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Preface

These are lecture notes for the course Reelle Analysis held in Vienna in Spring
2014 and 2016 (two semester hours). The main sources are [1], [3], [5], [6], [8],
[10], [11], [12], [13], and [14].
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CHAPTER 1

Basic measure theory

1.1. σ-algebras and measures

Let X be a set. A collection S ⊆ P(X) of subsets of X is called a σ-algebra
if the following are satisfied:

• If A ∈ S, then Ac = X \A ∈ S.
• If {Ai}∞i=1 is a countable family of sets in S, then

⋃∞
i=1Ai ∈ S.

• X ∈ S.

It is immediate from this definition that

• ∅ ∈ S.
• If {Ai}∞i=1 is a countable family of sets in S, then

⋂∞
i=1Ai ∈ S.

• If A1, A2 ∈ S, then A1 \A2 ∈ S.

Evidently, for any set X, the collections {∅, X} and P(X) form σ-algebras, respec-
tively. Given any family of subsets A ⊆ P(X) the intersection of all σ-algebras
containing A is a σ-algebra. It is the smallest σ-algebra containing A and is called
the σ-algebra generated by A.

Let X be a topological space. The σ-algebra B(X) generated by all open
subsets in X is called the σ-algebra of Borel sets in X, or Borel σ-algebra. The
Borel σ-algebra B(Rn) is generated by the open balls in Rn. It contains all closed
sets, but not all subsets of Rn.

A (positive) measure µ on a σ-algebra S is a mapping µ : S→ [0,∞] with
the following properties:

• µ(∅) = 0
• µ is σ-additive, i.e., if {Ai}∞i=1 is a countable family of disjoint sets in S,

then

µ
( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai).

Lemma 1.1. Let µ be a measure on a σ-algebra S, and let Ai ∈ S. Then:

(1) µ is finitely additive, i.e., for finite families of disjoint sets {Ai}mi=1,

µ
( m⋃
i=1

Ai

)
=

m∑
i=1

µ(Ai),

(2) µ is monotone, i.e., µ(A1) ≤ µ(A2) if A1 ⊆ A2.
(3) If A1 ⊆ A2 ⊆ · · · , then

lim
j→∞

µ(Aj) = µ
( ∞⋃
i=1

Ai

)
.

(4) If A1 ⊇ A2 ⊇ · · · and µ(A1) <∞, then

lim
j→∞

µ(Aj) = µ
( ∞⋂
i=1

Ai

)
.
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2 1. BASIC MEASURE THEORY

Proof. (1) follows immediately from the definition of measure.

(2) We have A2 = A1 ∪ (A2 \A1) and so µ(A2) = µ(A1) +µ(A2 \A1) ≥ µ(A1).

(3) Setting Bi := Ai \ Ai−1, i ≥ 2, and B1 := A1, we obtain a sequence of
disjoint sets Bi ∈ S so that

⋃m
i=1Ai =

⋃m
j=1Bj , for all m ∈ N ∪ {∞}. Thus

µ
( ∞⋃
i=1

Ai

)
= µ

( ∞⋃
j=1

Bj

)
=

∞∑
j=1

µ(Bj) = lim
m→∞

m∑
j=1

µ(Bj)

= lim
m→∞

µ
( m⋃
j=1

Bj

)
= lim
m→∞

µ(Am).

(4) We have
⋂∞
i=1Ai = A1 \

⋃∞
j=1(A1 \Aj), and thus, by (3),

µ
( ∞⋂
i=1

Ai

)
= µ(A1)−µ

( ∞⋃
j=1

(A1 \Aj)
)

= µ(A1)− lim
i→∞

µ(A1 \Ai) = lim
i→∞

µ(Ai). �

A measure space is a triple (X,S, µ) consisting of a set X, a σ-algebra S
on X, and a measure µ on S. The elements of S are called (µ-)measurable
sets. If X ′ ∈ S, then we may define the measure subspace (X ′,S′, µ′), where
S′ := {A : A ∈ S and A ⊆ X ′} = {A ∩X ′ : A ∈ S} and µ′ := µ|S′ .

A measure µ is called finite if µ(X) <∞, and probability measure if µ(X) =
1. It is called σ-finite if there exists a sequence Xi ∈ S such that µ(Xi) < ∞
for all i and X =

⋃∞
i=1Xi; note that the Xi can be chosen disjoint by setting

X ′i = Xi \
⋃i−1
k=1Xk. We say that µ has the finite subset property if for each

A ∈ S with µ(A) > 0 there is B ∈ S with B ⊆ A and 0 < µ(B) < ∞. A σ-finite
measure has the finite subset property; if A ∈ S with µ(A) > 0 then for some i we
have 0 < µ(A ∩Xi) <∞.

Example 1.2.

(1) For any set X we may take the σ-algebra P(X) of all subsets and consider
the counting measure

µ(A) =

{
|A| if A is finite

∞ if A is infinite
.

(2) If X is a topological space and µ is a measure on the Borel σ-algebra,
then µ is called a Borel measure.

(3) Fix a point x ∈ Rn. Then the Dirac δ-measure δx defined by

δx(A) = χA(x) =

{
1 if x ∈ A
0 if x 6∈ A

is a measure defined on the Borel σ-algebra or even on P(Rn).

1.2. Monotone class theorem and uniqueness of measures

Let X be a set. A collection A ⊆ P(X) of subsets of X is called an algebra if
X ∈ A and, for every A,B ∈ A, also Ac ∈ A and A ∪B ∈ A.

A collection M ⊆ P(X) of subsets of X is called an monotone class if, for
Ai ∈M, we have:

• If A1 ⊆ A2 ⊆ · · · , then
⋃∞
i=1Ai ∈M.

• If A1 ⊇ A2 ⊇ · · · , then
⋂∞
i=1Ai ∈M.

Clearly, P(X) is a monotone class.
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Theorem 1.3 (Monotone class theorem). Let A be an algebra of subsets of X.
Then there exists a smallest monotone class M that contains A, and M is the
σ-algebra generated by A.

Proof. Let M be the intersection of all monotone classes that contain A. Then
M is a monotone class that contains A, and by definition it is the smallest.

In order to show that M is the σ-algebra generated by A, it suffices to prove
that M is closed under complements and finite unions. Indeed, assuming this, we
may conclude that, if Ai ∈ M then Bn :=

⋃n
i=1Ai ∈ M and B1 ⊆ B2 ⊆ · · · and

hence
⋃∞
i=1Ai =

⋃∞
n=1Bn ∈ M. Thus M is a σ-algebra. Since any σ-algebra is

a monotone class, M is the smallest σ-algebra that contains A, i.e., the σ-algebra
generated by A.

Let us show that M is closed under finite unions. Fix A ∈ M and consider
C(A) := {B ∈ M : A ∪ B ∈ M}. Let Bi ∈ C(A) so that B1 ⊆ B2 ⊆ · · · . Then
(A∪B1) ⊆ (A∪B2) ⊆ · · · is a sequence in M, hence A∪

⋃∞
i=1Bi =

⋃∞
i=1(A∪Bi) ∈

M, and so
⋃∞
i=1Bi ∈ C(A). Similarly, the intersection of a decreasing sequence of

sets in C(A) belongs to C(A). Thus C(A) is a monotone class.

If A ∈ A, then A ⊆ C(A) ⊆ M, since A is an algebra, and thus C(A) = M. If
A ∈M is arbitrary, then A ⊆ C(A), for if B ∈ A then C(B) = M, by the previous
sentence, and hence A∪B ∈M. Thus C(A) = M for each A ∈M, that means that
M is closed under finite unions.

In order to prove that M is closed under complements, we consider C := {B ∈
M : Bc ∈M}. Since A is an algebra, A ⊆ C. If Bi ∈ C so that B1 ⊆ B2 ⊆ · · · , then

Bci ∈ M and Bc1 ⊇ Bc2 ⊇ · · · , and hence
(⋃∞

i=1Bi
)c

=
⋂∞
i=1B

c
i ∈ M. Similarly,

the intersection of a decreasing sequence of sets in C belongs to C. It follows that
C = M. The proof is complete. �

Theorem 1.4 (Uniqueness of measures). Let A be an algebra of subsets of X and
let S be the σ-algebra generated by A. Let µ1 and µ2 be measures on S that coincide
on A. Suppose that there is a sequence of sets Ai ∈ A so that µ1(Ai) = µ2(Ai) <∞,
i ≥ 1, and

⋃∞
i=1Ai = X. Then µ1 = µ2 on S.

Proof. First we assume that µ1(X) < ∞. Lemma 1.1 implies that M :=
{A ∈ S : µ1(A) = µ2(A)} is a monotone class;

µ1

( ∞⋃
i=1

Ai

)
= lim
j→∞

µ1(Aj) = lim
j→∞

µ2(Aj) = µ2

( ∞⋃
i=1

Ai

)
if Ai ⊆ Ai+1

µ1

( ∞⋂
i=1

Ai

)
= lim
j→∞

µ1(Aj) = lim
j→∞

µ2(Aj) = µ2

( ∞⋂
i=1

Ai

)
if Ai ⊇ Ai+1.

By Theorem 1.3, we can conclude that M = S which gives the assertion.

For the case µ1(X) = ∞, note that, for each A ∈ A, A ∩ S is the σ-algebra
(on A) generated by A ∩A (exercise!). Thus µ1(A ∩B) = µ2(A ∩B) for all B ∈ S
if µ1(A) < ∞, by the finite case. By assumption, X =

⋃∞
i=1Ai for sets Ai ∈ A so

that µ1(Ai) = µ2(Ai) <∞. Without loss of generality we may assume that the Ai
are disjoint. Then, for B ∈ S,

µ1(B) = µ1

( ∞⋃
i=1

(Ai ∩B)
)

=

∞∑
i=1

µ1(Ai ∩B) =

∞∑
i=1

µ2(Ai ∩B) = µ2(B). �

An elementary family E is a collection of subsets of X satisfying

• ∅ ∈ E,
• if E,F ∈ E then E ∩ F ∈ E,
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• if E ∈ E, then Ec is a finite disjoint union of elements in E.

Proposition 1.5. The collection A of finite disjoint unions of elements in an ele-
mentary family E forms an algebra.

Proof. Suppose that A,B ∈ E and Bc =
⋃n
i=1 Ci, where Ci ∈ E are disjoint.

Then A\B =
⋃n
i=1(A∩Ci) ∈ A and A∪B = (A\B)∪B ∈ A, since these unions are

disjoint. By induction, we can conclude that if A1, . . . , An ∈ E then
⋃n
i=1Ai ∈ A.

For, by inductive hypothesis we may assume that A1, . . . , An−1 are disjoint, and

then
⋃n
i=1Ai = An ∪

⋃n−1
i=1 (Ai \An) ∈ A. Thus if A,B ∈ A then A ∪B ∈ A.

Let us show that A is stable under complements. Let A1, . . . , An ∈ E and
Aci =

⋃mi
j=1Bij with Bij ∈ E disjoint for all i, j. Then( n⋃

i=1

Ai

)c
=

n⋂
i=1

mi⋃
j=1

Bij =
⋃

1≤ji≤mi
1≤i≤n

B1j1 ∩ · · · ∩Bnjn

which belongs to A. �

1.3. Outer measures and Caratheodory’s construction

An outer measure on a set X is a mapping µ : P(X)→ [0,∞] satisfying:

• µ(∅) = 0.
• µ is monotone, i.e., µ(A) ≤ µ(B) if A ⊆ B.
• µ is σ-subadditive, i.e., for any countable family {Ai}∞i=1 of sets Ai ⊆ X,

µ
( ∞⋃
i=1

Ai

)
≤
∞∑
i=1

µ(Ai).

Theorem 1.6 (Caratheodory). Let µ be an outer measure on X. Set

S := {E ∈ P(X) : µ(A) = µ(A ∩ E) + µ(A \ E) for every A ⊆ X}.

Then S is a σ-algebra and (X,S, µ|S) is a measure space.

Proof. Clearly, X ∈ S. If E ∈ S then Ec ∈ S, since, for every A ⊆ X,

µ(A ∩ Ec) + µ(A \ Ec) = µ(A \ E) + µ(A ∩ E) = µ(A).

Next we claim that, for E,F ∈ S, also E ∪ F ∈ S. Indeed, for every A ⊆ X,

µ(A ∩ (E ∪ F )) + µ(A \ (E ∪ F ))

= µ(A ∩ (E ∪ F ) ∩ E) + µ((A ∩ (E ∪ F )) \ E) + µ(A \ (E ∪ F ))

= µ(A ∩ E) + µ((A \ E) ∩ F ) + µ((A \ E) \ F )

= µ(A ∩ E) + µ(A \ E)

= µ(A).

(The first and last equality hold, because E ∈ S, the third, because F ∈ S.) Let
{Ei}∞i=1 be a sequence of sets in S, and set E :=

⋃∞
i=1Ei and E≤n :=

⋃n
i=1Ei. By

induction on n, each E≤n ∈ S. Set Fn := E≤n \E≤n−1 = En \E≤n−1, n ≥ 2, and
F1 = E1. For any n ≥ 2 and A ⊆ X, we have

µ(A ∩ E≤n) = µ(A ∩ E≤n ∩ E≤n−1) + µ(A ∩ E≤n \ E≤n−1)

= µ(A ∩ E≤n−1) + µ(A ∩ Fn),
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and, by induction, µ(A ∩ E≤n) =
∑n
i=1 µ(A ∩ Fi) for each n ≥ 1. This, together

with σ-subadditivity, implies

µ(A ∩ E) = µ
(
A ∩

∞⋃
i=1

Fi

)
≤
∞∑
i=1

µ(A ∩ Fi)

= lim
n→∞

n∑
i=1

µ(A ∩ Fi) = lim
n→∞

µ(A ∩ E≤n).

Using monotonicity, we find

µ(A \ E) = µ
(
A \

∞⋃
i=1

E≤i

)
≤ inf
i≥1

µ(A \ E≤i) = lim
i→∞

µ(A \ E≤i),

since the sequence µ(A\E≤i) is non-increasing and bounded from below by µ(A\E).
Thus,

µ(A ∩ E) + µ(A \ E) ≤ lim
n→∞

(µ(A ∩ E≤n) + µ(A \ E≤n) = µ(A).

This shows that E ∈ S, since the converse inequality is trivially satisfied by sub-
additivity. So S is a σ-algebra.

In order to see that (X,S, µ|S) is a measure space, we need to show that µ is
σ-additive on S. Let {Ei}∞i=1 be a sequence of disjoint sets in S, and define E and
E≤n as above. Then

µ(E≤n) = µ(E≤n ∩ En) + µ(E≤n \ En) = µ(En) + µ(E≤n−1),

and, by induction, µ(E≤n) =
∑n
i=1 µ(Ei) for each n ≥ 1. Thus,

µ(E) ≥ µ(E≤n) =

n∑
i=1

µ(Ei)

for all n, and hence µ(E) ≥
∑∞
i=1 µ(Ei), which implies µ(E) =

∑∞
i=1 µ(Ei), as µ is

σ-subadditive. �

1.4. Complete measures

Let (X,S, µ) be a measure space. Sets E ∈ S with µ(E) = 0 are called µ-null
sets. If a statement about points x ∈ X is true except for x in some null set, we say
that it holds µ-almost everywhere, or µ-a.e. The measure µ is called complete
if all subsets of null sets are measurable, i.e., E ∈ S, µ(E) = 0, and F ⊆ E implies
F ∈ S.

Theorem 1.7 (Completion). Let (X,S, µ) be a measure space. Define

S := {E ⊆ X : ∃A,B ∈ S, A ⊆ E ⊆ B, µ(B \A) = 0},

and set µ(E) := µ(A) in this situation. Then S is a σ-algebra and µ is a measure
on S.

The measure space (X,S, µ) is complete. The σ-algebra S is called the µ-
completion of S.

Proof. Let us check that S is a σ-algebra. Clearly, S ⊆ S. If E ∈ S, then
A ⊆ E ⊆ B and hence Bc ⊆ Ec ⊆ Ac, and Ac \Bc = Ac ∩B = B \A has measure
0, that is Ec ∈ S. Suppose that Ai, Bi ∈ S with Ai ⊆ Ei ⊆ Bi and µ(Bi \Ai) = 0
for all i. Then

⋃∞
i=1Ai ⊆

⋃∞
i=1Ei ⊆

⋃∞
i=1Bi and( ∞⋃

i=1

Bi

)
\
( ∞⋃
i=1

Ai

)
=

∞⋃
i=1

(
Bi \

∞⋃
i=1

Ai
)
⊆
∞⋃
i=1

(
Bi \Ai

)
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has measure zero. Hence
⋃∞
i=1Ei ∈ S and S is a σ-algebra.

