sets in $\mathbb{C}$ such that $\operatorname{diam} K_{n}:=\sup _{z, w \in K_{n}}|z-w| \rightarrow 0$ as $n \rightarrow \infty$, then there is a unique point $c \in \mathbb{C}$ such that $c \in K_{n}$ for all $n$, i.e., $\bigcap_{n} K_{n}=\{c\}$. To see this choose a point $z_{n}$ in $K_{n}$ for all $n$. Then $\left(z_{n}\right)$ forms a Cauchy sequence, since diam $K_{n} \rightarrow 0$, and thus has a limit $c \in \mathbb{C}$. By compactness, $c$ lies in each $K_{n}$. If there is a further point $c^{\prime} \neq c$ with this property, then $0<\left|c-c^{\prime}\right| \leq \operatorname{diam} K_{n}$, a contradiction.
2.4. Continuous functions. Let $X$ and $Y$ be metric spaces. A mapping $f: X \rightarrow$ $Y$ is continuous at a point $a \in X$ if the preimage $f^{-1}(V)$ of each neighborhood $V$ of $f(a)$ in $Y$ is a neighborhood of $a$ in $X$. Equivalently,

$$
\begin{equation*}
\forall \epsilon>0 \exists \delta>0 \forall x \in X, d_{X}(x, a)<\delta: d_{Y}(f(x), f(a))<\epsilon \tag{2.2}
\end{equation*}
$$

Moreover, $f: X \rightarrow Y$ is continuous at $a \in X$ if and only if for each sequence $x_{n} \rightarrow a$ in $X$ we have $f\left(x_{n}\right) \rightarrow f(a)$ in $Y$. A mapping $f: X \rightarrow Y$ is called continuous if it is continuous at every point $x \in X$. Then $f$ is continuous if and only if preimages of open sets are open, or equivalently, if preimages of closed sets are closed. The composite of continuous mappings is continuous. The image $f(K)$ of a compact set $K$ under a continuous mapping $f$ is compact. In particular, real valued continuous functions attain its maximum and minimum on every compact set. Every continuous mapping on a compact set is uniformly continuous, i.e., $\delta$ in (2.2) is independent of $a$.

Complex valued functions $f, g: X \rightarrow \mathbb{C}$ can be added and multiplied

$$
(f+g)(x):=f(x)+g(x), \quad(f g)(x):=f(x) g(x)
$$

Likewise we define

$$
\bar{f}(x):=\overline{f(x)}, \quad(\operatorname{Re} f)(x):=\operatorname{Re}(f(x)), \quad(\operatorname{Im} f)(x):=\operatorname{Im}(f(x))
$$

For the real and imaginary part of $f$ we shall consistently write

$$
u:=\operatorname{Re} f, \quad v:=\operatorname{Im} f
$$

If $f$ and $g$ are continuous in $a \in X$ then so are $f+g, f g$, and $\bar{f}$. In particular, $f=u+i v$ is continuous in $a$ if and only if $u$ and $v$ are continuous in $a$.

Let $C(X)$ (or $\left.C^{0}(X)\right)$ denote the set of all continuous functions $f: X \rightarrow \mathbb{C}$; it is a commutative $\mathbb{C}$-algebra with identity element. Since constant functions are continuous, we have a natural inclusion $\mathbb{C} \subseteq C(X)$. Conjugation defines an $\mathbb{R}$-linear automorphism that is also an involution. The functions $g \in C(X)$ with $g(x) \neq 0$ for all $x \in X$ are the units in the ring $C(X)$; in fact, $1 / g \in C(X)$. Thus, also $f / g \in C(X)$ for all $f \in C(X)$.
2.5. Connected domains. Let $X$ be a metric space. The following conditions are equivalent:
(1) Every locally constant ${ }^{3}$ function $f: X \rightarrow \mathbb{C}$ is constant.
(2) If $A \subseteq X$ is non-empty open and closed then $A=X$.

[^2](3) If $X=A \cup B$, where $A \cap B=\emptyset$ and $A, B$ are open, then either $A$ or $B$ is the empty set.
To see that (1) implies (2) consider the characteristic function $\chi_{A}$ of the set $A$. It is locally constant, since $A$ and $X \backslash A$ are both open. Thus it is constant, and since $A \neq \emptyset, \chi_{A}(x)=1$ for all $x \in X$, i.e., $A=X$. Suppose that (2) holds and let $f: X \rightarrow \mathbb{C}$ be a locally constant function. For fixed $a \in X$ the fiber $A:=f^{-1}(f(a))$ is non-empty open and closed in $X$. Then $A=X$ and so $f(x)=f(a)$ for all $x \in X$, i.e., (1). The equivalence of (2) and (3) is evident.

A metric space $X$ satisfying the equivalent conditions (1)-(3) is called connected. A continuous mapping $f: X \rightarrow Y$ defined on a connected space $X$ has a connected image $f(X)$. The connected subsets of $\mathbb{R}$ are precisely the intervals.

A continuous mapping $\gamma: \mathbb{R} \supseteq[a, b] \rightarrow X$ is called a path (or a curve) in $X$. The path $\gamma$ is said to be closed if its endpoints coincide, $\gamma(a)=\gamma(b)$. We say that $\gamma$ is a simple path it has no self-intersections, i.e., $\gamma(t) \neq \gamma(s)$ unless $t=s$, except at the endpoints if $\gamma$ is closed. We shall denote by $|\gamma|$ the unparameterized path $|\gamma|:=\gamma([a, b]) \subseteq X$.

If $\gamma_{i}:\left[a_{i}, b_{i}\right] \rightarrow X, i=1,2$, are paths such that $\gamma_{1}\left(b_{1}\right)=\gamma_{2}\left(a_{2}\right)$, we define the path $\gamma_{1}+\gamma_{2}:\left[a_{1}, b_{1}+b_{2}-a_{2}\right] \rightarrow X$ by setting

$$
\left(\gamma_{1}+\gamma_{2}\right)(t):= \begin{cases}\gamma_{1}(t) & t \in\left[a_{1}, b_{1}\right] \\ \gamma_{2}\left(t+a_{2}-b_{1}\right) & t \in\left[b_{1}, b_{1}+b_{2}-a_{2}\right]\end{cases}
$$

it is the concatenation of the paths $\gamma_{1}$ and $\gamma_{2}$. Analogously, one defines $\gamma_{1}+\gamma_{2}+$ $\cdots+\gamma_{n}$. This symbolic addition of paths is associative but not commutative.

A space $X$ is called path-connected if any two points $x, y \in X$ can be connected by a path, i.e., there exists a path $\gamma:[a, b] \rightarrow X$ such that $\gamma(a)=x$ and $\gamma(b)=y$. A path-connected metric space is connected ${ }^{4}$ For, let $A$ be an open and closed subset of $X$ that contains $x$. Let $y \in X$ and choose a path $\gamma:[a, b] \rightarrow X$ such that $\gamma(a)=x$ and $\gamma(b)=y$. Then $\gamma^{-1}(A)$ is non-empty open and closed in $[a, b]$. Since $[a, b]$ is connected, $\gamma^{-1}(A)=[a, b]$ and hence $y=\gamma(b) \in A$. It follows that $A=X$.

Let us now consider the complex plane $\mathbb{C}$. The path $\gamma:[0,1] \rightarrow \mathbb{C}, \gamma(t)=$ $(1-t) z_{0}+t z_{1}$ is the line segment from $z_{0}$ to $z_{1}$; we will denote it by $\left[z_{0}, z_{1}\right]$. A polygon is a finite sum $\left[z_{0}, z_{1}\right]+\left[z_{1}, z_{2}\right]+\cdots+\left[z_{n-1}, z_{n}\right]$.

A non-empty open subset $U \subseteq \mathbb{C}$ is called a domain. For any domain $U \subseteq \mathbb{C}$ the following are equivalent:
(1) $U$ is connected.
(2) Any two points $z, w \in U$ can be joined by an polygon $P$ in $U$ such that each line segment in $P$ is parallel to the axes.
(3) $U$ is path-connected.

It remains to show that (1) implies (2). Fix $z \in U$. Let $f: U \rightarrow \mathbb{C}$ be defined as follows: $f(w):=1$ if $w$ can be joined to $z$ by a polygon in $U$ with line segments parallel to the axes, otherwise $f(w):=0$. Any two points in a disk $D$ can be joined in $D$ by a polygon in $D$ with line segments parallel to the axes. Thus $\left.f\right|_{D}$ is either 1 or 0 . That means that $f$ is locally constant and hence constant, since $U$ is connected. So $f=1$ (as $f(z)=1$ ) which implies the assertion $\square^{5}$

A connected domain is called a region.

[^3]We may say that two points in a domain $U$ are equivalent if they can be joined by a path in $U$. This defines an equivalence relation on $U$. The equivalence classes are called the connected components of $U$. Every connected component is a region. A domain has at most countably many connected components. Indeed, every domain $U \subseteq \mathbb{C}$ has a countable dense subset (e.g. $U \cap \mathbb{Q}^{2}$ ) and thus is a countable union of open disks $D_{i}$. Every disk $D_{i}$ is contained in precisely one connected component of $U$, and each connected component of $U$ contains at least one $D_{i}$.

The boundary of a domain $U \subseteq \mathbb{C}$ is the set $\partial U:=\bar{U} \backslash \stackrel{\circ}{U}=\bar{U} \backslash U$ which is always closed in $\mathbb{C}$. For disks we have $\partial D_{r}(a)=\{z \in \mathbb{C}:|z-a|=r\}$. For points $a \in U$ we define the distance to the boundary

$$
d_{a}(U):=\inf \{|z-a|: z \in \partial U\}>0, \quad d_{a}(\mathbb{C}):=\infty
$$

The number $d_{a}(U)$ is the maximal radius $r$ such that $D_{r}(a) \subseteq U$.

## 3. Review of 1-forms

Let $E$ and $F$ be finite dimensional vector spaces, and let $U \subseteq E$ be open. An $F$-valued 1-form is a mapping $\omega: U \rightarrow L(E, F)$. A continuous 1-form $\omega$ is called exact if there is a $C^{1}$ mapping $f: U \rightarrow F$ such that $d f=\omega$.

Let $E=\mathbb{R}^{n}$ and let $x_{i}$ denote the coordinate projection $x_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}, x=$ $\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{i}$. The differential $d x_{i}: \mathbb{R}^{n} \rightarrow L\left(\mathbb{R}^{n}, \mathbb{R}\right)=\left(\mathbb{R}^{n}\right)^{*}$ is the constant 1-form $v=\left(v_{1}, \ldots, v_{n}\right) \mapsto v_{i}$. An arbitrary 1-form $\omega: \mathbb{R}^{n} \supseteq U \rightarrow L\left(\mathbb{R}^{n}, F\right)$ is of the form

$$
\omega=\sum_{i=1}^{n} \omega_{i} d x_{i}
$$

where the mappings $\omega_{i}: U \rightarrow F$ are given by $\omega_{i}(x)=\omega(x)\left(e_{i}\right)$ and where $\left(e_{i}\right)_{i=1}^{n}$ denote the standard unit vectors of $\mathbb{R}^{n}$. Indeed,

$$
\omega(x)(v)=\omega(x)\left(\sum_{i=1}^{n} v_{i} e_{i}\right)=\sum_{i=1}^{n} \omega(x)\left(e_{i}\right) v_{i}=\sum_{i=1}^{n} \omega_{i}(x) d x_{i}(x)(v)
$$

Thus $d x_{1}, \ldots, d x_{n}$ form a basis for the module of real valued 1-forms over the ring of real valued functions.

If $\omega=d f$ is exact, then its components $\omega_{i}(x)=\omega(x)\left(e_{i}\right)=d f(x)\left(e_{i}\right)=\partial_{i} f(x)$ are the partial derivatives of $f$,

$$
d f=\sum_{i=1}^{n} \partial_{i} f d x_{i}
$$

Since for a $C^{2}$ mapping $f$ the partial derivatives of second order commute, $\partial_{i} \partial_{j} f=$ $\partial_{j} \partial_{i} f, i \neq j$, a necessary condition for a $C^{1} 1$-form $\omega=\sum_{i=1}^{n} \omega_{i} d x_{i}$ to be exact is that the integrability conditions $\partial_{i} \omega_{j}=\partial_{j} \omega_{i}, i \neq j$, are satisfied. In that case $\omega$ is said to be closed. A closed 1 -form is locally exact.

Let $\omega: E \supseteq U \rightarrow L(E, F)$ be a continuous 1-form and let $\gamma:[a, b] \rightarrow U$ be a $C^{1}$-curve in $U$. The integral of $\omega$ along $\gamma$ is defined by

$$
\int_{\gamma} \omega:=\int_{a}^{b} \omega(\gamma(t)) \gamma^{\prime}(t) d t
$$

For exact 1-forms $\omega=d f$ the integral computes the primitive $f$. In fact, if $f: U \rightarrow$ $F$ is $C^{1}$ then by the fundamental theorem of calculus

$$
\int_{\gamma} d f=\int_{a}^{b} d f(\gamma(t)) \gamma^{\prime}(t) d t=\int_{a}^{b}(f \circ \gamma)^{\prime}(t) d t=f(\gamma(b))-f(\gamma(a))
$$

for all $C^{1}$-curves $\gamma$.

## Complex differentiation

## 4. Holomorphic functions

4.1. $\mathbb{R}$-linear and $\mathbb{C}$-linear mappings. Since $\mathbb{C}$ is a vector space over $\mathbb{R}$ as well as over $\mathbb{C}$, one must distinguish $\mathbb{R}$-linear from $\mathbb{C}$-linear mappings $\mathbb{C} \rightarrow \mathbb{C}$.

Lemma. A mapping $f: \mathbb{C} \rightarrow \mathbb{C}$ is $\mathbb{R}$-linear if and only if

$$
f(z)=f(1) x+f(i) y=\frac{f(1)-i f(i)}{2} z+\frac{f(1)+i f(i)}{2} \bar{z}, \quad z=x+i y
$$

An $\mathbb{R}$-linear mapping $f: \mathbb{C} \rightarrow \mathbb{C}$ is $\mathbb{C}$-linear if and only if $f(i)=i f(1)$; in that case $f(z)=f(1) z$.

Proof. If $f: \mathbb{C} \rightarrow \mathbb{C}$ is $\mathbb{R}$-linear then $f(z)=f(x+i y)=f(1) x+f(i) y$; the converse is obvious. The second identity follows from $x=\frac{1}{2}(z+\bar{z})$ and $y=\frac{1}{2 i}(z-\bar{z})$. The rest follows easily.

For instance $z \mapsto \bar{z}$ is $\mathbb{R}$-linear, but not $\mathbb{C}$-linear.
Let us identify $\mathbb{C} \cong \mathbb{R}^{2}$ by $x+i y \mapsto\binom{x}{y}$. Every $\mathbb{R}$-linear mapping $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is of the form

$$
\binom{x}{y} \mapsto\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{a x+b y}{c x+d y}, \quad a, b, c, d \in \mathbb{R} .
$$

Via the above identification we get

$$
f(1)=a+i c, \quad f(i)=b+i d
$$

Then, $f(i)=i f(1)$ if and only if $c=-b$ and $d=a$. Thus, cf. Proposition 1.2;
Proposition. The real matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ induces $a \mathbb{C}$-linear mapping $f: \mathbb{C} \rightarrow \mathbb{C}$ if and only if $c=-b$ and $d=a$.
4.2. Complex differentiable functions. Let $U \subseteq \mathbb{C}$ be a domain. A function $f: U \rightarrow \mathbb{C}$ is called complex differentiable (or $\mathbb{C}$-differentiable) at $a \in U$, if there exists a function $f_{1}: U \rightarrow \mathbb{C}$ that is continuous in $a$ and

$$
\begin{equation*}
f(z)=f(a)+f_{1}(z)(z-a) \quad \text { for all } z \in U \tag{4.1}
\end{equation*}
$$

The function $f_{1}$ is uniquely determined by $f$ : we have $f_{1}(z)=\frac{f(z)-f(a)}{z-a}$ if $z \neq a$ and by continuity of $f_{1}$,

$$
f_{1}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

The number $f_{1}(a) \in \mathbb{C}$ is the complex derivative of $f$ at $a$; we write

$$
f^{\prime}(a)=\frac{d f}{d z}(a):=f_{1}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

A function $f: U \rightarrow \mathbb{C}$ is called holomorphic in $U$ if it is $\mathbb{C}$-differentiable at every point $a \in U$. The set of all holomorphic functions in $U$ will be denoted by $\mathcal{H}(U)$. The following lemma implies $\mathbb{C} \subseteq \mathcal{H}(U) \subseteq C(U)$.
Lemma. If $f$ is $\mathbb{C}$-differentiable at $a$ then $f$ is continuous at $a$.
Proof. This follows immediately from 4.1.

## Example.

(1) Every power function $z \mapsto z^{n}$ is holomorphic in $\mathbb{C}$ :

$$
\begin{aligned}
z^{n} & =a^{n}+(z-a)\left(z^{n-1}+a z^{n-2}+\cdots+a^{n-2} z+a^{n-1}\right) \\
\left(z^{n}\right)^{\prime} & =n z^{n-1} \quad \text { for all } z \in \mathbb{C}
\end{aligned}
$$

(2) The conjugation mapping $z \mapsto \bar{z}$ is nowhere $\mathbb{C}$-differentiable:

$$
\frac{\overline{z+h}-\bar{z}}{h}=\frac{\bar{h}}{h}, \quad h \neq 0
$$

is 1 for $h \in \mathbb{R}$ and -1 for $h \in i \mathbb{R}$, thus does not converge as $h \rightarrow 0$. Analogously, $\operatorname{Re} z, \operatorname{Im} z$, and $|z|$ are nowhere $\mathbb{C}$-differentiable.
(3) The inversion $z \mapsto 1 / z$ is holomorphic in $\mathbb{C} \backslash\{0\}$ :

$$
\begin{aligned}
\frac{1}{z} & =\frac{1}{a}+(z-a)\left(-\frac{1}{z a}\right) \\
\left(\frac{1}{z}\right)^{\prime} & =-\frac{1}{z^{2}} \quad \text { for all } z \in \mathbb{C} \backslash\{0\}
\end{aligned}
$$

4.3. Complex and real differentiability. A mapping $f: \mathbb{R}^{m} \supseteq U \rightarrow \mathbb{R}^{n}$ is real differentiable (or $\mathbb{R}$-differentiable) at $a \in U$, if there is an $\mathbb{R}$-linear mapping $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ such that

$$
\lim _{h \rightarrow 0} \frac{|f(a+h)-f(a)-T(h)|}{|h|}=0
$$

Then $T$ is unique and is called the differential $d f(a)$. Clearly, $\mathbb{R}$-differentiability at $a$ implies continuity at $a$. If we introduce coordinates and write $f=\left(f_{1}, \ldots, f_{n}\right)$ with $f_{i}=f_{i}\left(x_{1}, \ldots, x_{m}\right)$, then provided that $f$ is $\mathbb{R}$-differentiable at $a$ the partial derivatives $\partial_{j} f_{i}(a), 1 \leq i \leq n, 1 \leq j \leq m$, exist and we have

$$
d f(a)(v)=J_{f}(a) \cdot v, \quad J_{f}(a):=\left(\partial_{j} f_{i}(a)\right)_{1 \leq i \leq n, 1 \leq j \leq m} .
$$

The matrix $J_{f}(a)$ is called the Jacobian matrix.
Let $U \subseteq \mathbb{C}$ be a domain. A function $f: U \rightarrow \mathbb{C}$ may be considered as a mapping $f: \mathbb{R}^{2} \supseteq U \rightarrow \mathbb{R}^{2}$ (namely, $z=x+i y$ and $f=u+i y$ ) and we can compare complex and real differentiability.
Theorem. For a function $f: U \rightarrow \mathbb{C}$ and $a \in U$ the following are equivalent:
(1) $f$ is $\mathbb{C}$-differentiable in $a$.
(2) $f$ is $\mathbb{R}$-differentiable in a and the differential df $(a): \mathbb{C} \rightarrow \mathbb{C}$ is $\mathbb{C}$-linear.
(3) $f$ is $\mathbb{R}$-differentiable in a and the Cauchy-Riemann equations hold:

$$
\begin{equation*}
u_{x}(a)=v_{y}(a), \quad u_{y}(a)=-v_{x}(a) . \tag{4.2}
\end{equation*}
$$

In this case we have $d f(a)(z)=f^{\prime}(a) z$ and $f^{\prime}(a)=u_{x}(a)+i v_{x}(a)=v_{y}(a)-i u_{y}(a)$.
Proof. (1) $\Rightarrow(2)$ By assumption the derivative $f^{\prime}(a)$ exists. Define the $\mathbb{C}$-linear mapping $T(z):=f^{\prime}(a) z$. Then

$$
\frac{|f(a+h)-f(a)-T(h)|}{|h|}=\left|\frac{f(a+h)-f(a)}{h}-f^{\prime}(a)\right| \rightarrow 0
$$

as $h \rightarrow 0$. That is $f$ is $\mathbb{R}$-differentiable and $d f(a)=T$.
$(2) \Rightarrow(1)$ If $f$ is $\mathbb{R}$-differentiable at $a$ with $\mathbb{C}$-linear derivative $d f(a)$ then

$$
\left|\frac{f(a+h)-f(a)}{h}-d f(a)(1)\right|=\frac{|f(a+h)-f(a)-d f(a)(h)|}{|h|} \rightarrow 0
$$

as $h \rightarrow 0$, since $d f(a)(h)=h \cdot d f(a)(1)$. So $f^{\prime}(a)$ exists and equals $d f(a)(1)$.
The equivalence of (2) and (3) follows from Proposition 4.1; the differential $d f(a)$ is given by the Jacobian matrix

$$
J_{f}(a)=\left(\begin{array}{ll}
u_{x}(a) & u_{y}(a) \\
v_{x}(a) & v_{y}(a)
\end{array}\right)
$$

which is $\mathbb{C}$-linear if and only if 4.2 ).
Then $f^{\prime}(a)=d f(a)(1)=u_{x}(a)+i v_{x}(a)=v_{y}(a)-i u_{y}(a)$.
A function $f=u+i v: \mathbb{C} \supseteq U \rightarrow \mathbb{C}$ is $\mathbb{R}$-differentiable in $a \in U$ if and only if $u: U \rightarrow \mathbb{R}$ and $v: U \rightarrow \mathbb{R}$ are $\mathbb{R}$-differentiable in $a$. A sufficient condition for $\mathbb{R}$-differentiability of a function $u: U \rightarrow \mathbb{R}$ is existence and continuity of the partial derivatives $u_{x}$ and $u_{y}$; we say that $u$ is continuously differentiable and write $u \in C^{1}(U)$. Thus follows:

Corollary. If $u$ and $v$ are real continuously differentiable functions in $U \subseteq \mathbb{C}$, satisfying the Cauchy-Riemann equations

$$
\begin{equation*}
u_{x}=v_{y}, \quad u_{y}=-v_{x} . \tag{4.3}
\end{equation*}
$$

in $U$, then $f=u+i v$ is holomorphic in $U \sqrt{6}$
Suppose that $f=u+i v$ is $\mathbb{C}$-differentiable. Then

$$
\left|f^{\prime}\right|^{2}=\operatorname{det}\left(\begin{array}{ll}
u_{x} & u_{y}  \tag{4.4}\\
v_{x} & v_{y}
\end{array}\right)=u_{x}^{2}+v_{x}^{2}=u_{y}^{2}+v_{y}^{2}
$$

that is, $\left|f^{\prime}\right|^{2}$ is the Jacobian determinant of the mapping $(x, y) \mapsto(u, v)$. It is non-negative, and zero precisely at points where $f^{\prime}$ vanishes.

Proposition. If $f$ is holomorphic in a region and $f^{\prime}=0$, then $f$ is constant.
Proof. This follows from (4.4) and the mean value theorem.
A different proof will be given in Section 13.3 .

### 4.4. Example.

(1) The function

$$
\tilde{e}(z):=e^{x}(\cos y+i \sin y), \quad z=x+i y, x, y \in \mathbb{R}
$$

is $\mathbb{R}$-differentiable and the Cauchy-Riemann equations are satisfied. Thus $\tilde{e}$ is holomorphic in $\mathbb{C}$ and we have

$$
\tilde{e}^{\prime}(z)=\tilde{e}(z)
$$

(2) The function

$$
\tilde{\ell}(z):=\frac{1}{2} \log \left(x^{2}+y^{2}\right)+i \arctan \frac{y}{x}, \quad z=x+i y, x, y \in \mathbb{R}, x \neq 0
$$

[^4]is $\mathbb{R}$-differentiable and the Cauchy-Riemann equations are satisfied. Thus $\tilde{\ell}$ is holomorphic in $\mathbb{C} \backslash\{z \in \mathbb{C}: \operatorname{Re} z=0\}$ and
$$
\tilde{\ell}^{\prime}(z)=\frac{1}{z}
$$
4.5. Elementary properties of holomorphic functions. Let $U$ be a domain in $\mathbb{C}$. Recall that a function $f$ is holomorphic in $U$ if it is $\mathbb{C}$-differentiable at every point $a \in U$. We say that a function is holomorphic at $a$ if there is an open neighborhood $V$ of $a$ in $U$ such that $f$ is holomorphic in $V$, i.e., $\left.f\right|_{V} \in \mathcal{H}(V)$.