Next we show that µ is well-defined on S. If A,B,A′, B′ ∈ S satisfy

A ⊆ E ⊆ B, µ(B \A) = 0, A′ ⊆ E ⊆ B′, µ(B′ \A′) = 0,

then A\A′ ⊆ E\A′ ⊆ B′\A′ and hence µ(A\A′) = 0. Therefore µ(A) = µ(A∩A′).
Similarly, we find µ(A′) = µ(A ∩A′), and thus µ(A) = µ(A′).

σ-additivity of µ on S follows from σ-additivity on S; if the sets Ei above are
disjoint then so are Ai. �



CHAPTER 2

Lebesgue measure on Rn

2.1. Construction of the Lebesgue measure

A box I in Rn is given by the product of n compact intervals

I = [a, b] := [a1, b1]× [a2, b2]× · · · × [an, bn],

where a = (a1, . . . , an), b = (b1, . . . , bn), and ai ≤ bi, i = 1, . . . , n, are real numbers.
The volume |I| of I is defined by

|I| = (b1 − a1) · · · (bn − an).

A box is called a cube if all its sides have the same length. A union of boxes is
said to be almost disjoint if the interiors of the boxes are disjoint; the interior of
a box I is denoted by

I̊ = (a, b) := (a1, b1)× (a2, b2)× · · · × (an, bn).

We denote by dist(E1, E2) := inf{|x1 − x2| : x1 ∈ E1, x2 ∈ E2} the distance of
two subsets E1, E2 ⊆ Rn.

Theorem 2.1 (Lebesgue measure). Let λ∗ : P(Rn)→ [0,∞] be defined by

λ∗(E) := inf
{ ∞∑
i=1

|Qi| : {Qi}∞i=1 is a countable cover of E by cubes
}
,

and set

L(Rn) := {E ∈ P(Rn) : λ∗(A) = λ∗(A ∩ E) + λ∗(A \ E) for every A ⊆ Rn}.

Then:

(1) λ∗ is an outer measure; the so-called Lebesgue outer measure.
(2) If dist(E1, E2) > 0, then λ∗(E1 ∪ E2) = λ∗(E1) + λ∗(E2).
(3) L(Rn) is a σ-algebra that contains the Borel σ-algebra B(Rn).

Proof. (1) Evidently, λ∗(∅) = 0 and λ∗ is monotone. In order to show that
λ∗ is σ-subadditive, let E =

⋃∞
i=1Ei. We may assume that each λ∗(Ei) < ∞ for

all i; otherwise there is nothing to prove. For given ε > 0 and each j, there exists
a cover Ej ⊆

⋃∞
k=1Qj,k by cubes so that

∞∑
k=1

|Qj,k| ≤ λ∗(Ej) +
ε

2j
.

Then {Qj,k}∞j,k=1 is a cover of E by cubes, and hence

λ∗(E) ≤
∞∑
j=1

∞∑
k=1

|Qj,k| ≤
∞∑
j=1

λ∗(Ej) + ε

which implies the assertion as ε was arbitrary.

7
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(2) Choose dist(E1, E2) > δ > 0 and fix ε > 0. There exists a cover {Qj}∞j=1

by cubes of E := E1 ∪ E2 so that
∞∑
j=1

|Qj | ≤ λ∗(E) + ε.

We may assume that each Qj has diameter less than δ, after possibly subdividing
Qj . Then each Qj can intersect at most one of E1 or E2, and setting Ji := {j :
Qj ∩ Ei 6= ∅}, i = 1, 2, we have J1 ∩ J2 = ∅, and Ei ⊆

⋃∞
j∈Ji Qj , i = 1, 2. Thus,

λ∗(E1) + λ∗(E2) ≤
∞∑
j∈J1

|Qj |+
∞∑
j∈J2

|Qj | ≤
∞∑
j=1

|Qj | ≤ λ∗(E) + ε,

which implies (2), as ε was arbitrary; the converse inequality holds by (1).

(3) That L(Rn) is a σ-algebra follows from Theorem 1.6. In order to show that
B(Rn) ⊆ L(Rn) it suffices to prove that L(Rn) contains all closed subsets of Rn.
Let F ⊆ Rn be closed, and let A be any subset of Rn. By (1), it is enough to show
that

λ∗(A) ≥ λ∗(A ∩ F ) + λ∗(A \ F ),

and so we may assume that λ∗(A) <∞. We set

A0 := {x ∈ A : dist(x, F ) ≥ 1},
Ai := {x ∈ A : (i+ 1)−1 ≤ dist(x, F ) < i−1}, i ≥ 1.

Then any two sets A2j and A2k with even indices have positive distance; the same
applies to sets A2j+1 with odd indices. By (2), for each m ∈ N,

m∑
i=0

λ∗(A2i) = λ∗
( m⋃
i=0

A2i

)
≤ λ∗(A),

m∑
i=0

λ∗(A2i+1) = λ∗
( m⋃
i=0

A2i+1

)
≤ λ∗(A),

and therefore
∑∞
i=0 λ

∗(Ai) <∞. Using A \ F =
⋃∞
i=0Ai and (1), we find

λ∗(A ∩ F ) + λ∗(A \ F ) ≤ λ∗(A ∩ F ) + λ∗
( m⋃
i=0

Ai

)
+

∞∑
i=m+1

λ∗(Ai)

= λ∗
(

(A ∩ F ) ∪
m⋃
i=0

Ai

)
+

∞∑
i=m+1

λ∗(Ai) (by (2))

≤ λ∗(A) +

∞∑
i=m+1

λ∗(Ai),

which implies the required inequality, since
∑∞
i=m+1 λ

∗(Ai)→ 0 as m→∞. �

Theorems 1.6 and 2.1 imply that the restriction of the Lebesgue outer measure
λ∗ to the σ-algebra L(Rn) is a measure. We call it the Lebesgue measure, and
we denote it by λ or by λn, when the dimension n is important. The elements of
L(Rn) are called the (Lebesgue) measurable sets in Rn.

The Lebesgue measure is complete. Indeed, if E ⊆ F and λ(F ) = 0, then
λ∗(E) = 0, and hence

λ∗(A) ≤ λ∗(A ∩ E) + λ∗(A \ E) ≤ λ∗(E) + λ∗(A) = λ∗(A),

for any A ⊆ Rn. But a Lebesgue null set need not be a Borel set; see Example 3.5.
In fact, we shall see in Corollary 2.10 that the Lebesgue measure is the completion
of the Borel measure λ∗|B(Rn).
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Example 2.2. One point sets are null sets. Indeed, for x ∈ Rn,

0 ≤ λ∗({x}) ≤ |
n∏
i=1

[xi − 1
k , xi + 1

k ]| = ( 2
k )n

for all k ≥ 1. It follows that finite sets and countable sets are null sets.

Example 2.3 (The Cantor set). Consider the interval C0 = [0, 1] and let C1 be
the set obtained by deleting the middle third open interval from [0, 1], i.e., C1 =
[0, 1/3] ∪ [2/3, 1]. Next delete each middle third open interval of each subinterval
in C1, i.e., C2 = [0, 1/32] ∪ [2/32, 1/3] ∪ [2/3, 7/32] ∪ [8/32, 1]. Continuing this
procedure we obtain a sequence C0 ⊇ C1 ⊇ · · · of compact sets. The intersection
C :=

⋂∞
k=0 Ck is called the Cantor set. The Cantor set is a null set. Each Ck is

a disjoint union of 2k closed intervals, each of length 3−k. Since C ⊆ Ck for all k,
λ(C) ≤ (2/3)k for all k, and thus λ(C) = 0.

The Cantor set is uncountable. To see this observe that

C =
{
x ∈ [0, 1] : x =

∞∑
j=1

aj
3j
, aj ∈ {0, 2}

}
and consider the function f : C → [0, 1] defined by

x =

∞∑
j=1

aj
3j
7→ f(x) =

∞∑
j=1

bj
2j
, where bj =

aj
2
. (2.1)

The function f is clearly surjective and thus C is uncountable.

Proposition 2.4. We have λ([a, b]) = |[a, b]| = (b1−a1) · · · (bn−an). In particular,
degenerate boxes (where ai = bi for at least one i) are null sets.

Proof. Clearly, λ([a, b]) ≥ |[a, b]|. Consider a grid in Rn of cubes Q of side
length 1/k. Let C1 be the collection of all Q contained in [a, b], and let C2 be
the collection of all Q intersecting [a, b] as well as [a, b]c. Then the number of
cubes in C2 is bounded by kn−1 times a constant C independent of k, and thus∑
Q∈C2

|Q| ≤ C/k. Then, as
⋃
Q∈C1

Q ⊆ [a, b],∑
Q∈C1∪C2

|Q| ≤ |[a, b]|+ C/k,

for all k, and therefore λ([a, b]) ≤ |[a, b]|. �

Lemma 2.5. If E =
⋃∞
i=1Qi is an almost disjoint union of cubes, then λ(E) =∑∞

i=1 |Qi|.

Proof. Let ε > 0. For each Qi choose a cube Q̃i contained in the interior of
Qi and such that |Qi| ≤ |Q̃i|+ ε/2i. Then the cubes Q̃i are disjoint, and hence

∞∑
i=1

|Qi| ≥ λ(E) ≥ λ
( ∞⋃
i=1

Q̃i

)
=

∞∑
i=1

|Q̃i| ≥
∞∑
i=1

|Qi| − ε.

The statement follows, as ε was arbitrary. �

Lemma 2.6. Every open set U ⊆ Rn is a countable almost disjoint union of cubes.

Proof. Consider the collection C0 of cubes of side length 1 defined by the
lattice Zn. Set

U0 := {Q ∈ C0 : Q ⊆ U} and

V0 := {Q ∈ C0 : Q ∩ U 6= ∅ and Q ∩ U c 6= ∅}.
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Let C1 be the collection of cubes that we obtain by subdividing each cube in V0

into 2n cubes of side length 1/2, and set

U1 := {Q ∈ C1 : Q ⊆ U} and

V1 := {Q ∈ C1 : Q ∩ U 6= ∅ and Q ∩ U c 6= ∅}.

Continue this procedure. Then U =
⋃
Q∈UQ, where U :=

⋃∞
i=0 Ui, is a countable

almost disjoint union of cubes. �

2.2. Radon measures on Rn

Let X be a topological space. A measure µ on a σ-algebra S ⊇ B(X) is called
outer regular if

µ(E) = inf{µ(U) : E ⊆ U,U open}, E ∈ S,

and inner regular if

µ(E) = sup{µ(K) : K ⊆ E,K compact}, E ∈ S.

If µ is both outer and inner regular, it is called regular.

A Radon measure on Rn is a Borel measure that is finite on compact sets.
More generally, a Radon measure on a locally compact Hausdorff space X is a
Borel measure that is finite on compact sets, outer regular on Borel sets, and inner
regular on open sets. The next theorem shows that on Rn finiteness on compact
sets implies regularity. By the Riesz representation theorem (e.g. [5]), the Radon
measures on a locally compact Hausdorff space X correspond to the positive linear
functionals on the space Cc(X) of continuous functions with compact support.

We denote by Br(x) := {y ∈ Rn : |x−y| < r} the open ball centered at x ∈ Rn
of radius r with respect to the Euclidean norm |x| := (x2

1 + · · ·+ x2
n)1/2.

Theorem 2.7. Each Radon measure µ on Rn is σ-finite and regular. For each
Borel set A and each ε > 0 there is an open set U and a closed set F so that

F ⊆ A ⊆ U, and µ(U \ F ) ≤ ε. (2.2)

Proof. Evidently, µ is σ-finite.

Let us prove (2.2). First we assume that µ is finite. Let A be the set of all
Borel sets A that satisfy (2.2). We claim that A is a σ-algebra. If A ∈ A, then
for given ε > 0 there are U and F satisfying (2.2), and thus U c ⊆ Ac ⊆ F c and
µ(F c \ U c) = µ(U \ F ) ≤ ε, i.e., Ac ∈ A. Suppose that Ai ∈ A, i ≥ 1, and ε > 0.
So there are open Ui and closed Fi so that Fi ⊆ Ai ⊆ Ui and µ(Ui \ Fi) ≤ ε/2i+1.
Then U :=

⋃∞
i=1 Ui is open and F :=

⋃m
i=1 Fi is closed for finite m. Since µ is finite,

µ
( ∞⋃
i=m+1

Fi \ F
)
≤ µ

( ∞⋃
i=1

Fi \ F
)

= µ
( ∞⋃
i=1

Fi

)
− µ

( m⋃
i=1

Fi

)
≤ ε/2,

for sufficiently large m, by Lemma 1.1. Since U\F ⊆ (U\
⋃∞
i=1 Fi)∪(

⋃∞
i=m+1 Fi\F ),

µ(U \ F ) ≤
∞∑
i=1

µ(Ui \ Fi) + µ
( ∞⋃
i=m+1

Fi \ F
)
≤ ε.

Thus A is a σ-algebra.

Every closed set F ⊆ Rn belongs to A, since the sets Uk := {x : dist(x, F ) <
1/k} are open and satisfy µ(Uk \F )→ 0 as k →∞, by Lemma 1.1. It follows that
A = B(Rn) and hence (2.2).

Assume that µ is not finite. Let A be a Borel set and let ε > 0 be given. Since
νi(E) := µ(E ∩Bi(0)) is a finite Radon measure on Rn, by the above, there exists
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a closed set Ci ⊆ (Bi(0) \A) with νi((Bi(0) \A) \Ci) = µ((Bi(0) \A) \Ci) ≤ ε/2i.
Then U :=

⋃∞
i=1(Bi(0) \ Ci) is open,

A =

∞⋃
i=1

Bi(0) ∩A ⊆
∞⋃
i=1

(Bi(0) \ Ci) = U

and

µ(U \A) ≤
∞∑
i=1

µ((Bi(0) \ Ci) \A) ≤ ε.

Similarly, there exists a closed set Fi ⊆ Ai := A ∩ {x : i ≤ |x| < i + 1} with
µ(Ai \ Fi) ≤ ε/2i+1,

F :=

∞⋃
i=0

Fi ⊆
∞⋃
i=0

Ai = A,

and

µ(A \ F ) ≤
∞∑
i=0

µ(Ai \ Fi) ≤ ε.

It remains to show that F is closed. If x ∈ F and F 3 xk → x, then |xk| → |x|
and so xk ∈ Fj ∪ Fj+1 for some j and for all sufficiently large k. Consequently,
x ∈ Fj ∪ Fj+1 ⊆ F , since Fj ∪ Fj+1 is closed. Thus (2.2) is proved.

Finally, we show that µ is regular. Let A be a Borel set, and let ε > 0. Outer
regularity is clear if µ(A) =∞ and follows from (2.2) if µ(A) <∞: there exists an
open set U ⊇ A so that µ(A) + ε ≥ µ(A) + µ(U \A) = µ(U). Next we show

µ(A) = sup{µ(F ) : F ⊆ A,F closed}. (2.3)

It follows from (2.2) if µ(A) < ∞: there is a closed set F ⊆ A so that µ(A) − ε ≤
µ(A) − µ(A \ F ) = µ(F ). If µ(A) = ∞, write A =

⋃∞
i=0Ai where Ai is as above.

Since µ is finite on compact sets, µ(Ai) <∞, and, again by (2.2), there exist closed
Fi ⊆ Ai with µ(Fi) ≥ µ(Ai)− 1/2i+1. By Lemma 1.1,

lim
k→∞

µ
( k⋃
i=0

Fi

)
= µ

( ∞⋃
i=0

Fi

)
=

∞∑
i=0

µ(Fi) ≥ µ(A)− 1 =∞,

which shows (2.3), since
⋃k
i=0 Fi is closed. We finally have

sup{µ(K) : K ⊆ A,K compact} = sup{µ(F ) : F ⊆ A,F closed},

since for any closed F ⊆ Rn the sets Kk := F ∩ Bk(0) are compact and µ(F ) =
limk→∞ µ(Kk). �

2.3. Properties of the Lebesgue measure

Proposition 2.8. The Lebesgue outer measure is Borel regular, i.e., for each
E ⊆ Rn there exists a Borel set B ⊇ E such that λ∗(E) = λ∗(B).

Proof. If λ∗(E) = ∞ take B = Rn. Suppose that λ∗(E) < ∞. For each
k ≥ 1 choose a countable collection Ck of cubes so that

E ⊆
⋃
Q∈Ck

Q =: Bk and
∑
Q∈Ck

|Q| ≤ λ∗(E) + 1/k.

Then B :=
⋂∞
k=1Bk is a Borel set that contains E and satisfies

λ∗(B) ≤ λ∗(Bk) ≤
∑
Q∈Ck

|Q| ≤ λ∗(E) + 1/k,

for all k, hence λ∗(E) = λ∗(B). �
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Theorem 2.9 (Regularity). The Lebesgue measure λ on Rn is σ-finite and regular.
Its restriction to B(Rn) is a Radon measure.