The set of points, where a function is holomorphic, is always open in $\mathbb{C}$. If $f$ is holomorphic at $a$ then it is clearly $\mathbb{C}$-differentiable at $a$. Then converse is not true: The function $f(z)=x^{3} y^{2}+i x^{2} y^{3}, z=x+i y, x, y \in \mathbb{R}$, is $\mathbb{C}$-differentiable on the coordinate axes, but nowhere else, and it is nowhere holomorphic.
Proposition. Let $U$ be a domain in $\mathbb{C}$ and let $f, g \in \mathcal{H}(U)$.
(1) For all $a, b \in \mathbb{C}$, $a f+b g \in \mathcal{H}(U)$ and

$$
(a f+b g)^{\prime}=a f^{\prime}+b g^{\prime}
$$

(2) $f g \in \mathcal{H}(U)$ and

$$
(f g)^{\prime}=f^{\prime} g+f g^{\prime}
$$

(3) If $g(z) \neq 0$ for all $z \in U$ then $f / g \in \mathcal{H}(U)$ and

$$
\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}
$$

(4) If $V$ is a domain in $\mathbb{C}$ such that $g(U) \subseteq V$, and $h \in \mathcal{H}(V)$, then $h \circ g \in$ $\mathcal{H}(U)$ and

$$
(h \circ g)^{\prime}=\left(h^{\prime} \circ g\right) \cdot g^{\prime}
$$

Proof. There are $f_{1}, g_{1}: U \rightarrow \mathbb{C}$ that are continuous in $c \in U$ and such that

$$
f(z)=f(c)+(z-c) f_{1}(z), \quad g(z)=g(c)+(z-c) g_{1}(z), \quad z \in U
$$

Let us show (2) ((1) is similar):

$$
(f g)(z)=(f g)(c)+(z-c)\left[f_{1}(z) g(c)+f(c) g_{1}(z)+(z-c) f_{1}(z) g_{1}(z)\right]
$$

The function in the square bracket is continuous in $c$, and so

$$
(f g)^{\prime}(c)=f_{1}(c) g(c)+f(c) g_{1}(c)=f^{\prime}(c) g(c)+f(c) g^{\prime}(c)
$$

In order to show (3) consider

$$
\frac{1}{g(z)}=\frac{1}{g(c)}+(z-c)\left[-\frac{g_{1}(z)}{g(c)\left(g(c)+(z-c) g_{1}(z)\right)}\right]
$$

which implies that $1 / g \in \mathcal{H}(U)$ and $(1 / g)^{\prime}=-g^{\prime} / g^{2}$; the general case follows from (2). Let us prove (4). By assumption

$$
h(w)=h(g(c))+(w-g(c)) h_{1}(w), \quad w \in V
$$

where $h_{1}: V \rightarrow \mathbb{C}$ is continuous in $g(c)$. Then
$h(g(z))=h(g(c))+(g(z)-g(c)) h_{1}(g(z))=h(g(c))+(z-c) g_{1}(z) h_{1}(g(z)), \quad z \in U$, and $z \mapsto g_{1}(z) h_{1}(g(z))$ is continuous in $c$. Thus $h \circ g$ is $\mathbb{C}$-differentiable in $c$ and

$$
(h \circ g)^{\prime}(c)=h_{1}(g(c)) g_{1}(c)=h^{\prime}(g(c)) g^{\prime}(c)
$$

As a consequence we obtain that every polynomial $p(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n} \in$ $\mathbb{C}[z]$ is holomorphic in $\mathbb{C}$, and $p^{\prime}(z)=a_{1}+2 a_{2} z+\cdots+n a_{n} z^{n-1} \in \mathbb{C}[z]$. Moreover, every rational function is holomorphic in the complement of the zero set of the denominator.
4.6. Partial derivatives $f_{x}, f_{y}, f_{z}$, and $f_{\bar{z}}$. Let $f: \mathbb{C} \supseteq U \rightarrow \mathbb{C}$ be $\mathbb{R}$ differentiable at $a \in U$. Then

$$
f(a+z)-f(a)=f_{x}(a) x+f_{y}(a) y+o(z), \quad \text { as } z=x+i y \rightarrow 0
$$

and since $x=\frac{1}{2}(z+\bar{z})$ and $y=\frac{1}{2 i}(z-\bar{z})$, we find

$$
\begin{equation*}
f(a+z)-f(a)=\frac{f_{x}(a)-i f_{y}(a)}{2} z+\frac{f_{x}(a)+i f_{y}(a)}{2} \bar{z}+o(z) . \tag{4.5}
\end{equation*}
$$

This suggests the introduction of the differential operators

$$
\frac{\partial}{\partial z}:=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right), \quad \frac{\partial}{\partial \bar{z}}:=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)
$$

We will denote by $f_{z}$ and $f_{\bar{z}}$ the respective partial derivatives,

$$
f_{z}:=\frac{\partial f}{\partial z}=\frac{1}{2}\left(f_{x}-i f_{y}\right), \quad f_{\bar{z}}:=\frac{\partial f}{\partial \bar{z}}=\frac{1}{2}\left(f_{x}+i f_{y}\right) .
$$

Then (4.5 reads

$$
f(a+z)-f(a)=f_{z}(a) z+f_{\bar{z}}(a) \bar{z}+o(z)
$$

The Cauchy-Riemann equations 4.3 are equivalent to

$$
i f_{x}=f_{y} \Leftrightarrow f_{\bar{z}}=0
$$

Thus, if $f$ is $\mathbb{C}$-differentiable at $a$ then

$$
f^{\prime}(a)=f_{x}(a)=-i f_{y}(a)=f_{z}(a) .
$$

The differential of $f$ is the 1 -form

$$
d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y
$$

where $d x: \mathbb{R}^{2} \rightarrow \mathbb{R}, h \mapsto h_{1}$, and $d y: \mathbb{R}^{2} \rightarrow \mathbb{R}, h \mapsto h_{2}$. Since

$$
d z=d x+i d y, \quad d \bar{z}=d x-i d y
$$

we find

$$
d f=\frac{\partial f}{\partial z} d z+\frac{\partial f}{\partial \bar{z}} d \bar{z}=f_{z} d z+f_{\bar{z}} d \bar{z}
$$

and $d f=f_{z} d z=f^{\prime} d z$ if $f$ is holomorphic.
4.7. Holomorphic functions are harmonic. Let $f=u+i v$ be a complex valued function defined in a domain $U \subseteq \mathbb{C}$. If $f$ is $C^{2}$ (i.e. the partial derivatives of second order exist and are continuous), we may consider the Laplacian of $f$,

$$
\Delta f:=f_{x x}+f_{y y}=4 f_{\bar{z} z}
$$

A function $f \in C^{2}(U)$ is called harmonic if $\Delta f=0$ on $U$. If $f \in \mathcal{H}(U) \cap C^{2}(U)$ then $f_{\bar{z}}=0$ and thus $\Delta f=0$ on $U$. Since $\Delta f=\Delta(u+i v)=\Delta u+i \Delta v, f$ is harmonic if and only $u$ and $v$ are harmonic. So we proved:

Lemma. If $f \in \mathcal{H}(U) \cap C^{2}(U)$ then the real and the imaginary part of $f$ are harmonic ${ }^{7}$

[^5]
## 5. Conformal mappings

5.1. Linear angle-preserving mappings. An $\mathbb{R}$-linear bijective mapping $f$ : $\mathbb{C} \rightarrow \mathbb{C}$ is said to be angle-preserving if

$$
\frac{\langle f(z), f(w)\rangle}{|f(z)||f(w)|}=\frac{\langle z, w\rangle}{|z||w|}, \quad z, w \in \mathbb{C} \backslash\{0\}
$$

i.e., $\varangle(f(z), f(w))=\varangle(z, w)$.

Lemma. The following are equivalent:
(1) $f: \mathbb{C} \rightarrow \mathbb{C}$ is angle-preserving.
(2) There exists $a \in \mathbb{C} \backslash\{0\}$ such that either $f(z)=a z$ or $f(z)=a \bar{z}$ for all $z \in \mathbb{C}$.
(3) There exists $r>0$ such that $\langle f(z), f(w)\rangle=r\langle z, w\rangle$ for all $z$, $w$.

Proof. (1) $\Rightarrow(2)$ Set $a:=f(1)$. Since $\langle f(z), f(w)\rangle=0$ if $\langle z, w\rangle=0$, we have

$$
0=\langle f(1), f(i)\rangle=\operatorname{Re}(\bar{a} f(i))=\operatorname{Re}\left(a \bar{a} a^{-1} f(i)\right)=|a|^{2} \operatorname{Re}\left(a^{-1} f(i)\right) .
$$

Thus $a^{-1} f(i)$ is purely imaginary and so $f(i)=i r a$ for some $r \in \mathbb{R}$. Since $\langle 1+$ $i, 1-i\rangle=0$,

$$
\begin{aligned}
0 & =\langle f(1+i), f(1-i)\rangle=\langle f(1)+f(i), f(1)-f(i)\rangle=\langle a(1+i r), a(1-i r)\rangle \\
& =|a|^{2} \operatorname{Re}\left((1+i r)^{2}\right)=|a|^{2}\left(1-r^{2}\right),
\end{aligned}
$$

i.e., $r= \pm 1$. This implies (2), in fact, $f(x+i y)=x f(1)+y f(i)=x a \pm i y a$ and so either $f(z)=a z$ or $f(z)=a \bar{z}$.
$(2) \Rightarrow(3)$ This follows from $\langle a z, a w\rangle=|a|^{2}\langle z, w\rangle$ and $\langle z, w\rangle=\langle\bar{z}, \bar{w}\rangle$.
$(3) \Rightarrow(1)$ By assumption, $|f(z)|=\sqrt{r}|z|$ and so $f$ is injective and hence bijective. Moreover,

$$
|z\|w|\langle f(z), f(w)\rangle=|z|| w|r\langle z, w\rangle=|f(z) \| f(w)|\langle z, w\rangle
$$

which implies (1).
5.2. Angle-preserving and conformal mappings. Let $U \subseteq \mathbb{C}$ be a domain. An $\mathbb{R}$-differentiable mapping $f: U \rightarrow \mathbb{C}$ is called angle-preserving at $c \in U$ if the differential $d f(c): \mathbb{C} \rightarrow \mathbb{C}$ is angle-preserving. We say that $f$ is angle-preserving in $U$ if it is so at every point.

We say that $f: U \rightarrow \mathbb{C}$ is antiholomorphic if $\bar{f}: U \rightarrow \mathbb{C}$ is holomorphic; this is the case if and only if $f_{z}=0$ in $U$.

Theorem. Let $U \subseteq \mathbb{C}$ be a region and let $f \in C^{1}(U)$. The following are equivalent:
(1) $f$ is holomorphic or antiholomorphic in $U$ and $f^{\prime} \neq 0$ or $\bar{f}^{\prime} \neq 0$ in $U$.
(2) $f$ is angle-preserving in $U$.

Proof. By Lemma 5.1 the differential $d f(c) h=f_{z}(c) h+f_{\bar{z}}(c) \bar{h}$ is angle-preserving if and only if either $f_{\bar{z}}(c)=0$ and $f_{z}(c) \neq 0$ or $f_{z}(c)=0$ and $f_{\bar{z}}(c) \neq 0$. This implies $(1) \Rightarrow(2)$ since $f_{z}=f^{\prime}$ and $f_{\bar{z}}=\overline{\bar{f}}^{\prime}$. For the direction (2) $\Rightarrow$ (1) we note that the function

$$
U \ni c \mapsto \frac{f_{z}(c)-f_{\bar{z}}(c)}{f_{z}(c)+f_{\bar{z}}(c)}
$$

is well-defined, continuous, and takes values in $\{-1,1\}$. Since $U$ is connected it must be constant. This means that either $f_{\bar{z}}=0$ and $f_{z} \neq 0$ or $f_{z}=0$ and $f_{\bar{z}} \neq 0$ in $U$.

An $\mathbb{R}$-differentiable mapping $f=u+i v: U \rightarrow \mathbb{C}$ is called orientationpreserving at $c \in U$ if

$$
\operatorname{det}\left(\begin{array}{ll}
u_{x}(c) & u_{y}(c) \\
v_{x}(c) & v_{y}(c)
\end{array}\right)>0
$$

We say that $f$ is orientation-preserving in $U$ if it is so at every point.
An angle- and orientation preserving mapping $f: U \rightarrow \mathbb{C}$ is called conformal.
Corollary. Let $f \in C^{1}(U)$. Then $f$ is holomorphic in $U$ and $f^{\prime} \neq 0$ in $U$ if and only if $f$ is conformal.

Proof. This follows from the theorem and (4.4).
Example. The mapping $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C} \backslash\{0\}, f(z)=z^{2}$, is conformal. For $z=x+i y$ and $f=u+i v$,

$$
u=x^{2}-y^{2}, \quad v=2 x y .
$$

So the lines $x=a, y=b$ parallel to the axes are mapped to the parabolas $v^{2}=$ $4 a^{2}\left(a^{2}-u\right)$ and $v^{2}=4 b^{2}\left(b^{2}+u\right)$. The parabolas of the first family are open to the left, those of the second family to the right. Any two parabolas intersect orthogonally. The levels $u=c$ and $v=d$ are hyperbolas in the $(x, y)$-plane; any two of them intersect orthogonally.


Figure 4. The function $z \mapsto z^{2}$. On the left we have the $(x, y)$-plane, on the right the $(u, v)$-plane. Brightness corresponds to $|z|$, and the color to $\arg z$.

## Power series

## 6. Convergent sequences and series of functions

6.1. Uniformly convergent sequences and series of functions. Let $X$ be a set. A sequence of functions $f_{n}: X \rightarrow \mathbb{C}$ is uniformly convergent to $f: X \rightarrow \mathbb{C}$ if

$$
\forall \epsilon>0 \exists k \in \mathbb{N} \forall n \geq k \forall x \in X:\left|f_{n}(x)-f(x)\right|<\epsilon,
$$

or equivalently, if $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|=0$, where

$$
\|f\|=\|f\|_{X}:=\sup _{x \in X}|f(x)|
$$

is the sup norm. Uniform convergence implies pointwise convergence, that is $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for all $x \in X$; we simply write $f=\lim f_{n}$, the limit is unique. If $f_{n}$ and $g_{n}$ are uniformly convergent sequences of functions $X \rightarrow \mathbb{C}$ then:
(1) For all $a, b \in \mathbb{C}$ the sequence $a f_{n}+b g_{n}$ is uniformly convergent and

$$
\lim \left(a f_{n}+b g_{n}\right)=a \lim f_{n}+b \lim g_{n} .
$$

(2) If $\left\|\lim f_{n}\right\|<\infty$ and $\left\|\lim g_{n}\right\|<\infty$, then the product sequence $f_{n} g_{n}$ is uniformly convergent and

$$
\lim \left(f_{n} g_{n}\right)=\lim f_{n} \lim g_{n} .
$$

Let $X$ be a metric space. A sequence of functions $f_{n}: X \rightarrow \mathbb{C}$ is locally uniformly convergent to $f: X \rightarrow \mathbb{C}$ if each point $x \in X$ has a neighborhood $U$ in $X$ such that $\left.f_{n}\right|_{U}$ is uniformly convergent.

Theorem. The limit of a locally uniformly convergent sequence of continuous functions $f_{n} \in C(X)$ is continuous, $f=\lim f_{n} \in C(X)$.

Proof. Fix $a \in X$ and let $\epsilon>0$. There is a neighborhood $U$ of $a$ in $X$ and $m \in \mathbb{N}$ such that $\left\|f-f_{m}\right\|_{U}<\epsilon$. Since $f_{m}$ is continuous in $a$, there is a neighborhood $V \subseteq U$ of $a$ such that $\left|f_{m}(x)-f(a)\right|<\epsilon$ for all $x \in V$. Thus

$$
|f(x)-f(a)| \leq\left|f(x)-f_{m}(x)\right|+\left|f_{m}(x)-f_{m}(a)\right|+\left|f_{m}(a)-f(a)\right|<3 \epsilon
$$

for all $x \in V$.

A locally uniformly convergent sequence of functions converges uniformly on compact sets. If $X$ is locally compact (i.e. each point in $X$ has a compact neighborhood), then also the converse is trivially true. Note that domains in $\mathbb{C}$ are locally compact.

A series $\sum f_{n}$ of functions $f_{n}: X \rightarrow \mathbb{C}$ is (locally) uniformly convergent if the sequence of partial sums is (locally) uniformly convergent. Thus (1) remains true for series, and the limit of a locally uniformly convergent series of continuous functions in continuous.
6.2. Cauchy's convergence criterion. A sequence $f_{n}: X \rightarrow \mathbb{C}$ is called a Cauchy sequence if

$$
\forall \epsilon>0 \exists k \in \mathbb{N} \forall m, n \geq k:\left\|f_{m}-f_{m}\right\|<\epsilon
$$

Theorem. A sequence $f_{n}: X \rightarrow \mathbb{C}$ is uniformly convergent if and only if it is a Cauchy sequence.

Proof. Suppose that $f_{n}$ is a Cauchy sequence. Then $f_{n}$ is pointwise a Cauchy sequence, since $\left|f_{m}(x)-f_{n}(x)\right| \leq\left\|f_{m}-f_{m}\right\|$, and thus it is pointwise convergent; set $f:=\lim f_{n}$. Let $\epsilon>0$. There is $k \in \mathbb{N}$ such that $\left|f_{m}(x)-f_{n}(x)\right|<\epsilon$ for all $m, n \geq k$ and all $x \in X$. For $x \in X$ choose $m=m(x) \geq k$ such that $\left|f_{m}(x)-f(x)\right|<\epsilon$, then

$$
\left|f_{n}(x)-f(x)\right| \leq\left|f_{n}(x)-f_{m}(x)\right|+\left|f_{m}(x)-f(x)\right|<2 \epsilon
$$

for all $x \in X$ and all $n \geq k$.
Corollary. A series $\sum f_{n}$ of functions $f_{n}: X \rightarrow \mathbb{C}$ is uniformly convergent if and only if for all $\epsilon>0$ there is $k \in \mathbb{N}$ such that $\left\|f_{m+1}+\cdots+f_{n}\right\|<\epsilon$ for all $n>m \geq k$.

### 6.3. Weierstrass majorant criterion.

Theorem. Let $f_{n}: X \rightarrow \mathbb{C}$ be a sequence of functions, and let $M_{n} \geq 0$ be a sequence of real numbers such that $\left\|f_{n}\right\| \leq M_{n}$ and $\sum M_{n}<\infty$. Then $\sum f_{n}$ is uniformly convergent.

Proof. This follows from Cauchy's convergence criterion, since

$$
\left\|\sum_{k=m+1}^{n} f_{k}\right\| \leq \sum_{k=m+1}^{n}\left\|f_{k}\right\| \leq \sum_{k=m+1}^{n} M_{k}
$$

6.4. Normally convergent series. A series $\sum f_{n}$ of functions $f_{n}: X \rightarrow \mathbb{C}$ is called normally convergent if $\sum\left\|f_{n}\right\|<\infty$. The Weierstrass majorant criterion implies that a normally convergent series is uniformly convergent. Clearly, each subseries of a normally convergent series is normally convergent. Moreover, normally convergent series can be reordered arbitrarily:

Proposition. If $\sum_{n=0}^{\infty} f_{n}$ is normally convergent to $f$, then $\sum_{n=0}^{\infty} f_{\sigma(n)}$ is normally convergent to $f$ for each bijection $\sigma: \mathbb{N} \rightarrow \mathbb{N}$.

Proof. Let $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ be any bijection. Since $\sum_{n=0}^{\infty}\left\|f_{n}\right\|<\infty$, we also have $\sum_{n=0}^{\infty}\left\|f_{\sigma(n)}\right\|<\infty$, because absolutely convergent series of complex numbers can be arbitrarily reordered; cf. Section 2.2 Moreover, $f(x)=\sum_{n=0}^{\infty} f_{n}(x)=$ $\sum_{n=0}^{\infty} f_{\sigma(n)}(x)$ for each $x \in X$, since $\sum_{n=0}^{\infty} f_{n}(x)$ is absolutely convergent for each $x \in X$.

Lemma. Let $\sum f_{n}$ and $\sum g_{n}$ be normally convergent series.
(1) For all $a, b \in \mathbb{C}$ the series $\sum\left(a f_{n}+b g_{n}\right)$ is normally convergent.
(2) Every product series $\sum h_{n}$, where $h_{0}, h_{1}, \ldots$ runs through all products $f_{k} g_{\ell}$ exactly once, converges normally to $\sum f_{n} \sum g_{n}$.

Proof. (1) follows immediately from the majorant criterion.
(2) is a consequence of the corresponding result for absolutely convergent series; cf. Section 2.2. Note that $\left\|f_{k} g_{\ell}\right\| \leq\left\|f_{k}\right\|\left\|g_{\ell}\right\|$.

## 7. Convergent power series

We begin by discussing power series centered at the origin. Everything holds up to obvious changes for power series centered at arbitrary points; see Section 8.2 .
7.1. Formal power series. A formal power series is a series $\sum_{n=0}^{\infty} a_{n} z^{n}$ with $a_{n} \in \mathbb{C}$. The numbers $a_{n}$ are called the coefficients of the formal power series.

The set of all formal power series, denoted by $\mathbb{C}[[z]]$, forms a $\mathbb{C}$-algebra. In fact, we have the inclusion $\mathbb{C} \subseteq \mathbb{C}[[z]]$ by identifying $\mathbb{C} \ni a \mapsto a+\sum_{n=1}^{\infty} 0 \cdot z^{n}$ and define the sum and the product of two formal power series $f=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $g=\sum_{n=0}^{\infty} b_{n} z^{n}$ by setting

$$
f+g:=\sum_{n=0}^{\infty}\left(a_{n}+b_{n}\right) z^{n}, \quad f g:=\sum_{n=0}^{\infty}\left(\sum_{k+\ell=n} a_{k} b_{\ell}\right) z^{n} .
$$

Note that this is the Cauchy product; cf. Section 2.2 .
7.2. Abel's lemma. A (formal) power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ is called convergent if there is a point $z_{0} \in \mathbb{C} \backslash\{0\}$ such that the series $\sum_{n=0}^{\infty} a_{n} z_{0}^{n}$ is convergent; for $z_{0}=0$ this is trivially true.

Lemma. If there exist $s, M>0$ such that $\left|a_{n}\right| s^{n} \leq M$ for all $n \in \mathbb{N}$, then the power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ is normally convergent on each disk $\bar{D}_{r}(0)$ with $r<s$.

Proof. We have $\left\|a_{n} z^{n}\right\|_{\bar{D}_{r}(0)}=\left|a_{n}\right| r^{n}=\left|a_{n}\right| s^{n}(r / s)^{n} \leq M(r / s)^{n}$ and $0<r / s<1$. The majorant criterion implies the statement.

Corollary. If $\sum_{n=0}^{\infty} a_{n} z^{n}$ converges at $z_{0} \neq 0$, then $\sum_{n=0}^{\infty} a_{n} z^{n}$ is normally convergent on each disk $\bar{D}_{r}(0)$ with $r<\left|z_{0}\right|$.

Proof. The sequence $a_{n} z_{0}^{n}$ converges to 0 , and thus is bounded.
7.3. Radius of convergence. The radius of convergence of a power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ is by definition

$$
\rho:=\sup \left\{s \geq 0:\left|a_{n}\right| s^{n} \text { is bounded }\right\} \in[0, \infty]
$$

The set $D_{\rho}(0)$ is called the disk of convergence of $\sum_{n=0}^{\infty} a_{n} z^{n}$.
Theorem. Let $\rho$ be the radius of convergence of $\sum_{n=0}^{\infty} a_{n} z^{n}$. Then:
(1) For each $r<\rho$, the series $\sum_{n=0}^{\infty} a_{n} z^{n}$ converges normally for $|z| \leq r$, and it converges absolutely for each $z$ with $|z|<\rho$.
(2) The series $\sum_{n=0}^{\infty} a_{n} z^{n}$ diverges for $|z|>\rho$.

The radius of convergence is given by Hadamard's formula:

$$
\begin{equation*}
1 / \rho=\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}, \tag{7.1}
\end{equation*}
$$

with the convention that $1 / 0=\infty$ and $1 / \infty=0$.
Proof. Let us prove (1) and (2). There is nothing to prove if $\rho=0$. Assume $\rho>0$. For each $s \in(0, \rho)$ the sequence $\left|a_{n}\right| s^{n}$ is bounded. Abel's lemma implies (1). If $|z|>\rho$ then $a_{n} z^{n}$ is unbounded, and thus $\sum_{n=0}^{\infty} a_{n} z^{n}$ is divergent; this shows (2).

Let us prove formula (7.1). Set $L:=\left(\lim \sup _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}\right)^{-1}$. In order to show $L \leq \rho$ we prove that $0<r<L$ implies $r \leq \rho$. If $0<r<L$ then $1 / r>$
$\lim \sup _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}$, and thus there exists $n_{0} \in \mathbb{N}$ such that $1 / r>\left|a_{n}\right|^{\frac{1}{n}}$ for all $n \geq n_{0} \|^{8}$ That means that $\left|a_{n}\right| r^{n}$ is bounded, i.e., $r \leq \rho$.

In order to show $\rho \leq L$ we prove that $L<s<\infty$ implies $s \geq \rho$. If $L<s<\infty$ then $1 / s<\lim \sup _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}$. So there exists an infinite subset $M \subseteq \mathbb{N}$ such that $1 / s<\left|a_{m}\right|^{\frac{1}{m}}$ for all $m \in M$. It follows that $a_{n} s^{n}$ cannot converge to zero. Hence $s \geq \rho$ (otherwise $\sum\left|a_{n}\right| s^{n}<\infty$ by (1), a contradiction).

We may conclude that the sum of the power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ is a function that is continuous in the disk of convergence $D_{\rho}(0)$; see Theorem 6.1.
7.4. Ratio test. Sometimes the radius of convergence is easier computed by the ratio test:

Proposition. Let $\rho$ be the radius of convergence of $\sum_{n=0}^{\infty} a_{n} z^{n}$, and assume that $a_{n} \neq 0$ for all $n$. Then

$$
\liminf _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right| \leq \rho \leq \limsup _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|,
$$

in particular, $\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|$ if the limit exists.
Proof. Let us set $L:=\liminf _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|$ and $R:=\limsup _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|$. It suffices to show that $0<r<L$ implies $r \leq \rho$ and that $R<s<\infty$ implies $s \geq \rho$.

If $0<r<L$ then there exists $n_{0} \in \mathbb{N}$ such that $\left|\frac{a_{n}}{a_{n+1}}\right|>r$ for all $n \geq n_{0}$. Then

$$
\left|a_{n_{0}+k}\right| r^{n_{0}+k}=\left|\frac{a_{n_{0}+k}}{a_{n_{0}+k-1}}\right| \cdots\left|\frac{a_{n_{0}+1}}{a_{n_{0}}}\right|\left|a_{n_{0}}\right| r^{n_{0}+k} \leq\left|a_{n_{0}}\right| r^{n_{0}}
$$

for all $k \geq 0$. Thus $\left|a_{n}\right| r^{n}$ is bounded, i.e., $r \leq \rho$.
If $R<s<\infty$ then there exists $n_{0} \in \mathbb{N}$ such that $\left|\frac{a_{n}}{a_{n+1}}\right|<s$ for all $n \geq n_{0}$. Analogously, we obtain $\left|a_{n_{0}+k}\right| s^{n_{0}+k} \geq\left|a_{n_{0}}\right| s^{n_{0}}>0$ for all $k \geq 0$. So $a_{n} s^{n}$ cannot converge to zero, and hence $s \geq \rho$.

## 8. Analytic functions

8.1. Formal differentiation and integration of power series. For a formal power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ we may consider the formal power series that arise by term-wise differentiation and integration:

$$
\sum_{n=0}^{\infty} n a_{n} z^{n-1}, \quad \sum_{n=0}^{\infty} \frac{a_{n}}{n+1} z^{n+1}
$$

Lemma. The radius of convergence remains unchanged by term-wise differentiation and integration.

Proof. Let $\rho$ be the radius of convergence of $\sum_{n=0}^{\infty} a_{n} z^{n}$, and $\rho^{\prime}$ the one of $\sum_{n=0}^{\infty} n a_{n} z^{n-1}$. Since boundedness of $n\left|a_{n}\right| s^{n-1}$ implies boundedness of $\left|a_{n}\right| s^{n}$, we have $\rho^{\prime} \leq \rho$. In order to show $\rho \leq \rho^{\prime}$ it suffices to prove that $r<\rho$ implies $r \leq \rho^{\prime}$. Choose $s \in(r, \rho)$; then $\left|a_{n}\right| s^{n}$ is bounded. Thus $n\left|a_{n}\right| r^{n-1}=r^{-1}\left|a_{n}\right| s^{n} n(r / s)^{n}$ converges to zero, since $r<s$. Hence $r \leq \rho^{\prime}$.

If $\tilde{\rho}$ denotes the radius of convergence of $\sum_{n=0}^{\infty} \frac{a_{n}}{n+1} z^{n+1}$, then $\tilde{\rho}=\rho$ by the first part.

[^6]We say that a function $f: U \rightarrow \mathbb{C}$ is $k$-times $\mathbb{C}$-differentiable in $U$ if the higher order complex derivatives $f, f^{\prime}$ through $f^{(k-1)}$ are holomorphic in $U$, where we define $f^{(0)}:=f$ and $f^{(j)}:=\left(f^{(j-1)}\right)^{\prime}$ for $j \geq 1$. We say that $f$ is indefinitely $\mathbb{C}$-differentiable if $f$ is $k$-times $\mathbb{C}$-differentiable for all $k \in \mathbb{N}$.

Theorem. Let $\sum_{n=0}^{\infty} a_{n} z^{n}$ have positive radius of convergence $\rho$. Then the function $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ is indefinitely $\mathbb{C}$-differentiable in $D_{\rho}(0)$. We have

$$
\begin{equation*}
f^{(k)}(z)=\sum_{n \geq k} k!\binom{n}{k} a_{n} z^{n-k}, \quad z \in D_{\rho}(0), k \in \mathbb{N} \tag{8.1}
\end{equation*}
$$

In particular, we get the Taylor coefficients

$$
a_{n}=\frac{f^{(n)}(0)}{n!}, \quad n \in \mathbb{N}
$$

Proof. It suffices to show that $f$ is holomorphic in $D_{\rho}(0)$ and that 8.1 holds for $k=1$; the general assertion follows by iteration. The lemma implies that $g(z):=\sum_{n=1}^{\infty} n a_{n} z^{n-1}$ defines a (continuous) function $g: D_{\rho}(0) \rightarrow \mathbb{C}$. We shall show that $f^{\prime}=g$. Fix $b \in D_{\rho}(0)$ and set

$$
h_{n}(z):=z^{n-1}+z^{n-2} b+\cdots+z b^{n-2}+b^{n-1}, \quad z \in \mathbb{C}, n \geq 1
$$

and $f_{1}(z):=\sum_{n=1}^{\infty} a_{n} h_{n}(z)$. Since $z^{n}-b^{n}=(z-b) h_{n}(z)$, we find

$$
f(z)-f(b)=\sum_{n=1}^{\infty} a_{n}\left(z^{n}-b^{n}\right)=(z-b) \sum_{n=1}^{\infty} a_{n} h_{n}(z)=(z-b) f_{1}(z), \quad z \in D_{\rho}(0)
$$

Since $f_{1}(b)=g(b)$, it remains to show that $f_{1}$ is convergent in $D_{\rho}(0)$ and continuous in $b$. This follows from the fact that $\sum_{n=1}^{\infty} a_{n} h_{n}(z)$ is normally convergent on $D_{r}(0)$ for every $r \in(|b|, \rho)$. In fact, for such $r,\left\|a_{n} h_{n}\right\|_{D_{r}(0)} \leq\left|a_{n}\right| n r^{n-1}$ and $\sum\left|a_{n}\right| n r^{n-1}<\infty$, by the lemma.
8.2. Power series centered at arbitrary points. We have so far dealt only with power series centered at the origin. More generally, a power series centered at $c \in \mathbb{C}$ is an expression of the form $\sum_{n=0}^{\infty} a_{n}(z-c)^{n}$. Everything we have said so far for power series centered at 0 holds for power series centered at arbitrary points by virtue of a simple translation.
(1) The radius of convergence $\rho$ is still given by Hadamard's formula (7.1).
(2) We still have local normal convergence in the disk of convergence $D_{\rho}(c)$ which is now centered at $c$ (and divergence outside).
(3) In the disk of convergence, $f(z)=\sum_{n=0}^{\infty} a_{n}(z-c)^{n}$ is indefinitely $\mathbb{C}$ differentiable and the iterated derivatives are given by term-wise differentiation (this follows, for instance, from the chain rule):

$$
f^{(k)}(z)=\sum_{n \geq k} k!\binom{n}{k} a_{n}(z-c)^{n-k}, \quad z \in D_{\rho}(c), k \in \mathbb{N}
$$

The Taylor coefficients are

$$
\begin{equation*}
a_{n}=\frac{f^{(n)}(c)}{n!}, \quad n \in \mathbb{N} \tag{8.2}
\end{equation*}
$$

8.3. Power series expansions. A function $f: U \rightarrow \mathbb{C}$ defined in a domain $U \subseteq \mathbb{C}$ is said to have a power series expansion at $c \in U$ if there exists a power series $\sum_{n=0}^{\infty} a_{n}(z-c)^{n}$ centered at $c$ with positive radius of convergence such that

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a_{n}(z-c)^{n} \quad \text { for all } z \text { in a neighborhood of } c . \tag{8.3}
\end{equation*}
$$

The coefficients $a_{n}$ are unique by 8.2 . The series 8.3 is called the Taylor series of $f$ at $c$.

A function $f: U \rightarrow \mathbb{C}$ that has a power series expansion at every point in $U$ is said to be analytic in $U$. An analytic function in $U$ is indefinitely $\mathbb{C}$-differentiable on $U$, by Theorem 8.1, and thus holomorphic in $U$.

We shall see in Theorem 16.1 that also the converse is true: every holomorphic function is analytic.

Remark. Theorem 16.1 will show that a function is analytic if and only if it is holomorphic. In particular, it will imply that the sum of a convergent power series is analytic.

Let $\mathbb{C}\{z\}$ denote the set of all power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ with positive radius of convergence. It follows that elements $f, g \in \mathbb{C}\{z\}$ can be

- added, multiplied, $f+g \in \mathbb{C}\{z\}, f g \in \mathbb{C}\{z\}$,
- divided, $f / g \in \mathbb{C}\{z\}$, if $g$ has non-zero constant term,
- composed, $f \circ g \in \mathbb{C}\{z\}$, if $g$ has vanishing constant term,
- inverted, $g^{-1} \in \mathbb{C}\{z\}$, if the constant term of $g$ vanishes and the linear term does not vanish;
clearly the radii of convergence may change under these operations.


## Elementary transcendental functions

A function is said to be transcendental if it does not satisfy a polynomial equation whose coefficients are themselves roots of polynomials.

## 9. Exponential, trigonometric, and hyperbolic functions

9.1. The exponential function. The exponential function is defined by the formula

$$
\begin{equation*}
\exp z:=\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \tag{9.1}
\end{equation*}
$$

The power series (9.1) has infinite radius of convergence by the ratio test 7.4 Thus (9.1) is normally convergent on every bounded subset of $\mathbb{C}$, and $\exp : \mathbb{C} \rightarrow \mathbb{C}$ is a holomorphic function. By Theorem 8.1.

$$
\begin{equation*}
\exp ^{\prime} z=\exp z, \quad z \in \mathbb{C} \tag{9.2}
\end{equation*}
$$

By Lemma 6.4 ,

$$
\left(\sum_{n=0}^{\infty} \frac{z^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} \frac{w^{n}}{n!}\right)=\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{z^{k} w^{n-k}}{k!(n-k)!}=\sum_{n=0}^{\infty} \frac{(z+w)^{n}}{n!}
$$

thus, we have the addition formula

$$
\begin{equation*}
(\exp z)(\exp w)=\exp (z+w), \quad z, w \in \mathbb{C} \tag{9.3}
\end{equation*}
$$

If we define

$$
e^{z}:=\exp z, \quad \text { where } \quad e:=\exp 1,
$$

then 9.3 takes the form $e^{z} e^{w}=e^{z+w}$. As a special case we get $e^{z} e^{-z}=e^{0}=1$, and see that $\left(e^{z}\right)^{-1}=e^{-z}$ and that $e^{z} \neq 0$ for all $z \in \mathbb{C}$.

A further consequence of 9.3 is

$$
e^{z}=e^{x} e^{i y}, \quad z=x+i y \in \mathbb{C}
$$

So it suffices to study the functions $\mathbb{R} \ni x \mapsto e^{x}$ and $\mathbb{R} \ni y \mapsto e^{i y}$.
Lemma. The restriction of $\exp$ to $\mathbb{R}$ is a strictly increasing positive function satisfying $\lim _{x \rightarrow \infty} e^{x}=\infty$ and $\lim _{x \rightarrow-\infty} e^{x}=0$.

Proof. By the definition (9.1), $e^{x}>1+x$ for $x>0$ and hence, by 9.2 , exp is strictly increasing and positive on the positive real axis with $\lim _{x \rightarrow \infty} e^{x}=\infty$. The remaining properties follow from $e^{-x}=\left(e^{x}\right)^{-1}$.

As a consequence we obtain

$$
|\exp z|=\exp (\operatorname{Re} z), \quad z \in \mathbb{C}
$$

Indeed,

$$
|\exp z|^{2}=\exp z \cdot \overline{\exp z}=\exp z \cdot \exp \bar{z}=\exp (z+\bar{z})=\exp (2 \operatorname{Re} z)=(\exp (\operatorname{Re} z))^{2}
$$

In particular,

$$
\begin{equation*}
|\exp z|=1 \quad \text { if and only if } \quad z \in i \mathbb{R} . \tag{9.4}
\end{equation*}
$$

9.2. The logarithmic series. The power series

$$
\begin{equation*}
\lambda(z):=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{z^{n}}{n} \tag{9.5}
\end{equation*}
$$

is called the logarithmic series. Its radius of convergence is 1 by the ratio test 7.4. Hence $\lambda$ is holomorphic in the unit disk $\mathbb{D}$ with

$$
\begin{equation*}
\lambda^{\prime}(z)=\sum_{n=1}^{\infty}(-1)^{n-1} z^{n-1}=\frac{1}{1+z} \tag{9.6}
\end{equation*}
$$

Lemma. We have $\exp \lambda(z)=1+z$ for all $z \in \mathbb{D}$.
Proof. The function $f(z):=(1+z) \exp (-\lambda(z))$ is holomorphic in $\mathbb{D}$ and satisfies $f^{\prime}=0$, by $(9.2)$ and (9.6). Thus $f$ is constant, by Proposition 4.3, and so $f=1$.
9.3. Theorem. The exponential function $\exp : \mathbb{C} \rightarrow \mathbb{C} \backslash\{0\}$ is a surjective group homomorphism.

Proof. The addition formula (9.3) means that exp is a group homomorphism from the additive group $\mathbb{C}$ to the multiplicative group $\mathbb{C} \backslash\{0\}$.

In order to show that it is surjective we first prove that $\exp (\mathbb{C})$ is open in $\mathbb{C} \backslash\{0\} \square^{9}$ By Lemma $9.2, D_{1}(1) \subseteq \exp (\mathbb{C})$. Let $c \in \exp (\mathbb{C})$. Then

$$
D_{|c|}(c)=c D_{1}(1) \subseteq c \exp (\mathbb{C}) \stackrel{9.3 \mid}{=} \exp (\mathbb{C})
$$

and so $\exp (\mathbb{C})$ is open in $\mathbb{C} \backslash\{0\}$.
Since, by (9.3), $A:=\exp (\mathbb{C})$ is a subgroup of $\mathbb{C} \backslash\{0\}$, we have a disjoint union of cosets

$$
\mathbb{C} \backslash\{0\}=A \cup \bigcup_{b \in B} b A, \quad B:=(\mathbb{C} \backslash\{0\}) / A
$$

By the previous paragraph $\bigcup_{b \in B} b A$ is open. Since $\mathbb{C} \backslash\{0\}$ is connected and since $1=\exp 0 \in A$, we get $A=\mathbb{C} \backslash\{0\}$.
9.4. Periodicity of exp. A function $f: \mathbb{C} \rightarrow \mathbb{C}$ is called periodic if there exists $w \in \mathbb{C} \backslash\{0\}$ such that $f(z+w)=f(z)$ for all $z \in \mathbb{C} ; w$ is called a period of $f$. The set of all periods together with 0 ,

$$
\operatorname{per}(f):=\{w \in \mathbb{C}: w \text { is a period of } f\} \cup\{0\}
$$

is a commutative subgroup of $\mathbb{C}$.
Theorem. The exponential function is periodic. We have

$$
\operatorname{per}(\exp )=\operatorname{ker}(\exp )=2 \pi i \mathbb{Z}
$$

where $\pi$ is the unique positive real number such that the second identity holds.
Proof. For $w \in \mathbb{C}$ we have $\exp (z+w)=\exp z \exp w=\exp z$ if and only if $\exp w=1$. This gives the first identity

$$
\operatorname{per}(\exp )=\operatorname{ker}(\exp )=\{w \in \mathbb{C}: \exp w=1\}
$$

${ }^{9}$ This will be proved in greater generality in the open mapping theorem 19.1 .

By Theorem 9.3 there exists $a \in \mathbb{C}$ such that $\exp a=-1$, and clearly $a \neq 0$. Then $\exp (2 a)=(\exp a)^{2}=1$ shows that the subgroup $\operatorname{ker}(\exp )$ of $\mathbb{C}$ is not trivial. Since $|\exp w|=1$ if and only if $w \in i \mathbb{R}$, by (9.4), we have $\operatorname{ker}(\exp ) \subseteq i \mathbb{R}$.

Next we show that there is a neighborhood $U$ of 0 in $\mathbb{C}$ such that $U \cap \operatorname{ker}(\exp )=$ $\{0\}$. Otherwise there would exist a sequence $0 \neq z_{n} \rightarrow 0$ with $\exp z_{n}=1$ which leads to a contradiction,

$$
1=\exp 0=\exp ^{\prime} 0=\lim _{n \rightarrow \infty} \frac{\exp z_{n}-\exp 0}{z_{n}}=0
$$

Since $\exp$ is continuous and thus $\operatorname{ker}(\exp )$ is closed, there exists a smallest positive real number $\pi$ such that $2 \pi i \in \operatorname{ker}(\exp )$ (note that $\exp w=1$ if and only if $\exp (-w)=1)$. By (9.3) we may conclude that $2 \pi i \mathbb{Z} \subseteq \operatorname{ker}(\exp )$. Conversely, let ir $\in \operatorname{ker}(\exp ), r \in \mathbb{R}$. Since $\pi \neq 0$ there exists $n \in \mathbb{Z}$ such that $2 n \pi \leq r<2(n+1) \pi$. Since $i(r-2 n \pi) \in \operatorname{ker}(\exp )$ and $0 \leq r-2 n \pi<2 \pi$, we may conclude that $r=2 n \pi$ by the minimality of $\pi$. This finishes the proof.

We infer that

$$
\begin{equation*}
e^{i \pi}=-1 \tag{9.7}
\end{equation*}
$$

since $1=e^{2 \pi i}=\left(e^{i \pi}\right)^{2}$, thus $e^{i \pi}= \pm 1$, but $e^{i \pi}=1$ is impossible by the minimality of $\pi$.

If we decompose the $z$-plane in infinitely many horizontal strips

$$
S_{n}:=\{z \in \mathbb{C}: 2 n \pi \leq \operatorname{Im} z<2(n+1) \pi\}, \quad n \in \mathbb{Z}
$$

then the exponential function maps each strip $S_{n}$ bijectively onto $\mathbb{C} \backslash\{0\}$ in the $w$-plane. Since $w=e^{z}=e^{x} e^{i y}$, the orthogonal cartesian coordinates are mapped to orthogonal polar coordinates.


Figure 5. The image under $\exp$ of the rectangle $[-1,1] \times[-\pi, \pi]$ in the $(x, y)$-plane.
9.5. Sine and cosine. The sine and the cosine functions are defined by

$$
\begin{equation*}
\sin z:=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!}, \quad \cos z:=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!} \tag{9.8}
\end{equation*}
$$

These power series have infinite radius of convergence, since $\sum \frac{|z|^{2 n+1}}{(2 n+1)!}$ and $\sum \frac{|z|^{2 n}}{(2 n)!}$ are subseries of $\sum \frac{|z|^{n}}{n!}$. We obtain Euler's formula

$$
\exp (i z)=\cos z+i \sin z, \quad z \in \mathbb{C}
$$

by letting $N \rightarrow \infty$ in

$$
\sum_{n=0}^{2 N+1} \frac{(i z)^{n}}{n!}=\sum_{k=0}^{N}(-1)^{k} \frac{z^{2 k}}{(2 k)!}+i \sum_{k=0}^{N}(-1)^{k} \frac{z^{2 k+1}}{(2 k+1)!}
$$

The definitions in 9.8 imply

$$
\cos (-z)=\cos z, \quad \sin (-z)=-\sin z, \quad z \in \mathbb{C}
$$

thus $\exp (-i z)=\cos z-i \sin z$, and consequently,

$$
\begin{equation*}
\cos z=\frac{e^{i z}+e^{-i z}}{2}, \quad \sin z=\frac{e^{i z}-e^{-i z}}{2 i} \tag{9.9}
\end{equation*}
$$

Sine and cosine are holomorphic functions on $\mathbb{C}$ with

$$
\cos ^{\prime} z=-\sin z, \quad \sin ^{\prime} z=\cos z, \quad z \in \mathbb{C}
$$

Moreover,

$$
\begin{aligned}
e^{i(z+w)}=e^{i z} e^{i w} & =(\cos z+i \sin z)(\cos w+i \sin w) \\
& =\cos z \cos w-\sin z \sin w+i(\sin z \cos w+\cos z \sin w)
\end{aligned}
$$

and similarly

$$
e^{-i(z+w)}=\cos z \cos w-\sin z \sin w-i(\sin z \cos w+\cos z \sin w)
$$

whence we obtain the addition formulas

$$
\begin{aligned}
& \cos (z+w)=\cos z \cos w-\sin z \sin w \\
& \sin (z+w)=\sin z \cos w+\cos z \sin w
\end{aligned}
$$

These formulas imply a multitude of further identities; we just mention a few:

$$
\begin{gather*}
\cos ^{2} z+\sin ^{2} z=1, \quad \cos (2 z)=\cos ^{2} z-\sin ^{2} z, \quad \sin (2 z)=2 \sin z \cos z \\
\cos z-\cos w=-2 \sin \left(\frac{z+w}{2}\right) \sin \left(\frac{z-w}{2}\right)  \tag{9.10}\\
\sin z-\sin w=2 \cos \left(\frac{z+w}{2}\right) \sin \left(\frac{z-w}{2}\right) \tag{9.11}
\end{gather*}
$$

### 9.6. Range, zeros, and periodicity of sine and cosine.

## Proposition.

(1) The functions $\sin : \mathbb{C} \rightarrow \mathbb{C}$ and $\cos : \mathbb{C} \rightarrow \mathbb{C}$ are surjective.
(2) $\sin ^{-1}(0)=\pi \mathbb{Z}$ and $\cos ^{-1}(0)=\pi \mathbb{Z}+\pi / 2$.
(3) $\operatorname{per}(\sin )=\operatorname{per}(\cos )=2 \pi \mathbb{Z}$.

Proof. (1) Let $c \in \mathbb{C}$. The equation $c=\cos z=\frac{1}{2}\left(e^{i z}+e^{-i z}\right)$ is equivalent to $e^{i z}=c \pm \sqrt{c^{2}-1} \neq 0$. Since $\exp (\mathbb{C})=\mathbb{C} \backslash\{0\}$ and $\operatorname{ker}(\exp )=2 \pi i \mathbb{Z}$ there exist countably many solutions $z$. The arguments for sin are similar.
(2) By 9.9),
$2 i \sin z=e^{-i z}\left(e^{2 i z}-1\right)=0 \Leftrightarrow 2 i z \in \operatorname{ker}(\exp )=2 \pi i \mathbb{Z} \Leftrightarrow z \in \pi \mathbb{Z}$

$$
2 \cos z=e^{i(\pi-z)}\left(e^{2 i(z-\pi / 2)}-1\right)=0 \Leftrightarrow 2 i(z-\pi / 2) \in 2 \pi i \mathbb{Z} \Leftrightarrow z \in \pi \mathbb{Z}+\pi / 2
$$

since $e^{i \pi}=-1$ by 9.7 .
(3) By 9.10 we have

$$
\cos (z+w)-\cos z=-2 \sin \left(\frac{2 z+w}{2}\right) \sin \left(\frac{w}{2}\right)
$$

and hence $w \in \operatorname{per}(\cos )$ if and only if $\sin (w / 2)=0$, i.e., $w \in 2 \pi \mathbb{Z}$ by (2). The statement for the sine follows in the same way from 9.11.


Figure 6. On the left we have the image under sin of the rectangle $\left[-\frac{3 \pi}{4}, \frac{3 \pi}{4}\right] \times[-2,2]$ in the $(x, y)$-plane; on the right the image under cos of the rectangle $[0, \pi] \times[-1,1]$
9.7. Polar coordinates. The unit circle $S^{1}:=\partial \mathbb{D}=\{z \in \mathbb{C}:|z|=1\}$ is a group with respect to multiplication. Theorems 9.3 and 9.4 and 9.4 imply the following lemma.

Lemma. The mapping $\mathbb{R} \ni t \mapsto e^{i t} \in S^{1}$ is a surjective group homomorphism with kernel $2 \pi \mathbb{Z}$.

Thus every $z \in \mathbb{C} \backslash\{0\}$ has a unique representation

$$
z=|z| e^{i \varphi}=|z|(\cos \varphi+i \sin \varphi), \quad \varphi \in[0,2 \pi)
$$

Indeed, since $z|z|^{-1} \in S^{1}$ there is $\varphi \in \mathbb{R}$ with $z=|z| e^{i \varphi}$. We may assume that $\varphi \in[0,2 \pi)$ since the kernel of the mapping $t \mapsto e^{i t}$ is $2 \pi \mathbb{Z}$. Suppose there is $\psi \in[0,2 \pi)$ such that $|z| e^{i \varphi}=|z| e^{i \psi}$. Without loss of generality assume $\psi \geq \varphi$. Then $e^{i(\psi-\varphi)}=1$, thus $\psi-\varphi \in 2 \pi \mathbb{Z}$ and hence $\psi=\varphi$ because $0 \leq \psi-\varphi<2 \pi$.

The real numbers $|z|, \varphi$ are the polar coordinates of $z$, and $\varphi$ is the argument of $z, \varphi=\arg z$. The restriction of $\varphi$ to the interval $[0,2 \pi)$ is arbitrary. Any halfopen interval of length $2 \pi$ will do, e.g., $(-\pi, \pi]$.

Multiplying complex numbers given in polar coordinates is very easy, $|z| e^{i \varphi}$. $|w| e^{i \psi}=|z||w| e^{i(\varphi+\psi)}$. In particular, we obtain Moivre's formula

$$
\left(e^{i \varphi}\right)^{n}=e^{i n \varphi}=\cos (n \varphi)+i \sin (n \varphi), \quad n \in \mathbb{Z}
$$

9.8. Roots of unity. A number $z \in \mathbb{C}$ is called an $n$th root of unity if $z^{n}=1$.

Lemma. For every integer $n \geq 1$,

$$
\left\{z \in \mathbb{C}: z^{n}=1\right\}=\left\{\left(e^{2 \pi i / n}\right)^{k}: k=0, \ldots, n-1\right\}=: G_{n} .
$$

$G_{n}$ is a cyclic subgroup of $S^{1}$ of order $n$.
Proof. By Moivre's formula each element of $G_{n}$ is an $n$th root of unity. The $n$ elements are pairwise distinct since $\operatorname{ker}(\exp )=2 \pi i \mathbb{Z}$. The statement follows since the polynomial $z^{n}-1$ has at most $n$ distinct roots.
9.9. Tangent and cotangent. We define tangent and cotangent by

$$
\begin{aligned}
& \tan z:=\frac{\sin z}{\cos z}, \quad z \in \mathbb{C} \backslash\left(\pi \mathbb{Z}+\frac{\pi}{2}\right) \\
& \cot z:=\frac{1}{\tan z}=\frac{\cos z}{\sin z}, \quad z \in \mathbb{C} \backslash \pi \mathbb{Z}
\end{aligned}
$$

Both functions are holomorphic in their domain of definition with

$$
\tan ^{\prime} z=\frac{1}{\cos ^{2} z}=1+\tan ^{2} z, \quad \cot ^{\prime} z=-\frac{1}{\sin ^{2} z}=-\left(1+\cot ^{2} z\right)
$$

By (9.9),

$$
\begin{aligned}
& \tan z=-i \frac{e^{i z}-e^{-i z}}{e^{i z}+e^{-i z}}=i \frac{1-e^{2 i z}}{1+e^{2 i z}}=i\left(1-\frac{2}{1+e^{-2 i z}}\right), \\
& \cot z=i \frac{e^{i z}+e^{-i z}}{e^{i z}-e^{-i z}}=i \frac{e^{2 i z}+1}{e^{2 i z}-1}=i\left(1-\frac{2}{1-e^{2 i z}}\right),
\end{aligned}
$$

and thus, by Theorem 9.4 , we obtain:

## Lemma

(1) $\operatorname{im}(\tan )=\operatorname{im}(\cot )=\mathbb{C} \backslash\{ \pm i\}$.
(2) $\tan ^{-1}(0)=\pi \mathbb{Z}$ and $\cot ^{-1}(0)=\pi \mathbb{Z}+\frac{\pi}{2}$.
(3) $\operatorname{per}(\tan )=\operatorname{per}(\cot )=\pi \mathbb{Z}$.

We have the addition formulas

$$
\tan (z+w)=\frac{\tan z+\tan w}{1-\tan z \tan w}, \quad \cot (z+w)=\frac{\cot z \cot w-1}{\cot z+\cot w}
$$

in particular, $\cot \left(z+\frac{\pi}{2}\right)=-\tan z$ and $\tan \left(z+\frac{\pi}{2}\right)=-\cot z$ (in fact, $\tan \left(z+\frac{\pi}{2}\right)=$ $-\cot (z+\pi)=-\cot z)$.


Figure 7. The image under tan of the square $\left[-\frac{\pi}{3}, \frac{\pi}{3}\right]^{2}$ in the $(x, y)$-plane.
9.10. Hyperbolic functions. The hyperbolic sine and the hyperbolic cosine functions are defined by

$$
\begin{aligned}
& \sinh z:=\frac{e^{z}-e^{-z}}{2}=\sum_{n=0}^{\infty} \frac{z^{2 n+1}}{(2 n+1)!}, \\
& \cosh z:=\frac{e^{z}+e^{-z}}{2}=\sum_{n=0}^{\infty} \frac{z^{2 n}}{(2 n)!} .
\end{aligned}
$$

These functions are holomorphic in $\mathbb{C}$ with

$$
\cosh ^{\prime} z=\sinh z, \quad \sinh ^{\prime} z=\cosh z, \quad z \in \mathbb{C} .
$$

We have

$$
\begin{aligned}
\cosh z= & \cos (i z), \quad \sinh z=-i \sin (i z), \quad \cosh ^{2} z-\sinh ^{2} z=1 \\
& \cosh (z+w)=\cosh z \cosh w+\sinh z \sinh w
\end{aligned}
$$

$$
\begin{aligned}
\sinh (z+w) & =\sinh z \cosh w+\cosh z \sinh w \\
\cos (x+i y) & =\cos x \cosh y-i \sin x \sinh y \\
\sin (x+i y) & =\sin x \cosh y+i \cos x \sinh y
\end{aligned}
$$

The hyperbolic tangent and the hyperbolic cotangent are defined by

$$
\begin{aligned}
& \tanh z:=\frac{\sinh z}{\cosh z}, \quad z \in \mathbb{C} \backslash\left(\pi \mathbb{Z}+\frac{\pi}{2}\right) i \\
& \operatorname{coth} z:=\frac{1}{\tanh z}=\frac{\cosh z}{\sinh z}, \quad z \in \mathbb{C} \backslash \pi i \mathbb{Z}
\end{aligned}
$$

Both functions are holomorphic in their domain of definition with

$$
\tanh ^{\prime} z=\frac{1}{\cosh ^{2} z}=1-\tanh ^{2} z, \quad \operatorname{coth}^{\prime} z=-\frac{1}{\sinh ^{2} z}=1-\operatorname{coth}^{2} z
$$

## Lemma.

(1) $\operatorname{im}(\sinh )=\operatorname{im}(\cosh )=\mathbb{C}$ and $\operatorname{im}(\tanh )=\operatorname{im}(\operatorname{coth})=\mathbb{C} \backslash\{ \pm i\}$.
(2) $\sinh ^{-1}(0)=\tanh ^{-1}(0)=\pi i \mathbb{Z}$ and $\cosh ^{-1}(0)=\operatorname{coth}^{-1}(0)=\left(\pi \mathbb{Z}+\frac{\pi}{2}\right) i$.
(3) $\operatorname{per}(\sinh )=\operatorname{per}(\cosh )=2 \pi i \mathbb{Z}$ and $\operatorname{per}(\tanh )=\operatorname{per}(\operatorname{coth})=\pi i \mathbb{Z}$.

Proof. This follows from Proposition 9.6 and Lemma 9.9 in view of $\cosh z=\cos (i z)$, $\sinh z=-i \sin (i z), \tanh z=-i \tan (i z)$, and $\operatorname{coth} z=i \cot (i z)$.

## 10. The complex logarithm

A complex number $b \in \mathbb{C}$ is said to be a logarithm of $a \in \mathbb{C}$ if $e^{b}=a$; we write $b=\log a$. The properties of the exponential function imply:

- 0 has no logarithm.
- Every positive real number $r>0$ has precisely one real $\operatorname{logarithm} \log r$.
- Every $z=|z| e^{i \varphi} \in \mathbb{C} \backslash\{0\}$ has countably many logarithms,

$$
\log |z|+i \varphi+2 \pi i \mathbb{Z}
$$

We see that the logarithm is a multi-valued function. In order to make sense of the logarithm as a single-valued function we make the following definition.
10.1. Branches of the logarithm. We say that a holomorphic function $\ell \in$ $\mathcal{H}(U)$ in a region $U \subseteq \mathbb{C}$ is a branch of the logarithm if $\exp (\ell(z))=z$ for all $z \in U$.

Lemma. Let $U$ be a region and $\ell \in \mathcal{H}(U)$. Then $\ell$ is a branch of the logarithm if and only if $\ell^{\prime}(z)=1 / z$ in $U$ and $\exp (\ell(c))=c$ for some $c \in U$.

Proof. Let us prove the non-trivial direction. If we set $f(z):=z \exp (-\ell(z)), z \in U$, then

$$
f^{\prime}(z):=\exp (-\ell(z))-z \ell^{\prime}(z) \exp (-\ell(z))=0
$$

By Proposition 4.3 and the condition $\exp (\ell(c))=c$, we get $f=1$.
If $\ell$ is a branch of the logarithm in a region $U$ then $\{\ell+2 \pi i n: n \in \mathbb{Z}\}$ is the set of all branches of the logarithm in $U$; in fact if $\tilde{\ell}$ is another branch then $\exp (\ell(z)-\tilde{\ell}(z))=1$.
Example. The function $\log z:=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{(z-1)^{n}}{n}$ is a branch of the logarithm in $D_{1}(1)$. Note that $\log z=\lambda(z-1)$, where $\lambda$ is the logarithmic series from 9.5.