Proof. Clearly, λ is finite on compact sets and hence a Radon measure when
restricted to B(Rn). Thus λ is σ-finite. By Theorem 2.7,

λ(B) = inf{λ(U) : B ⊆ U,U open} = sup{λ(K) : K ⊆ B,K compact}
for each Borel set B. If E ⊆ Rn is arbitrary, then, by Proposition 2.8, there is a
Borel set B ⊇ E with λ∗(E) = λ∗(B), and thus

λ∗(E) = λ∗(B) = inf{λ(U) : B ⊆ U,U open} ≥ inf{λ(U) : E ⊆ U,U open},
which shows that λ is outer regular.

To see that λ is inner regular let E ⊆ Rn be measurable, and suppose first that
E is contained in a cube Q. Let ε > 0. Then λ(Q \ E) < ∞ and, as λ is outer
regular, there exists an open U ⊇ Q \ E so that λ(U) ≤ λ(Q \ E) + ε. The set
K := Q \ U ⊆ E is compact and satisfies

λ(E) = λ(Q)− λ(Q \ E) ≤ λ(Q)− λ(U) + ε ≤ λ(Q)− λ(Q ∩ U) + ε = λ(K) + ε.

If E is not contained in a cube, for each k ≥ 1, there is a compact Kk ⊆ E∩ [−k, k]n

so that λ(Kk) ≥ λ(E ∩ [−k, k]n)− 1/k. Hence λ(Kk)→ λ(E) as k →∞ and hence
λ is inner regular. �

Corollary 2.10 (Characterization of Lebesgue measurability). A set E ⊆ Rn is
Lebesgue measurable if and only if there are an Fσ-set A and a Gδ-set B satisfying
A ⊆ E ⊆ B and λ(B \A) = 0.

An Fσ-set is a countable union of closed sets, and a Gδ-set is a countable
intersection of open sets. The corollary implies, in view of Theorem 1.7, that the
Lebesgue σ-algebra L(Rn) is the completion of the Borel σ-algebra B(Rn).

Proof. Assume that E is Lebesgue measurable. Theorem 2.9 implies that
there exist open sets Gi and closed sets Fi satisfying Fi ⊆ E ⊆ Gi and λ(Gi \Fi) ≤
1/i. The sets F =

⋃∞
i=1 Fi and G =

⋂∞
i=1Gi are as required.

Conversely, if there exist such F and G, then for any A ⊆ Rn, we have A∩F ⊆
A ∩ E ⊆ A ∩G, A \G ⊆ A \ E ⊆ A \ F ,

λ∗((A ∩G) \ (A ∩ F )) = λ∗(A ∩ (G \ F )) ≤ λ∗(G \ F ) = 0,

and similarly λ∗((A \ F ) \ (A \G)) = 0. This implies λ∗(A ∩ E) = λ∗(A ∩ F ) and
λ∗(A \ E) = λ∗(A \ F ), and thus

λ∗(A ∩ E) + λ∗(A \ E) = λ∗(A ∩ F ) + λ∗(A \ F ) = λ∗(A),

since F is measurable. �

Theorem 2.11 (Uniqueness of Lebesgue measure I). The Lebesgue measure λ is
the unique measure on the Borel σ-algebra B(Rn) satisfying λ([a, b]) = |[a, b]|.

Proof. By Proposition 2.4, λ([a, b]) = |[a, b]|. Suppose there is a second mea-
sure µ on B(Rn) with this property. We claim that λ and µ coincide on the
collection A of all finite disjoint unions of sets of the form F ∩G, where F is closed
and G is open, and that A is an algebra. The statement of the Theorem is then
a consequence of Theorem 1.4, since the σ-algebra generated by A is the Borel
σ-algebra.

That A is an algebra follows from Proposition 1.5, since the collection of sets of
the form F ∩G, where F is closed and G is open, is an elementary family, in fact,

(F1 ∩G1) ∩ (F2 ∩G2) = (F1 ∩ F2) ∩ (G1 ∩G2),
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(F ∩G)c = (F ∩Gc) ∪ (F c ∩G) ∪ (F c ∩Gc).

If F is closed and G is open, set Gk := {x ∈ Rn : dist(x, F ) < 1/k}. Then Gk is
open, Gk ⊇ Gk+1, and F =

⋂∞
k=1Gk. If µ(G) <∞ then, by Lemma 1.1,

µ
( ∞⋂
k=1

(Gk ∩G)
)

= lim
j→∞

µ(Gj ∩G) = lim
j→∞

λ(Gj ∩G) = λ
( ∞⋂
k=1

(Gk ∩G)
)
,

since λ and µ coincide on open sets, by Lemmas 2.5 and 2.6. Thus µ(F ∩ G) =
λ(F ∩G) if µ(G) <∞. If µ(G) =∞, then

µ(F ∩G ∩ (−k, k)n) = λ(F ∩G ∩ (−k, k)n)

and letting k → ∞ we find again µ(F ∩G) = λ(F ∩G). By σ-additivity, µ and λ
coincide on A. �

Corollary 2.12. A Borel regular outer measure µ on Rn so that all Borel sets
are µ-measurable and so that µ([a, b]) = |[a, b]| coincides with the Lebesgue outer
measure.

Proof. By Theorem 2.11, µ and λ∗ coincide on all Borel sets. Let E ⊆ Rn
be arbitrary. As µ and λ∗ are Borel regular, there exist Borel sets B1, B2 ⊇ E
so that µ(B1) = µ(E) and λ∗(B2) = λ∗(E). Then, as B1 ∩ B2 ⊇ E, we have
µ(E) = µ(B1) ≥ µ(B1 ∩ B2) ≥ µ(E), thus µ(E) = µ(B1 ∩ B2), and analogously
λ∗(E) = λ∗(B1 ∩B2). Therefore µ(E) = λ∗(E). �

Proposition 2.13 (Translation invariance). The Lebesgue measure λ on Rn is
translation invariant, i.e., if E is measurable and y ∈ Rn, then the set E + y :=
{x+ y : x ∈ E} is measurable and λ(E + y) = λ(E).

Proof. The assertion is clearly true in the case that E is a cube. Consequently,
for arbitrary E ⊆ Rn we have λ∗(E + y) = λ∗(E). If E is measurable and A ⊆ Rn
is arbitrary, then

λ∗(A ∩ (E + y)) + λ∗(A \ (E + y))

= λ∗(((A− y) ∩ E) + y) + λ∗(((A− y) \ E) + y)

= λ∗((A− y) ∩ E) + λ∗((A− y) \ E)

= λ∗(A− y)

= λ∗(A),

and so E + y is measurable. �

For further invariance properties, see Lemma 3.32 and Theorem 3.33.

Theorem 2.14 (Uniqueness of Lebesgue measure II). If µ is a translation invari-
ant Radon measure on Rn, then there is a constant C > 0 such that µ(E) = Cλ(E)
for all Borel sets E.

Proof. Set µ([0, 1)n) =: C < ∞. Consider the grid of dyadic cubes of the
form [a1, b1)× · · · × [an, bn) defined by the lattice 2−kZn. Since these cubes are all
translates of each other,

2knµ(Q) = µ([0, 1)n) = Cλ([0, 1)n) = C2knλ(Q),

for each such cube Q. We may infer that µ vanishes on degenerate boxes, and
so µ(Q) = Cλ(Q) for each closed dyadic cube Q = [a1, b1] × · · · × [an, bn]. Then
µ(E) = Cλ(E) for each open set E, by Lemmas 2.5 and 2.6, and thus for each
Borel set E, by regularity of µ and λ, see Theorems 2.7 and 2.9. �
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Proposition 2.15 (Approximation by cubes). Let E ⊆ Rn be measurable with
λ(E) <∞. For each ε > 0 there exist cubes Q1, . . . , Qm such that λ(E4

⋃m
i=1Qi) <

ε, where E4F := (E\F )∪(F \E) = (E∪F )\(E∩F ) is the symmetric difference.

Proof. Let ε > 0 be fixed and let Qi be cubes such that E ⊆
⋃∞
i=1Qi and∑∞

i=1 |Qi| ≤ λ(E) + ε/2. Since λ(E) < ∞ the infinite sum converges and there
exists m such that

∑∞
i=m+1 |Qi| < ε/2. Then,

λ
(
E4

m⋃
i=1

Qi

)
= λ

(
E \

m⋃
i=1

Qi

)
+ λ
( m⋃
i=1

Qi \ E
)

≤ λ
( ∞⋃
i=m+1

Qi

)
+ λ
( m⋃
i=1

Qi \ E
)

≤
∞∑

i=m+1

|Qi|+
∞∑
i=1

|Qi| − λ(E) < ε. �

2.4. Non-measurable sets

Every set of positive measure in R has non-measurable subsets.

Theorem 2.16 (Existence of non-measurable sets). Let E ⊆ R. If every subset of
E is Lebesgue measurable, then λ(E) = 0.

Proof. On R consider the equivalence relation x ∼ y :⇔ x − y ∈ Q. The
axiom of choice allows us to choose exactly one element in each equivalence class
and to gather these elements in one set N ; such a set is called a Vitali set.

For q ∈ Q consider the translates N+q which are pairwise disjoint; otherwise we
have x+q1 = y+q2 and thus x−y ∈ Q, but x and y belong to different equivalence
classes, a contradiction. Fix p ∈ Q and set Ep := E ∩ (N + p). By assumption,
Ep is measurable. Let K ⊆ Ep be compact and set L :=

⋃
q∈Q∩[0,1]K + q. Then

λ(L) < ∞, since L is bounded, and, since the sets K + q are disjoint, λ(L) =∑
q∈Q∩[0,1] λ(K). Thus λ(K) = 0. Since K was arbitrary, we may conclude that

λ(Ep) = 0, by regularity of λ. Consequently, λ(E) = 0, because E =
⋃
p∈QEp. �

In the previous proof the axiom of choice plays an essential role. In fact, Solovay
constructed a model in which all axioms of Zermelo–Frankel set theory, except the
axiom of choice, hold and in which every subset of R is Lebesgue measurable.

There exists a finitely additive translation-invariant set function assigning boxes
their volume that is defined on all subsets of R, respectively R2, but not in higher
dimensions. In fact, any ball in R3 can be decomposed into finitely many disjoint
subsets, which can then be reassembled using only rotations and translations to
form two copies of the original ball; this results is called the Banach–Tarski
paradox.



CHAPTER 3

Integration

3.1. Measurable functions

A set X equipped with a σ-algebra S ⊆ P(X) is called a measurable space
(X,S). A mapping f : X → Y between measurable spaces (X,S) and (Y,T) is
called (S,T)-measurable if f−1(E) ∈ S for every E ∈ T.

It is obvious by definition that the composition of measurable mappings is
measurable, more precisely, if f : X → Y is (S,T)-measurable and g : Y → Z is
(T,U)-measurable then g ◦ f is (S,U)-measurable.

Lemma 3.1. If T is generated by A, then a mapping f : X → Y is (S,T)-
measurable if and only if f−1(E) ∈ S for every E ∈ A.

Proof. This follows from the fact that {E ⊆ Y : f−1(E) ∈ S} is a σ-algebra
on Y containing A, and hence containing T. �

If follows that any continuous mapping f : X → Y between topological spaces
X and Y is (B(X),B(Y ))-measurable.

If f is a real or complex valued function on a measurable space (X,S) then
we say that f is S-measurable if f is (S,B(R))- or (S,B(C))-measurable. For
instance, f : Rn → C is Lebesgue measurable if it is (L(Rn),B(C))-measurable,
and it is Borel measurable or also a Borel function if it is (B(Rn),B(C))-
measurable.

Note that if f, g : R → R are Lebesgue measurable, then g ◦ f need not be
Lebesgue measurable.

The characteristic function χA : X → R of a subset A ⊆ X,

χA(x) :=

{
1 if x ∈ A
0 if x 6∈ A

,

is S-measurable if and only if A is S-measurable.

Proposition 3.2. Let X be a measurable space.

(1) If f1, f2 : X → R are measurable, then f = (f1, f2) : X → R2 is measur-
able.

(2) A complex valued function f : X → C is measurable if and only if Re f
and Im f are measurable. In this case |f | is measurable.

(3) If f, g : X → C are measurable, then so are f + g and fg.

Proof. (1) Every open subset U ⊆ R2 is a countable union of cubes U =⋃∞
i=1Qi, by Lemma 2.6. Then f−1(U) = f−1(

⋃∞
i=1Qi) =

⋃∞
i=1 f

−1(Qi) is measur-

able, since each f−1(Qi) = f−1
1 (Ii,1)∩f−1

2 (Ii,2) is measurable, where Qi = Ii,1×Ii,2
and Ii,1, Ii,2 are compact intervals.

(2) follows from (1) and the fact if f : X → C is measurable then the composite
g ◦ f for any continuous mapping g is measurable. This also implies (3). �

15
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The extended real line is the set [−∞,∞] = R ∪ {±∞} with the topol-
ogy generated by the open sets of R and all intervals [−∞, a) and (a,∞]. Then
B([−∞,∞]) = {E ⊆ [−∞,∞] : E ∩ R ∈ B(R)}. A function f : X → [−∞,∞]
on a measurable space (X,S) is said to be S-measurable if it is (S,B([−∞,∞]))-
measurable.

Proposition 3.3. Let (X,S) be a measurable space. A function f : X → [−∞,∞]
is S-measurable if and only if f−1((a,∞]) ∈ S for all a ∈ R.

Proof. By Lemma 3.1, it suffices to show that {(a,∞] : a ∈ R} generates
B([−∞,∞]). This follows from

[−∞, a) =

∞⋃
i=1

[−∞, a− 1
i ] =

∞⋃
i=1

(a− 1
i ,∞]c

and from (a, b) = [−∞, b) ∩ (a,∞]. �

It follows that every upper or lower semicontinuous function is Borel measur-
able. Recall that a function f : X → [−∞,∞] on a topological space X is upper
(or lower) semicontinuous if {x : f(x) < a} (or {x : f(x) > a}) is open for all a ∈ R.

Theorem 3.4 (Pointwise limits of measurable functions). Let fn : X → [−∞,∞],
n ∈ N, be a sequence of measurable functions on a measurable space (X,S). Then

inf
n∈N

fn, sup
n∈N

fn, lim inf
n→∞

fn, lim sup
n→∞

fn

are measurable. Thus, the limit of any pointwise convergent sequence of complex
valued measurable functions is measurable.

Proof. Let g := supn∈N fn. Then g−1((a,∞]) =
⋃
n∈N f

−1
n ((a,∞]) and thus

g is measurable, by Proposition 3.3. The result for the infimum is analogous (note
that infn fn = − supn(−fn)). Since

lim sup
n→∞

fn = inf
n∈N

sup
m≥n

fm and lim inf
n→∞

fn = sup
n∈N

inf
m≥n

fm

the result follows. �

Thus, if f, g : X → [−∞,∞] are measurable, then so are the functions
min{f, g} and max{f, g}. In particular, this is true for f+ := max{f, 0} and
f− := −min{f, 0}, the positive and negative part of f . Note that

f = f+ − f− and |f | = f+ + f−.

For a complex valued function f : X → C we have its polar decomposition,

f = |f | sgn f, where sgn z :=

{
z/|z| z 6= 0

0 z = 0
.

If f is measurable, then so is |f | and sgn f . Indeed, | | : C→ R is continuous, and
the preimage sgn−1(U) of an open set U ⊆ C is either open or of the form V ∪{0},
where V is open, and hence sgn is Borel.

Example 3.5 (The Cantor function). Consider R with the Lebesgue measure λ.
Let C be the Cantor set from Example 2.3. The Cantor set is a closed null set,
in particular, C is Borel. Let f : C → [0, 1] be the function defined in (2.1). It is
easy to see that x, y ∈ C implies f(x) < f(y) unless x and y are the endpoints of
one of the intervals removed from [0, 1] to obtain C. In the latter case f(x) = k/2`

for some integers k, `, and f(x) and f(y) are the two expansions in base 2 of
this number. Thus, we can extend f to a function f : [0, 1] → [0, 1] by setting
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f |(a,b) ≡ f(a) = f(b) on each connected component (a, b) of [0, 1] \ C. Then f is
still nondecreasing and it is continuous, since its range is all of [0, 1]. This is called
the Cantor function.

1
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9
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9

2

3
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8
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1

1

4

1

2

3

4

1

Figure 1. The Cantor function. (Generated with Mathematica and
based on the code provided in [15, p.173].)