Remark. The "inverse" of a non-injective function $f: \mathbb{C} \supseteq U \rightarrow \mathbb{C}$ is not singlevalued. One can analyze the multivaluedness by considering the mapping $\tilde{f}: U \rightarrow$ $\Gamma(f) \subseteq \mathbb{C} \times \mathbb{C}$ given by $\tilde{f}(z):=(z, f(z))$, where $\Gamma(f):=\{(z, f(z)) \in \mathbb{C} \times \mathbb{C}: z \in U\}$ denotes the graph of $f$. Then $\tilde{f}$ is invertible with inverse $\left.\operatorname{pr}_{1}\right|_{\Gamma(f)}: \Gamma(f) \rightarrow U$, and $f=\mathrm{pr}_{2} \circ \tilde{f}$. So, instead of $f$, we may investigate $\left.\operatorname{pr}_{2}\right|_{\Gamma(f)}: \Gamma(f) \rightarrow \mathbb{C}$. The graph $\Gamma(f)=\{(z, w) \in \mathbb{C} \times \mathbb{C}: f(z)=w\}$ is a complex submanifold of $\mathbb{C} \times \mathbb{C}$ of complex dimension one, a so-called Riemann surface.

For instance, consider $\exp : \mathbb{C} \rightarrow \mathbb{C} \backslash\{0\}$. The exponential function maps each of the horizontal strips $S_{n}=\{z \in \mathbb{C}: 2 \pi n-\pi<\operatorname{Im} z \leq 2 \pi n+\pi\}, n \in \mathbb{Z}$, bijectively onto $\mathbb{C} \backslash\{0\}$. We imagine each of the copies $T_{n}=\exp \left(S_{n}\right)$ of $\mathbb{C} \backslash\{0\}$ cut along the negative axis $(-\infty, 0)$; the cut regions $T_{n}$ are called the sheets of the Riemann surface. The graph $\Gamma(\exp )$ is obtained by gluing the sheets $T_{n}, n \in \mathbb{Z}$, along their cuts: the upper boundary of $T_{n}$ is glued with the lower boundary of $T_{n+1}$. The result is the Riemann surface of the logarithm; it resembles an infinite spiral staircase. If we set

$$
\log : T_{n} \rightarrow \mathbb{C}, z \mapsto \log |z|+i(\varphi+2 \pi n), \quad n \in \mathbb{Z}
$$

where $z=|z| e^{i \varphi}, \varphi \in(-\pi, \pi]$, then Log is single-valued on the Riemann surface of the logarithm.


Figure 8. The image of the graph $\Gamma(\exp )$ under the injective projection $\left(x, y, e^{x} \cos y, e^{x} \sin y\right) \mapsto\left(y, e^{x} \cos y, e^{x} \sin y\right)$.
10.2. The principal branch of the logarithm. Let $\mathbb{C}^{-}:=\mathbb{C} \backslash(-\infty, 0]$ be the slit plane. In $\mathbb{C}^{-}$we define the principal branch of the logarithm by

$$
\begin{equation*}
\log z:=\log |z|+i \varphi, \quad z=|z| e^{i \varphi}, \varphi \in(-\pi, \pi) \tag{10.1}
\end{equation*}
$$

Proposition. The function 10.1 is a branch of the logarithm on the slit plane $\mathbb{C}^{-}$. On the disk $D_{1}(1)$ it coincides with the power series $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{(z-1)^{n}}{n}$.

Proof. Since $e^{\log r}=r$ if $r>0$, we have

$$
\exp (\log z)=\exp (\log |z|+i \varphi)=|z| e^{i \varphi}=z, \quad z \in \mathbb{C}^{-} .
$$

The function $\log : \mathbb{C}^{-} \rightarrow \mathbb{C}$ is continuous, since $z \mapsto \log |z|$ and $z \mapsto i \varphi$ are continuous in $\mathbb{C}^{-}$.

Let us check that $\log \in \mathcal{H}\left(\mathbb{C}^{-}\right)$. Since exp is holomorphic, for $c=\log b$,

$$
\exp (\log z)=\exp (\log b)+(\log z-\log b) f(\log z)
$$

where $f$ is continuous with $f(c)=\exp ^{\prime}(c)=\exp c$, i.e.,

$$
\log z-\log b=(z-b) \frac{1}{f(\log z)}
$$

$f$ is non-zero in a neighborhood of $c$ and $f \circ \log \in C\left(\mathbb{C}^{-}\right)$.
Thus $\log$ is a branch of the logarithm on $\mathbb{C}^{-}$. That it coincides with the logarithmic series follows from Lemma 10.1 .

Example. The function

$$
\tilde{\ell}(z):=\frac{1}{2} \log \left(x^{2}+y^{2}\right)+i \arctan \frac{y}{x}, \quad z=x+i y \in \mathbb{C} \backslash i \mathbb{R},
$$

from Example 4.4 coincides with the principal value of the logarithm on the right half-plane $\{z \in \mathbb{C}: \operatorname{Re} z>0\}$. In the left half-plane $\tilde{\ell}$ is not a branch of the logarithm since $\exp (\tilde{\ell}(z))=-z$ if $\operatorname{Re} z<0$.

From now on $\log$ denotes the principal branch of the logarithm.
10.3. Properties of $\log$. In contrast to the real $\operatorname{logarithm}$, in general $\log (z w) \neq$ $\log z+\log w$. If $z, w, z w \in \mathbb{C}^{-}$then $z=|z| e^{i \varphi}, w=|w| e^{i \psi}$, and $z w=|z w| e^{i \theta}$, where $\varphi, \psi, \theta \in(-\pi, \pi)$ and $\theta=\varphi+\psi+\tau$ with $\tau \in\{-2 \pi, 0,2 \pi\}$. Thus

$$
\log (z w)=\log |z w|+i \theta=(\log |z|+i \varphi)+(\log |w|+i \psi)+i \tau=\log z+\log w+i \tau
$$

It follows that

$$
\begin{equation*}
\log (z w)=\log z+\log w \Leftrightarrow \arg z+\arg w \in(-\pi, \pi) \tag{10.2}
\end{equation*}
$$

In particular, 10.2 holds if $\operatorname{Re} z>0$ and $\operatorname{Re} w>0$.
Since $\exp : \mathbb{C} \rightarrow \mathbb{C} \backslash\{0\}$ is not injective, $\log$ is not the inverse function of $\exp$ and the identity $\log (\exp z)=z$ does not hold in general. Let us investigate the composite function $\log \circ \exp$. It is not defined for $z=x+i y$ with $\exp z=$ $e^{x} \cos y+i e^{x} \sin y \in(-\infty, 0]$, i.e., if $\sin y=0$ and $\cos x \leq 0$, i.e., $y=(2 n+1) \pi$, $n \in \mathbb{Z}$. Therefore $\log \circ \exp$ is well-defined in the union of the horizontal open strips

$$
S_{n}:=\{z \in \mathbb{C}:(2 n-1) \pi<\operatorname{Im} z<(2 n+1) \pi\}
$$

of width $2 \pi$. If $z=x+i y \in S_{n}$ then $e^{z}=e^{x} e^{i(y-2 n \pi)}$ where $y-2 n \pi \in(-\pi, \pi)$. Thus

$$
\log (\exp z)=\log e^{x}+i(y-2 n \pi)=z-i 2 n \pi, \quad z \in S_{n}
$$

This implies the following proposition.
Proposition. The restriction $\exp : S_{0} \rightarrow \mathbb{C}^{-}$is biholomophi ${ }^{10}$ with inverse function $\log : \mathbb{C}^{-} \rightarrow S_{0}$.
10.4. Power functions. If $\ell \in \mathcal{H}(U)$ is a branch of the logarithm, we can introduce the power function with exponent $\alpha \in \mathbb{C}$ with respect to $\ell$,

$$
p_{\alpha}(z):=\exp (\alpha \ell(z)), \quad z \in U
$$

Then $p_{\alpha} \in \mathcal{H}(U)$ and $p_{\alpha}^{\prime}=\alpha p_{\alpha-1}$. For all $\alpha, \beta \in \mathbb{C}$ we have $p_{\alpha} p_{\beta}=p_{\alpha+\beta}$. If $n \in \mathbb{Z}$ then $p_{n}(z)=z^{n}$ for $z \in U$.

The power function with respect to the principal branch of the logarithm is defined by

$$
z^{\alpha}:=e^{\alpha \log z}, \quad z \in \mathbb{C}^{-}, \alpha \in \mathbb{C} .
$$

${ }^{10}$ Cf. Section 21.1


Figure 9. The image under $\log$ of the rectangle $[-1,1] \times\left[\frac{1}{10}, 2\right]$ in the ( $x, y$ )-plane.

Then we have

$$
\left(z^{\alpha}\right)^{\prime}=\alpha z^{\alpha-1}, \quad z^{\alpha} z^{\beta}=z^{\alpha+\beta}, \quad z \in \mathbb{C}^{-}
$$

For instance, $1^{\alpha}=1, i^{i}=e^{i \log i}=e^{i^{2} \frac{\pi}{2}}=e^{-\frac{\pi}{2}}$, and $\left(z^{\frac{1}{n}}\right)^{n}=\left(e^{\frac{1}{n} \log z}\right)^{n}=e^{\log z}=z$. In particular, we use the symbol $\sqrt{z}$ for the principal branch of the square root,

$$
\sqrt{z}:=e^{\frac{\log z}{2}}, \quad z \in \mathbb{C}^{-}
$$



Figure 10. The image under the square root of the rectangle $[-1,1] \times$ [0.001, 1] in the $(x, y)$-plane.

For $\alpha \in \mathbb{C}$ define the binomial coefficients by

$$
\binom{\alpha}{0}:=1, \quad\binom{\alpha}{n}:=\frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n!}, \quad n=1,2, \ldots,
$$

and consider the binomial series

$$
b_{\alpha}(z):=\sum_{n=0}^{\infty}\binom{\alpha}{n} z^{n}
$$

If $\alpha \in \mathbb{N}$ then $b_{\alpha}$ is a finite sum and the binomial formula results. For each $\alpha \in \mathbb{C} \backslash \mathbb{N}$ the binomial series has radius of convergence 1 which follows from the ratio test 7.4. Thus $b_{\alpha} \in \mathcal{H}(\mathbb{D})$ with

$$
b_{\alpha}^{\prime}(z)=\sum_{n=1}^{\infty} n\binom{\alpha}{n} z^{n-1}=\alpha \sum_{n=1}^{\infty}\binom{\alpha-1}{n-1} z^{n-1}=\alpha b_{\alpha-1}(z)=\frac{\alpha}{1+z} b_{\alpha}(z),
$$

since $(1+z) b_{\alpha-1}(z)=\sum\left(\binom{\alpha-1}{n}+\binom{\alpha-1}{n-1}\right) z^{n}=\sum\binom{\alpha}{n} z^{n}$. The function $f(z):=$ $b_{\alpha}(z) \exp (-\alpha \log (1+z))$ is holomorphic in $\mathbb{D}$ with $f^{\prime}=0$. By Proposition 4.3 and since $f(0)=1, f=1$. So we proved:

$$
(1+z)^{\alpha}=\sum_{n=0}^{\infty}\binom{\alpha}{n} z^{n}, \quad \alpha \in \mathbb{C}, z \in \mathbb{D}
$$

10.5. Inverse trigonometric functions. By Proposition 9.6 the sine and cosine function are surjective onto $\mathbb{C}$. Let us determine domains of injectivity. By 9.10, 9.11, and Proposition 9.6 ,

$$
\begin{aligned}
0=\cos z-\cos w=-2 \sin \left(\frac{z+w}{2}\right) \sin \left(\frac{z-w}{2}\right) & \Leftrightarrow z-w \in 2 \pi \mathbb{Z} \text { or } z+w \in 2 \pi \mathbb{Z} \\
0=\sin z-\sin w=2 \cos \left(\frac{z+w}{2}\right) \sin \left(\frac{z-w}{2}\right) & \Leftrightarrow z-w \in 2 \pi \mathbb{Z} \text { or } z+w \in 2 \pi \mathbb{Z}+\pi
\end{aligned}
$$

Thus sin is injective on each of the vertical strips

$$
T_{n}:=\left\{z \in \mathbb{C}:-\frac{\pi}{2}+n \pi<\operatorname{Re} z<\frac{\pi}{2}+n \pi\right\}, \quad n \in \mathbb{Z},
$$

and cos is injective on each of the vertical strips

$$
U_{n}:=\{z \in \mathbb{C}: n \pi<\operatorname{Re} z<(n+1) \pi\}, \quad n \in \mathbb{Z}
$$

Since $V:=\mathbb{C} \backslash\{x \in \mathbb{R}:|x| \geq 1\}=\sin \left(T_{0}\right)=\cos \left(U_{0}\right)$ the restrictions

$$
\sin : T_{0} \rightarrow V, \quad \cos : U_{0} \rightarrow V
$$

are biholomorphic ${ }^{11}$
Let us derive a formula for the inverse function $\sin ^{-1}=\arcsin$ :

$$
w=\sin z=\frac{e^{i z}-e^{-i z}}{2 i} \Leftrightarrow\left(e^{i z}\right)^{2}-2 i w e^{i z}-1=0
$$

Then $e^{i z}=i w \pm \sqrt{1-w^{2}}$, where $\sqrt{ }$. is the principal branch of the square root; if $w \in V$ then $1-w^{2} \in \mathbb{C}^{-}$. The image of $T_{0}$ under $z \mapsto e^{i z}=e^{i \operatorname{Re} z} e^{-\operatorname{Im} z}$ is the right half-plane $\{\zeta \in \mathbb{C}: \operatorname{Re} \zeta>0\}$. So we have $e^{i z}=i w+\sqrt{1-w^{2}}$, in fact, the image of $\mathbb{C} \backslash\{i x \in i \mathbb{R}:|x| \geq 1\} \ni a \mapsto a+\sqrt{1+a^{2}}$ is the closed right-half plane:

$$
\operatorname{Re}\left(a+\sqrt{1+a^{2}}\right)=\operatorname{Re} a+\operatorname{Re} \sqrt{1+a^{2}} \geq \operatorname{Re} a+|\operatorname{Re} a| \geq 0
$$

since $\operatorname{Re} \sqrt{1+a^{2}} \geq|\operatorname{Re} a|$ which (as the image of $\sqrt{\cdot}$ is the right half-plane) is equivalent to

$$
\begin{aligned}
\left(\sqrt{1+a^{2}}+\overline{\sqrt{1+a^{2}}}\right)^{2} \geq|a+\bar{a}|^{2} & \Leftrightarrow 2+a^{2}+\bar{a}^{2}+2\left|1+a^{2}\right| \geq a^{2}+\bar{a}^{2}+2|a|^{2} \\
& \Leftrightarrow 1+\left|1+a^{2}\right| \geq|a|^{2}
\end{aligned}
$$

Hence

$$
\arcsin w=-i \log \left(i w+\sqrt{1-w^{2}}\right), \quad w \in \mathbb{C} \backslash\{x \in \mathbb{R}:|x| \geq 1\} .
$$

Similarly,

$$
\arccos w=-i \log \left(w+i \sqrt{1-w^{2}}\right), \quad w \in \mathbb{C} \backslash\{x \in \mathbb{R}:|x| \geq 1\}
$$

and $\arcsin w+\arccos w=\pi / 2$. We also mention

$$
\arctan w=\frac{1}{2 i} \log \frac{1+i w}{1-i w}, \quad w \in \mathbb{C} \backslash\{i x \in i \mathbb{R}:|x| \geq 1\}
$$

Similarly, one may derive formulas for the inverse hyperbolic functions.

[^7]

Figure 11. On the left we have the image under arcsin of the rectangle $[-\pi, \pi] \times[-2,2]$ in the $(x, y)$-plane, on the right the image under arctan of the square $[-2,2]^{2}$.

## Complex integration

## 11. Integration along paths

11.1. Path integrals. A path $\gamma:[a, b] \rightarrow C$ is called piecewise continuously differentiable ( $C^{1}$ ) if there are $C^{1}$-paths $\gamma_{1}, \ldots, \gamma_{n}$ such that $\gamma=\gamma_{1}+\cdots+\gamma_{n}$. Every polygon is a piecewise continuously differentiable path.

$$
\text { From now on we assume that any path is piecewise } C^{1} \text {. }
$$

Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a $C^{1}$-path and let $f \in C(|\gamma|)$ be a continuous function defined on the image $|\gamma|=\gamma([a, b])$; note that $|\gamma|$ is compact. The path integral of $f$ along $\gamma$ is defined by

$$
\int_{\gamma} f d z=\int_{\gamma} f(z) d z:=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t
$$

the integral is well-defined, since $(f \circ \gamma) \cdot \gamma^{\prime}$ is continuous on $[a, b]$.
For a path $\gamma=\gamma_{1}+\cdots+\gamma_{n}$ with $C^{1}$-subpaths $\gamma_{i}$ and $f \in C(|\gamma|)$ we define the path integral of $f$ along $\gamma$ by setting

$$
\int_{\gamma} f d z:=\sum_{i=1}^{n} \int_{\gamma_{i}} f d z
$$

It is easy to check that the integral is independent of the decomposition of $\gamma$ into $C^{1}$-pieces.
Remark. The integral of $f$ along $\gamma$ is by definition the path integral of the 1 -form $f d z=f(z) d z$ along $\gamma$. If we decompose $f=u+i v$ into real and imaginary part, then

$$
f d z=(u+i v)(d x+i d y)=(u d x-v d y)+i(v d x+u d y)
$$

and thus

$$
\int_{\gamma} f d z=\int_{\gamma}(u d x-v d y)+i \int_{\gamma}(v d x+u d y)
$$

11.2. Invariance under reparameterization. Two $C^{1}$-paths $\gamma_{i}:\left[a_{i}, b_{i}\right] \rightarrow \mathbb{C}$, $i=1,2$, are said to be equivalent if there is a bijective $C^{1}$-function $\varphi:\left[a_{2}, b_{2}\right] \rightarrow$ [ $a_{1}, b_{1}$ ] with $\varphi^{\prime}>0$ and such that $\gamma_{2}=\gamma_{1} \circ \varphi$. The function $\varphi$ is called a reparameterization. The requirement $\varphi^{\prime}>0$ implies that also the inverse $\varphi^{-1}$ is $C^{1}$ and that $\varphi$ preserves the orientation of the path $\gamma$.
Lemma. Let $\gamma_{1}$ and $\gamma_{2}$ be equivalent $C^{1}$-paths and let $f$ be any continuous function on $\left|\gamma_{1}\right|=\left|\gamma_{2}\right|$. Then

$$
\int_{\gamma_{1}} f d z=\int_{\gamma_{2}} f d z
$$

Proof. Let $\varphi:\left[a_{2}, b_{2}\right] \rightarrow\left[a_{1}, b_{1}\right]$ be a reparameterization with $\gamma_{2}=\gamma_{1} \circ \varphi$. Then

$$
\begin{aligned}
\int_{\gamma_{2}} f d z=\int_{a_{2}}^{b_{2}} f\left(\gamma_{2}(t)\right) \gamma_{2}^{\prime}(t) d t & =\int_{a_{2}}^{b_{2}} f\left(\gamma_{1}(\varphi(t))\right) \gamma_{1}^{\prime}(\varphi(t)) \varphi^{\prime}(t) d t \\
& =\int_{a_{1}}^{b_{1}} f\left(\gamma_{1}(s)\right) \gamma_{1}^{\prime}(s) d s=\int_{\gamma_{1}} f d z
\end{aligned}
$$

11.3. Properties of the path integral. Let us denote by $-\gamma$ the inverse path of $\gamma$ given by $-\gamma(t):=\gamma(a+b-t)$. Note that

$$
\begin{equation*}
-\left(\gamma_{1}+\cdots+\gamma_{n}\right)=\left(-\gamma_{n}\right)+\left(-\gamma_{n-1}\right)+\cdots+\left(-\gamma_{1}\right) \tag{11.1}
\end{equation*}
$$

The length of a $C^{1}$-path $\gamma:[a, b] \rightarrow \mathbb{C}$ is defined by

$$
L(\gamma):=\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t
$$

Equivalent $C^{1}$-paths have the same length. If $\gamma=\gamma_{1}+\gamma_{2}+\cdots+\gamma_{n}$ is a path with $C^{1}$-pieces $\gamma_{i}$, we set

$$
L(\gamma):=L\left(\gamma_{1}\right)+L\left(\gamma_{2}\right)+\cdots+L\left(\gamma_{n}\right)
$$

Lemma. Let $\gamma$ be a path. Then:
(1) For all $f, g \in C(|\gamma|), a, b \in \mathbb{C}$,

$$
\int_{\gamma}(a f+b g) d z=a \int_{\gamma} f d z+b \int_{\gamma} g d z
$$

(2) If $\tilde{\gamma}$ is a path that starts at the endpoint of $\gamma$, then for all $f \in C(|\gamma+\tilde{\gamma}|)$,

$$
\int_{\gamma+\tilde{\gamma}} f d z=\int_{\gamma} f d z+\int_{\tilde{\gamma}} f d z .
$$

(3) For all $f \in C(|\gamma|)$,

$$
\int_{-\gamma} f d z=-\int_{\gamma} f d z
$$

(4) If $g \in \mathcal{H}(U)$ with continuou ${ }^{\sqrt{12}}$ derivative $g^{\prime}$ and $\gamma$ is a path in $U$, then for all $f \in C(|g \circ \gamma|)$,

$$
\int_{g \circ \gamma} f(z) d z=\int_{\gamma} f(g(z)) g^{\prime}(z) d z
$$

(5) For all $f \in C(|\gamma|)$,

$$
\begin{equation*}
\left|\int_{\gamma} f d z\right| \leq L(\gamma)\|f\|_{\gamma} \tag{11.2}
\end{equation*}
$$

where $\|f\|_{\gamma}:=\|f\|_{|\gamma|}=\max _{z \in|\gamma|}|f(z)|$.
Proof. (1) and (2) are easy exercises. Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a $C^{1}$-path. Then

$$
\begin{aligned}
\int_{-\gamma} f d z & =\int_{a}^{b} f(\gamma(a+b-t)) \gamma^{\prime}(a+b-t)(-1) d t \\
& =\int_{b}^{a} f(\gamma(s)) \gamma^{\prime}(s) d s=-\int_{\gamma} f d z
\end{aligned}
$$

[^8]Together with (11.1) it implies (3). Moreover, if $|\gamma| \subseteq U$ and $g \in \mathcal{H}(U)$ with continuous derivative $g^{\prime}$, then by the chain rule

$$
\int_{g \circ \gamma} f d z=\int_{a}^{b} f(g(\gamma(t))) g^{\prime}(\gamma(t)) \gamma^{\prime}(t) d t=\int_{\gamma} f(g(z)) g^{\prime}(z) d z
$$

that is (4). For (5) consider

$$
\left|\int_{\gamma} f d z\right| \leq \int_{a}^{b}\left|f(\gamma(t))\left\|\gamma^{\prime}(t)\left|d t \leq \max _{z \in|\gamma|}\right| f(z)\left|\int_{a}^{b}\right| \gamma^{\prime}(t) \mid d t=\right\| f \|_{\gamma} L(\gamma)\right.
$$

If $\gamma=\gamma_{1}+\gamma_{2}+\cdots+\gamma_{n}$ is a decomposition into $C^{1}$-pieces, then

$$
\left|\int_{\gamma} f d z\right| \leq \sum_{i=1}^{n}\left|\int_{\gamma_{i}} f d z\right| \leq \sum_{i=1}^{n} L\left(\gamma_{i}\right)\|f\|_{\gamma_{i}} \leq L(\gamma)\|f\|_{\gamma}
$$

since $\left|\gamma_{i}\right| \subseteq|\gamma|$.
11.4. Integration and limits of functions. The estimate 11.2 implies that integration and limits of uniformly convergent continuous functions can be interchanged.
Proposition. Let $\gamma$ be a path and $f_{n} \in C(|\gamma|), n \in \mathbb{N}$.
(1) If the sequence $f_{n}$ converges uniformly to $f$ on $|\gamma|$, then

$$
\lim \int_{\gamma} f_{n} d z=\int_{\gamma} \lim f_{n} d z=\int_{\gamma} f d z
$$

(2) If the series $\sum f_{n}$ converges uniformly to $f$ on $|\gamma|$, then

$$
\sum \int_{\gamma} f_{n} d z=\int_{\gamma} \sum f_{n} d z=\int_{\gamma} f d z
$$

Proof. (1) The integral $\int_{\gamma} f d z$ exists, since $f \in C(|\gamma|)$, by Theorem 6.1. By 11.2),

$$
\left|\int_{\gamma} f_{n} d z-\int_{\gamma} f d z\right|=\left|\int_{\gamma}\left(f_{n}-f\right) d z\right| \leq L(\gamma)\left\|f_{n}-f\right\|_{\gamma} \rightarrow 0
$$

(2) follows from (1).

## 12. Index

We shall now see that special path integrals lead to analytic functions. As an application we introduce the index of a point with respect to a closed path.

### 12.1. Analytic functions defined by path integrals.

Theorem. Let $\gamma$ be a path in $\mathbb{C}$, let $f \in C(|\gamma|)$, and set $U:=\mathbb{C} \backslash|\gamma|$. Then the function

$$
F(z):=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta-z} d \zeta, \quad z \in U
$$

is analytic on $U$. If $D_{r}(a)$ is any disk contained in $U$, then $F$ has the power series expansion

$$
\begin{equation*}
F(z)=\sum_{n=0}^{\infty}\left(\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta-a)^{n+1}} d \zeta\right)(z-a)^{n}, \quad z \in D_{r}(a) \tag{12.1}
\end{equation*}
$$

[^9]and the derivatives
\[

$$
\begin{equation*}
F^{(n)}(z)=\frac{n!}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta-z)^{n+1}} d \zeta, \quad z \in U, n \in \mathbb{N} \tag{12.2}
\end{equation*}
$$

\]

Proof. Let $D=D_{r}(a)$ be any disk contained in $U$. For fixed $z \in D$, we find $\delta$ such that $\left|\frac{z-a}{\zeta-a}\right|<\delta<1$ for all $\zeta \in|\gamma|$, and thus the geometric series

$$
\frac{1}{\zeta-a} \sum_{n=0}^{\infty}\left(\frac{z-a}{\zeta-a}\right)^{n}=\frac{1}{\zeta-z}
$$

converges uniformly on $|\gamma|$. Thus, by Proposition 11.4 .

$$
\begin{aligned}
F(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta-z} d \zeta & =\frac{1}{2 \pi i} \int_{\gamma} f(\zeta) \sum_{n=0}^{\infty} \frac{(z-a)^{n}}{(\zeta-a)^{n+1}} d \zeta \\
& =\sum_{n=0}^{\infty}\left(\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta-a)^{n+1}} d \zeta\right)(z-a)^{n}
\end{aligned}
$$

for $z \in D$. This shows 12.1), and hence $F$ is analytic in $U$. The formulas in 12.2 follow from (12.1) and (8.2).

### 12.2. The index of a point with respect to a closed path.

Theorem. Let $\gamma$ be a closed path in $\mathbb{C}$ and let $U:=\mathbb{C} \backslash|\gamma|$. Then

$$
\operatorname{ind}_{\gamma}(z):=\frac{1}{2 \pi i} \int_{\gamma} \frac{d \zeta}{\zeta-z}, \quad z \in U
$$

defines an integer valued function $\operatorname{ind}_{\gamma}: U \rightarrow \mathbb{Z}$ that is constant in each connected component of $U$ and 0 in the unbounded component of $U$.

Since $|\gamma|$ is compact, it lies in some disk $D$. The complement of $D$ is connected and lies in some connected component of $U$. So $U$ has precisely one unbounded connected component.