As a by-product we obtain the existence of Lebesgue null sets which are not
Borel as follows. The function g(x) = x+f(x) is strictly increasing and continuous,
thus a homeomorphism onto its image. The image g(C) has positive measure and so,
by Theorem 2.16, there is a non-measurable subset F ⊆ g(C). If we set E = g−1(F ),
then E ⊆ C and hence E is a null set. But E is not Borel. Indeed, if E were Borel,
then so were F , since g−1 is continuous.

3.2. Approximation by simple functions

Let (X,S) be a measurable space. A simple function is a complex valued
measurable function on X with finite image. A simple function is representable in
the form

s =

N∑
i=1

aiχEi ,

where all Ei ∈ S and ai ∈ C. In fact, setting Ei := {x : s(x) = ai}, where
s(X) = {a1, . . . , aN}, yields such a representation with the additional property
that all ai are distinct and all Ei are disjoint; we call this particular representation
canonical.

Simple functions will be for the Lebesgue integral what step functions (where
Ei are just boxes in X = Rn) are for the Riemann integral.

Theorem 3.6 (Approximation by simple functions). Let f : X → [0,∞] be mea-
surable. There exist simple functions si on X such that

(1) 0 ≤ s1 ≤ s2 ≤ · · · ≤ f
(2) limi→∞ si(x) = f(x) for every x ∈ X.

Proof. To each integer m ≥ 1 and each t > 0 there corresponds a unique
integer k = k(m, t) that satisfies k/2m ≤ t < (k + 1)/2m. Define

gm(t) :=

{
k(m, t)/2m if 0 ≤ t < m

m if m ≤ t ≤ ∞.

We have
t− 2−m < gm(t) ≤ t if 0 ≤ t < m.
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Thus limm→∞ gm(t) = t for every t ∈ [0,∞], and clearly 0 ≤ g1 ≤ g2 ≤ · · · ≤ t.
Then sm := gm ◦ f are simple functions with the required properties. �

Corollary 3.7. Let f : X → [−∞,∞] or f : X → C be measurable. There exist
simple functions si on X such that

(1) 0 ≤ |s1| ≤ |s2| ≤ · · · ≤ |f |
(2) limi→∞ si(x) = f(x) for every x ∈ X.

Proof. Consider first the case f : X → [−∞,∞]. By Theorem 3.6 applied to
f+ and f−, there are simple functions 0 ≤ s+

1 ≤ s
+
2 ≤ · · · ≤ f+ and 0 ≤ s−1 ≤ s

−
2 ≤

· · · ≤ f− so that limi→∞ s±i (x) = f±(x) for every x ∈ X. Then si := s+
i − s

−
i is as

required. The case f : X → C is an easy consequence. �

Given a measure µ on (X,S), one often wants to ignore µ-null sets. In this
respect we have for complete measures:

Proposition 3.8. Assume that µ is complete, and that f, g, fi are functions with
values in [−∞,∞] or in C.

(1) If f is measurable and f = g µ-a.e., then g is measurable.
(2) If fi are measurable and fi → f µ-a.e., then f is measurable.

Proof. We may assume that all functions have values in the extended real
line.

(1) Since µ is complete, the sets E = {x : f(x) 6= g(x)} and g−1((a,∞]) ∩ E
are measurable, and thus g−1((a,∞]) = (f−1((a,∞]) ∩ Ec) ∪ (g−1((a,∞]) ∩ E) is
measurable.

(2) Let E = {x : fi(x) → f(x)}. Then fiχE → fχE and µ(Ec) = 0. By
Theorem 3.4, fχE is measurable, and so f−1((a,∞]) = (f−1((a,∞]) ∩ Ec) ∪
((fχE)−1((a,∞]) ∩ E) is measurable. �

If the measure is not complete we still have:

Proposition 3.9. Let (X,S, µ) be a measure space and (X,S, µ) its completion.
If f is a S-measurable function on X, then there is a S-measurable function g such
that f = g µ-a.e.

Proof. This is immediate from the definition of the completion µ, if f = χE
with E ∈ S and hence if f is a S-measurable simple function. By Corollary 3.7,
there is a sequence of S-measurable simple functions si converging pointwise to f .
For each i, there is a S-measurable function gi so that si = gi except on a set Ei ∈ S
with µ(Ei) = 0. Choose a set F ∈ S with µ(F ) = 0 and F ⊇

⋃∞
i=1Ei; it exists by

the definition of S. Then g = limi→∞ giχF c is as required, by Theorem 3.4. �

3.3. Integration on a measure space

Let us fix the arithmetic in [0,∞]. We define

a+∞ =∞+ a =∞ if a ∈ [0,∞]

a · ∞ =∞ · a =

{
∞ if a ∈ (0,∞]

0 if a = 0.

Then addition and multiplication in [0,∞] are commutative, associative, and dis-
tributive. The cancellation laws have to be treated with some care; a + c = b + c
implies a = b only if c ∈ [0,∞), and ac = bc implies a = b only if c ∈ (0,∞).
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Lemma 3.10. If f, g : X → [0,∞] are measurable, then so are f + g and fg.

Proof. By Theorem 3.6 there exist simple functions 0 ≤ s1 ≤ s2 ≤ · · · ≤ f
and 0 ≤ t1 ≤ t2 ≤ · · · ≤ g such that si(x)→ f(x) and ti(x)→ g(x) for all x. Then
si(x) + ti(x) → f(x) + g(x) and si(x)ti(x) → f(x)g(x), and Theorem 3.4 implies
the statement. �

Throughout this section let (X,S, µ) be a fixed measure space. We will define
the integral in three steps:

• for positive simple functions,
• for positive functions,
• for complex valued functions.

Step 1. Integrating positive simple functions. The (Lebesgue) inte-
gral

´
s dµ with respect to the measure µ of a simple function s : X → [0,∞) with

canonical representation s =
∑N
i=1 aiχEi is defined by

ˆ
s dµ :=

N∑
i=1

aiµ(Ei),

where we use the convention 0 · ∞ = 0. If E ∈ S, then sχE is a simple function,
and we define ˆ

E

s dµ :=

ˆ
sχE dµ =

N∑
i=1

aiµ(Ei ∩ E).

Lemma 3.11. Let s : X → [0,∞) be a simple function and let s =
∑N
i=1 aiχEi be

any representation as a linear combination of characteristic functions. Then
ˆ
s dµ =

N∑
i=1

aiµ(Ei).

Proof. There exists a refinement {F1, . . . , FM} of
⋃N
i=1Ei such that

Fj ∈ S are disjoint,

N⋃
i=1

Ei =

M⋃
j=1

Fj , and Ei =
⋃

Fj⊆Ei

Fj .

It suffices to take

{F1, . . . , FM} = {G1 ∩ · · · ∩GN : Gi ∈ {Ei, (Ei)c}} \ {(E1)c ∩ · · · ∩ (EN )c}.

If we set bj :=
∑
Fj⊆Ei ai then s =

∑M
j=1 bjχFj . The numbers bj may not be distinct

and some may be zero. If b ∈ {bj} is non-zero, set Hb :=
⋃
bj=b

Fj . Clearly, the sets

Hb are pairwise disjoint and satisfy µ(Hb) =
∑
bj=b

µ(Fj). We have s =
∑
bχHb

where the sum is over the non-zero values in {bj}, and then

ˆ
s dµ =

∑
bµ(Hb) =

M∑
j=1

bjµ(Fj) =

M∑
j=1

∑
Fj⊆Ei

aiµ(Fj) =

N∑
i=1

aiµ(Ei). �

Lemma 3.12. Let s and t be positive simple functions on X, and E,F,Ei ∈ S.

(1) For a ∈ [0,∞) we have
´
as dµ = a

´
s dµ.

(2)
´

(s+ t) dµ =
´
s dµ+

´
t dµ.

(3) If s ≤ t, then
´
s dµ ≤

´
t dµ.

(4) If E ⊆ F , then
´
E
s dµ ≤

´
F
s dµ.

(5) The mapping E 7→
´
E
s dµ is a measure on S.

(6) If µ(E) = 0 then
´
E
s dµ = 0.
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Proof. (1) is obvious. Let s =
∑N
i=1 aiχEi and t =

∑M
j=1 bjχFj be canonical

representations. Then Ei =
⋃M
j=1(Ei ∩ Fj) and Fj =

⋃N
i=1(Ei ∩ Fj) and these

unions are disjoint. Thus, by finite additivity of µ,
ˆ
s dµ+

ˆ
t dµ =

N∑
i=1

M∑
j=1

(ai + bj)µ(Ei ∩ Fj) =

ˆ
(s+ t) dµ,

which shows (2). If s ≤ t, then ai ≤ bj whenever Ei ∩ Fj 6= ∅, and hence

ˆ
s dµ =

N∑
i=1

M∑
j=1

aiµ(Ei ∩ Fj) ≤
N∑
i=1

M∑
j=1

bjµ(Ei ∩ Fj) =

ˆ
t dµ,

that is (3). (4) follows from (3), or from monotonicity of µ. For (5), if F1, F2, . . . ∈ S
are disjoint, then

ˆ
⋃∞
j=1 Fj

s dµ =

N∑
i=1

aiµ(Ei ∩
∞⋃
j=1

Fj) =

∞∑
j=1

N∑
i=1

aiµ(Ei ∩ Fj) =

∞∑
j=1

ˆ
Fj

s dµ.

(6) follows from the definition. �

Step 2. Integrating positive functions. The (Lebesgue) integral
´
f dµ

with respect to the measure µ of a positive measurable function f : X → [0,∞] is
defined by ˆ

f dµ := sup
{ˆ

s dµ : s simple and 0 ≤ s ≤ f
}
∈ [0,∞].

If E ∈ S, we defineˆ
E

f dµ :=

ˆ
fχE dµ = sup

{ˆ
E

s dµ : s simple and 0 ≤ s ≤ f
}
.

For simple f this definition coincides with the earlier one, by Lemma 3.12, (3).

Lemma 3.13. For measurable functions f, g : X → [0,∞] we haveˆ
af dµ = a

ˆ
f dµ, for a ∈ [0,∞),

and ˆ
f dµ ≤

ˆ
g dµ, if f ≤ g.

Proof. This is clear from the definition. �

Note that this implies
´
E
f dµ ≤

´
F
f dµ if E ⊆ F .

Theorem 3.14 (Monotone convergence theorem or Beppo Levi’s theorem). Let fi
be measurable functions on X satisfying

(1) 0 ≤ f1 ≤ f2 ≤ · · · ≤ ∞
(2) limi→∞ fi(x) = f(x) for all x ∈ X.

Then f is measurable, and

lim
i→∞

ˆ
fi dµ =

ˆ
f dµ.

Proof. By Theorem 3.4, f is measurable. Since fi ≤ fi+1 ≤ f for all i, we
have

´
fi dµ ≤

´
fi+1 dµ ≤

´
f dµ, by Lemma 3.13, and hence limi→∞

´
fi dµ exists

(possibly equal to ∞) and satisfies

lim
i→∞

ˆ
fi dµ ≤

ˆ
f dµ.
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Let s be a simple function satisfying 0 ≤ s ≤ f , and let a ∈ (0, 1). Set

Ei := {x : fi(x) ≥ as(x)}.
Then Ei ∈ S, E1 ⊆ E2 ⊆ · · · , X =

⋃∞
i=1Ei, and, by Lemma 3.13,ˆ

fi dµ ≥
ˆ
Ei

fi dµ ≥ a
ˆ
Ei

s dµ.

Since E 7→
´
E
s dµ is a measure, by Lemma 3.12, limi→∞

´
Ei
s dµ =

´
s dµ, by

Lemma 1.1, and so

lim
i→∞

ˆ
fi dµ ≥ a

ˆ
s dµ,

and, as this holds for every a < 1, it remains true for a = 1. Taking the supremum
over all simple functions s satisfying 0 ≤ s ≤ f , we get

lim
i→∞

ˆ
fi dµ ≥

ˆ
f dµ.

The proof is complete. �

Corollary 3.15. Let fi : X → [0,∞] be measurable functions, and f =
∑∞
i=1 fi.

Then ˆ
f dµ =

∞∑
i=1

ˆ
fi dµ.

Proof. First we prove the statement for the sum of two functions f and g. By
Theorem 3.6, there exist simple functions 0 ≤ s1 ≤ s2 ≤ · · · ≤ f and 0 ≤ t1 ≤ t2 ≤
· · · ≤ g with si(x)→ f(x) and ti(x)→ g(x) for all x. Then si + ti is an increasing
sequence of simple functions that converges pointwise to f + g, and Theorem 3.14
together with Lemma 3.12 implyˆ

(f + g) dµ = lim
i→∞

ˆ
(si + ti) dµ = lim

i→∞

ˆ
si dµ+ lim

i→∞

ˆ
ti dµ =

ˆ
f dµ+

ˆ
g dµ.

By induction, we obtain
´ ∑n

i=1 f dµ =
∑n
i=1

´
fi dµ for finite n, and applying

Theorem 3.14 to Fn :=
∑n
i=1 fi, implies the result for infinite sums. �

Corollary 3.16. Let f : X → [0,∞] be measurable. Then ν(E) =
´
E
f dµ is a

measure on S. If g : X → [0,∞] is measurable, thenˆ
g dν =

ˆ
gf dµ.

Proof. Let Ei ∈ S be pairwise disjoint. By Corollary 3.15,

ν
( ∞⋃
i=1

Ei

)
=

ˆ ∞∑
i=1

χEif dµ =

∞∑
i=1

ˆ
χEif dµ =

∞∑
i=1

ν(Ei),

so ν is a measure on S. By definition,
´
g dν =

´
gf dµ holds for g = χE , E ∈ S,

and hence for each positive simple function,

ˆ N∑
i=1

aiχEi dν =

N∑
i=1

ai

ˆ
χEi dν =

N∑
i=1

ai

ˆ
χEif dµ =

ˆ N∑
i=1

aiχEif dµ.

The general case follows from Theorem 3.6 and the monotone convergence theorem
3.14. �

Corollary 3.17 (Fatou’s lemma). For measurable functions fi : X → [0,∞],ˆ
lim inf
i→∞

fi dµ ≤ lim inf
i→∞

ˆ
fi dµ.
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Proof. Set gj := infi≥j fi. Then gj ≤ gj+1 and gj ≤ fi for all i ≥ j. Thus,´
gj dµ ≤ infi≥j

´
fi dµ. Since limj→∞ gj = lim infi→∞ fi, the monotone conver-

gence theorem 3.14 implies thatˆ
lim inf
i→∞

fi dµ = lim
j→∞

ˆ
gj dµ ≤ lim inf

i→∞

ˆ
fi dµ. �

Proposition 3.18. For a measurable function f : X → [0,∞],
´
f dµ = 0 if and

only if f = 0 µ-a.e.

Proof. This is clearly true if f is a simple function; if f =
∑N
i=1 aiχEi is the

canonical representation then ai ≥ 0, and
´
f dµ = 0 if and only if for each i either

ai = 0 or µ(Ei) = 0. In general, if f = 0 µ-a.e. and s is a simple function with
0 ≤ s ≤ f , then s = 0 µ-a.e. and thus

´
f dµ = sups≤f

´
s dµ = 0. Conversely,

if f 6= 0 µ-a.e., then there is an integer k ≥ 1 so that µ({x : f(x) > 1/k}) > 0,
since {x : f(x) > 0} =

⋃∞
k=1{x : f(x) > 1/k}. But then f > k−1χ{x:f(x)>1/k} and

therefore
´
f dµ ≥ k−1µ({x : f(x) > 1/k}) > 0. �

Corollary 3.19. Let fi, f : X → [0,∞] be measurable functions so that fi(x) ↗
f(x) for µ-a.e. x ∈ X, then limi→∞

´
fi dµ =

´
f dµ.

Proof. There is a measurable set E with µ(Ec) = 0 and such that fi(x) ↗
f(x) for each x ∈ E. Then f − fχE = 0 a.e. and fi − fiχE = 0 a.e. and by the
monotone convergence theorem 3.14 and Proposition 3.18,

lim
i→∞

ˆ
fi dµ = lim

i→∞

ˆ
fiχE dµ =

ˆ
fχE dµ =

ˆ
f dµ. �

Step 3. Integrating complex valued functions. We define

L1(µ) :=
{
f : X → C measurable :

ˆ
|f | dµ <∞

}
.

If f is measurable, then so is |f |, by Proposition 3.2, any hence the integral is
defined. The members of L1(µ) are called (Lebesgue) integrable functions with
respect to the measure µ.

For f ∈ L1(µ), f = u + iv, and E ∈ S, we define the (Lebesgue) integral
over E with respect to the measure µ byˆ

E

f dµ :=
( ˆ

E

u+ dµ−
ˆ
E

u− dµ
)

+ i
(ˆ

E

v+ dµ−
ˆ
E

v− dµ
)
.