Proof. Let $[0,1]$ be the parameter interval of $\gamma$. By definition

$$
\begin{equation*}
\operatorname{ind}_{\gamma}(z):=\frac{1}{2 \pi i} \int_{0}^{1} \frac{\gamma^{\prime}(t)}{\gamma(t)-z} d t \tag{12.3}
\end{equation*}
$$

Let us set

$$
\begin{equation*}
\varphi(t):=\exp \int_{0}^{t} \frac{\gamma^{\prime}(s)}{\gamma(s)-z} d s, \quad t \in[0,1] \tag{12.4}
\end{equation*}
$$

and show that $\varphi(1)=1$. This will prove that $\operatorname{ind}_{\gamma}(z)$ is an integer, since $\operatorname{ker}(\exp )=$ $2 \pi i \mathbb{Z}$, by Theorem 9.4 . By differentiating 12.4 , we find

$$
\varphi^{\prime}(t)=\frac{\varphi(t) \gamma^{\prime}(t)}{\gamma(t)-z}
$$

except on a finite set of points where $\gamma$ is not differentiable. It follows that the function $[0,1] \ni t \mapsto \frac{\varphi(t)}{\gamma(t)-z}$ is continuous and has vanishing derivative on all but finitely many points $t$, thus it is constant;

$$
\partial_{t}\left(\frac{\varphi(t)}{\gamma(t)-z}\right)=\frac{1}{\gamma(t)-z}\left(\varphi^{\prime}(t)-\frac{\varphi(t) \gamma^{\prime}(t)}{\gamma(t)-z}\right)
$$

Since $\varphi(0)=1$ we have

$$
\varphi(t)=\frac{\gamma(t)-z}{\gamma(0)-z}
$$

and as the path $\gamma$ is closed, we may conclude that $\varphi(1)=1$ as required.

The function $\operatorname{ind}_{\gamma}$ is analytic in $U$, by Theorem 12.1 and hence maps connected sets to connected sets. Since $\operatorname{ind}_{\gamma}$ is integer valued it must be constant on each connected component of $U$.

We can infer from (11.2), or directly from (12.3), that $\left|\operatorname{ind}_{\gamma}(z)\right|<1$ if $|z|$ is sufficiently large. So ind $\gamma_{\gamma}(z)=0$ on the unbounded component of $U$.

The integer $\operatorname{ind}_{\gamma}(z)$ is called the index or winding number of $z$ with respect to $\gamma$. It counts the number of times the path $\gamma$ winds counter-clockwise around $z$. To see this write $\zeta-z=r e^{i \varphi}$ in polar coordinates. Then $d \zeta=e^{i \varphi} d r+i r e^{i \varphi} d \varphi$, thus

$$
\frac{d \zeta}{\zeta-z}=\frac{d r}{r}+i d \varphi=d(\log r)+i d \varphi
$$

and consequently, if $\gamma$ is parameterized in polar form $\gamma(t)-z=r(t) e^{i \varphi(t)}$ by $C^{1}$ functions $r(t)$ and $\varphi(t)$,

$$
\begin{equation*}
\operatorname{ind}_{\gamma}(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{d \zeta}{\zeta-z}=\frac{1}{2 \pi i} \int_{\gamma} d(\log r)+\frac{1}{2 \pi} \int_{\gamma} d \varphi=\frac{\varphi(1)-\varphi(0)}{2 \pi} \tag{12.5}
\end{equation*}
$$

since $\gamma$ is closed and thus $r(0)=r(1)$. That means that $2 \pi \operatorname{ind}_{\gamma}(z)$ is the total change of the argument of $\gamma(t)-z$ as $t$ runs from 0 to 1 .


Figure 12. Examples for the index function; cf. 24.8.

Corollary. Let $D$ be a disk. Then

$$
\operatorname{ind}_{\partial D}(z)= \begin{cases}1 & z \in D  \tag{12.6}\\ 0 & z \notin D\end{cases}
$$

with the understanding that the circle $\partial D$ is positively oriented.
Proof. Let $D=D_{r}(a)$ and $\gamma:[0,2 \pi] \rightarrow \mathbb{C}, \gamma(t):=a+r e^{i t}$. By Theorem 12.2 it suffices to compute $\operatorname{ind}_{\gamma}(a)$,

$$
\operatorname{ind}_{\gamma}(a)=\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{r i e^{i t}}{a+r e^{i t}-a} d t=1
$$

## 13. Primitives and integrability

Next we investigate the existence of primitives of functions. We will see that a function $f$ has a primitive in some domain $U$ if and only if $\int_{\gamma} f d z=0$ for all closed paths $\gamma$ in $U$.
13.1. Primitives. Let $U \subseteq \mathbb{C}$ be a domain and let $f \in C(U)$. A primitive or antiderivative of $f$ in $U$ is a holomorphic function $F: U \rightarrow \mathbb{C}$ such that $F^{\prime}=f$.
Proposition. Let $f \in C(U)$. A function $F: U \rightarrow \mathbb{C}$ is a primitive of $f$ if and only if for every path $\gamma:[a, b] \rightarrow U$ in $U$,

$$
\begin{equation*}
\int_{\gamma} f d z=F(\gamma(b))-F(\gamma(a)) \tag{13.1}
\end{equation*}
$$

Proof. Assume $F^{\prime}=f$. If $\gamma$ is $C^{1}$ then, by the fundamental theorem of calculus,

$$
\int_{\gamma} f d z=\int_{a}^{b} F^{\prime}(\gamma(t)) \gamma^{\prime}(t) d t=\int_{a}^{b}(F \circ \gamma)^{\prime}(t) d t=F(\gamma(b))-F(\gamma(a))
$$

If $\gamma=\gamma_{1}+\cdots+\gamma_{n}$ with $C^{1}$-pieces $\gamma_{i}$, we have

$$
\int_{\gamma} f d z=\sum_{i=1}^{n} F\left(z_{\Omega}\left(\gamma_{i}\right)\right)-F\left(z_{A}\left(\gamma_{i}\right)\right)=F(\gamma(b))-F(\gamma(a))
$$

where $z_{A}\left(\gamma_{i}\right)$ is the initial and $z_{\Omega}\left(\gamma_{i}\right)$ the endpoint of $\gamma_{i}$.
Conversely, assume that 13.1 holds for every path $\gamma$ in $U$. We will show $F^{\prime}(c)=f(c)$ for each $c \in U$. Let $D$ be a small disk centered at $c$ and contained in $U$. By (13.1),

$$
F(z)=F(c)+\int_{[c, z]} f d \zeta \quad \text { for all } z \in D
$$

We define

$$
F_{1}(z):= \begin{cases}\frac{1}{z-c} \int_{[c, z]} f d \zeta & z \in D \backslash\{c\} \\ f(c) & z=c\end{cases}
$$

and show that $F_{1}$ is continuous in $c$; this will imply the assertion. For $z \in D \backslash\{c\}$,

$$
\left|F_{1}(z)-F_{1}(c)\right|=\left|\frac{1}{z-c} \int_{[c, z]} f(\zeta)-f(c) d \zeta\right| \leq\|f-f(c)\|_{[c, z]}
$$

and thus continuity of $f$ in $c$ implies continuity of $F_{1}$ in $c$.
The proposition states that $f \in C(U)$ has a primitive if and only if the integral $\int_{\gamma} f d z$ depends only on the endpoints of the path $\gamma$ and is independent of the path $\gamma$ itself:

$$
\int_{\gamma_{1}} f d z=\int_{\gamma_{2}} f d z \quad \text { for all paths } \gamma_{i} \text { in } U \text { with fixed endpoints. }
$$

Taking $\gamma=\gamma_{1}+\left(-\gamma_{2}\right)$ we get the following corollary.
Corollary. If $f \in C(U)$ has a primitive then for every closed path $\gamma$ in $U$,

$$
\int_{\gamma} f(z) d z=0
$$

We will see shortly that also the converse holds.

### 13.2. Example.

(1) Let $\gamma$ be a closed path in the complex plane and let $n \in \mathbb{Z}$. Then

$$
\int_{\gamma} z^{n} d z= \begin{cases}0 & n \geq 0 \\ 2 \pi i \operatorname{ind}_{\gamma}(0) & n=-1,0 \notin|\gamma| \\ 0 & n \leq-2,0 \notin|\gamma|\end{cases}
$$

This follows from Theorem 12.2 and from the fact that for all integers $n \neq-1$, $z^{n}$ has a primitive $z^{n+1} /(n+1)$. We may conclude that, given $c \in \mathbb{C}$, there is no neighborhood $U$ of $c$ such that $(z-c)^{-1} \in \mathcal{H}(\mathbb{C} \backslash\{c\})$ has a primitive in $U \backslash\{c\}$.
(2) If $f(z)=\sum a_{n}(z-c)^{n}$ is a convergent power series with disk of convergence $D_{\rho}(c)$ then $F(z)=\sum \frac{a_{n}}{n+1}(z-c)^{n+1}$ is a primitive of $f$ on $D_{\rho}(c)$; this follows from Theorem 8.1
13.3. Holomorphic functions with vanishing derivative are locally constant. We shall give now a complex proof of Proposition 4.3

Corollary. If $f \in \mathcal{H}(U)$ satisfies $f^{\prime}=0$, then $f$ is locally constant.
Proof. Assume without loss of generality that $U$ is connected. Fix $c \in U$. For each $z \in U$ there is a path $\gamma$ which joins $c$ to $z$; see Section 2.5. Then

$$
0=\int_{\gamma} f^{\prime} d z=f(z)-f(c)
$$

that is $f(z)=f(c)$ for all $z \in U$.
Hence the difference of two primitives of $f \in C(U)$ is locally constant in $U$.
13.4. Integrability. We will say that a function $f \in C(U)$ is integrable in $U$ if it has a primitive $F \in \mathcal{H}(U)$.
Proposition. A function $f \in C(U)$ is integrable if and only if $\int_{\gamma} f d z=0$ for every closed path $\gamma$ in $U$.

Proof. One direction was observed in Corollary 13.1. For the other direction, suppose that $\int_{\gamma} f d z=0$ for every closed path in $U$. We need to find a primitive $F$ of $f$ on $U$. We may assume that $U$ is connected. Fix some point $c \in U$ and for every $z \in U$ choose a path $\gamma_{z}$ in $U$ that joins $c$ to $z$. Define

$$
F(z):=\int_{\gamma_{z}} f d \zeta, \quad z \in U
$$

Let $w \in U$ and let $\gamma$ be a path from $w$ to $z$. Then $\gamma_{w}+\gamma-\gamma_{z}$ is a closed path in $U$, and so

$$
0=\int_{\gamma_{w}+\gamma-\gamma_{z}} f d \zeta=\int_{\gamma_{w}} f d \zeta+\int_{\gamma} f d \zeta-\int_{\gamma_{z}} f d \zeta=F(w)+\int_{\gamma} f d \zeta-F(z)
$$

This implies that $F$ is a primitive of $f$ by Proposition 13.1 .
13.5. Integrability on star-shaped domains. It is practically impossible to check that $\int_{\gamma} f d z=0$ for all closed paths in a domain. For special domains the integrability criterion in Proposition 13.4 can be weakened considerably.

A subset $A \subseteq \mathbb{C}$ is called star-shaped if there is a point $c \in A$ such that for all $z \in A$ the segment $[c, z]$ lies in $A$. The point $c$ is called the center of $A$. Clearly, every star-shaped domain in $\mathbb{C}$ is connected.

A subset $A \subseteq \mathbb{C}$ is convex if for any two points $z, w \in A$ also $[z, w] \subseteq A$. A convex set is star-shaped and every point is a center. The convex hull of a set $A \subseteq \mathbb{C}$ is the intersection of all convex sets that contain $A$; it is obviously convex.

Example. Every disk is convex. The slit plane $\mathbb{C}^{-}$is star-shaped but not convex; every point in $(0, \infty)$ is a center. The punctured plane $\mathbb{C} \backslash\{0\}$ is not star-shaped.


Figure 13. On the left we have a star-shaped domain $U$ with center $x_{0}$. On the right we see the convex hull of the three points $z_{0}, z_{1}, z_{2}$, i.e., the triangle $\Delta\left(z_{0}, z_{1}, z_{2}\right)=\left\{t_{0} z_{0}+t_{1} z_{0}+t_{2} z_{2}: t_{i} \geq 0, t_{0}+t_{1}+t_{2}=1\right\}$.

Let $(a, b, c)$ be an ordered triple of complex numbers. The convex hull of $\{a, b, c\}$ defines a (closed) triangle

$$
\Delta=\Delta(a, b, c)=\{r a+s b+t c: r, s, t \geq 0, r+s+t=1\}
$$

with oriented boundary

$$
\partial \Delta=[a, b]+[b, c]+[c, a]
$$

and vertices $a, b, c$.
Proposition. Let $U \subseteq \mathbb{C}$ be a star-shaped domain with center c. Let $f \in C(U)$ satisfy $\int_{\partial \Delta} f d z=0$ for every triangle $\Delta \subseteq U$ one vertex of which is $c$. Then $f$ is integrable in $U$ and

$$
F(z):=\int_{[c, z]} f d \zeta, \quad z \in U
$$

is a primitive of $f$.
Proof. The function $F$ is well-defined since $U$ is star-shaped. Let $w \in U$. Since $U$ is open, there is a small open disk $D$ centered at $w$ and contained in $U$. For $z \in D$ the triangle $\Delta=\Delta(c, w, z)$ lies in $U$, because $U$ is star-shaped. By assumption,

$$
F(z)-F(w)=\int_{[c, z]} f d \zeta-\int_{[c, w]} f d \zeta=\int_{[w, z]} f d \zeta, \quad z \in D
$$

The arguments at the end of the proof of Proposition 13.1 show that $F^{\prime}(w)=f(w)$. Thus $F$ is a primitive of $f$ in $U$.

## 14. Cauchy's theorem for star-shaped domains

As we will prove in this section, holomorphic functions are always integrable on star-shaped domains. This is a local version of Cauchy's theorem (for a global version see Sections 24 and 26 .

### 14.1. Goursat's lemma.

Lemma. Let $f \in \mathcal{H}(U)$ and let $\Delta$ be a triangle contained in $U$. Then

$$
\int_{\partial \Delta} f d z=0 .
$$



Proof. Subdivide the triangle $\Delta$ into four triangles $\Delta^{i}, i=1,2,3,4$, by joining the midpoints of the three edges of $\Delta$ by line segments. Note that $L\left(\partial \Delta^{i}\right)=2^{-1} L(\partial \Delta)$, $i=1,2,3,4$.

Let us set $I(\Delta):=\int_{\partial \Delta} f d z$. Then, by Lemma 11.3 .

$$
I(\Delta)=\int_{\partial \Delta} f d z=\sum_{i=1}^{4} \int_{\partial \Delta^{i}} f d z=\sum_{i=1}^{4} I\left(\Delta^{i}\right) .
$$

(The line segments connecting the midpoints are traversed exactly twice in opposite directions.) It follows that there is at least one $i$ such that $\left|I\left(\Delta^{i}\right)\right| \geq 4^{-1}|I(\Delta)|$. Denote this triangle by $\Delta_{1}$. Repeat the argument with $\Delta_{1}$ in place of $\Delta$, etc. We obtain a sequence of triangles $\Delta \supseteq \Delta_{1} \supseteq \Delta_{2} \supseteq \cdots$ such that

$$
\begin{equation*}
|I(\Delta)| \leq 4^{k}\left|I\left(\Delta_{k}\right)\right|, \quad L(\partial \Delta)=2^{k} L\left(\partial \Delta_{k}\right), \quad k \geq 1 \tag{14.1}
\end{equation*}
$$

The intersection of all these triangles $\Delta_{k}, k \geq 1$, contains precisely one point $c$; see Section 2.3 .

Since $f$ is $\mathbb{C}$-differentiable at $c$, there exists a function $h \in C(U){ }^{14}$ with $h(c)=0$ and

$$
f(z)=f(c)+(z-c)\left(f^{\prime}(c)+h(z)\right), \quad z \in U .
$$

By Example 13.2,

$$
I\left(\Delta_{k}\right)=\int_{\partial \Delta_{k}} f(c)+(z-c) f^{\prime}(c)+(z-c) h(z) d z=\int_{\partial \Delta_{k}}(z-c) h(z) d z
$$

and thus, by 14.1 and 11.2,

$$
\begin{aligned}
|I(\Delta)| \leq 4^{k}\left|I\left(\Delta_{k}\right)\right| & \leq 4^{k} L\left(\partial \Delta_{k}\right) \sup _{z \in \partial \Delta_{k}}|(z-c) h(z)| \\
& \leq 4^{k} L\left(\partial \Delta_{k}\right)^{2}\|h\|_{\partial \Delta_{k}} \leq L(\partial \Delta)^{2}\|h\|_{\partial \Delta_{k}}, \quad k \geq 1
\end{aligned}
$$

since evidently the diameter of a triangle is bounded by the length of its boundary.
Let $\epsilon>0$. By continuity of $h$ at $c$ and since $h(c)=0$, there is a $\delta>0$ such that $\|h\|_{D_{\delta}(c)}<\epsilon$. There exists $k_{0}$ so that $\Delta_{k} \subseteq D_{\delta}(c)$ for all $k \geq k_{0}$. Therefore, $\|h\|_{\partial \Delta_{k}}<\epsilon$ if $k \geq k_{0}$ and hence $|I(\Delta)| \leq L(\partial \Delta)^{2} \epsilon$. Since $\epsilon>0$ was arbitrary, we may conclude that $I(\Delta)=0$.

### 14.2. Cauchy's theorem for star-shaped domains.

Theorem. Let $U \subseteq \mathbb{C}$ be a star-shaped domain with center c. Each $f \in \mathcal{H}(U)$ is integrable. The function $F(z):=\int_{[c, z]} f d \zeta$ is a primitive of $f$ on $U$. In particular,

$$
\int_{\gamma} f d z=0
$$

for every closed path $\gamma$ in $U$.

[^10]Proof. This follows from Goursat's lemma 14.1 and the integrability criterion in Proposition 13.5
14.3. Evaluation of integrals. Cauchy's theorem can be used as a tool to evaluate certain integrals; in particular, real integrals. We will illustrate this by means of the following example.

Example. We will show that

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2} \tag{14.2}
\end{equation*}
$$

The function $f(z):=\frac{e^{i z}}{z}$ is holomorphic in $\mathbb{C} \backslash\{0\}$. By Cauchy's theorem 14.2 .

$$
\begin{equation*}
\int_{\gamma_{R, r}} f d z=0 \tag{14.3}
\end{equation*}
$$

where $\gamma_{R, r}$ is the positively oriented boundary of $\{z \in \mathbb{C}: r \leq|z| \leq R, \operatorname{Im} z \geq 0\}$; the set $\mathbb{C} \backslash i(-\infty, 0]$ is star-shaped.


If $\gamma_{\rho}:[0, \pi] \rightarrow \mathbb{C}, \gamma_{\rho}(t):=\rho e^{i t}$ parameterizes the upper half-circle of radius $\rho>0$ centered at 0 , then 14.3 reads

$$
\int_{-R}^{-r} \frac{e^{i x}}{x} d x+\int_{-\gamma_{r}} \frac{e^{i z}}{z} d z+\int_{r}^{R} \frac{e^{i x}}{x} d x+\int_{\gamma_{R}} \frac{e^{i z}}{z} d z=0
$$

By the substitution formula,

$$
\int_{-R}^{-r} \frac{e^{i x}}{x} d x=-\int_{r}^{R} \frac{e^{-i x}}{x} d x
$$

Thus

$$
\begin{equation*}
2 i \int_{r}^{R} \frac{\sin x}{x} d x=\int_{r}^{R} \frac{e^{i x}-e^{-i x}}{x} d x=\int_{\gamma_{r}} \frac{e^{i z}}{z} d z-\int_{\gamma_{R}} \frac{e^{i z}}{z} d z \tag{14.4}
\end{equation*}
$$

We have

$$
\int_{\gamma_{\rho}} \frac{e^{i z}}{z} d z=i \int_{0}^{\pi} e^{i \rho(\cos t+i \sin t)} d t
$$

Since $e^{i r(\cos t+i \sin t)} \rightarrow 1$ as $r \rightarrow 0$ uniformly for $t \in[0, \pi]$ we find

$$
\int_{\gamma_{r}} \frac{e^{i z}}{z} d z \rightarrow i \int_{0}^{\pi} d t=i \pi \quad \text { as } r \rightarrow 0
$$

On the other hand, for $0<\epsilon<\pi$,

$$
\begin{aligned}
& \quad\left|\int_{0}^{\epsilon} e^{i R(\cos t+i \sin t)} d t\right| \leq \int_{0}^{\epsilon} e^{-R \sin t} d t \leq \int_{0}^{\epsilon} d t=\epsilon \\
& \left|\int_{\pi-\epsilon}^{\pi} e^{i R(\cos t+i \sin t)} d t\right| \leq \int_{\pi-\epsilon}^{\pi} e^{-R \sin t} d t \leq \int_{\pi-\epsilon}^{\pi} d t=\epsilon \\
& \left|\int_{\epsilon}^{\pi-\epsilon} e^{i R(\cos t+i \sin t)} d t\right| \leq \int_{\epsilon}^{\pi-\epsilon} e^{-R \sin t} d t \leq e^{-R \sin \epsilon} \int_{\epsilon}^{\pi-\epsilon} d t=(\pi-2 \epsilon) e^{-R \sin \epsilon},
\end{aligned}
$$

and thus

$$
\int_{\gamma_{R}} \frac{e^{i z}}{z} d z \rightarrow 0 \quad \text { as } R \rightarrow \infty
$$

This implies 14.2 in view of 14.4 .

## 15. Cauchy's integral formula

As a first application of Cauchy's theorem we shall prove Cauchy's integral formula for disks. For a general version we refer to 24.6).
15.1. Changing the path of integration. Let $U \subseteq \mathbb{C}$ be a domain and $z \in U$. Let $D$ be a disk containing $z$ and such that $\bar{D} \subseteq U$. Let $f \in \mathcal{H}(U \backslash\{z\})$. In order to compute $\int_{\partial D} f d \zeta$ we may replace the path $\partial D$ by a circle centered at $z$ :

Lemma. If $\gamma^{s}:[0,2 \pi] \rightarrow D, \gamma^{s}(t)=z+s e^{i t}, s>0$, then

$$
\int_{\partial D} f d \zeta=\int_{\gamma^{s}} f d \zeta
$$

Proof. Let $D^{*} \supseteq \bar{D}$ be a disk with the same center $c$ as $D$ such that $f \in \mathcal{H}\left(D^{*} \backslash\{z\}\right)$.


Since $D^{*} \backslash[a, z]$ is a star-shaped domain we have $0=\int_{\gamma_{1}+\alpha+\gamma_{3}+\beta} f d \zeta$, and similarly $0=\int_{-\beta+\gamma_{4}-\alpha+\gamma_{2}} f d \zeta$. The assertion follows, since $\partial D=\gamma_{1}+\gamma_{2}$ and $\gamma^{s}=-\gamma_{3}-\gamma_{4}$.
Corollary. If $f$ is bounded near $z$ then $\int_{\partial D} f d \zeta=0$.
Proof. By 11.2),

$$
\left|\int_{\partial D} f d \zeta\right|=\left|\int_{\gamma^{s}} f d \zeta\right| \leq 2 \pi s\|f\|_{\gamma^{s}} \rightarrow 0 \quad \text { as } s \rightarrow 0
$$

since $f$ is bounded near $z$.

### 15.2. Cauchy's integral formula for disks.

Theorem. Let $f \in \mathcal{H}(U)$ and let $D$ be a disk such that $\bar{D} \subseteq U$. Then

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta-z} d \zeta, \quad z \in D \tag{15.1}
\end{equation*}
$$

Proof. Let $z \in D$ be fixed. The function

$$
g(\zeta):= \begin{cases}\frac{f(\zeta)-f(z)}{\zeta-z} & \zeta \in D \backslash\{z\} \\ f^{\prime}(z) & \zeta=z\end{cases}
$$

is continuous in $D$ and holomorphic in $D \backslash\{z\}$. Thus $\int_{\partial D} g d \zeta=0$, by Corollary 15.1 , and so

$$
0=\int_{\partial D} g d \zeta=\int_{\partial D} \frac{f(\zeta)}{\zeta-z} d \zeta-f(z) \int_{\partial D} \frac{d \zeta}{\zeta-z} \stackrel{\sqrt{12.6}}{=} \int_{\partial D} \frac{f(\zeta)}{\zeta-z} d \zeta-2 \pi i f(z)
$$

Note that by 15.1 each value $f(z), z \in D$, is completely determined by the values of $f$ on $\partial D$. Moreover, on the right-hand side the variable $z$ is no longer tied to $f$. The function $(\zeta, z) \mapsto 1 /(\zeta-z)$ is called the Cauchy kernel.
15.3. Mean value property. As a special case of 15.1 we obtain:

Proposition. If $f$ is holomorphic in a neighborhood of the disk $D_{r}(c)$ then

$$
\begin{equation*}
f(c)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(c+r e^{i t}\right) d t \tag{15.2}
\end{equation*}
$$

Proof. Use the parameterization $[0,2 \pi] \ni t \mapsto c+r e^{i t}$ for the boundary of the disk $D=D_{r}(c)$ in 15.1.

Formula 15.2 implies the following estimate

$$
\begin{equation*}
|f(c)| \leq\|f\|_{\partial D_{r}(c)} \tag{15.3}
\end{equation*}
$$

15.4. Cauchy's integral formula for $C^{1}$-functions. For $C^{1}$-functions, Cauchy's theorem 14.2 is a special case of Stokes' theorem. Let $U \subseteq \mathbb{C}$ be a bounded domain such that the boundary $\partial U$ consists of a finite number of simple closed $C^{1}$-paths. If $g \in C^{1}(\bar{U})$, then by Stokes' theorem,

$$
\begin{equation*}
\int_{\partial U} g d \zeta=\iint_{U} d g \wedge d \zeta=\iint_{U}\left(g_{\zeta} d \zeta+g_{\bar{\zeta}} d \bar{\zeta}\right) \wedge d \zeta=\iint_{U} g_{\bar{\zeta}} d \bar{\zeta} \wedge d \zeta \tag{15.4}
\end{equation*}
$$

where $\partial U$ is oriented such that $U$ lies on the left of $\partial U$. So if $g$ is also holomorphic in $U$, then $g_{\bar{\zeta}}=0$ and hence $\int_{\partial U} g d \zeta=0$.

We shall see now that Cauchy's integral formula 15.1 is a special case of a more general formula for $C^{1}$-functions.

Theorem. Let $U \subseteq \mathbb{C}$ be a bounded domain such that the boundary $\partial U$ consists of a finite number of simple closed $C^{1}$-paths. If $f \in C^{1}(\bar{U})$, then

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi i} \int_{\partial U} \frac{f(\zeta)}{\zeta-z} d \zeta+\frac{1}{2 \pi i} \iint_{U} \frac{f_{\bar{\zeta}}(\zeta)}{\zeta-z} d \zeta \wedge d \bar{\zeta}, \quad z \in U . \tag{15.5}
\end{equation*}
$$

Here $\partial U$ is oriented such that $U$ lies on the left of $\partial U$.
Proof. For fixed $z$ set $U_{\epsilon}:=\{\zeta \in U:|z-\zeta|>\epsilon\}$, where $\epsilon>0$ is smaller that the distance of $\zeta$ to the complement of $U$. We apply (15.4) to $g: U_{\epsilon} \rightarrow \mathbb{C}, g(\zeta)=\frac{f(\zeta)}{\zeta-z}$, and note that $U_{\epsilon} \ni \zeta \mapsto(\zeta-z)^{-1}$ is holomorphic,

$$
\begin{equation*}
\iint_{U_{\epsilon}} \frac{f_{\bar{\zeta}}(\zeta)}{\zeta-z} d \bar{\zeta} \wedge d \zeta=\int_{\partial U} \frac{f(\zeta)}{\zeta-z} d \zeta-\int_{0}^{2 \pi} f\left(z+\epsilon e^{i t}\right) i d t . \tag{15.6}
\end{equation*}
$$

Now $\zeta \mapsto(\zeta-z)^{-1}$ is integrable over $U$, in fact, if $\zeta=\xi+i \eta=r e^{i \varphi}$,

$$
\iint_{U}|\zeta-z|^{-1} d(\xi, \eta)=\iint_{U-z}|\zeta|^{-1} d(\xi, \eta) \leq \int_{0}^{2 \pi} \int_{0}^{R} d r d \varphi<\infty
$$

since $U-z$ (being bounded) is contained in a large disk $D_{R}(0)$. Together with the fact that $f$ and $f_{\bar{\zeta}}$ are continuous, it implies (15.5) by letting $\epsilon \rightarrow 0$ in 15.6.

## Power series representation and applications

## 16. Holomorphic functions are analytic

Cauchy's integral formula (15.1) implies that holomorphic functions admit power series expansions.

### 16.1. Power series expansion of holomorphic functions.

Theorem. Let $U \subseteq \mathbb{C}$ be a domain. Let $c \in U$ and let $D_{d}(c)$ be the largest disk centered at $c$ and contained in $U$. Then each $f \in \mathcal{H}(U)$ can be expanded into a power series $\sum_{n=0}^{\infty} a_{n}(z-c)^{n}$ which converges normally to $f$ in $D_{r}(c)$ for each $0<r<d$. The Taylor coefficients $a_{n}$ are given by

$$
\begin{equation*}
a_{n}=\frac{f^{(n)}(c)}{n!}=\frac{1}{2 \pi i} \int_{\partial D_{r}(c)} \frac{f(\zeta)}{(\zeta-c)^{n+1}} d \zeta, \quad 0<r<d \tag{16.1}
\end{equation*}
$$

We have the integral formulas

$$
\begin{equation*}
f^{(n)}(z)=\frac{n!}{2 \pi i} \int_{\partial D} \frac{f(\zeta)}{(\zeta-z)^{n+1}} d \zeta, \quad z \in D, n \in \mathbb{N} \tag{16.2}
\end{equation*}
$$

for every open disk $D$ such that $\bar{D} \subseteq U$.
Proof. By Cauchy's integral formula 15.1,

$$
f(z)=\frac{1}{2 \pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta-z} d \zeta, \quad z \in D
$$

for every open disk $D$ such that $\bar{D} \subseteq U$, in particular, for $D=D_{r}(c)$ with $0<r<d$. By Theorem 12.1. $f(z)=\sum_{n=0}^{\infty} a_{n}(z-c)^{n}$, for $z \in D_{r}(c)$, with $a_{n}$ given by 16.1). Since the coefficients are uniquely given by $a_{n}=f^{(n)}(c) / n$ !, the same power series is obtained for every $r<d$. Thus the power series converges normally to $f$ in each $D_{r}(c), 0<r<d$; see Theorem 7.3. The integral formulas 16.2 follow from 12.2.
16.2. Morera's theorem. A first consequence of Theorem 16.1 is Morera's theorem which is a converse of Cauchy's theorem.
Theorem. Let $U \subseteq \mathbb{C}$ be a domain. If $f \in C(U)$ satisfies $\int_{\partial \Delta} f(z) d z=0$ for every triangle $\Delta \subseteq U$, then $f \in \mathcal{H}(U)$.

Proof. It suffices to show that $f$ is holomorphic in every open disk $D \subseteq U$. By Proposition 13.5, $f$ has a primitive in $D$. By Theorem 16.1, the derivative of a holomorphic function is holomorphic, and so $f$ is holomorphic in $D$.

Summarizing we obtain the following characterization of holomorphy.
Corollary. Let $U \subseteq \mathbb{C}$ be a domain and let $f \in C(U)$. The following are equivalent:
(1) $f$ is holomorphic.
(2) $\int_{\partial \Delta} f(z) d z=0$ for every triangle $\Delta \subseteq U$.
(3) $f$ is locally integrable.
(4) For every disk $D$ with $\bar{D} \subseteq U, f(z)=\frac{1}{2 \pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta-z} d \zeta$ for all $z \in D$.
(5) $f$ is analytic.
16.3. Holomorphy of path integrals. As a corollary of Morera's theorem 16.2 we get a result on holomorphy of path integrals depending on parameters.

Proposition. Let $\gamma$ be a path in $\mathbb{C}$ and let $U \subseteq \mathbb{C}$ be a domain. If $g \in C(|\gamma| \times U)$ and $g(w, \cdot) \in \mathcal{H}(U)$ for every $w \in|\gamma|$, then

$$
h(z):=\int_{\gamma} g(w, z) d w, \quad z \in U
$$

is holomorphic in $U$.
Proof. Let $\Delta \subseteq U$ be a triangle. Then, by Fubini's theorem,

$$
\int_{\partial \Delta} h d z=\int_{\partial \Delta} \int_{\gamma} g(w, z) d w d z=\int_{\gamma} \int_{\partial \Delta} g(w, z) d z d w=0
$$

since $\int_{\partial \Delta} g(w, z) d z=0$ for all $w \in|\gamma|$ (because $g(w, \cdot) \in \mathcal{H}(U)$ ). The statement follows from Morera's theorem 16.2 .

## 17. Local properties of holomorphic functions

### 17.1. The identity theorem.

Theorem. Let $f$ and $g$ be holomorphic in a region $U \subseteq \mathbb{C}$. The following are equivalent:
(1) $f=g$.
(2) The set $\{z \in U: f(z)=g(z)\}$ has an accumulation point in $U$.
(3) There is a point $z \in U$ such that $f^{(n)}(z)=g^{(n)}(z)$ for all $n \in \mathbb{N}$.

Proof. (1) $\Rightarrow(2)$ is obvious.
(2) $\Rightarrow$ (3) Set $h:=f-g$ and $A:=\{z \in U: h(z)=0\}$. By assumption, $A$ has an accumulation point $a$ in $U$. We will show that $h^{(n)}(a)=0$ for all $n \in \mathbb{N}$. Assume the contrary and let $m$ be the smallest integer such that $h^{(m)}(a) \neq 0$. By Theorem 16.1

$$
h(z)=(z-a)^{m} h_{m}(z), \quad h_{m}(z):=\sum_{k=m}^{\infty} \frac{h^{(k)}(a)}{k!}(z-a)^{k-m}
$$

for $z$ in any disk $D \subseteq U$ centered at $a$. Then $h_{m}$ is nonzero at $a$ and, by continuity, also in a whole neighborhood of $a$. That means that $a$ is an isolated zero of $h$, which contradicts the assumption that $a$ is an accumulation point of $A$.
$(3) \Rightarrow(1)$ Again let $h=f-g$. The set of points $z$, where all derivatives of $h$ vanish,

$$
Z:=\bigcap_{n=0}^{\infty}\left\{z \in U: h^{(n)}(z)=0\right\}
$$

is closed in $U$. On the other hand it is also open: if $z \in Z$ then the Taylor series of $h$ at $z$ is identically zero in each disk $D \subseteq U$ centered at $z$; thus $D \subseteq Z$. Since $U$ is connected and $Z$ is non-empty by assumption, we may conclude that $Z=U$, that is $f=g$.

It follows that the zero set of a non-zero holomorphic function $h$ in a region $U$ has no accumulation point in $U$. For each zero $a$ of $h$ there exists a unique integer $m$, called the order of the zero, such that

$$
h(z)=(z-a)^{m} h_{m}(z), \quad z \in U,
$$

where $h_{m} \in \mathcal{H}(U)$ and $h_{m}(a) \neq 0$.
An further consequence of the identity theorem is that a function defined in a real interval $I$ possesses at most one holomorphic extension to some region in $\mathbb{C}$ containing $I$. In particular, the definition of the functions exp, sin, cos, etc., by their real power series is the only way to extend these functions to the complex domain.
17.2. Singularities. Let $U$ be a domain and $a \in U$. A function $f \in \mathcal{H}(U \backslash\{a\})$ is said to have an isolated singularity at $a$. We shall prove that there are exactly three types of isolated singularities:

- Removable singularities. The singularity $a$ of $f$ is called removable if $f$ has a holomorphic extension to $a$, i.e., there is a holomorphic function $\tilde{f}: U \rightarrow \mathbb{C}$ with $\left.\tilde{f}\right|_{U \backslash\{a\}}=f$.
- Poles. The singularity $a$ of $f$ is called a pole of order $m$ if there are complex numbers $c_{1}, \ldots, c_{m}$, where $m>0$ and $c_{m} \neq 0$, such that

$$
f(z)-\sum_{k=1}^{m} \frac{c_{k}}{(z-a)^{k}}
$$

has a removable singularity at $a$.

- Essential singularities. Singularities that are neither removable nor poles are called essential singularities. For instance, $f(z)=\exp (1 / z)$ has an essential singularity at 0 . We will see that the image under $f$ of any neighborhood of an essential singularity is dense in $\mathbb{C}$.
We first characterize removable singularities; the following result is known as Riemann's theorem on removable singularities.
Proposition. Let $U \subseteq \mathbb{C}$ be a domain and $a \in U$. For $f \in \mathcal{H}(U \backslash\{a\})$ the following are equivalent:
(1) $f$ has a holomorphic extension to $a$.
(2) $f$ has a continuous extension to $a$.
(3) $f$ is bounded near $a$.
(4) $\lim _{z \rightarrow a}(z-a) f(z)=0$.

Proof. Without loss of generality $a=0$. The implications $(1) \Rightarrow(2) \Rightarrow(3) \Rightarrow(4)$ are obvious. Let us prove $(4) \Rightarrow(1)$. Set

$$
g(z):=\left\{\begin{array}{ll}
z f(z) & z \in U \backslash\{0\} \\
0 & z=0
\end{array} ; \quad h(z):=z g(z)\right.
$$

By assumption, $g$ is continuous at 0 , and so $h$ is $\mathbb{C}$-differentiable at 0 with $h^{\prime}(0)=$ $g(0)=0$. It follows that $h \in \mathcal{H}(U)$, since $f$ is holomorphic on $U \backslash\{0\}$. By Theorem 16.1. $h$ has a power series expansion at 0 ,

$$
h(z)=a_{2} z^{2}+a_{3} z^{3}+\cdots=z^{2}\left(a_{2}+a_{3} z+\cdots\right)
$$

$a_{0}=a_{1}=0$ since $h(0)=h^{\prime}(0)=0$. The function $\tilde{f}(z):=a_{2}+a_{3} z+\cdots$ is a holomorphic extension of $f$ to 0 , because $h(z)=z^{2} f(z)$ for $z \neq 0$.

We are now ready to prove the classification of isolated singularities.

Theorem. Let $U$ be a domain, $a \in U$, and $f \in \mathcal{H}(U \backslash\{a\})$. Then precisely one of the following three cases occurs:
(1) $f$ has a removable singularity at a.
(2) $f$ has a pole at a.
(3) $f$ has an essential singularity at a. If $D \subseteq U$ is any open disk centered at $a$, then $f(D \backslash\{a\})$ is dense in $\mathbb{C} .^{15}$

Proof. Suppose that there is $\delta>0$, an open disk $D \subseteq U$ centered at $a$, and $w \in \mathbb{C}$ such that $|f(z)-w|>\delta$ for all $z \in D \backslash\{a\}$. We need to show that $a$ is either removable or a pole. The function

$$
\begin{equation*}
g(z):=\frac{1}{f(z)-w}, \quad z \in D \backslash\{a\} \tag{17.1}
\end{equation*}
$$

is holomorphic in $D \backslash\{a\}$ and $|g|<1 / \delta$. By the proposition, $g$ extends to a holomorphic function in $D$.

If $g(a) \neq 0$ then $f$ is bounded near $a$ (by 17.1)), and so $a$ is a removable singularity, by the proposition.

Otherwise $g$ has a zero of order $m \geq 1$ at $a$ and hence

$$
g(z)=(z-a)^{m} g_{m}(z), \quad z \in D
$$

where $g_{m} \in \mathcal{H}(D)$ and $g_{m}(a) \neq 0$. Thus, $h=1 / g_{m} \in \mathcal{H}(D)$, since $g_{m}$ does not vanish on $D$ by 17.1, and

$$
f(z)-w=\frac{h(z)}{(z-a)^{m}}, \quad z \in D \backslash\{a\}
$$

Since $h$ has a power series expansion $h(z)=\sum_{n=0}^{\infty} b_{n}(z-a)^{n}$ with $b_{0}=h(a) \neq 0$, we see that $f$ has a pole of order $m$ at $a$.

## 18. Cauchy's estimates and Liouville's theorem

### 18.1. Cauchy's estimates.

Theorem. Let $f$ be holomorphic in a neighborhood of a closed disk $\bar{D}=\bar{D}_{r}(c)$. Then

$$
\begin{equation*}
\left|f^{(n)}(z)\right| \leq \frac{n!r\|f\|_{\partial D}}{\operatorname{dist}(z, \partial D)^{n+1}}, \quad z \in D, n \in \mathbb{N} \tag{18.1}
\end{equation*}
$$

Proof. This follows from the integral formulas 16.2 and 11.2,

$$
\left|f^{(n)}(z)\right| \leq \frac{n!}{2 \pi} \int_{\partial D} \frac{|f(\zeta)|}{|\zeta-z|^{n+1}} d \zeta \leq n!r \max _{\zeta \in \partial D} \frac{|f(\zeta)|}{|\zeta-z|^{n+1}} \leq \frac{n!r\|f\|_{\partial D}}{\operatorname{dist}(z, \partial D)^{n+1}}
$$

As an immediate consequence we obtain, for $0<d<r$,

$$
\left|f^{(n)}(z)\right| \leq \frac{n!r\|f\|_{\partial D}}{d^{n+1}}, \quad z \in \bar{D}_{r-d}(c), n \in \mathbb{N}
$$

Letting $d \rightarrow r$ we find Cauchy's inequalities for the Taylor coefficients.
Corollary. Let $f(z)=\sum_{n=0}^{\infty} a_{n}(z-c)^{n}$ have radius of convergence $>r$. Then

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{\|f\|_{\partial D_{r}(c)}}{r^{n}}, \quad n \in \mathbb{N} . \tag{18.2}
\end{equation*}
$$

[^11]18.2. Gutzmer's formula. Let the power series $f(z)=\sum_{n=0}^{\infty} a_{n}(z-c)^{n}$ have radius of convergence $>r$. Then the restriction to the circle $z(t)=c+r e^{i t}$, $t \in[0,2 \pi]$, is a trigonometric series:
\[

$$
\begin{equation*}
f\left(c+r e^{i t}\right)=\sum_{n=0}^{\infty} a_{n} r^{n} e^{i n t} \tag{18.3}
\end{equation*}
$$

\]

which converges normally on $[0,2 \pi]$. Using

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i(m-n) t} d t= \begin{cases}0 & m \neq n \\ 1 & m=n\end{cases}
$$

we find by integrating 18.3,

$$
\begin{equation*}
a_{n} r^{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(c+r e^{i t}\right) e^{-i n t} d t, \quad n \in \mathbb{N} \tag{18.4}
\end{equation*}
$$

This implies Gutzmer's formula ${ }^{16}$
Theorem. Let $f(z)=\sum_{n=0}^{\infty} a_{n}(z-c)^{n}$ have radius of convergence $>r$. Then

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|a_{n}\right|^{2} r^{2 n}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(c+r e^{i t}\right)\right|^{2} d t \tag{18.5}
\end{equation*}
$$

Proof. Since $\overline{f\left(c+r e^{i t}\right)}=\sum_{n=0}^{\infty} \overline{a_{n}} r^{n} e^{-i n t}$ we have

$$
\left|f\left(c+r e^{i t}\right)\right|^{2}=f\left(c+r e^{i t}\right) \sum_{n=0}^{\infty} \overline{a_{n}} r^{n} e^{-i n t}
$$

which converges normally on [ $0,2 \pi$ ], and thus by Proposition 11.4 and by 18.4 ,

$$
\int_{0}^{2 \pi}\left|f\left(c+r e^{i t}\right)\right|^{2} d t=\sum_{n=0}^{\infty} \overline{a_{n}} r^{n} \int_{0}^{2 \pi} f\left(c+r e^{i t}\right) e^{-i n t} d t=2 \pi \sum_{n=0}^{\infty}\left|a_{n}\right|^{2} r^{2 n}
$$

18.3. Liouville's theorem. Functions that are holomorphic everywhere in $\mathbb{C}$ are called entire functions.

Theorem. Every bounded entire function is constant ${ }^{17}$
Proof. If $f$ is entire then $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ for all $z \in \mathbb{C}$. If $|f| \leq M$ then, by Cauchy's inequalities 18.2) or by Gutzmer's formula 18.5, $\left|a_{n}\right| \leq M r^{-n}$ for all $r$ and all $n$. This is possible only if $a_{n}=0$ for all $n \geq 1$.
19. The open mapping theorem and the maximum modulus principle
19.1. The open mapping theorem. A mapping $f: X \rightarrow Y$ between metric spaces is called open if the image $f(\Omega)$ of each open set $\Omega$ in $X$ is open in $Y$. We will now prove that non-constant holomorphic functions are open. We need some preparation.

Lemma. Let $D$ be a disk centered at $c$ and let $f \in \mathcal{H}(U)$, where $\bar{D} \subseteq U$, satisfy $\min _{z \in \partial D}|f(z)|>|f(c)|$. Then there exists $a \in D$ such that $f(a)=0$.

[^12]Proof. If $f \neq 0$ on $D$, then, by the assymption, $f \neq 0$ on an open neighborhood $V$ of $\bar{D}$ in $U$. Then $1 / f \in \mathcal{H}(V)$ and by the mean value property (15.3),

$$
\frac{1}{|f(c)|} \leq \max _{z \in \partial D} \frac{1}{|f(z)|}=\frac{1}{\min _{z \in \partial D}|f(z)|}
$$

which contradicts the assumption.
Now we are ready to prove the open mapping theorem.
Theorem. Let $U \subseteq \mathbb{C}$ be a region and let $f \in \mathcal{H}(U)$ be non-constant. Then $f: U \rightarrow \mathbb{C}$ is open.

Proof. Let $V$ be an open neighborhood of $c$ in $U$. Since $f$ is non-constant, there is an open disk $D$ centered at $c$ with $\bar{D} \subseteq V$ and $f(c) \notin f(\partial D)$, by the identity theorem 17.1. Thus

$$
\begin{equation*}
2 \delta:=\min _{z \in \partial D}|f(z)-f(c)|>0 \tag{19.1}
\end{equation*}
$$

We claim that $D_{\delta}(f(c)) \subseteq f(D) \subseteq f(V)$ which implies the theorem. If $b \in D_{\delta}(f(c))$ and $z \in \partial D$, then by 19.1),

$$
|f(z)-b| \geq|f(z)-f(c)|-|b-f(c)|>\delta
$$

and so $\min _{z \in \partial D}|f(z)-b|>|f(c)-b|$. By the lemma, there exists $a \in D$ such that $f(a)=b$. Thus $D_{\delta}(f(c)) \subseteq f(D)$.

Corollary. If $f$ is holomorphic in a region $U$ then $f(U)$ is either a region or a point.
19.2. The maximum modulus principle. We get as a special case of the open mapping theorem:

Corollary. Let $f$ be holomorphic in a region $U$ and let $c \in U$. Either $f$ is constant in $U$ or each neighborhood of $c$ contains a point $b$ such that $|f(c)|<|f(b)|$.

Proof. Suppose that $|f(z)| \leq|f(c)|$ for all $z$ in a neighborhood $V$ of $c$. Then $f(V) \subseteq\{w \in \mathbb{C}:|w| \leq|f(c)|\}$ and so $f(V)$ is not a neighborhood of $f(c)$. That means that $f$ is not open, thus $f$ must be constant.

If we call the graph of the function $|f|$ on $U \subseteq \mathbb{C} \cong \mathbb{R}^{2}$ the analytic landscape then the maximum modulus principle states roughly that there are no summits in the analytic landscape of a holomorphic function.

To put it in another way, if $U$ is a bounded region and $f \in C(\bar{U}) \cap \mathcal{H}(U)$ then $|f|$ attains its maximum at the boundary of $U$, i.e., $|f(z)| \leq\|f\|_{\partial U}$ for all $z \in \bar{U}$.

## 20. Convergent sequences of holomorphic functions

20.1. Theorem. Let $f_{n} \in \mathcal{H}(U)$ be a sequence of holomorphic functions that converges uniformly on compact sets to a function $f: U \rightarrow \mathbb{C}$. Then $f \in \mathcal{H}(U)$ and, for each $k \in \mathbb{N}$, the sequence $f_{n}^{(k)}$ converges uniformly on compact sets to $f^{(k)}$.

Proof. The function $f$ is continuous. Let $\Delta \subseteq U$ be a triangle. By Proposition 11.4 and Goursat's lemma 14.1

$$
\int_{\partial \Delta} f d z=\lim _{n \rightarrow \infty} \int_{\partial \Delta} f_{n} d z=0
$$

Morera's theorem 16.2 implies that $f \in \mathcal{H}(U)$.

Let us show that $f_{n}^{\prime} \rightarrow f^{\prime}$ uniformly on compact sets; the general case follows by iteration. Let $K \subseteq U$ be compact. There exist $r>0$ such that $L:=\bigcup_{z \in K} \bar{D}_{r}(z)$ is a compact subset of $U$. Cauchy's estimates (18.1) imply

$$
\left\|f^{\prime}-f_{n}^{\prime}\right\|_{K} \leq r^{-1}\left\|f-f_{n}\right\|_{L} \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

Corollary. Let $\sum f_{n}$ be a series of holomorphic functions in $U$ that converges uniformly (normally) on compact sets. Then $f=\sum f_{n}$ is holomorphic in $U$ and, for each $k \in \mathbb{N}$, the series $\sum f_{n}^{(k)}$ converges uniformly (normally) on compact sets to $f^{(k)}$,

$$
f^{(k)}=\sum f_{n}^{(k)}
$$

Proof. The statement on uniform convergence on compact sets is a special case of the theorem. Let $K \subseteq U$ be compact and let $L \subseteq U$ be a compact neighborhood of $K$ (as in the proof of the theorem). Cauchy's estimates 18.1) imply that there are constants $C_{k}$ such that

$$
\sum\left\|f_{n}^{(k)}\right\|_{K} \leq C_{k} \sum\left\|f_{n}\right\|_{L}
$$

So if $\sum f_{n}$ converges normally on $L$ then $\sum f_{n}^{(k)}$ converges normally on $K$ for each $k$. Since normal convergence implies uniform convergence, we have $f^{(k)}=\sum f_{n}^{(k)}$.

## Biholomorphic mappings

## 21. Biholomorphic mappings

A mapping $f: U \rightarrow V$ between domains in $\mathbb{C}$ is called biholomorphic if $f$ is bijective and $f$ as well as its inverse $f^{-1}$ are holomorphic; in this case we say that $U$ and $V$ are biholomorphic.

### 21.1. Injective holomorphic mappings are biholomorphic.

Theorem. If $f: U \rightarrow \mathbb{C}$ is holomorphic and injective, then $f: U \rightarrow f(U)$ is biholomorphic. Moreover, $f^{\prime} \neq 0$ on $U$.

Proof. Since $f$ is injective, it is nowhere locally constant. By the open mapping theorem 19.1, $f$ is open, thus $V:=f(U)$ is open and $f^{-1}: V \rightarrow U$ is continuous.

We claim that each point $c$ in the set $Z:=\left\{z \in U: f^{\prime}(z)=0\right\}$ has a neighborhood $D$ in $U$ such that $D \cap Z=\{c\}$. Otherwise, $f^{\prime}$ would vanish in a neighborhood of $c$, by the identity theorem 17.1 in contradiction to the fact that $f$ is nowhere locally constant. Since $f: U \rightarrow V$ is a homeomorphism, $f(Z)$ has the same property. Moreover, $U \backslash Z$ and $f(U) \backslash f(Z)$ are open sets.

We will show that the restriction $f^{-1}: f(U) \backslash f(Z) \rightarrow U \backslash Z$ is holomorphic. This will imply that $f^{-1}: V \rightarrow U$ is holomorphic, since the points in $f(Z)$ are removable singularities, by Proposition 17.2 . Since $f$ is $\mathbb{C}$-differentiable at $a \in U \backslash Z$, there is a function $f_{1}$ continuous at $a$ with $f^{\prime}(a)=f_{1}(a) \neq 0$ and

$$
f(z)=f(a)+(z-a) f_{1}(z)
$$

Then, as $f^{-1}$ is continuous at $b=f(a)$,

$$
z=a+(f(z)-f(a)) \frac{1}{f_{1}(z)}
$$

that is

$$
f^{-1}(w)=f^{-1}(b)+(w-b) \frac{1}{f_{1}\left(f^{-1}(w)\right)} .
$$

It follows that $f^{-1}$ is $\mathbb{C}$-differentiable at $b$ with $\left(f^{-1}\right)^{\prime}(b)=1 / f^{\prime}\left(f^{-1}(b)\right)$. By continuity, $\left(f^{-1}\right)^{\prime}(w) f^{\prime}\left(f^{-1}(w)\right)=1$ for all $w \in V$, and thus $f^{\prime} \neq 0$ on $U$.
21.2. Local biholomorphisms. We are let to a characterization of local biholomorphisms. A mapping $f$ is locally biholomorphic at some point $c$ if there is a neighborhood of $c$ on which $f$ is biholomorphic.
Theorem. Let $f \in \mathcal{H}(U)$ and $c \in U$. The following are equivalent:
(1) $f$ is locally biholomorphic at $c$.
(2) $f$ is locally injective at $c$.
(3) $f^{\prime}(c) \neq 0$.

Proof. Theorem 21.1 yields that (1) and (2) are equivalent, and that they imply (3). Let us show (3) $\Rightarrow(2)$. Since $f^{\prime}: U \rightarrow \mathbb{C}$ is continuous, there is an open disk $D \subseteq U$ centered at $c$ such that $\left\|f^{\prime}-f^{\prime}(c)\right\|_{D}<\left|f^{\prime}(c)\right|$. For $z, w \in D$ we have

$$
\int_{[z, w]} f^{\prime}(\zeta)-f^{\prime}(c) d \zeta=f(w)-f(z)-f^{\prime}(c)(w-z)
$$

and thus if $z \neq w$,

$$
\left|f(w)-f(z)-f^{\prime}(c)(w-z)\right|<\left|f^{\prime}(c)\right||w-z| .
$$

It follows that $f(z) \neq f(w)$.
In Corollary 5.2 we saw that $f \in C^{1}(U)$ is conformal if and only if $f \in \mathcal{H}(U)$ and $f^{\prime} \neq 0$ in $U$. The theorem implies that conformal mappings are locally biholomorphic, but they need not be biholomorphic, e.g., $z \mapsto z^{2}$ is a conformal mapping $\mathbb{C} \backslash\{0\} \rightarrow \mathbb{C} \backslash\{0\}$ that is not injective.

The following corollary is a generalization to the case that $f^{\prime}(c)=\cdots=$ $f^{(m-1)}(c)=0$ and $f^{(m)}(c) \neq 0$.
Corollary. Let $f \in \mathcal{H}(U), c \in U$, and assume that $f^{\prime}(c)=\cdots=f^{(m-1)}(c)=0$ and $f^{(m)}(c) \neq 0$ for some $m \geq 1$. Then there exists an open neighborhood $V$ of $c$ in $U$ and a biholomorphic mapping $h: V \rightarrow \mathbb{C}$ such that

$$
f(z)=f(c)+h(z)^{m}, \quad z \in V
$$

Proof. We may assume without loss of generality that $f(c)=0$. By Theorem 16.1 , there is a holomorphic function $g$ with $g(c) \neq 0$ such that

$$
f(z)=(z-c)^{m} g(z) .
$$

Choose an open neighborhood $V$ of $c$ in $U$ such that $g(V) / g(c) \in \mathbb{C}^{-}$, and choose $\zeta$ such that $\zeta^{m}=g(c)$. Define $h: V \rightarrow \mathbb{C}$ by

$$
h(z):=(z-c) \zeta\left(\frac{g(z)}{g(c)}\right)^{\frac{1}{m}}
$$

cf. Section 10.4 Then $h$ is holomorphic and satisfies $f=h^{m}$. Since $h^{\prime}(c)=\zeta \neq 0$ we can achieve that $h$ is biholomorphic by shrinking $V$; see the theorem.

## 22. Fractional linear transformations

22.1. The Riemann sphere. The Riemann sphere is the one-point compactification of the complex plane. One extends the complex plane by adding a point called $\infty$,

$$
\hat{\mathbb{C}}:=\mathbb{C} \cup\{\infty\}
$$

and topologizes it in the following way. We define

$$
D_{r}(\infty):=\{z \in \mathbb{C}:|z|>r\} \cup\{\infty\}, \quad r>0
$$

and declare a subset of $\hat{\mathbb{C}}$ to be open if and only if it is the union of disks $D_{r}(a)$ where $a \in \widehat{\mathbb{C}}$ and $r>0$. It is clear that this gives the usual topology on $\mathbb{C}$.