The measurability of f guarantees the measurability of u±, v±, which are all positive
functions. So all integrals on the right-hand side exist. As u± ≤ |u| ≤ |f | and
v± ≤ |v| ≤ |f | all four integrals are finite, and thus

´
E
f dµ ∈ C.

If f : X → [−∞,∞] is measurable, we defineˆ
E

f dµ :=

ˆ
E

f+ dµ−
ˆ
E

f− dµ

provided that at least one integral on the right-hand side is finite; then
´
E
f dµ ∈

[−∞,∞].

Proposition 3.20. Let f, g ∈ L1(µ). Then

(1) Linearity. If a, b ∈ C, then af + bg ∈ L1(µ) andˆ
(af + bg) dµ = a

ˆ
f dµ+ b

ˆ
g dµ.
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(2) Monotony. If f ≤ g, thenˆ
f dµ ≤

ˆ
g dµ.

(3) Triangle inequality.∣∣∣ˆ f dµ
∣∣∣ ≤ ˆ

|f | dµ.

(4) σ-additivity. If Ei ∈ S are disjoint, then

ˆ
⋃∞
i=1 Ei

f dµ =

∞∑
i=1

ˆ
Ei

f dµ.

Proof. (1) By Proposition 3.2, af + bg is measurable, and, by the properties
of the integral for positive functions,ˆ

|af + bg| dµ ≤
ˆ
|a||f |+ |b||g| dµ = |a|

ˆ
|f | dµ+ |b|

ˆ
|g| dµ <∞.

Hence af + bg ∈ L1(µ). Next we showˆ
f + g dµ =

ˆ
f dµ+

ˆ
g dµ. (3.1)

To this end we may assume without loss of generality that f and g are real valued.
Setting h = f + g we have

h+ − h− = f+ − f− + g+ − g−

or equivalently

h+ + f− + g− = f+ + g+ + h−

and thusˆ
h+ dµ+

ˆ
f− dµ+

ˆ
g− dµ =

ˆ
f+ dµ+

ˆ
g+ dµ+

ˆ
h− dµ.

Each of these integrals is finite, so (3.1) follows. Let us showˆ
af dµ = a

ˆ
f dµ. (3.2)

If a ≥ 0 this follows easily from Lemma 3.13. For a = −1 we have, writing f = u+iv,ˆ
−f dµ =

(ˆ
(−u)+ dµ−

ˆ
(−u)− dµ

)
+ i
(ˆ

(−v)+ dµ−
ˆ

(−v)− dµ
)

=
(ˆ

u− dµ−
ˆ
u+ dµ

)
+ i
( ˆ

v− dµ−
ˆ
v+ dµ

)
= −

ˆ
f dµ,

for a = i, ˆ
if dµ =

ˆ
(iu− v) dµ = i

ˆ
u dµ−

ˆ
v dµ

= i
(ˆ

u dµ+ i

ˆ
v dµ

)
= i

ˆ
f dµ.

Combining these cases with (3.1) implies (3.2), and (1) follows.

(2) By assumption f+ − f− ≤ g+ − g−, or equivalently f+ + g− ≤ g+ + f−,
thus

´
(f+ + g−) dµ ≤

´
(g+ + f−) dµ, and (1) implies the assertion.
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(3) Since
´
f dµ ∈ C, there exists a ∈ C, |a| = 1, so that a

´
f dµ = |

´
f dµ|.

Then∣∣∣ˆ f dµ
∣∣∣ = a

ˆ
f dµ =

ˆ
af dµ =

ˆ
Re(af) dµ ≤

ˆ
|af | dµ =

ˆ
|f | dµ.

(4) follows from the definition and from Corollary 3.16. �

Proposition 3.21. Let f, g ∈ L1(µ). Then
´
E
f dµ =

´
E
g dµ for all E ∈ S if and

only if f = g µ-a.e.

Proof. By Proposition 3.18, f = g µ-a.e. if and only if
´
|f − g| dµ = 0. If´

|f − g| dµ = 0, then for any E ∈ S,∣∣∣ ˆ
E

f dµ−
ˆ
E

g dµ
∣∣∣ ≤ ˆ

E

|f − g| dµ ≤
ˆ
|f − g| dµ = 0,

whence
´
E
f dµ =

´
E
g dµ. Conversely, if u = Re(f − g) and v = Im(f − g)

and f 6= g µ-a.e., then at least one of u+, u−, v+, v− must be nonzero on a
set of positive measure. If E = {x : u+(x) > 0} has positive measure, then
Re(

´
E
f dµ −

´
E
g dµ) =

´
E
u+ dµ > 0, since u− = 0 on E. The other cases work

analogously. �

This proposition implies that regarding integration it makes no difference if we
modify functions on null sets.

Theorem 3.22 (Dominated convergence theorem). Let fi : X → C be measurable
functions such that fi → f µ-a.e. If there is a function g ∈ L1(µ) such that |fi| ≤ g
µ-a.e. for all i, then f ∈ L1(µ) and

lim
i→∞

ˆ
|fi − f | dµ = 0 and

ˆ
f dµ = lim

i→∞

ˆ
fi dµ.

Proof. The function f is measurable (maybe after redefinition on a null set),
by Theorem 3.4. Since |f | ≤ g µ-a.e., f ∈ L1(µ). Since |fi − f | ≤ 2g µ-a.e., hence
2g − |fi − f | ≥ 0 µ-a.e., Fatou’s lemma 3.17 impliesˆ

2g dµ ≤ lim inf
i→∞

ˆ
(2g − |fi − f |) dµ

=

ˆ
2g dµ+ lim inf

i→∞

(
−
ˆ
|fi − f | dµ

)
=

ˆ
2g dµ− lim sup

i→∞

ˆ
|fi − f | dµ.

As
´

2g dµ is finite, we may conclude lim supi→∞
´
|fi − f | dµ ≤ 0 and thus

limi→∞
´
|fi − f | dµ = 0. Finally,∣∣∣ ˆ f dµ− lim

i→∞

ˆ
fi dµ

∣∣∣ = lim
i→∞

∣∣∣ˆ (f − fi) dµ
∣∣∣ ≤ lim

i→∞

ˆ
|f − fi| dµ = 0

shows that
´
f dµ = limi→∞

´
fi dµ. �

Corollary 3.23. If fi is a sequence in L1(µ) such that
∑∞
i=1

´
|fi| dµ < ∞, then∑∞

i=1 fi converges µ-a.e. to a function in L1(µ), and
´ ∑∞

i=1 fi dµ =
∑∞
i=1

´
fi dµ.

Proof. Corollary 3.15 implies
´ ∑∞

i=1 |fi| dµ =
∑∞
i=1

´
|fi| dµ < ∞, and so

g :=
∑∞
i=1 |fi| ∈ L1(µ). Then

∑∞
i=1 |fi(x)| is finite for µ-a.e. x, and for these x the

series
∑∞
i=1 fi(x) converges. The dominated convergence theorem 3.22 applied to

the partial sums gives
´ ∑∞

i=1 fi dµ =
∑∞
i=1

´
fi dµ. �
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3.4. Fubini’s theorem

Let (X,S) and (Y,T) be two measurable spaces. On the cartesian product
X ×Y we consider the σ-algebra S⊗T generated by all measurable rectangles,
that is by the set E := {E × F : E ∈ S, F ∈ T}. Since

(A×B) ∩ (E × F ) = (A ∩ E)× (B ∩ F ) and (A×B)c = (X ×Bc) ∪ (Ac ×B),

E is an elementary family.

For a set E ⊆ X×Y we denote by Ex = {y : (x, y) ∈ E} and Ey = {x : (x, y) ∈
E} its respective sections.

Lemma 3.24. If E ∈ S⊗ T then Ex ∈ T and Ey ∈ S for each x ∈ X and y ∈ Y .
We say that every set in S⊗ T has the section property.

Proof. We set R := {E ∈ S⊗ T : Ex ∈ T for all x ∈ X} and show that R is
a σ-algebra containing all measurable rectangles. This implies the statement; the
proof for Ey is analogous.

If E = A × B is a measurable rectangle, then Ex = B if x ∈ A and Ex = ∅ if
x ∈ Ac, so E ∈ R. That R is a σ-algebra follows from the identities (Ec)x = (Ex)c

and (
⋃∞
i=1Ei)x =

⋃∞
i=1(Ei)x. �

With a function f on X × Y we associate functions fx on Y given by fx(y) :=
f(x, y) and functions fy on X given by fy(x) := f(x, y).

Lemma 3.25. Let f be a S ⊗ T-measurable function on X × Y . Then fx is T-
measurable for all x ∈ X, and fy is S-measurable for all y ∈ Y .

Proof. This follows from Lemma 3.24, since (fx)−1(E) = (f−1(E))x and
(fy)−1(E) = (f−1(E))y. �

Theorem 3.26 (Product measure). Let (X,S, µ) and (Y,T, ν) be σ-finite measure
spaces. If E ∈ S⊗T, then the functions x 7→ ν(Ex) and y 7→ µ(Ey) are measurable
on X and Y , respectively, and

(µ⊗ ν)(E) :=

ˆ
X

ν(Ex) dµ(x) =

ˆ
Y

µ(Ey) dν(y) (3.3)

is a σ-finite measure on S⊗ T. It is called the product of the measures µ and ν.

Proof. First assume that µ and ν are finite. Let R be the collection of all
E ∈ S ⊗ T for which x 7→ ν(Ex) and y 7→ µ(Ey) are measurable and (3.3) holds.
If E = A × B is a measurable rectangle, then ν(Ex) = ν(B)χA(x) and µ(Ey) =
µ(A)χB(y) are obviously measurable, andˆ

X

ν(Ex) dµ(x) = µ(A)ν(B) =

ˆ
Y

µ(Ey) dν(y),

hence E ∈ R. Since the measurable rectangles form an elementary family, the
collection of finite disjoint unions of measurable rectangles forms an algebra, by
Proposition 1.5. By the monotone class theorem 1.3, we may conclude R = S⊗ T
if we show that R is a monotone class.

Let E1 ⊆ E2 ⊆ · · · , Ei ∈ R, and set E =
⋃∞
i=1Ei. Then fi(x) := ν((Ei)x)

and gi(y) := µ((Ei)
y) are measurable functions satisfying fi ≤ fi+1, gi ≤ gi+1,

fi(x)→ ν(Ex), and gi(y)→ µ(Ey) for all x and y, by Lemma 1.1. By the monotone
convergence theorem 3.14,ˆ

X

ν(Ex) dµ(x) = lim
i→∞

ˆ
X

ν((Ei)x) dµ(x)
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= lim
i→∞

ˆ
Y

µ((Ei)
y) dν(y) =

ˆ
Y

µ(Ey) dν(y),

thus E ∈ R. If E1 ⊇ E2 ⊇ · · · , Ei ∈ R, then we may conclude in a similar way that⋂∞
i=1Ei ∈ R, using the dominated convergence theorem 3.22. So R is a monotone

class.

If µ and ν are σ-finite, we can write X×Y as an increasing union of measurable
rectangles Xi × Yi with µ(Xi) <∞ and ν(Yi) <∞. For E ∈ S⊗T, we may apply
the preceding argument to each E ∩ (Xi × Yi),ˆ

χXi(x)ν(Ex ∩ Yi) dµ(x) =

ˆ
Xi

ν(Ex ∩ Yi) dµ(x)

=

ˆ
Yi

µ(Ey ∩Xi) dν(y) =

ˆ
χYi(y)µ(Ey ∩Xi) dν(y)

and conclude (3.3) from the monotone convergence theorem 3.14.

Let us prove that (µ⊗ ν)(E) :=
´
X
ν(Ex) dµ(x) is a σ-finite measure on S⊗T.

σ-additivity follows from Corollary 3.15: If Ei ∈ S⊗T are disjoint, then (Ei)x ∈ T
are disjoint, so, for E =

⋃∞
i=1Ei,

ν(Ex) = ν
(( ∞⋃

i=1

Ei

)
x

)
= ν

( ∞⋃
i=1

(Ei)x

)
=

∞∑
i=1

ν((Ei)x)

and thus

(µ⊗ ν)(E) =

ˆ
X

ν(Ex) dµ(x) =

ˆ
X

∞∑
i=1

ν((Ei)x) dµ(x) =

∞∑
i=1

(µ⊗ ν)(Ei).

Clearly, the measure µ⊗ν is σ-finite; indeed (µ⊗ν)(Xi×Yi) = µ(Xi)ν(Yi) <∞. �

Theorem 3.27 (Fubini’s theorem). Let (X,S, µ) and (Y,T, ν) be σ-finite measure
spaces, and let f be an (S⊗ T)-measurable function on X × Y .

(1) If 0 ≤ f ≤ ∞, then the functions

ϕ : X → [0,∞], ϕ(x) :=

ˆ
Y

fx dν,

ψ : Y → [0,∞], ψ(y) :=

ˆ
X

fy dµ

are measurable, andˆ
X×Y

f d(µ⊗ ν) =

ˆ
X

ϕdµ =

ˆ
Y

ψ dν. (3.4)

(2) If f is complex valued andˆ
X

ϕ∗ dµ <∞, where ϕ∗(x) :=

ˆ
Y

|f |x dν,

then f ∈ L1(µ⊗ ν).
(3) If f ∈ L1(µ ⊗ ν), then fx ∈ L1(ν) for µ-a.e. x ∈ X, fy ∈ L1(µ) for

ν-a.e. y ∈ Y , the a.e. defined functions ϕ and ψ are in L1(µ) and L1(ν),
respectively, and (3.4) holds.

The identity (3.4) may be written in the formˆ
X×Y

f d(µ⊗ ν) =

ˆ
X

(ˆ
Y

f(x, y) dν(y)
)
dµ(x) =

ˆ
Y

(ˆ
X

f(x, y) dµ(x)
)
dν(y).

The left most integral is called a double integral, the other two are called iterated
integrals. The assertion in (1) is often referred to as Tonelli’s theorem.
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Proof. (1) The definitions of ϕ and ψ are meaningful by Lemma 3.25. Theo-
rem 3.26 implies (1) in the case that f = χE for E ∈ S⊗T, and thus (1) holds for
all positive simple functions s. In the general case, there exists a sequence of simple
functions 0 ≤ s1 ≤ s2 ≤ · · · such that si(x, y)→ f(x, y) for all (x, y) ∈ X × Y , by
Theorem 3.6. Then, if

ϕi(x) :=

ˆ
Y

(si)x dν, (3.5)

we have ˆ
X

ϕi dµ =

ˆ
X×Y

si d(µ⊗ ν). (3.6)

The monotone convergence theorem 3.14, applied to (3.5), implies that ϕi(x) →
ϕ(x) for all x ∈ X. Clearly, ϕi ≤ ϕi+1. Thus we may again apply the monotone
convergence theorem to both sides of (3.6), and we obtain the first equality in (3.4).
The other half of (3.4) follows similarly.

(2) follows by applying (1) to |f |.
(3) It is no restriction to assume that f ∈ L1(µ ⊗ ν) is real valued. Then (1)

applies to f+ and f−; set ϕ±(x) :=
´
Y

(f±)x dν. As f± ≤ |f | we may conclude

that ϕ± ∈ L1(µ). Thanks to fx = (f+)x − (f−)x we have fx ∈ L1(ν) for every x
satisfying ϕ±(x) <∞. Since ϕ± ∈ L1(µ), this happens for µ-a.e. x; at any such x
we have ϕ(x) = ϕ+(x)− ϕ−(x). Thus ϕ ∈ L1(µ). Now (3.4) holds for f± and ϕ±

in place of f and ϕ. Subtracting the respective equalities yield the first equality of
(3.4). The other half follows analogously. �

The following example shows that the theorem is not true if one of the measure
spaces is not σ-finite.

Example 3.28. If X = Y = [0, 1], µ the Lebesgue measure, ν the counting mea-
sure, and f(x, y) = 1 for x = y and f(x, y) = 0 otherwise, thenˆ

X

f(x, y) dµ(x) = 0 and

ˆ
Y

f(x, y) dν(y) = 1

for all x, y ∈ [0, 1] so thatˆ
X

(ˆ
Y

f(x, y) dν(y)
)
dµ(x) = 1 6= 0 =

ˆ
Y

(ˆ
X

f(x, y) dµ(x)
)
dν(y).

The function f = χ{x=y} is (L([0, 1]) ⊗ P([0, 1]))-measurable, since {x = y} =⋂∞
n=1Qn where Qn = ([ 0

n ,
1
n ]× [ 0

n ,
1
n ]) ∪ · · · ∪ ([n−1

n , nn ]× [n−1
n , nn ]).

The product measure µ⊗ ν rarely is complete, even if µ and ν are complete. If
A ∈ S is non-empty with µ(A) = 0 and B ⊆ Y so that B 6∈ T, then A×B ⊆ A×Y
and (µ ⊗ ν)(A × Y ) = 0, but A × B 6∈ S ⊗ T, by Lemma 3.24. This applies in
particular to the Lebesgue measure: λ1 ⊗ λ1 6= λ2. However the following is true.

Theorem 3.29. λm+n is the completion of λm ⊗ λn, for m,n ≥ 1.

Proof. First we show that

B(Rm+n) ⊆ L(Rm)⊗ L(Rn) ⊆ L(Rm+n).

The first inclusion follows from the fact that each cube in Rm+n belongs to L(Rm)⊗
L(Rn) and B(Rm+n) is the σ-algebra generated by the cubes in Rm+n; see Lemma
2.6. Suppose that E ∈ L(Rm) and F ∈ L(Rn). Then E × Rn and Rm × F belong
to L(Rm+n), by Corollary 2.10, and thus E×F = (E×Rn)∩ (Rm×F ) belongs to
L(Rm+n), which implies the second inclusion.

Both λm+n and λm⊗λn coincide on boxes and hence on B(Rm+n), by Theorem
2.11. If A ∈ L(Rm) ⊗ L(Rn), then A ∈ L(Rm+n) and so there exist B1, B2 ∈
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B(Rm+n) such that B1 ⊇ A ⊇ B2 and λm+n(B1 \ B2) = 0, by Corollary 2.10.
Consequently,

(λm ⊗ λn)(A \B2) ≤ (λm ⊗ λn)(B1 \B2) = λm+n(B1 \B2) = 0,

and thus (λm ⊗ λn)(A) = (λm ⊗ λn)(B2) = λm+n(B2) = λm+n(A). So λm+n and
λm ⊗ λn coincide on L(Rm)⊗ L(Rn) which implies the statement. �

Theorem 3.30 (Fubini’s theorem for complete measures). Let (X,S, µ) and
(Y,T, ν) be complete σ-finite measure spaces, and let S⊗ T be the completion of
S⊗T with respect to µ⊗ν. Let f be an S⊗ T-measurable function on X×Y . Then
all conclusions of Theorem 3.27 hold, except that the T-measurability of fx can be
asserted only for µ-a.e. x ∈ X so that ϕ(x) is only defined µ-a.e., and similarly for
fy and ψ.

Proof. By Proposition 3.9, f = g+h, where h = 0 µ⊗ ν-a.e. and g is (S⊗T)-
measurable. We claim that for µ-a.e. x ∈ X we have h(x, y) = 0 for ν-a.e. y ∈ Y
and hx is T-measurable for µ-a.e. x ∈ X. Similarly, for hy.

Indeed, A := {(x, y) ∈ X × Y : h(x, y) 6= 0} is a µ⊗ ν-null set. So there
exists B ∈ S ⊗ T such that A ⊆ B and (µ ⊗ ν)(B) = 0. By Theorem 3.26,´
X
ν(Bx) dµ(x) = (µ ⊗ ν)(B) = 0. By Proposition 3.21, µ(E) = 0, where E :=

{x ∈ X : ν(Bx) > 0}. If x 6∈ E, then ν(Bx) = 0 and, as (Y,T, ν) is complete, each
subset of Ax(⊆ Bx) belongs to T. If y 6∈ Ax, then hx(y) = 0. It follows that, for
every x 6∈ E, hx is T-measurable and hx(y) = 0 ν-a.e. The claim is proved.

Apply Theorem 3.27 to g. By the claim, fx = gx ν-a.e. for µ-a.e. x and fy = gy

µ-a.e. for ν-a.e. y. Thus the two iterated integrals and the double integral of f are
the same as those of g. �

3.5. Transformation of measures and integrals

Let (X,S) and (Y,T) be measurable spaces and let f : X → Y be (S,T)-
measurable. Given a measure µ on (X,S) we may define the push-forward f∗µ
on (Y,T) by

f∗µ(E) := µ(f−1(E)), E ∈ T.

It is easy to check that f∗µ is a measure.

Proposition 3.31. Let g : Y → C be T-measurable. Then g ◦ f ∈ L1(µ) if and
only if g ∈ L1(f∗µ), and ˆ

Y

g d(f∗µ) =

ˆ
X

g ◦ f dµ.

Proof. For E ∈ T and g = χE the formula follows from χE ◦ f = χf−1(E). So
it holds for simple functions and hence for positive functions, by Theorem 3.6 and
the monotone convergence theorem 3.14. In particular, the equality holds for |g|
instead of g, and so g ◦ f ∈ L1(µ) if and only if g ∈ L1(f∗µ). That it is also valid
for complex valued g follows immediately. �

In the following we focus on the Lebesgue measure λ.

Lemma 3.32. Let A : Rn → Rn be linear invertible, and let E be measurable.
Then A(E) is measurable and λ(A(E)) = |detA|λ(E). In particular, λ is invariant
under orthogonal transformations.

Proof. It suffices to prove the statement for Borel sets E. Then null sets are
invariant under A and A−1, and hence so are Lebesgue measurable sets.
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If E is a Borel set then so is A(E), since χA(E) = χE ◦ A−1 and since χE and

A−1 and hence χE ◦A−1 are Borel mappings.

We shall use translation invariance, see Proposition 2.13, and dilation invariance
of λ1 on Borel sets, i.e., if a ∈ R\{0} and E ∈ B(R) then aE = {ax : x ∈ E} ∈ B(R)
and λ1(aE) = |a|λ1(E). The collection of intervals in R is invariant under dilations,
and hence so is B(R). Then µa(E) := λ1(aE)/|a| defines a Borel measure that
coincides with λ1 on boxes, and thus on all Borel sets, by Theorem 2.11.

Suppose that A, and thus also A−1, is upper triangular with all diagonal entries
equal to 1. Then,

λ(A(E)) =

ˆ
Rn
χA(E)(x) dx =

ˆ
Rn
χE(A−1(x)) dx

=

ˆ
Rn−1

ˆ
R
χE(x1 + f1(x≥2), x2 + f2(x≥3), . . . , xn) dx1 dx≥2

=

ˆ
Rn−1

ˆ
R
χE(x1, x2 + f2(x≥3), . . . , xn) dx1 dx≥2,

using Fubini’s theorem 3.27 and translation invariance of λ1. Repeating this pro-
cedure for the other variables, we find

λ(A(E)) =

ˆ
Rn
χE(x) dx = λ(E).

Similarly, the assertion holds for lower triangular matrices with all diagonal entries
equal to 1. If A = diag(a1, . . . , an) is diagonal, then Fubini’s theorem 3.27 and
dilation invariance of λ1 analogously imply

λ(A(E)) = |a1 · · · an|λ(E).

An arbitrary square matrix A admits a decomposition A = LDU , where L (U)
is an lower (upper) triangular matrix with all diagonal entries equal 1 and D is
diagonal. Thus the result follows. �

Theorem 3.33 (Transformation formula). Let U, V ⊆ Rn be open and let f ∈
C1(U, V ) be bijective. If g is a measurable function on V , then g ◦ f is measurable
on U . If g ≥ 0 or g ∈ L1(V ), thenˆ

U

g(f(x))|Jf (x)| dx =

ˆ
V

g(y) dy,

where Jf = det(∂f/∂x) is the Jacobi determinant of f . In particular, for measur-
able E ⊆ U , f(E) is measurable, and

λ(f(E)) =

ˆ
E

|Jf (x)| dx.

Proof. It is sufficient to consider Borel measurable functions and sets. Since
f and f−1 are continuous, there are no measurability problems in this case. If g is
Lebesgue measurable and B is a Borel set in C, then g−1(B) = E ∪N , where E is
Borel and N is a null set. Moreover, f−1(E) is Borel and f−1(N) is a null set (by
the result for Borel sets), and thus (g ◦ f)−1(B) is Lebesgue measurable, i.e., g ◦ f
is Lebesgue measurable.

We use the norm |x|∞ = max1≤i≤n |xi| for x ∈ Rn and the matrix norm
‖A‖ = max1≤i≤n

∑n
j=1 |Aij |; then |Ax|∞ ≤ ‖A‖|x|∞. Let Q = {x : |x− a|∞ ≤ h}

be a cube contained in U . By the mean value theorem, f(x)− f(a) = f ′(z)(x− a)
for some z on the segment between x and a, and hence, for x ∈ Q,

|f(x)− f(a)|∞ ≤ sup
z∈Q
‖f ′(z)‖ |x− a|∞ ≤ sup

z∈Q
‖f ′(z)‖h.
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So f(Q) is contained in a cube of side length supz∈Q ‖f ′(z)‖ times the side length
of Q, thus

λ(f(Q)) ≤
(

sup
z∈Q
‖f ′(z)‖

)n
λ(Q).

If A : Rn → Rn is linear invertible, we find, by Lemma 3.32,

λ(f(Q)) = |detA|λ(A−1f(Q)) ≤ |detA|
(

sup
z∈Q
‖A−1f ′(z)‖

)n
λ(Q).

Since f ′ is uniformly continuous on Q, for each ε > 0 there exists δ > 0 so that for
x, y ∈ Q with |x− y|∞ ≤ δ,

‖f ′(x)−1f ′(y)‖ = ‖f ′(x)−1f ′(y)− f ′(x)−1f ′(x) + Id ‖ ≤ 1 + ε.

By decomposing Q into subcubes Q1, . . . , QN with side length ≤ δ and centers
x1, . . . , xN , we may conclude

λ(f(Q)) ≤
N∑
i=1

λ(f(Qi))

≤
N∑
i=1

|Jf (xi)|
(

sup
z∈Qi

∥∥∥f ′(xi)−1f ′(z)
∥∥∥)nλ(Qi)

≤ (1 + ε)n
N∑
i=1

|Jf (xi)|λ(Qi).

Note that
∑N
i=1 |Jf (xi)|χQi is a simple function which tends uniformly on Q to

x 7→ |Jf (x)| as δ → 0, by continuity of x 7→ Jf (x). Letting δ and ε approach 0
implies

λ(f(Q)) ≤
ˆ
Q

|Jf (x)| dx.

We shall show that this estimate holds with Q replaced by any Borel set in
U . If Ω ⊆ U is open, then Ω =

⋃∞
i=1Qi is a almost disjoint union of cubes Qi, by

Lemma 2.6, and thus

λ(f(Ω)) ≤
∞∑
i=1

λ(f(Qi)) ≤
∞∑
i=1

ˆ
Qi

|Jf (x)| dx =

ˆ
Ω

|Jf (x)| dx.

If E ⊆ U is a Borel set of finite measure, then by outer regularity, Theorem 2.9,
there exists a sequence U ⊇ Ωi ⊇ Ωi+1 ⊇ E of open sets Ωi of finite measure so that
λ(
⋂∞
i=1 Ωi \ E) = 0. By Lemma 1.1 and the dominated convergence theorem 3.22,

λ(f(E)) ≤ λ
(
f
( ∞⋂
i=1

Ωi

))
≤ lim
i→∞

λ(f(Ωi)) ≤ lim
i→∞

ˆ
Ωi

|Jf (x)| dx =

ˆ
E

|Jf (x)| dx.

Since λ is σ-finite, the estimate holds for all Borel sets E.

We may infer that ˆ
f(U)

g(y) dy ≤
ˆ
U

g(f(x))|Jf (x)| dx,

first for positive simple g and, by Theorem 3.6 and the monotone convergence
theorem 3.14, for positive measurable g. Applying this to f−1 and (g ◦ f)|Jf |
instead of f and g, we getˆ

U

(g ◦ f)(x)|Jf (x)| dx ≤
ˆ
f(U)

g(x)|Jf (f−1(x))||Jf−1(x)| dx =

ˆ
f(U)

g(y) dy.

So the assertion is shown for g ≥ 0, and the case g ∈ L1(V ) follows easily. The
second statement is the special case, where g = χf(E). �
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Let Sn−1 = {x ∈ Rn : |x| = 1} denote the unit sphere in Rn. The mapping

ϕ : Rn \ {0} → (0,∞)× Sn−1 : x 7→ (|x|, x/|x|)
defines a diffeomorphism with inverse (r, y) 7→ ry; we call (r, y) = ϕ(x) the polar
coordinates of x. Let ρ be the measure on (0,∞) defined by ρ(E) =

´
E
rn−1 dr.

Theorem 3.34 (Polar coordinates). There is a unique Borel measure σ on Sn−1

such that ϕ∗λ = ρ ⊗ σ. If f is Borel measurable on Rn and f ≥ 0 or f ∈ L1(λ),
then ˆ

Rn
f(x) dx =

ˆ
(0,∞)

ˆ
Sn−1

f(ry)rn−1 dσ(y) dr.

Proof. By Proposition 3.31 and Fubini’s theorem 3.27, it suffices to show that
there is a unique Borel measure σ on Sn−1 such that ϕ∗λ = ρ⊗ σ. For Borel sets
E in Sn−1 we define

σ(E) := nλ(ϕ−1((0, 1]× E)),

which is a Borel measure on Sn−1, since the mapping E 7→ ϕ−1((0, 1] × E) maps
Borel sets to Borel sets and commutes with unions, intersections, and complements.
For a > 0, we have by Lemma 3.32,

ϕ∗λ((0, a]× E) = λ(ϕ−1((0, a]× E)) = anλ(ϕ−1((0, 1]× E))

=
an

n
σ(E) = ρ((0, a])σ(E) = (ρ⊗ σ)((0, a]× E).

As an immediate consequence, ϕ∗λ = ρ ⊗ σ holds on sets of the form (a, b] × E.
For N ∈ N and a fixed Borel set E ⊆ Sn−1, the collection AN,E of finite disjoint
unions of sets of the form (a, b]×E, where b ≤ N , forms an algebra on (0, N ]×E,
by Proposition 1.5, that generates the σ-algebra SN,E = {A×E : A ∈ B((0, N ])}.
By Theorem 1.4, ϕ∗λ = ρ ⊗ σ holds on SN,E , and since all Borel rectangles in
(0,∞) × Sn−1 are disjoint countable unions of sets in

⋃
N∈N,E∈B(Sn−1) SN,E , we

have ϕ∗λ = ρ⊗ σ on all Borel set, again by Theorem 1.4. �

The formula of the previous theorem can be extended to Lebesgue measurable
functions by considering the completion of σ. If f(x) = g(|x|) it givesˆ

Rn
f(x) dx = σ(Sn−1)

ˆ
(0,∞)

g(r)rn−1 dr. (3.7)

Example 3.35 (Integral of a Gaussian function). We haveˆ
Rn
e−a|x|

2

dx =
(π
a

)n/2
, a > 0.

If we denote the integral on the left by In, then In = (I1)n by Fubini’s theorem
3.27. By (3.7),

I2 = 2π

ˆ
(0,∞)

re−ar
2

dr = −π
a
e−ar

2
∣∣∣∞
0

=
π

a
.

Thus I1 = (π/a)1/2 and In = (π/a)n/2.

Example 3.36 (Volume and surface area of the unit ball). If Bn := {x ∈ Rn :
|x| ≤ 1} denotes the closed unit ball in Rn, then

σ(Sn−1) =
2πn/2

Γ(n/2)
and λ(Bn) =

πn/2

Γ(n/2 + 1)
.

By Example 3.35, (3.7), and Theorem 3.33,

πn/2 =

ˆ
Rn
e−|x|

2

dx = σ(Sn−1)

ˆ
(0,∞)

rn−1e−r
2

dr
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=
σ(Sn−1)

2

ˆ
(0,∞)

tn/2−1e−t dt =
σ(Sn−1)

2
Γ(n/2),

and by the definition of σ,

λ(Bn) =
σ(Sn−1)

n
=

πn/2

n/2 · Γ(n/2)
=

πn/2

Γ(n/2 + 1)
.

3.6. Integrals depending on parameters

We study continuity and differentiability of functions of the form

F (y) =

ˆ
X

f(x, y) dµ(x), y ∈ Y.

Theorem 3.37 (Continuity of integrals depending on parameters). Let (X,S, µ)
be a measure space, let Y be a metric space, and let f : X × Y → C be a function.
Assume that:

(1) For each fixed y ∈ Y the function X 3 x→ f(x, y) is measurable.
(2) For each fixed x ∈ X the function Y 3 y → f(x, y) is continuous at y0.
(3) There is a positive function g ∈ L1(µ) so that |f(x, y)| ≤ g(x) for all

(x, y) ∈ X × Y .

Then the function F : Y → C given by

F (y) =

ˆ
X

f(x, y) dµ(x), y ∈ Y,

is well-defined and continuous at y0.

Proof. The function F is well-defined by (1) and (3). Let yk ∈ Y by a
sequence converging to y0, and consider the sequence of functions fk : X → C
given by

fk(x) := f(x, yk).