The Riemann sphere $\hat{\mathbb{C}}$ is homeomorphic to the Euclidean sphere $S^{2}:=$ $\left\{(u, v, w) \in \mathbb{R}^{3}: u^{2}+v^{2}+w^{2}=1\right\}$. A homeomorphism is given by the stereographic projection

$$
\begin{gathered}
\Psi: S^{2} \rightarrow \hat{\mathbb{C}},(u, v, w) \mapsto \frac{u}{1-w}+i \frac{v}{1-w},(0,0,1) \mapsto \infty \\
\Psi^{-1}: \hat{\mathbb{C}} \rightarrow S^{2}, x+i y \mapsto\left(\frac{2 x}{x^{2}+y^{2}+1}, \frac{2 y}{x^{2}+y^{2}+1}, \frac{x^{2}+y^{2}-1}{x^{2}+y^{2}+1}\right), \infty \mapsto(0,0,1) .
\end{gathered}
$$

If $p=(u, v, w)$ is a point on the sphere $S^{2}$ then $z=\Psi(p)$ is the unique point in the equatorial plane that lies on the line through $p$ and the north pole $(0,0,1){ }^{18}$


Figure 14. The stereographic projection.
Let $f$ be a function that is holomorphic and bounded in $\{z \in \mathbb{C}:|z|>r\}$. Then $\tilde{f}(z):=f(1 / z)$ is holomorphic and bounded in $\{z \in \mathbb{C}: 0<|z|<1 / r\}$, and thus has a holomorphic extension to 0 , by Proposition 17.2 . That means that the limit $f(\infty):=\lim _{z \rightarrow \infty} f(z)$ exists. So we obtain a function $f$ defined in $D_{r}(\infty)$ and we say that it is holomorphic in $D_{r}(\infty)$.
22.2. Möbius transformations. A fractional linear transformation

$$
f(z)=\frac{a z+b}{c z+d}, \quad a, b, c, d \in \mathbb{C}, a d-b c \neq 0
$$

is called a Möbius transformation. Note that $f^{\prime}(z)=(a d-b c) /(c z+d)^{2}$. We consider $f$ to be a mapping $\widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ with the convention that $f(-d / c)=\infty$ and $f(\infty)=a / c$. Then $f: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ is continuous. The composite of Möbius transformations is a Möbius transformation, and the inverse of a Möbius transformation is a Möbius transformation, i.e., the set of all Möbius transformations forms a group ${ }^{19}$

Multiplying $a, b, c, d$ by the same non-zero constant yields the same Möbius transformation, so we can assume that $a d-b c=1$. It is easy to see that the mapping

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto \frac{a z+b}{c z+d}
$$

from $\operatorname{SL}(2, \mathbb{C}):=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a d-b c=1\right\}$ to the group of Möbius transformations is a surjective group homomorphism, the kernel of which is $\{ \pm \mathrm{id}\}$. Thus the group of Möbius transformations is isomorphic to $\operatorname{PSL}(2, \mathbb{C}):=\operatorname{SL}(2, \mathbb{C}) /\{ \pm \mathrm{id}\}$.

## Lemma.

(1) The group of Möbius transformations is generated by translations $z \mapsto z+$ $b$, rotations followed by homotheties $z \mapsto a z$, and the inversion $z \mapsto 1 / z$.
(2) Möbius transformations preserve the family $\mathcal{F}$ consisting of all lines and all circles ${ }^{20}$
(3) For any two triples $(a, b, c)$ and $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ of distinct points in $\hat{\mathbb{C}}$ there is a unique Möbius transformation $f$ with $f(a)=a^{\prime}, f(b)=b^{\prime}$, and $f(c)=c^{\prime}$.

Proof. (1) This is obvious if $c=0$ and if $c \neq 0$ it follows from

$$
\frac{a z+b}{c z+d}=\frac{a}{c}+\frac{\lambda}{c z+d}, \quad \lambda=\frac{b c-a d}{c}
$$

[^13](2) It is obvious that translations, rotations, and homotheties preserve $\mathcal{F}$. Every member of $\mathcal{F}$ is given by an equation of the form
$$
\alpha z \bar{z}+\beta z+\bar{\beta} \bar{z}+\gamma=0, \quad \alpha, \gamma \in \mathbb{R}, \beta \in \mathbb{C},|\beta|^{2}>\alpha \gamma
$$
(If $\alpha \neq 0$ we get a circle, if $\alpha=0$ a line.) Under the mapping $z \mapsto 1 / z$ the equation transforms to
$$
\alpha+\beta \bar{z}+\bar{\beta} z+\gamma z \bar{z}=0
$$
which is an equation of the same type.
(3) It suffices to show that there is a unique Möbius transformation that takes the points $a, b, c$ to the points $0,1, \infty$. The Möbius transformation
$$
z \mapsto \frac{(b-c)(z-a)}{(b-a)(z-c)}
$$
does the job.
A consequence of (3) is that every circle can be mapped onto every circle by a Möbius transformation; in this statement circle means circle in $\widehat{\mathbb{C}}$, that is, circle or line in $\mathbb{C}$. In particular, every open disk can be biholomorphically mapped onto every open half-plane.
22.3. The Cayley mapping. Let $\mathbb{H}:=\{z \in \mathbb{C}: \operatorname{Im} z>0\}$ denote the upper half-plane.

Proposition. For each $c \in \mathbb{H}$ the mapping $f: \mathbb{H} \rightarrow \mathbb{D}, f(z)=\frac{z-c}{z-\bar{c}}$, is biholomorphic with inverse $g: \mathbb{D} \rightarrow \mathbb{H}, g(z)=\frac{c-\bar{c} z}{1-z}$.

Proof. Observe that $\mathbb{R}=\{z \in \mathbb{C}:|z-c|=|z-\bar{c}|\}$ and thus $\mathbb{H}=\left\{z \in \mathbb{C}:\left|\frac{z-c}{z-\bar{c}}\right|<1\right\}$. This means that $f$ maps $\mathbb{H}$ biholomorphically into $\mathbb{D}$; note that $f \in \mathcal{H}(\mathbb{C} \backslash\{\bar{c}\})$. It is easy to see that $g$ is the inverse of $f, g \in \mathcal{H}(\mathbb{C} \backslash\{1\})$, and

$$
\operatorname{Im} g(z)=\operatorname{Im} \frac{c-\bar{c} z}{1-z}=\frac{1}{2 i}\left(\frac{c-\bar{c} z}{1-z}-\frac{\bar{c}-c \bar{z}}{1-\bar{z}}\right)=\frac{1-|z|^{2}}{|1-z|^{2}} \frac{c-\bar{c}}{2 i}=\frac{1-|z|^{2}}{|1-z|^{2}} \operatorname{Im} c .
$$

Thus $g(\mathbb{D}) \subseteq \mathbb{H}$ and the statement is proved.
In the special case that $c=i$ we get the Cayley mapping:

$$
\begin{equation*}
h: \mathbb{H} \rightarrow \mathbb{D}, z \mapsto \frac{z-i}{z+i}, \quad h^{-1}: \mathbb{D} \rightarrow \mathbb{H}, z \mapsto i \frac{1+z}{1-z} \tag{22.1}
\end{equation*}
$$

## 23. Automorphism groups

For a domain $U \subseteq \mathbb{C}$ we denote by $\operatorname{Aut}(U)$ the set of all automorphims of $U$, i.e., biholomorphic mappings $U \rightarrow U$. Obviously, $\operatorname{Aut}(U)$ is a group with respect to composition. We shall compute $\operatorname{Aut}(\mathbb{D})$, $\operatorname{Aut}(\mathbb{H})$, and $\operatorname{Aut}(\mathbb{C})$.

### 23.1. The Schwarz lemma.

Lemma. Let $f: \mathbb{D} \rightarrow \mathbb{D}$ be holomorphic and $f(0)=0$. Then

$$
\begin{equation*}
|f(z)| \leq|z| \quad \text { for all } z \in \mathbb{D}, \quad \text { and } \quad\left|f^{\prime}(0)\right| \leq 1 \tag{23.1}
\end{equation*}
$$

If for some $c \neq 0$ we have $|f(c)|=|c|$ or if $\left|f^{\prime}(0)\right|=1$, then $f$ is a rotation, i.e., there is $a \in S^{1}$ such that $f(z)=a z$ for $z \in \mathbb{D}$.

Proof. By Theorem 16.1. we may expand $f$ in a power series $f(z)=\sum_{n=1}^{\infty} a_{n} z^{n}$ (note that $a_{0}=f(0)=0$ ). Then $g(z):=\sum_{n=1}^{\infty} a_{n} z^{n-1}$ is a holomorphic function in $\mathbb{D}$ such that

$$
f(z)=z g(z) \quad \text { and } \quad g(0)=a_{1}=f^{\prime}(0)
$$

Since $|f(z)|<1$ we have $r \max _{|z|=r}|g(z)| \leq 1$ for all $0<r<1$. By the maximum modulus principle 19.2 , we have $|g(z)|<1 / r$ for all $z \in D_{r}(0), 0<r<1$. Letting $r \rightarrow 1$ implies 23.1).

If $|f(c)|=|c|$ for some $c \neq 0$ or if $\left|f^{\prime}(0)\right|=1$, then $|g(c)|=1$ or $|g(0)|=1$. That is, $g$ attains its maximum in $\mathbb{D}$. By the maximum modulus principle, $g$ must be a constant $a$ with $|a|=1$.

### 23.2. Automorphisms of the unit disk.

Theorem. The automorphisms of $\mathbb{D}$ are precisely the Möbius transformations of the form $z \mapsto \frac{a z+b}{\bar{b} z+\bar{a}}$ :

$$
\operatorname{Aut}(\mathbb{D})=\left\{z \mapsto \frac{a z+b}{\bar{b} z+\bar{a}}: a, b \in \mathbb{C},|a|^{2}-|b|^{2}=1\right\}
$$

Proof. It is easy to check that the right-hand side is a group. Let $f(z)=\frac{a z+b}{\bar{b} z+\bar{a}}$, $|a|^{2}-|b|^{2}=1$. Then $f \in \mathcal{H}(\mathbb{D})$ since $\left|-\frac{\bar{a}}{\bar{b}}\right|=\left|\frac{a}{b}\right|>1$. To see that $f(\mathbb{D}) \subseteq \mathbb{D}$, observe that

$$
1>\left|\frac{a z+b}{\bar{b} z+\bar{a}}\right|^{2} \Leftrightarrow|a|^{2}-|b|^{2}>\left(|a|^{2}-|b|^{2}\right)|z|^{2}
$$

The inverse $f^{-1}$ has the same properties, and so $f \in \operatorname{Aut}(\mathbb{D})$.
For the converse inclusion, let $g \in \operatorname{Aut}(\mathbb{D})$. Then $c:=g(0) \in \mathbb{D}$ and

$$
f(z):=\frac{a z+b}{\bar{b} z+\bar{a}}, \quad a:=\frac{1}{\sqrt{1-|c|^{2}}}, \quad b:=\frac{c}{\sqrt{1-|c|^{2}}},
$$

is a Möbius transformation of the required form that maps 0 to $c$. By the first part of the proof, $f \in \operatorname{Aut}(\mathbb{D})$ and thus $h:=f^{-1} \circ g \in \operatorname{Aut}(\mathbb{D})$ with $h(0)=0$. By the Schwarz lemma 23.1 applied to $h$ and $h^{-1}$,

$$
|h(z)| \leq|z|=\left|h^{-1}(h(z))\right| \leq|h(z)| \quad \text { for all } z \in \mathbb{D} .
$$

By the second part of the Schwarz lemma, there is $\beta \in S^{1}$ such that $h(z)=\beta z$. If we choose $\alpha \in S^{1}$ with $\beta=\alpha^{2}$ then

$$
h(z)=\beta z=\frac{\alpha z}{\bar{\alpha}},
$$

i.e., $h$, and hence also $g=f \circ h$, is a Möbius transformation of the required form.
23.3. Automorphisms of the upper half-plane. Since the unit disk $\mathbb{D}$ and the upper half-plane $\mathbb{H}$ are biholomorphic, we can easily deduce the automorphism group of $\mathbb{H}$.

Theorem. The automorphisms of $\mathbb{H}$ are precisely the Möbius transformations of the form $z \mapsto \frac{a z+b}{c z+d}$ where $a, b, c, d \in \mathbb{R}$ :

$$
\operatorname{Aut}(\mathbb{H})=\left\{\frac{a z+b}{c z+d}: a, b, c, d \in \mathbb{R}, a d-b c=1\right\}
$$

Proof. Since the Cayley mapping $h: \mathbb{H} \rightarrow \mathbb{D}$ from 22.1 is a biholomorphism, we have, by Theorem 23.2,

$$
\begin{aligned}
\operatorname{Aut}(\mathbb{H})=h^{-1} \circ \operatorname{Aut}(\mathbb{D}) \circ h & =\left\{h^{-1} \circ \frac{a z+b}{\bar{b} z+\bar{a}} \circ h: a, b \in \mathbb{C},|a|^{2}-|b|^{2}=1\right\} \\
& =\left\{\frac{\alpha z+\beta}{\gamma z+\delta}:\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in \operatorname{SL}(2, \mathbb{R})\right\},
\end{aligned}
$$

where the last equality is a straight forward computation.
We may conclude that the groups $\operatorname{Aut}(\mathbb{D})$ and $\operatorname{Aut}(\mathbb{H})$ are both isomorphic to the group $\operatorname{PSL}(2, \mathbb{R})=\operatorname{SL}(2, \mathbb{R}) /\{ \pm \mathrm{id}\}$.

### 23.4. Automorphisms of the plane.

Theorem. The automorphisms of $\mathbb{C}$ are precisely the Möbius transformations of the form $z \mapsto a z+b$ where $a, b \in \mathbb{C}, a \neq 0$ :

$$
\operatorname{Aut}(\mathbb{C})=\{a z+b: a, b \in \mathbb{C}, a \neq 0\}
$$

Proof. It is clear that mappings of the form $z \mapsto a z+b, a \neq 0$, are automorphisms of $\mathbb{C}$. Conversely, let $f \in \operatorname{Aut}(\mathbb{C})$. Then $g(z):=f(1 / z)$ is in $\mathcal{H}(\mathbb{C} \backslash\{0\})$. Since $f: \mathbb{C} \rightarrow \mathbb{C}$ is biholomorphic, $g$ can neither have a removable singularity at 0 , by Liouville's theorem 18.3, nor an essential singularity, cf. Theorem 17.2. So 0 is a pole of $g$, i.e.,

$$
g(z)-\sum_{k=1}^{m} \frac{c_{k}}{z^{k}}
$$

is bounded near 0 , and thus

$$
f(z)-\sum_{k=1}^{m} c_{k} z^{k}
$$

is bounded near $\infty$. By Liouville's theorem 18.3, $f$ is a polynomial. Its degree must be one, since otherwise $f^{\prime}$ is a polynomial of degree $\geq 1$ and thus has a zero in $\mathbb{C}$, contradicting Theorem 21.1.

## The global Cauchy theorem

So far we treated Cauchy's theorem and the integral formula only on starshaped domains. This is adequate for studying local properties of holomorphic functions. But the result is obviously incomplete. Two questions arise:
(1) Given an arbitrary domain $U$, how can we describe the closed paths in $U$ for which the assertion of Cauchy's theorem is true?
(2) Can we characterize the domains in which Cauchy's theorem has universal validity?

## 24. Homology and the general form of Cauchy's theorem

We will answer the first question in this section.
24.1. Chains and cycles. Let us generalize the notion of the path integral. To this end we examine the identity

$$
\begin{equation*}
\int_{\gamma_{1}+\cdots+\gamma_{n}} f d z=\int_{\gamma_{1}} f d z+\cdots+\int_{\gamma_{n}} f d z \tag{24.1}
\end{equation*}
$$

which holds if the paths $\gamma_{i}$ have matching endpoints, i.e., $z_{A}\left(\gamma_{i+1}\right)=z_{\Omega}\left(\gamma_{i}\right), 1 \leq$ $i \leq n-1$. The right-hand side of (24.1) has a meaning for any finite collection of paths $\gamma_{1}, \ldots, \gamma_{n}$. So let us consider arbitrary formal sums $\gamma_{1}+\cdots+\gamma_{n}$ and let us define $\int_{\gamma_{1}+\cdots+\gamma_{n}} f d z$ by equation 24.1. Such formal sums of paths are called chains ${ }^{21}$

Chains are considered identical if they yield the same path integral for all functions $f$. Thus two chains are identical if one is obtained from the other by

- permutation of paths,
- subdivison of paths,
- fusion of subpaths,
- reparameterization of paths,
- cancellation of opposite paths.

Chains can be added and (24.1) remains valid for arbitrary chains. If identical chains are added, we denote the sum as a multiple. By allowing $a(-\gamma)=-a \gamma$, every chain can be written as a finite linear combination

$$
\gamma=a_{1} \gamma_{1}+\cdots+a_{n} \gamma_{n}
$$

where $a_{i} \in \mathbb{Z}$, all $\gamma_{i}$ are different, and no two $\gamma_{i}$ are opposite. We allow zero coefficients, in particular, the zero chain 0 . Clearly, a chain can be represented as a sum of paths in many ways.

For a formal sum $\gamma=\gamma_{1}+\cdots+\gamma_{n}$ of paths $\gamma_{i}$ we set $|\gamma|=\bigcup_{i=1}^{n}\left|\gamma_{i}\right|$ and $|0|=\emptyset$. Note that $|\gamma|$ depends on the representation of $\gamma$ (due to cancellation of opposite paths).

[^14]A chain is called a cycle if it can be represented as a sum of closed paths.
We will consider chains contained in a given domain $U \subseteq \mathbb{C}$. This means that the chains have a representation by paths in $U$ and only such representations are considered.

For a cycle $\gamma$ and a point $z \notin|\gamma|$ the index of $z$ with respect to $\gamma$ is defined by

$$
\begin{equation*}
\operatorname{ind}_{\gamma}(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{d \zeta}{\zeta-z} \tag{24.2}
\end{equation*}
$$

just as in Section 12.2. Clearly,

$$
\begin{equation*}
\operatorname{ind}_{\gamma_{1}+\gamma_{2}}(z)=\operatorname{ind}_{\gamma_{1}}(z)+\operatorname{ind}_{\gamma_{2}}(z), \quad \operatorname{ind}_{-\gamma}(z)=-\operatorname{ind}_{\gamma}(z) \tag{24.3}
\end{equation*}
$$

24.2. Homology. A cycle $\gamma$ in a domain $U \subseteq \mathbb{C}$ is said to be homologous to zero with respect to $U$ if $\operatorname{ind}_{\gamma}(z)=0$ for all $z \in \mathbb{C} \backslash U$; we write $\gamma \sim 0(\bmod U)$. Two cycles $\gamma_{1}$ and $\gamma_{2}$ in $U$ are homologous in $U$, in symbols $\gamma_{1} \sim \gamma_{2}$, if $\gamma_{1}-\gamma_{2} \sim 0$. By (24.3),

$$
\gamma_{1} \sim \gamma_{2}(\bmod U) \Leftrightarrow \operatorname{ind}_{\gamma_{1}}(z)=\operatorname{ind}_{\gamma_{2}}(z) \text { for all } z \notin U .
$$

This defines an equivalence relation on the set of cycles in $U$. The set of equivalence classes, called homology classes, forms an additive group, the homology group. If $\gamma \sim 0(\bmod U)$ then $\gamma \sim 0\left(\bmod U^{\prime}\right)$ for all $U^{\prime} \supseteq U$.

### 24.3. The general form of Cauchy's theorem.

Lemma. If $f \in \mathcal{H}(U)$ then

$$
g: U \times U \rightarrow \mathbb{C}, \quad g(z, w):= \begin{cases}\frac{f(z)-f(w)}{z-w} & z \neq w  \tag{24.4}\\ f^{\prime}(z) & z=w\end{cases}
$$

is continuous.
Proof. We need to check continuity at points on the diagonal $z=w$. Fix $a \in U$ and $\epsilon>0$. Since $f^{\prime}$ is continuous, there is a disk $D_{r}(a) \subseteq U$ such that $\left|f^{\prime}(\zeta)-f^{\prime}(a)\right|<\epsilon$ if $\zeta \in D_{r}(a)$. If $z, w \in D_{r}(a), z \neq w$, then $\zeta(t):=(1-t) z+t w \in D_{r}(a), t \in[0,1]$, and

$$
|g(z, w)-g(a, a)|=\left|\frac{f(z)-f(w)}{z-w}-f^{\prime}(a)\right|=\left|\int_{0}^{1}\left(f^{\prime}(\zeta(t))-f^{\prime}(a)\right) d t\right| \leq \epsilon
$$

Thus $g$ is continuous at $(a, a)$.
Theorem. Let $U \subseteq \mathbb{C}$ be a domain and let $f \in \mathcal{H}(U)$.
(1) If $\gamma$ is a cycle that is homologous to zero in $U$, then

$$
\begin{equation*}
\int_{\gamma} f d z=0, \tag{24.5}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{ind}_{\gamma}(z) f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta-z} d \zeta, \quad z \in U \backslash|\gamma| . \tag{24.6}
\end{equation*}
$$

(2) If $\gamma_{1}$ and $\gamma_{2}$ are homologous cycles in $U$, then

$$
\begin{equation*}
\int_{\gamma_{1}} f d z=\int_{\gamma_{2}} f d z \tag{24.7}
\end{equation*}
$$

Equation 24.6 is the general form of Cauchy's integral formula.

Proof. (1) Consider the continuous function $g$ in 24.4, and define

$$
h(z):=\frac{1}{2 \pi i} \int_{\gamma} g(z, w) d w, \quad z \in U
$$

For each $w \in U$ we have $g(\cdot, w) \in \mathcal{H}(U)$, since the singularity at $z=w$ is removable by Proposition 17.2. Thus $h \in \mathcal{H}(U)$ by Proposition 16.3 .

Our goal is to show that $h(z)=0$ for $z \in U \backslash|\gamma|$ which is equivalent to 24.6) (by 24.2). Set $U_{1}:=\left\{z \in \mathbb{C} \backslash|\gamma|: \operatorname{ind}_{\gamma}(z)=0\right\}$ and define

$$
h_{1}(z):=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-z} d w, \quad z \in U_{1}
$$

Since $h_{1}(z)=h(z)$ for $z \in U \cap U_{1}$, there exists a function $\varphi \in \mathcal{H}\left(U \cup U_{1}\right)$ such that $\left.\varphi\right|_{U}=h$ and $\left.\varphi\right|_{U_{1}}=h_{1}$. Since $\gamma$ is homologous to zero in $U$, the set $U_{1}$ contains $\mathbb{C} \backslash U$, so $U \cup U_{1}=\mathbb{C}$ and $\varphi$ is entire. By definition $U_{1}$ also contains the unbounded connected component of the complement of $|\gamma|$ on which ind ${ }_{\gamma}$ vanishes; see Theorem 12.2. Thus

$$
\lim _{|z| \rightarrow \infty} \varphi(z)=\lim _{|z| \rightarrow \infty} h_{1}(z)=0
$$

By Liouville's theorem 18.3, $\varphi=0$ and hence $h=0$. We proved 24.6.
Let us deduce 24.5 from 24.6. Fix $a \in U \backslash|\gamma|$ and set $F(z):=(z-a) f(z)$. Then, as $F(a)=0$,

$$
\frac{1}{2 \pi i} \int_{\gamma} f d z=\frac{1}{2 \pi i} \int_{\gamma} \frac{F(z)}{z-a} d z=\operatorname{ind}_{\gamma}(a) F(a)=0
$$

(2) Apply 24.5) to $\gamma=\gamma_{1}-\gamma_{2}$.

### 24.4. Practical computation of the index.

Theorem. Let $\gamma$ be a closed $C^{1}$-path in $\mathbb{C}$ and $z \in \mathbb{C} \backslash|\gamma|$. Let $v \in S^{1}$ be a unit vector such that the ray $R:=\{z+r v: r>0\}=z+(0, \infty) v$ intersects $\gamma$ only transversally ${ }^{22}$ i.e., if $\gamma(t) \in R$ then $\operatorname{det}\left(v, \gamma^{\prime}(t)\right) \neq 0$. Then

$$
\begin{equation*}
\operatorname{ind}_{\gamma}(z)=\sum_{t \in \gamma^{-1}(R)} \operatorname{sgn}\left(\operatorname{det}\left(v, \gamma^{\prime}(t)\right)\right) . \tag{24.8}
\end{equation*}
$$

So, in practice, choose a suitable ray, start in the unbounded connected component of the complement of $|\gamma|$ where the index is 0 , and move inwards along the ray. At points where $\gamma$ meets the ray the index increases (decreases) by one if the direction of the ray and the tangent vector of $\gamma$ are positively (negatively) oriented. It may happen that $\gamma$ passes through the same intersection point with the ray a finite number of times; the index is counted accordingly.

Proof. Let $\gamma:[0,1] \rightarrow \mathbb{C}$. Without loss of generality $z=0$. The set $\gamma^{-1}(R)$ is finite. Otherwise there exists an accumulation point $t_{0} \in \gamma^{-1}(R)$ (since $|\gamma|$ is compact), but $\gamma(t) \notin R$ for $t \neq t_{0}$ near $t_{0}$ by transversality, a contradiction.

If $\gamma^{-1}(R)=\emptyset$ then 0 lies in the unbounded connected component of the complement of $|\gamma|$, and 24.8 is true.

Suppose that $\gamma^{-1}(R)=\left\{t_{1}, \ldots, t_{n}\right\}$ with $0<t_{1}<\cdots<t_{n} \leq 1$. Let $\gamma: \mathbb{R} \rightarrow$ $\mathbb{C} \backslash\{0\}$ also denote the periodic extension of the closed path $\gamma:[0,1] \rightarrow \mathbb{C} \backslash\{0\}$.

[^15]

Figure 15. Illustration of Formula 24.8 .

Then $\left[t_{0}, t_{n}\right]$, for $t_{0}:=t_{n}-1$, is an interval of periodicity. Let $\gamma$ be parameterized in polar form $\gamma(t)=r(t) e^{i \varphi(t)}$ by continuous functions $r(t)$ and $\varphi(t)$. By 12.5),

$$
\operatorname{ind}_{\gamma}(0)=\frac{\varphi\left(t_{n}\right)-\varphi\left(t_{0}\right)}{2 \pi}
$$

Let $\theta$ be such that $v=e^{-i \theta}$. For $t \in\left(t_{k-1}, t_{k}\right)$, we have $\gamma(t) \notin R$ and so $\varphi(t) \in$ $\left(\theta_{k}-\pi, \theta_{k}+\pi\right)$ for some $\theta_{k} \in \theta+2 \pi \mathbb{Z}$. Moreover, since $\varphi(t)$ is continuous,

$$
\begin{aligned}
\varphi\left(t_{k}\right)=\lim _{t \nearrow t_{k}} \varphi(t) & = \begin{cases}\theta_{k}+\pi & \text { if } \varphi(t)<\varphi\left(t_{k}\right) \text { for } t<t_{k} \\
\theta_{k}-\pi & \text { if } \varphi(t)>\varphi\left(t_{k}\right) \text { for } t<t_{k}\end{cases} \\
& =\theta_{k}+\operatorname{sgn}\left(\operatorname{det}\left(v, \gamma^{\prime}\left(t_{k}\right)\right)\right) \pi
\end{aligned}
$$

and analogously

$$
\varphi\left(t_{k-1}\right)=\theta_{k}-\operatorname{sgn}\left(\operatorname{det}\left(v, \gamma^{\prime}\left(t_{k-1}\right)\right)\right) \pi
$$

It follows that

$$
\begin{aligned}
\operatorname{ind}_{\gamma}(0) & =\frac{\varphi\left(t_{n}\right)-\varphi\left(t_{0}\right)}{2 \pi}=\frac{1}{2 \pi} \sum_{k=1}^{n}\left(\varphi\left(t_{k}\right)-\varphi\left(t_{k-1}\right)\right) \\
& =\frac{1}{2} \sum_{k=1}^{n}\left(\operatorname{sgn}\left(\operatorname{det}\left(v, \gamma^{\prime}\left(t_{k}\right)\right)\right)+\operatorname{sgn}\left(\operatorname{det}\left(v, \gamma^{\prime}\left(t_{k-1}\right)\right)\right)\right) \\
& =\sum_{k=1}^{n} \operatorname{sgn}\left(\operatorname{det}\left(v, \gamma^{\prime}\left(t_{k}\right)\right)\right)
\end{aligned}
$$

Formula 24.8 is proved.

## 25. The calculus of residues

25.1. Meromorphic functions and residues. A function $f$ defined in a domain $U \subseteq \mathbb{C}$ is said to be meromorphic if there is a set $A \subseteq U$ such that

- $A$ has no accumulation point in $U$,
- $f \in \mathcal{H}(U \backslash A)$,
- $f$ has a pole at each point of $A$.