By (2), fk(x) → f(x, y0) for every x ∈ X, and, by (3), |fk| ≤ g for all k. The
dominated convergence theorem 3.22 implies

lim
k→∞

F (yk) = lim
k→∞

ˆ
X

fk dµ =

ˆ
X

f(x, y0) dµ(x) = F (y0). �

Theorem 3.38 (Differentiability of integrals depending on parameters). Let
(X,S, µ) be a measure space, let Y be open in Rn, and let f : X × Y → C be
a function. Assume that:

(1) For each fixed x ∈ X the function Y 3 y → f(x, y) is C1.
(2) For each fixed y ∈ Y the function X 3 x → f(x, y) is in L1(µ), and

X 3 x→ ∂
∂yi

f(x, y), i = 1, . . . , n, is measurable.

(3) There is a positive function g ∈ L1(µ) so that | ∂∂yi f(x, y)| ≤ g(x) for all

(x, y) ∈ X × Y .

Then the function F : Y → C given by

F (y) =

ˆ
X

f(x, y) dµ(x), y ∈ Y,

is well-defined and C1 with

∂

∂yi
F (y) =

ˆ
X

∂

∂yi
f(x, y) dµ(x).
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Proof. The function F is well-defined by (2). Let y0 ∈ Y and let the open
ball Br(y0) be contained in Y . Let hk ∈ R \ {0} with hk → 0 and such that
yk := y0 + hkei ∈ Br(y0), where ei is the ith standard unit vector in Rn. Set

ϕk(x) :=
f(x, yk)− f(x, y0)

hk
.

Then each ϕk is in L1(µ), and, for all x ∈ X,

lim
k→∞

ϕk(x) =
∂

∂yi
f(x, y0).

By (3) and the mean value theorem, |ϕk| ≤ g. The dominated convergence theorem
3.22 implies that x 7→ ∂

∂yi
f(x, y0) is in L1(µ) and we have

lim
k→∞

ˆ
X

ϕk dµ =

ˆ
X

∂

∂yi
f(x, y0) dµ(x).

Sinceˆ
X

ϕk dµ =
1

hk

(ˆ
X

f(x, yk) dµ(x)−
ˆ
X

f(x, y0) dµ(x)
)

=
F (yk)− F (y0)

hk
,

we see that ∂
∂yi

F (y0) exists and equals
´
X

∂
∂yi

f(x, y0) dµ(x). The continuity of ∂
∂yi

F

follows from Theorem 3.37. �

Theorem 3.39 (Holomorphy of integrals depending on parameters). Let (X,S, µ)
be a measure space, let Y be open in C, and let f : X×Y → C be a function. Assume
that:

(1) For each fixed x ∈ X the function Y 3 y → f(x, y) is holomorphic.
(2) For each fixed y ∈ Y the function X 3 x→ f(x, y) is measurable.
(3) There is a positive function g ∈ L1(µ) so that |f(x, y)| ≤ g(x) for all

(x, y) ∈ X × Y .

Then the function F : Y → C given by

F (y) =

ˆ
X

f(x, y) dµ(x), y ∈ Y,

is well-defined and holomorphic with

F ′(y) =

ˆ
X

∂yf(x, y) dµ(x).

Proof. The function F is well-defined by (2) and (3). Let y0 ∈ Y and let

Br(y0) be contained in Y . For all y ∈ Br(y0) and all x ∈ X, we have

∂yf(x, y) =
1

2πi

ˆ
∂Br(y0)

f(x, z)

(z − y)2
dz

and thus, if we write y = y1 + iy2 and use (3), for all y ∈ Br/2(y0) and all x ∈ X

|∂yif(x, y)| ≤ r max
z∈∂Br(y0)

|f(x, z)|
|z − y|2

≤ 4g(x)

r
.

By Theorem 3.38, F is C1 in Br/2(y0) and satisfies the Cauchy–Riemann equations

∂y1F (y) + i∂y2F (y) =

ˆ
X

∂y1f(x, y) + i∂y1f(x, y) dµ(x) = 0.

The proof is complete. �
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3.7. Relation to the Riemann integral

Let [a, b] be a compact interval and let f : [a, b] → R be bounded. For each
partition P of [a, b], i.e., a finite sequence P = (ti)

n
i=0 with a = t0 < t1 < · · · <

tn = b, define

UP f :=

n∑
i=1

sup
ti−1≤t≤ti

f(t) (ti − ti−1),

LP f :=

n∑
i=1

inf
ti−1≤t≤ti

f(t) (ti − ti−1),

and set

I
b

a(f) := inf
P
UP f, Iba(f) := sup

P
LP f,

where P varies over all partitions of [a, b]. If I
b

a(f) = Iba(f) then their common

value is the Riemann integral
´ b
a
f(x) dx, and f is called Riemann integrable.

Theorem 3.40. Let f : [a, b]→ R be bounded. Then:

(1) If f is Riemann integrable, then f is Lebesgue measurable and thus inte-

grable (since bounded), and
´ b
a
f(x)dx =

´
[a,b]

f dλ.

(2) f is Riemann integrable if and only if

λ({t ∈ [a, b] : f is discontinuous at t}) = 0.

The second result is Lebesgue’s criterion for Riemann integrability.

Proof. (1) Without loss of generality assume that f ≥ 0. For each partition
P of [a, b] set

GP :=

n∑
i=1

sup
ti−1≤t≤ti

f(t)χ(ti−1,ti],

gP :=

n∑
i=1

inf
ti−1≤t≤ti

f(t)χ(ti−1,ti],

such that UP f =
´
GP dλ and LP f =

´
gP dλ. If f is Riemann integrable, there

exists a sequence of partitions Pk whose mesh size (that is maxi(ti− ti−1)) tends to

0, such that Pk ⊆ Pk+1, and so that UPkf and LPkf converge to
´ b
a
f(x) dx. Then

GPk ≥ GPk+1
≥ f ≥ gPk+1

≥ gPk , and G := limk→∞GPk , g := limk→∞ gPk satisfy
g ≤ f ≤ G. By the dominated convergence theorem 3.22,ˆ

g dλ =

ˆ b

a

f(x) dx =

ˆ
Gdλ,

and thus
´

(G − g) dλ = 0. By Proposition 3.21, G = g = f a.e. Since G is
measurable, by Proposition 3.4, so is f , by Proposition 3.8 (as λ is complete), and
we have ˆ b

a

f(x) dx =

ˆ
Gdλ =

ˆ
[a,b]

f dλ.

(2) Assume that f is Riemann integrable. By the first part of the proof, the
set

E := {t ∈ [a, b] : g(t) 6= G(t)} ∪
∞⋃
k=1

Pk

has measure zero. We will show that the set of discontinuities of f lies in E. Fix
t0 ∈ [a, b] \ E and ε > 0. Then g(t0) = G(t0) and hence GPk(t0) − gPk(t0) ≤ ε for
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k sufficiently large. Since t0 6∈ Pk, GPk and gPk are constant near t0. Thus there is
δ > 0 so that for |t− t0| ≤ δ,

f(t)− f(t0) ≤ GPk(t)− gPk(t0) = GPk(t0)− gPk(t0) ≤ ε,

and similarly f(t)− f(t0) ≥ ε. This implies that f is continuous at t0.

Conversely, let f be continuous except on a set E of measure zero. By The-
orem 2.9, given ε > 0 we may find open intervals Ii so that E ⊆

⋃∞
i=1 Ii and∑∞

i=1 |Ii| ≤ ε/(4M), where M = supt∈[a,b] f(t). If f is continuous at t, then there is

an open interval Jt 3 t such that |f(s)− f(r)| ≤ ε/2(b−a) for s, r ∈ Jt∩ [a, b]. The
open cover {Ii} ∪ {Jt : t ∈ [a, b] \ E} of [a, b] has a finite subcover; let P = (ti)

n
i=0

be the partition of [a, b] given by the endpoints (inside [a, b]) of the intervals in this
subcover. Let L = {` : (t`−1, t`) ⊆ Ii for some i}. Then

UP f − LP f =

n∑
i=1

sup
ti−1≤s,t≤ti

(f(t)− f(s)) (ti − ti−1)

≤
∑
i∈L

2M (ti − ti−1) +
∑
i 6∈L

ε

2(b− a)
(ti − ti−1)

≤ 2M
ε

4M
+

ε

2(b− a)
(b− a) = ε.

This implies that f is Riemann integrable. �

The proper Riemann integral is thus subsumed in the Lebesgue integral. The
latter allows for integration of a wider class of functions. For instance, χQ∩[0,1] is dis-
continuous everywhere and hence not Riemann integrable. It is however Lebesgue
integrable with

´
χQ∩[0,1] dλ = 0.

For improper Riemann integrals the situation is different. The functions f =∑∞
k=1

(−1)k

k χ(k,k+1] or g(x) = sin(x)/x have improper Riemann integrals over [1,∞)
(to see this for g use partial integration and the majorant criterion), but they are
not Lebesgue integrable. A Lebesgue integrable function on [a,∞) that is Riemann
integrable on [a, b], for each b > a, has absolutely convergent improper Riemann
integral and ˆ

[a,∞)

f dλ = lim
b→∞

ˆ b

a

f(x) dx. (3.8)

Indeed, for each b > a,
´ b
a
|f(x)| dx =

´
[a,b]
|f | dλ ≤

´
[a,∞)

|f | dλ and hence

limb→∞
´ b
a
|f(x)| dx exists. Moreover, choose a sequence bk ↗ ∞ and set fk :=

fχ[a,bk]. Then the dominated convergence theorem 3.22 implies (3.8).

3.8. Hausdorff measure

In this section we consider the d-dimensional Hausdorff measure in Rn. It allows
for a definition of d-dimensional area in an intrinsic way, i.e., without reference to
parameterizations. Moreover, it makes sense in any metric space and even for
non-integer d.

For d ≥ 0 let us set

ωd :=
πd/2

Γ(d/2 + 1)
,

where Γ(t) :=
´∞

0
st−1e−s ds is the Gamma function. If d ≥ 1 is an integer, then

ωd is the d-dimensional Lebesgue measure of the unit ball in Rd; see Example 3.36.
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Let E ⊆ Rn be any subset. The d-dimensional Hausdorff measure of E is
given by

Hd(E) := lim
ε→0+

Hdε (E), (3.9)

where for 0 < ε ≤ ∞,

Hdε (E) :=
ωd
2d

inf
{∑

i

(diam(Ei))
d : diam(Ei) < ε, E ⊆

⋃
i

Ei

}
for countable covers {Ei}i of E and with the convention diam(∅) = 0. Note that
the limit in (3.9) exits (finite or infinite), since ε 7→ Hdε (E) is decreasing, and that
H0 is the counting measure. It is possible to restrict the Ei in the definition to
closed (or open) and convex sets such that Ei ∩ E 6= ∅, but further restrictions
produce other outer measures, e.g., using only balls yields the so-called spherical
Hausdorff measure.

The definition of Hausdorff measure extends to any metric space. It depends on
the metric but not on the ambient space, i.e., HdX(E) = HdY (E) whenever E ⊆ X
and the metric space X is isometrically embedded in the metric space Y .

Proposition 3.41. Let d ≥ 0, n ∈ N.

(1) Hd is an outer measure on Rn and a measure on B(Rn).
(2) For each E ⊆ Rn, z ∈ Rn, and a > 0,

Hd(E + z) = Hd(E), Hd(aE) = adHd(E).

(3) Hd = 0 if d > n.

(4) If d > d′ ≥ 0, then Hd(E) > 0 implies Hd′(E) =∞.
(5) If f : Rn → Rm is a Lipschitz function with Lipschitz constant Lip(f),

then

Hd(f(E)) ≤ Lip(f)dHd(E).

Proof. (1) Let us show that Hd is σ-subadditive; monotony is obvious. It
is easy to see that each Hdε is σ-subadditive. Thus Hd is σ-subadditive, since
the supremum of σ-subadditive set functions is σ-subadditive. So Hd is an outer
measure on Rn.

Suppose that δ = dist(E1, E2) > 0 and ε ≤ δ. Then any set of diameter < ε
intersecting E1 ∪ E2 is intersecting only one of the sets E1, E2. Hence, Hdε (E1 ∪
E2) ≥ Hdε (E1) + Hdε (E2). Since Hdε is σ-subadditive, we obtain Hdε (E1 ∪ E2) =
Hdε (E1) + Hdε (E2), and letting ε → 0, Hd(E1 ∪ E2) = Hd(E1) + Hd(E2). The
proof of Theorem 2.1(3) shows that all closed sets, and hence all Borel sets, are
Hd-measurable.

(2) This follows from diam(E+z)d = diam(E)d and diam(aE)d = ad diam(E)d.

(3) Let d > n. Any cube Q of side length 1 can be covered by kn closed cubes
of side length 1/k. Thus, Hdε (Q) ≤ ωd(

√
n/2)dkn−d for ε >

√
n/k. Letting k →∞

implies Hd(Q) = 0. The assertion now follows from translation invariance and
σ-subadditivity.

(4) We have (diam(Ei)/ε)
d ≤ (diam(Ei)/ε)

d′ if diam(Ei) < ε. Thus for 0 <
ε <∞,

2d

ωd
Hdε (E) ≤ εd−d

′ 2d
′

ωd′
Hd
′

ε (E)

which implies the statement.

(5) follows from diam(f(E)) ≤ Lip(f) diam(E). �
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Note that Hd is not σ-finite if d < n.

The Hausdorff dimension of a subset E ⊆ Rn is defined by

dimHE := inf{d ≥ 0 : Hd(E) = 0}.

Then, by Proposition 3.41,

Hd(E) =

{
∞ if d < dimHE,

0 if d > dimHE.

Finite sets have Hausdorff dimension 0. But there also exist compact uncountable
sets with Hausdorff dimension 0.

Example 3.42 (Hausdorff dimension of the Cantor set). Let C =
⋂∞
k=0 Ck be the

Cantor set; see Example 2.3. Recall that Ck is a disjoint union of 2k closed intervals
with length 3−k. Thus

Hd3−k(C) ≤ ωd
2d

2k

3kd
.

This bound remains bounded as k →∞ provided that 2/3d ≤ 1. So for the choice

d =
log 2

log 3
(3.10)

we have Hd(C) = limk→∞Hd3−k(C) <∞ and hence dimH C ≤ d.

To conclude that the Hausdorff dimension of the Cantor set C is d = log 2/ log 3,
we need to show that Hd(C) > 0. To this end we prove that

∑
j diam(Ij)

d ≥ 1/4

whenever {Ij} is a cover of C by open intervals. Since C is compact, we may assume
that I1, . . . , In cover C. As the interior of C is empty, we may also assume that the
endpoints of each Ij lie outside of C (making the Ij slightly larger if necessary).
Let δ > 0 be the distance between C and the set of all endpoints of intervals Ij ,
and choose a positive integer k such that 3−k < δ. Then each connected component
Ck,i of Ck is contained in some Ij .

We assert that, for each open interval I and each fixed `,∑
C`,i⊆I

diam(C`,i)
d ≤ 4 diam(I)d. (3.11)

This will imply the strived for inequality,

4
∑
j

diam(Ij)
d ≥

∑
j

∑
Ck,i⊆Ij

diam(Ck,i)
d ≥

2k∑
i=1

diam(Ck,i)
d = 1,

since diam(Ck,i)
d = 3−kd = 2−k by (3.10). Let us show (3.11). If m denotes

the least integer for which I contains some Cm,i, then m ≤ `. There are at most 4
connected components Cm,i1 , . . . , Cm,ip of Cm which intersect I; otherwise m would
not be minimal. Thus,∑
C`,i⊆I

diam(C`,i)
d ≤

p∑
q=1

∑
C`,i⊆Cm,iq

diam(C`,i)
d =

p∑
q=1

diam(Cm,iq )
d ≤ 4 diam(I)d.

because
∑
C`,i⊆Cm,iq

diam(C`,i)
d = 2`−m3−`d = 2`−m2−` = diam(Cm,iq )

d.

Theorem 3.43 (Isodiametric inequality). For every Lebesgue measurable set E ⊆
Rn,

λn(E) ≤ ωn
(diam(E)

2

)n
. (3.12)
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Proof. For v ∈ Sn−1 let πv be the hyperplane perpendicular to v, and for
w ∈ πv set

Ev,w := {t ∈ R : w + tv ∈ E}.
Consider the symmetriced set

Sv(E) := {w + tv : w ∈ πv, 2|t| ≤ λ1(Ev,w)}.
By Fubini’s theorem 3.27, we may conclude that the mapping πv 3 w 7→ λ1(Ev,w)
is L(Rn−1)-measurable where πv ∼= Rn−1, and hence Sv(E) is Lebesgue measurable
and λn(Sv(E)) = λn(E). We have diam(Sv(E)) ≤ diam(E) thanks to the easy
inequality λ1(I) + λ1(J) ≤ 2 sup{|t − s| : t ∈ I, s ∈ J} for I, J ∈ B(R). If E is
symmetric with respect to a direction orthogonal to v, then so is Sv(E).