Every function holomorphic in $U$ is meromorphic in $U$ (in this case $A=\emptyset$ ). Note that $A$ is at most countable.

If $a \in A$ then (cf. 17.2 there exist complex numbers $c_{1}, \ldots, c_{m}, c_{m} \neq 0$, such that

$$
\begin{equation*}
f(z)-\sum_{k=1}^{m} \frac{c_{k}}{(z-a)^{k}}=: f(z)-Q(z) \tag{25.1}
\end{equation*}
$$

has a removable singularity at $a$; we say that $Q$ is the principal part of $f$ at $a$. The number $c_{1}$ is called the residue of $f$ at $a$,

$$
c_{1}=\operatorname{res}(f ; a)
$$

If $a$ is a pole of order $m$ of $f$ then, in view of (25.1),

$$
\operatorname{res}(f ; a)=\lim _{z \rightarrow a} \frac{1}{(m-1)!}\left(\frac{d}{d z}\right)^{m-1}(z-a)^{m} f(z)
$$

If $\gamma$ is a cycle and $a \notin|\gamma|$, then

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{\gamma} Q d z=c_{1} \operatorname{ind}_{\gamma}(a)=\operatorname{res}(Q ; a) \operatorname{ind}_{\gamma}(a) . \tag{25.2}
\end{equation*}
$$

### 25.2. The residue theorem.

Theorem. Let $f$ be meromorphic in $U$ and let $A$ be the set of poles of $f$. Let $\gamma$ be a cycle in $U \backslash A$ that is homologous to zero in $U$. Then

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{\gamma} f d z=\sum_{a \in A} \operatorname{res}(f ; a) \operatorname{ind}_{\gamma}(a) \tag{25.3}
\end{equation*}
$$

Proof. Set $B:=\left\{a \in A: \operatorname{ind}_{\gamma}(a) \neq 0\right\}$. We claim that $B$, and therefore the sum in 25.3), is finite. Let $V$ any connected component of $\mathbb{C} \backslash|\gamma|$. If $V$ is unbounded or if $V \cap(\mathbb{C} \backslash U) \neq \emptyset$, then ind $_{\gamma}$ vanishes on $V$, since $\gamma$ is homologous to zero in $U$ and since $\operatorname{ind}_{\gamma}$ is locally constant, by Theorem 12.2 . Since $A$ has no accumulation point in $U, B$ must be finite.

Let $a_{1}, \ldots, a_{n}$ be the points of $B$ and let $Q_{1}, \ldots, Q_{n}$ be the principal parts of $f$ at $a_{1}, \ldots, a_{n}$. The function $g:=f-\sum_{j=1}^{n} Q_{j}$ has removable singularities at $a_{1}, \ldots, a_{n}$ and thus application of Theorem 24.3 on the domain $U \backslash(A \backslash B)$ gives

$$
\int_{\gamma} g d z=0
$$

(Note that $\gamma$ is homologous to zero with respect to $U \backslash(A \backslash B)$ since $\operatorname{ind}_{\gamma}(z)=0$ for all $z$ in $\mathbb{C} \backslash(U \backslash(A \backslash B))=(\mathbb{C} \backslash U) \cup(A \backslash B)$ by assumption and by the definition of $B$.) Consequently,

$$
\frac{1}{2 \pi i} \int_{\gamma} f d z=\sum_{j=1}^{n} \frac{1}{2 \pi i} \int_{\gamma} Q_{j} d z \stackrel{\sqrt{25.2}}{-} \sum_{j=1}^{n} \operatorname{res}\left(Q_{j} ; a_{j}\right) \operatorname{ind}_{\gamma}\left(a_{j}\right)
$$

which shows 25.3), because $\operatorname{res}\left(Q_{j} ; a_{j}\right)=\operatorname{res}\left(f ; a_{j}\right)$.

### 25.3. The argument principle.

Theorem. Let $f$ be meromorphic in $U$ with zeros $a_{j}$ and poles $b_{k}$, and let $\gamma$ be a cycle which is homologous to zero in $U$ and does not pass through any of the zeros or poles. Then

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}}{f} d z=\sum_{j} \operatorname{ind}_{\gamma}\left(a_{j}\right)-\sum_{k} \operatorname{ind}_{\gamma}\left(b_{k}\right) \tag{25.4}
\end{equation*}
$$

where multiple zeros or poles are repeated according to their order.
Proof. Suppose that $c$ is a zero of order $m$ of $f$. By Section 17.1, we can write

$$
f(z)=(z-c)^{m} g(z),
$$

where $g$ is holomorphic and nowhere vanishing in a neighborhood of $c$. Thus,

$$
\frac{f^{\prime}(z)}{f(z)}=\frac{m}{z-c}+\frac{g^{\prime}(z)}{g(z)}
$$

i.e., $f^{\prime} / f$ has a simple pole with residue $m$ at $c$. The same arguments show that if $f$ has a pole of order $m$ at $c$, then $f^{\prime} / f$ has a simple pole with residue $-m$ at $c$. So 25.4 follows from 25.3).

Corollary. Let $f$ be meromorphic in $U$ with zeros $a_{j}$ and poles $b_{k}$, and let $\gamma$ be a simple closed positively oriented path in $U$ which does not pass through any of the zeros or poles. Then

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}}{f} d z=\#(\text { zeros of } f \text { inside } \gamma)-\#(\text { poles of } f \text { inside } \gamma)
$$

where the zeros and poles are counted with their multiplicities.
25.4. Evaluation of integrals. The calculus of residues provides a method of computing a wide range of integrals which we will explain by means of two examples.

Example. Consider an integral of the form

$$
I=\int_{0}^{2 \pi} R(\cos t, \sin t) d t
$$

where $R(x, y)$ is a rational function without a pole on the circle $x^{2}+y^{2}=1$. If we set $z=e^{i t}$, then

$$
\cos t=\frac{e^{i t}+e^{-i t}}{2}=\frac{1}{2}\left(z+\frac{1}{z}\right), \quad \sin t=\frac{e^{i t}-e^{-i t}}{2 i}=\frac{1}{2 i}\left(z-\frac{1}{z}\right)
$$

and thus

$$
\begin{aligned}
I & =\int_{S^{1}} \frac{1}{i z} R\left(\frac{1}{2}\left(z+\frac{1}{z}\right), \frac{1}{2 i}\left(z-\frac{1}{z}\right)\right) d z \\
& =2 \pi \sum \operatorname{res}\left[\frac{1}{z} R\left(\frac{1}{2}\left(z+\frac{1}{z}\right), \frac{1}{2 i}\left(z-\frac{1}{z}\right)\right)\right]
\end{aligned}
$$

where the sum is over all poles in $\mathbb{D}$ of the function in the square brackets.
For instance, for $a>1$,

$$
\int_{0}^{2 \pi} \frac{d t}{a+\sin t}=2 \pi \sum \operatorname{res} \frac{2 i}{z^{2}+2 a i z-1}
$$

The function on the right-hand side has two simple poles $p_{1}:=-i a+i \sqrt{a^{2}-1}$ and $p_{2}:=-i a-i \sqrt{a^{2}-1}$, but only the first pole lies in $\mathbb{D}$. Its residue is

$$
\lim _{z \rightarrow p_{1}}\left(z-p_{1}\right) \frac{2 i}{z^{2}+2 a i z-1}=\lim _{z \rightarrow p_{1}} \frac{2 i}{z-p_{2}}=\frac{1}{\sqrt{a^{2}-1}}
$$

Therefore,

$$
\int_{0}^{2 \pi} \frac{d t}{a+\sin t}=\frac{2 \pi}{\sqrt{a^{2}-1}}
$$

Example. Our goal is to prove

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{e^{a x}}{1+e^{x}} d x=\frac{\pi}{\sin \pi a}, \quad 0<a<1 \tag{25.5}
\end{equation*}
$$

It is easy to see that the integral converges. Set $f(z)=e^{a z} /\left(1+e^{z}\right)$ and consider the path $\gamma$ which parameterizes the boundary of the rectangle with vertices $-R_{1}$,
$R_{2}, R_{2}+2 \pi i,-R_{1}+2 \pi i$ (positively oriented; $R_{1}, R_{2}>0$ ). The only pole of $f$ inside the rectangle is $\pi i$. Let us compute its residue,

$$
(z-\pi i) f(z)=e^{a z} \frac{z-\pi i}{e^{z}-e^{\pi i}} \rightarrow e^{a \pi i} \frac{1}{e^{\pi i}}=-e^{a \pi i}, \quad \text { as } z \rightarrow \pi i
$$

Thus,

$$
\begin{equation*}
\int_{\gamma} f d z=2 \pi i \operatorname{res}(f ; \pi i)=-2 \pi i e^{a \pi i} \tag{25.6}
\end{equation*}
$$

Observe that

$$
\begin{aligned}
\int_{\left[R_{2}+2 \pi i,-R_{1}+2 \pi i\right]} f d z & =\int_{R_{2}}^{-R_{1}} \frac{e^{a(t+2 \pi i)}}{1+e^{t+2 \pi i}} d t \\
& =-e^{2 \pi a i} \int_{-R_{1}}^{R_{2}} \frac{e^{a t}}{1+e^{t}} d t=-e^{2 \pi a i} \int_{\left[-R_{1}, R_{2}\right]} f d z
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\int_{\left[R_{2}, R_{2}+2 \pi i\right]} f d z\right| & \leq \int_{0}^{2 \pi}\left|\frac{e^{a\left(R_{2}+i t\right)}}{1+e^{R_{2}+i t}}\right| d t \leq C e^{(a-1) R_{2}} \rightarrow 0 \\
\left|\int_{\left[-R_{1}+2 \pi i,-R_{1}\right]} f d z\right| & \leq \int_{0}^{2 \pi}\left|\frac{e^{a\left(-R_{1}+i t\right)}}{1+e^{-R_{1}+i t}}\right| d t \leq C e^{-a R_{1}} \rightarrow 0
\end{aligned}
$$

as $R_{1}, R_{2} \rightarrow \infty$, where $C$ is some constant. Consequently, by 25.6,

$$
\left(1-e^{2 \pi a i}\right) \int_{-\infty}^{\infty} \frac{e^{a x}}{1+e^{x}} d x=-2 \pi i e^{a \pi i}
$$

which implies 25.5).

## 26. Homotopy and simply connected domains

Let us turn to the second question.
26.1. Homotopy. Let $\gamma_{i}:[a, b] \rightarrow U \subseteq \mathbb{C}, i=0,1$, be closed curves in $U$. We say that $\gamma_{0}$ and $\gamma_{1}$ are homotopic in $U$ if there is a continuous mapping $H:[0,1] \times[a, b] \rightarrow U, H(s, t)=H_{s}(t)=H^{t}(s)$, such that

$$
H_{0}=\gamma_{0}, \quad H_{1}=\gamma_{1}, \quad H^{a}=H^{b}
$$

The mapping $H$ is called a homotopy. It defines a one-parameter family of closed curves $H_{s}$ in $U$ which connects $\gamma_{0}$ and $\gamma_{1}$. This defines an equivalence relation on the set of closed curves in $U$. Similarly one defines homotopies of non-closed curves, cf. Figure 17, but we will have no use for that.


Figure 16. A homotopy of non-closed curves; $H^{a} \neq H^{b}$.
If $\gamma_{0}$ is homotopic in $U$ to a constant curve $\gamma_{1}$ (i.e., a point), we say that $\gamma_{0}$ is null-homotopic in $U$.

A connected subset $U \subseteq \mathbb{C}$ is said to be simply connected if every closed curve in $U$ is null-homotopic in $U$.

Example. Star-shaped domains $U$ are simply connected. Let $c \in U$ be a center and let $\gamma:[a, b] \rightarrow U$ be a closed curve. Then

$$
H(s, t):=(1-s) \gamma(t)+s c
$$

defines a homotopy with $H_{0}=\gamma, H_{1}=c$, and $H^{a}=H^{b}$.


Figure 17. The set on the left is simply connected, the set on the right is not simply connected.

### 26.2. Cauchy's theorem for simply connected domains.

Lemma. Let $\gamma_{0}$ and $\gamma_{1}$ be closed paths in $\mathbb{C}$ with parameter interval $[a, b]$. If $z \in \mathbb{C}$ and

$$
\begin{equation*}
\left|\gamma_{1}(t)-\gamma_{0}(t)\right|<\left|z-\gamma_{0}(t)\right|, \quad t \in[a, b] \tag{26.1}
\end{equation*}
$$

then $\operatorname{ind}_{\gamma_{0}}(z)=\operatorname{ind}_{\gamma_{1}}(z)$.
Proof. By 26.1, $z \notin\left|\gamma_{0}\right| \cup\left|\gamma_{1}\right|$, and $\gamma:=\frac{\gamma_{1}-z}{\gamma_{0}-z}$ defines a path in $D_{1}(1)$, thus, $\operatorname{ind}_{\gamma}(0)=0$. Moreover,

$$
\frac{\gamma^{\prime}}{\gamma}=\frac{\gamma_{1}^{\prime}}{\gamma_{1}-z}-\frac{\gamma_{0}^{\prime}}{\gamma_{0}-z}
$$

and therefore $0=\operatorname{ind}_{\gamma}(0)=\operatorname{ind}_{\gamma_{1}}(z)-\operatorname{ind}_{\gamma_{0}}(z)$.
Theorem. Let $U \subseteq \mathbb{C}$ be a domain and let $f \in \mathcal{H}(U)$.
(1) If $\gamma_{0}$ and $\gamma_{1}$ are homotopic closed paths in $U$, then $\gamma_{0}$ and $\gamma_{1}$ are homologous in $U$; thus,

$$
\int_{\gamma_{0}} f d z=\int_{\gamma_{1}} f d z
$$

(2) If $U$ is simply connected, then every cycle $\gamma$ in $U$ is homologous to zero in $U$; thus,

$$
\begin{gathered}
\int_{\gamma} f d z=0 \\
\operatorname{ind}_{\gamma}(z) f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta-z} d \zeta, \quad z \in U \backslash|\gamma|
\end{gathered}
$$

Proof. (1) We must show that $\operatorname{ind}_{\gamma_{0}}(z)=\operatorname{ind}_{\gamma_{1}}(z)$ if $z \notin U$. There exists a homotopy $H:[0,1] \times[a, b] \rightarrow U$ with $H_{0}=\gamma_{0}, H_{1}=\gamma_{1}$, and $H^{a}=H^{b}$. For simplicity of notation we assume without loss of generality that $[a, b]=[0,1]$. Since $H\left([0,1]^{2}\right)$ is compact, there exists $\epsilon>0$ such that

$$
\begin{equation*}
|z-H(s, t)|>2 \epsilon, \quad \text { for all }(s, t) \in[0,1]^{2} . \tag{26.2}
\end{equation*}
$$

Since $H$ is uniformly continuous, there is a positive integer $n \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|H(s, t)-H\left(s^{\prime}, t^{\prime}\right)\right|<\epsilon, \quad \text { if }\left|s-s^{\prime}\right|+\left|t-t^{\prime}\right| \leq \frac{1}{n} \tag{26.3}
\end{equation*}
$$

We define polygonal closed paths $\Gamma_{k}, k=0,1, \ldots, n$, by setting

$$
\Gamma_{k}(t):=H_{\frac{k}{n}}\left(\frac{i}{n}\right)(n t+1-i)+H_{\frac{k}{n}}\left(\frac{i-1}{n}\right)(i-n t), \quad t \in\left[\frac{i-1}{n}, \frac{i}{n}\right], i=1, \ldots, n
$$

i.e., we connect the points $H_{\frac{k}{n}}\left(\frac{i}{n}\right), i=0,1, \ldots, n$, on the curve $H_{\frac{k}{n}}$ by line segments. By 26.3),

$$
\begin{gather*}
\left|\Gamma_{k}(t)-H_{\frac{k}{n}}(t)\right|<\epsilon, \quad k=0, \ldots, n, t \in[0,1]  \tag{26.4}\\
\left|\Gamma_{k-1}(t)-\Gamma_{k}(t)\right|<\epsilon, \quad k=1, \ldots, n, t \in[0,1] . \tag{26.5}
\end{gather*}
$$

In particular, 26.4) implies

$$
\begin{equation*}
\left|\Gamma_{0}(t)-\gamma_{0}(t)\right|<\epsilon, \quad\left|\Gamma_{n}(t)-\gamma_{1}(t)\right|<\epsilon . \tag{26.6}
\end{equation*}
$$

By 26.2 and 26.4,

$$
\begin{equation*}
\left|z-\Gamma_{k}(t)\right| \geq\left|z-H_{\frac{k}{n}}(t)\right|-\left|\Gamma_{k}(t)-H_{\frac{k}{n}}(t)\right|>\epsilon, \quad k=0, \ldots, n, t \in[0,1] \tag{26.7}
\end{equation*}
$$

Then 26.5, 26.6, 26.7) and the lemma imply

$$
\operatorname{ind}_{\gamma_{0}}(z)=\operatorname{ind}_{\Gamma_{0}}(z)=\operatorname{ind}_{\Gamma_{1}}(z)=\cdots=\operatorname{ind}_{\Gamma_{n}}(z)=\operatorname{ind}_{\gamma_{1}}(z) .
$$

The identity in (1) follows from 24.7).
(2) Every closed path $\gamma$ in $U$ is null-homotopic in $U$, thus homologous to zero in $U$, by (1). The identities follow from 24.5 and 24.6 .

The paths $\Gamma_{k}$ were introduced since the curves $H_{s}$ need not be piecewise $C^{1}$, and so the lemma is not applicable directly.

Remark. The converse of (1) is not true: there exist domains $U$ and closed paths in $U$ that are homologous but not homotopic in $U$. For instance, the Pochhammer cycle (see Figure 18) is homologous to zero but not null-homotopic in $\mathbb{C} \backslash\{a, b\}$.


Figure 18. The Pochhammer cycle. It is homologous to zero in $\mathbb{C} \backslash$ $\{a, b\}, a \neq b$, since the index is zero at $a$ and $b$. But it is not nullhomotopic in $\mathbb{C} \backslash\{a, b\}$.
26.3. Characterization of simply connected domains. We have fully answered the first question and partly the second question posed at the beginning of this chapter. The following theorem gives a full answer to the second question. We state it without proof.

Theorem. Let $U \subseteq \mathbb{C}$ be a region. The following are equivalent:
(1) $U$ is homeomorphic to $\mathbb{D}$.
(2) $U$ is simply connected.
(3) $\operatorname{ind}_{\gamma}(z)=0$ for every closed path $\gamma$ in $U$ and all $z \in \hat{\mathbb{C}} \backslash U$.
(4) $\hat{\mathbb{C}} \backslash U$ is connected.
(5) Every $f \in \mathcal{H}(U)$ can be approximated by polynomials, uniformly on compact sets.
(6) For every $f \in \mathcal{H}(U)$ and every closed path $\gamma$ in $U, \int_{\gamma} f d z=0$.
(7) Every $f \in \mathcal{H}(U)$ is integrable on $U$.
(8) If $f \in \mathcal{H}(U)$ and $1 / f \in \mathcal{H}(U)$, then there exists $g \in \mathcal{H}(U)$ such that $f=\exp g$.
(9) If $f \in \mathcal{H}(U)$ and $1 / f \in \mathcal{H}(U)$, then there exists $g \in \mathcal{H}(U)$ such that $f=g^{2}$.

Items (8) and (9) mean that every unit in the ring $\mathcal{H}(U)$ has a holomorphic logarithm and a holomorphic square root.

The proof of this theorem involves the Riemann mapping theorem:
Theorem. Every simply connected region in the complex plane, other than the plane itself, is biholomorphic to the unit disk.

## Bibliography

1. L. V. Ahlfors, Complex analysis: An introduction of the theory of analytic functions of one complex variable, Second edition, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0188405 (32 \#5844)
2. H. Cartan, Elementary theory of analytic functions of one or several complex variables, Dover Publications, Inc., New York, 1995, Translated from the French, Reprint of the 1973 edition. MR 1348633 (96e:32001)
3. H. Heuser, Lehrbuch der Analysis. Teil 1, 11. auflage ed., Mathematische Leitfäden. [Mathematical Textbooks], B. G. Teubner, Stuttgart, 1994.
4. A. Kriegl, Komplexe Analysis, Lecture notes of a course held in Vienna, 2011.
5. R. Remmert and G. Schumacher, Funktionentheorie 1., 5., neu bearb. Aufl. ed., Berlin: Springer, 2002 (German).
6. W. Rudin, Real and complex analysis, third ed., McGraw-Hill Book Co., New York, 1987.
7. E. M. Stein and R. Shakarchi, Complex analysis, Princeton Lectures in Analysis, II, Princeton University Press, Princeton, NJ, 2003. MR 1976398 (2004d:30002)

## Index

$\mathbb{C}$-differentiable, 11
of higher order, 23
$\mathbb{R}$-differentiable, 12
1-form, 9
closed, 9
exact, 9
Abel's lemma, 21
absolute value, 2 absolutely convergent series, 6
accumulation point, 5
addition formula, 25
analytic function, 24
angle, 4
angle-preserving, 16
antiderivative, 42
antiholomorphic, 16
argument, 3, 29
automorphim, 60
biholomorphism, 57
binomial coefficients, 34
binomial series, 34
boundary, 9
Cauchy kernel, 48
Cauchy product, 6
Cauchy sequence, 520
Cauchy's convergence criterion, 20
Cauchy's estimates, 52
Cauchy's inequalities, 52
Cauchy's integral formula, 47
general form, 64
Cauchy's integral formula for $C^{1}$ functions, 48
Cauchy's theorem, 45
for simply connected domains, 70
general form, 64
Cauchy-Riemann equations, 12
Cauchy-Schwarz inequality, 4
Cayley mapping, 60
center, 43
chains, 63
closed path, 8
closed set, 4
closure, 4
coefficients, 21
compact set, 7
complete, 5
complex conjugate, 2
complex derivative, 11
complex differentiable, 11
conformal mapping, 17
connected component, 9
connected space, 8
continuous, 7
continuously differentiable, 13
convergent power series, 21
convergent series, 5
convex hull, 43
convex set, 43
cosine function, 27
cotangent, 29
curve, 8
cycle, 64
dense, 5
differential, 12
disk, 4
unit, 4
disk of convergence, 21
divergent series, 5
domain, 8
entire functions, 53
equivalent paths, 37
Euler's formula, 27
exponential function, 25
extension of function, 51
formal power series, 21
geometric series, 5
Goursat's lemma, 44
Gutzmer's formula, 53
Hadamard's formula, 21
harmonic function, 15
Hausdorff separation property, 4
holomorphic, 12
holomorphic at a point, 14
homologous, 64
homologous to zero, 64
homology class, 64
homology group, 64
homotopic, 69
homotopy, 69
hyperbolic cosine, 30
hyperbolic cotangent, 31
hyperbolic sine, 30
hyperbolic tangent, 31
identity theorem, 50
imaginary part, 1
indefinitely $\mathbb{C}$-differentiable, 23
independence of path, 42
index, 4164
inner product, 3
integrable function, 43
interior, 4
inverse path, 38
Jacobian determinant, 13
Jacobian matrix, 12
Laplacian, 15
length, 38
line segment, 8
Liouville's theorem, 53
locally uniform convergence, 19
logarithm
branch, 31
principal branch, 32
logarithmic series, 26
Möbius transformation, 59
majorant criterion, 6
maximum modulus principle, 54
mean value property, 48
meromorphic, 66
metric, 4
Moivre's formula, 29
Morera's theorem,49
neighborhood, 4
normally convergent series, 20
null-homotopic, 69
open mapping theorem, 5354
open set, 4
order
pole, 51
zero, 51
orientation-preserving, 17
orthogonal vectors, 4
partial sum, 5
path, 8
path integral, 37
path integral of 1 -form, 9
path-connected space, 8
period, 26
periodic function, 26
piecewise continuously differentiable path, 37
Pochhammer cycle, 71
pointwise convergence, 19
polar coordinates, 29
pole, 51
polygon, 8
power function, 33
power series expansion, 24
primitive, 42
principal branch of the square root, 34
principal part, 67
product series, 6
purely imaginary, 1
radius of convergence, 21
ratio test, 22
real differentiable, 12
real part, 1
region, 8
reparameterization, 37
residue, 67
Riemann mapping theorem, 72
Riemann sphere, 58
Riemann surface, 32
root of unity, 29
sequence
bounded, 5
convergent, 4
divergent, 4
series, 5
simple path, 8
simply connected, 69
sine function, 27
singularity
essential, 51
isolated, 51
removable, 51
slit plane, 32
star-shaped set, 43
stereographic projection, 58
sup norm, 19
tangent, 29
Taylor coefficients, 23
Taylor series, 24
triangle, 44
unconditinally convergent series, 6
uniform convergence, 19
uniformly continuous, 7
unit circle, 29
upper half-plane, 60
valuation, 2
Weierstrass majorant criterion, 20
winding number, 41


[^0]:    ${ }^{1}$ An integral domain is a non-zero commutative ring in which the product of any two non-zero elements is non-zero.

[^1]:    ${ }^{2}$ By reordering a real convergent, but not absolutely convergent, series one can obtain any real number. This is no longer true for complex series; see [5 0.4.5].

[^2]:    ${ }^{3}$ A function $f$ is locally constant if every point has a neighborhood $U$ such that $\left.f\right|_{U}$ is constant.

[^3]:    ${ }^{4}$ The converse is not true: the subspace $i[-1,1] \cup\{x+i \sin (1 / x): x>0\}$ of $\mathbb{C}$ is connected but not path-connected.
    ${ }^{5}$ The same argument gives: every connected locally path-connected space is path-connected.

[^4]:    ${ }^{6}$ Actually, by the Looman-Menchoff theorem, a continuous function $f: \mathbb{C} \supseteq U \rightarrow \mathbb{C}$ whose partial derivatives exist (everywhere but a countable set) is holomorphic if and only if it satisfies the Cauchy-Riemann equations.

[^5]:    ${ }^{7}$ We will see in Theorem 16.1 that $\mathcal{H}(U) \subseteq C^{2}(U)$.

[^6]:    ${ }^{8}$ Recall that $\lim \sup _{n \rightarrow \infty} b_{n}:=\inf _{n \geq 0} \sup _{k \geq n} b_{k}$ and $\lim \inf _{n \rightarrow \infty} b_{n}:=\sup _{n \geq 0} \inf _{k \geq n} b_{k}$.

[^7]:    ${ }^{11}$ See Theorem 21.1

[^8]:    ${ }^{12}$ By Theorem 16.1 a holomorphic function has continuous complex derivatives of all orders.

[^9]:    ${ }^{13}$ Essentially the same proof yields a much more general version of this theorem: the function $F(z)=\int_{X} \frac{d \mu(\zeta)}{\varphi(\zeta)-z}$, where $\mu$ is a complex measure on a measurable space $X$ and $\varphi: X \rightarrow \mathbb{C}$ is a measurable function, is analytic in any domain $U \subseteq \mathbb{C}$ disjoint from $\varphi(X)$; see 6 10.7].

[^10]:    ${ }^{14}$ The definition of $\mathbb{C}$-differentiability gives continuity at $c$; at points $z \neq c$ continuity is inherited from $f$, in fact, $h(z)=\frac{f(z)-f(c)}{z-c}-f^{\prime}(c)$.

[^11]:    ${ }^{15}$ By the big Picard theorem the image under $f$ of each punctured disk centered at an essential singularity of $f$ is either the whole plane $\mathbb{C}$, or $\mathbb{C}$ with one point missing.

[^12]:    ${ }^{16}$ This is a special case of Parseval's formula.
    ${ }^{17}$ The little Picard theorem states that the range of every non-constant entire function is either $\mathbb{C}$, or $\mathbb{C}$ with one point missing.

[^13]:    ${ }^{18}$ The Riemann sphere is a complex manifold. The stereographic projections relative to the north and the south pole provide an atlas.
    ${ }^{19}$ The group of Möbius transformation is the automorphism group of the Riemann sphere.
    ${ }^{20} \mathrm{Via}$ the stereographic projection $\mathcal{F}$ is the family of all circles on $S^{2}$.

[^14]:    ${ }^{21}$ More formally, chains can be defined as formal sums $\gamma_{1}+\cdots+\gamma_{n}$ of linear functionals $\gamma_{i}(f)=\int_{\gamma_{i}} f d z$ for $f \in C\left(\bigcup_{i}\left|\gamma_{i}\right|\right)$, cf. [6] 10.34].

[^15]:    22 Sard's theorem implies that almost every ray intersects $\gamma$ transversally.