Define iteratively E0 := E and Ei := Sei(Ei−1), where e1, . . . , en denote the
standard unit vectors in Rn. Then En is Lebesgue measurable, satisfies λn(En) =
λn(E0), diam(En) ≤ diam(E), and is invariant under the mapping x 7→ −x. Hence
En is contained in the closed ball with radius diam(E)/2, and

λn(E) ≤ λn(E0) = λn(En) ≤ ωn
(diam(E)

2

)n
. �

This argument is called Steiner symmetrization.

Theorem 3.44. For every Borel set E ⊆ Rn and every ε ∈ (0,∞],

λn(E) = Hnε (E) = Hn(E).

Proof. Let us prove λn(E) ≤ Hnε (E). Let (Ei)i be a cover of E by closed sets
with diam(Ei) < ε. Then, by the isodiametric inequality (3.12),

λn(E) ≤
∑
i

λn(Ei) ≤
ωn
2n

∑
i

(diam(Ei))
n.

We may conclude λn(E) ≤ Hnε (E), since the cover (Ei)i was arbitrary.

Note that Hn is finite on bounded sets; use the argument in the proof of
Proposition 3.41(3). Hence Hn is a translation invariant Radon measure on Rn.
By Theorem 2.14, there is a constant C > 0 such that λn(E) = CHn(E) for all
Borel sets E ⊆ Rn.

It remains to show that C = 1. If B is the unit ball in Rn, then

λn(B) ≤ Hnε (B) ≤ Hn(B) = C−1 λn(B),

whence C ≤ 1. On the other hand, for all ε,

Hnε (B) ≤ λn(B) = CHn(B)

and thus C ≥ 1. In order to see the inequality Hnε (B) ≤ λn(B) note that it is
possible to find a collection of disjoint closed balls B1, B2, . . . with diam(Bi) < ε
such that

⋃∞
i=1Bi ⊆ B and λn(B \

⋃∞
i=1Bi) = 0; this is a consequence of the

Besicovitch–Vitali covering theorem, cf. [3]. Then

Hnε
( ∞⋃
i=1

Bi

)
≤ ωn

2n

∞∑
i=1

(diam(Bi))
n =

∞∑
i=1

λn(Bi) = λn
( ∞⋃
i=1

Bi

)
= λn(B).

We may conclude that Hnε (B) ≤ λn(B), since a λn-null set is also a Hnε -null set.
In fact, for every cube Q ⊆ Rn, we have ωn(diam(Q)/2)n = ωn(

√
n/2)nλn(Q) and

thus

Hnε (E) ≤ ωn
2n

inf
{∑

i

(diam(Qi))
n : Qi cubes, diam(Qi) < ε, E ⊆

⋃
i

Qi

}
= ωn

(√n
2

)n
λn(E). �
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Lp-spaces

Let (X,S, µ) be a measure space.

4.1. Definition of Lp-spaces

For 1 ≤ p <∞, we set

Lp(µ) := {f : X → C : f is measurable and |f |p ∈ L1(µ)}.
We shall also use the notation Lp(X) if there is no ambiguity. Note that

|f + g|p ≤ 2p max(|f |, |g|)p = 2p max(|f |p, |g|p) ≤ 2p(|f |p + |g|p)
which implies that Lp(µ) is a vector space. For f ∈ Lp(X) we define

‖f‖p :=
(ˆ
|f |p dµ

)1/p

.

For p =∞, we set

L∞(µ) := {f : X → C : f is measurable and

∃M ∈ R : |f(x)| ≤M for µ-a.e. x ∈ X}.

For f ∈ L∞(X) we define the essential supremum

‖f‖∞ := inf{M : |f(x)| ≤M for µ-a.e. x ∈ X}.
We shall see below that ‖f‖p, 1 ≤ p ≤ ∞, defines a norm on (equivalence classes of
functions in) Lp(µ); it is called the Lp-norm; we will also use ‖ ‖Lp(µ) or ‖ ‖Lp(X).

If A is a nonempty set, we denote by lp(A) the space Lp(µ), where µ is the
counting measure on (A,P(A)).

By Proposition 3.21, for a measurable function f , ‖f‖p = 0 if and only if
f = 0 µ-a.e. So ‖ ‖p is not a norm on Lp(µ) as defined above. For this reason
we redefine Lp(µ): The equivalence relation f ∼ g :⇐⇒ f = g µ-a.e. partitions
Lp(µ) into equivalence classes. The Lp-norm is constant on every equivalence class.
Henceforth we use the symbol Lp(µ) for the vector space of equivalence classes of
measurable functions whose Lp-norm is finite.

For the sake of simplicity, we will nevertheless speak of Lp-functions. However,
one should keep in mind that it makes no sense to ask for the value of an Lp-function
at some particular point.

4.2. Inequalities

Recall that a real valued function ϕ defined on an open interval (a, b) is called
convex if, for x, y ∈ (a, b),

ϕ((1− t)x+ ty) ≤ (1− t)ϕ(x) + tϕ(y), 0 < t < 1,

and strictly convex if the inequality is strict. Setting z = (1− t)x+ ty we obtain

ϕ(z)− ϕ(x)

z − x
≤ ϕ(y)− ϕ(x)

y − x
≤ ϕ(y)− ϕ(z)

y − z
, x < z < y. (4.1)

39
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with strict inequalities if ϕ is strictly convex. The inequalities in (4.1) imply that
the one-sided derivatives ϕ′±(x) of ϕ exist in R at every x ∈ (a, b); indeed, the

difference quotients δ(x, y) := ϕ(y)−ϕ(x)
y−x satisfy δ(x, y) ≥ δ(x, z) for x < z < y and

are bounded from below by δ(w, x) for some w < x, thus ϕ′+(x) = limy→x+ δ(x, y).
As a consequence ϕ is continuous.

Theorem 4.1 (Jensen’s inequality). Let (X,S, µ) be a measure space with µ(X) =
1. If f ∈ L1(µ) is real valued and f(X) ⊆ (a, b) (a = −∞ and b =∞ are allowed),
and if ϕ : (a, b)→ R is convex, then

ϕ
(ˆ

f dµ
)
≤
ˆ
ϕ ◦ f dµ.

Proof. Since µ(X) = 1, we have a < z :=
´
f dµ < b. By (4.1),

α := sup
x<z

ϕ(z)− ϕ(x)

z − x
≤ ϕ(y)− ϕ(z)

y − z
, for all y ∈ (z, b),

and therefore

ϕ(w) ≥ ϕ(z) + α(w − z), for all w ∈ (a, b).

In particular, ϕ(f(x)) ≥ ϕ(z) + α(f(x) − z) for all x ∈ X. Since ϕ is continuous,
ϕ ◦ f is measurable, and integrating the last inequality yieldsˆ

ϕ ◦ f dµ ≥ ϕ(z) + α(

ˆ
f dµ− z) = ϕ

(ˆ
f dµ

)
. �

A pair of positive real numbers p and q are called conjugate exponents if

1

p
+

1

q
= 1;

we regard also 1 and ∞ to be conjugate.

Theorem 4.2 (Hölder’s inequality). Let p and q be conjugate exponents, 1 ≤ p ≤
∞. Let f ∈ Lp(µ) and g ∈ Lq(µ). Then fg ∈ L1(µ), and

‖fg‖1 ≤ ‖f‖p‖g‖q.

If p = q = 2 this is also called Schwarz inequality.

Proof. For p = 1 this follows easily from the definition of the integral. Let us
assume that 1 < p <∞. Set A := {x ∈ X : |g(x)| > 0} and ν(E) :=

´
E
|g|q dµ, for

E ∈ S. Since g ∈ Lq(µ), we have ν(A) = ν(X) = ‖g‖qq < ∞. By Corollary 3.16,
γ := ν/ν(A) is a probability measure on A. By Jensen’s inequality 4.1 and since
(1− q)p = −q,

1

ν(A)p
‖fg‖p1 =

∣∣∣ˆ
A

|f ||g|1−q |g|
q

ν(A)
dµ
∣∣∣p =

∣∣∣ ˆ
A

|f ||g|1−q dγ
∣∣∣p

≤
ˆ
A

(|f ||g|1−q)p dγ =

ˆ
A

|f |p|g|−q |g|
q

ν(A)
dµ

=
1

ν(A)

ˆ
A

|f |p dµ =
1

ν(A)
‖f‖pp

and hence ‖fg‖1 ≤ ‖f‖pν(A)1−1/p = ‖f‖p‖g‖q. �

Corollary 4.3. If fi ∈ Lpi(µ) and
∑n
i=1 1/pi = 1/p for p, pi ∈ [1,∞], then∥∥∥ n∏

i=1

fi

∥∥∥
p
≤

n∏
i=1

‖fi‖pi .
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Proof. If p = ∞ then pi = ∞ for all i and the inequality is obvious. So
assume that p < ∞. If pi = ∞ for some i, the result can be reduced to that
case that all pi < ∞. So let us make this assumption. If n = 2, we have, as
1 = 1/(p1/p) + 1/(p2/p),ˆ

|f1f2|p dµ ≤
(ˆ
|f1|p1 dµ

)p/p1(ˆ
|f2|p2 dµ

)p/p2
= ‖f1‖pp1‖f2‖pp2 .

In the general case, define q by 1/q =
∑n
i=2 1/pi, and use induction:∥∥∥ n∏

i=1

fi

∥∥∥
p
≤ ‖f1‖p1

∥∥∥ n∏
i=2

fi

∥∥∥
q
≤

n∏
i=1

‖fi‖pi . �

Proposition 4.4. Let p and q be conjugate exponents, 1 ≤ p ≤ ∞. If p = ∞ we
assume that µ has the finite subset property. Then for every f ∈ Lp(µ),

‖f‖p = sup
g∈Lq(µ)
‖g‖q≤1

ˆ
|fg| dµ = sup

g∈Lq(µ)
‖g‖q≤1

∣∣∣ˆ fg dµ
∣∣∣.

Proof. The identities are clear if f = 0. So let us assume that ‖f‖p > 0. By
Hölder’s inequality 4.2, for each g ∈ Lq(µ) with ‖g‖q ≤ 1,∣∣∣ˆ fg dµ

∣∣∣ ≤ ˆ
|fg| dµ ≤ ‖f‖p,

hence sup
∣∣ ´ fg dµ∣∣ ≤ sup

´
|fg| dµ ≤ ‖f‖p.

It remains to prove that ‖f‖p ≤ sup
∣∣ ´ fg dµ∣∣. Consider first the case that

p ∈ [1,∞). Set h(x) := |f(x)|p−2f(x) if f(x) 6= 0 and h(x) := 0 if f(x) = 0, then

fh = |f |p. If p > 1, then |h|q = |f |p and hence g := ‖f‖−p/qp h satisfies ‖g‖q = 1
and

´
fg dµ = ‖f‖p. If p = 1, then ‖h‖∞ = 1 and

´
fh dµ = ‖f‖1.

If p = ∞, choose 0 < m < ‖f‖∞ and set Am := {x ∈ X : |f(x)| ≥ m}. Then
µ(Am) > 0. Since µ has the finite subset property, there exists Bm ⊆ Am with
0 < µ(Bm) < ∞. The function ϕ := χ{|f(x)|=0} + χ{|f(x)|>0}f |f |−1 is measurable
and satisfies |ϕ| = 1 and f = ϕ|f |. Thus gm := χBm/(ϕµ(Bm)) satisfies ‖gm‖1 = 1
and

´
fgm dµ = 1

µ(Bm)

´
Bm
|f | dµ ≥ m, and thus

sup
{∣∣∣ˆ fg dµ

∣∣∣ : g ∈ L1(µ), ‖g‖1 ≤ 1
}
≥ m.

Letting m→ ‖f‖∞ finishes the proof. �

Theorem 4.5 (Minkowski’s integral inequality). Let (X,S, µ) and (Y,T, ν) be σ-
finite measure spaces, let f : X × Y → [0,∞] be (S ⊗ T)-measurable, and let
1 ≤ p ≤ ∞. Then∥∥∥ ˆ

Y

f( , y) dν(y)
∥∥∥
Lp(µ)

≤
ˆ
Y

‖f( , y)‖Lp(µ) dν(y).

Proof. It follows from Fubini’s theorem 3.27 that the function h(x) :=´
Y
f(x, y) dν(y), x ∈ X, is measurable. Furthermore, by Proposition 4.4,∥∥∥ ˆ

Y

f( , y) dν(y)
∥∥∥
Lp(µ)

= ‖h‖Lp(µ)

= sup
{ˆ

|hg| dµ : g ∈ Lq(µ), ‖g‖Lq(µ) ≤ 1
}

= sup
{ˆ

X

ˆ
Y

f(x, y)|g(x)| dν(y) dµ(x) : g ∈ Lq(µ), ‖g‖Lq(µ) ≤ 1
}
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= sup
{ˆ

Y

ˆ
X

f(x, y)|g(x)| dµ(x) dν(y) : g ∈ Lq(µ), ‖g‖Lq(µ) ≤ 1
}

≤
ˆ
Y

sup
{ˆ

X

f(x, y)|g(x)| dµ(x) : g ∈ Lq(µ), ‖g‖Lq(µ) ≤ 1
}
dν(y)

=

ˆ
Y

‖f( , y)‖Lp(µ) dν(y). �

Corollary 4.6 (Minkowski’s inequality). Let 1 ≤ p ≤ ∞. For f1, f2 ∈ Lp(µ),

‖f1 + f2‖p ≤ ‖f1‖p + ‖f2‖p.

It follows that ‖ ‖p is a norm on Lp(µ).

Proof. As
´
|f1 + f2|p dµ ≤

´
||f1|+ |f2||p dµ, we may assume without loss of

generality that f1, f2 are nonnegative. Then Minkowski’s inequality follows from
Minkowski’s integral inequality 4.5 if we let Y be the two point set {1, 2} with the
counting measure.

Note that in this case the use of Fubini’s theorem in the proof of Theorem
4.5 reduces to linearity of the integral, and hence it is not necessary to assume
σ-finiteness: if f(x, 1) = f1(x) and f(x, 2) = f2(x), thenˆ

X

ˆ
Y

f(x, y)|g(x)| dν(y) dµ(x)

=

ˆ
X

f1(x)|g(x)|+ f2(x)|g(x)| dµ(x)

=

ˆ
X

f1(x)|g(x)| dµ(x) +

ˆ
X

f2(x)|g(x)| dµ(x)

=

ˆ
Y

ˆ
X

f(x, y)|g(x)| dµ(x) dν(y). �

In general Lp(µ) 6⊆ Lq(µ) for all p 6= q; consider x−a, a > 0, on (0,∞) with the
Lebesgue measure. However, we have the following results; see also Section 7.3 on
interpolation of Lp-spaces.

Proposition 4.7 (Inclusion relations). If 1 ≤ p < q < r ≤ ∞, then

Lp(µ) ∩ Lr(µ) ⊆ Lq(µ) ⊆ Lp(µ) + Lr(µ),

and

‖f‖q ≤ ‖f‖tp‖f‖1−tr , where
1

q
=
t

p
+

1− t
r

.

Proof. Let us first prove Lq(µ) ⊆ Lp(µ) +Lr(µ). For f ∈ Lq(µ) set E := {x :
|f(x)| > 1} and decompose f = fχE + fχEc . This shows the asserted inclusion,
since |fχE |p = |f |pχE ≤ |f |qχE , thus fχE ∈ Lp(µ), and |fχEc |r = |f |rχEc ≤
|f |qχEc , thus fχEc ∈ Lr(µ); for r =∞ we clearly have ‖fχEc‖∞ ≤ 1.

Now we turn to the other inclusion. Consider first the case r <∞. By assump-
tion, p/(tq) and r/((1− t)q) are conjugate, and so by Hölder’s inequality 4.2,ˆ

|f |q dµ =

ˆ
|f |tq|f |(1−t)q dµ ≤ ‖|f |tq‖p/(tq)‖|f |(1−t)q‖r/((1−t)q)

=
(ˆ
|f |p dµ

)tq/p(ˆ
|f |r dµ

)(1−t)q/r
= ‖f‖tqp ‖f‖(1−t)qr .

If r =∞, then t = p/q andˆ
|f |q dµ =

ˆ
|f |q−p|f |p dµ ≤ ‖f‖q−p∞ ‖f‖pp
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which implies the assertion. �

Corollary 4.8. If A is any set and 1 ≤ p < q ≤ ∞, then lp(A) ⊆ lq(A) and

‖f‖q ≤ ‖f‖p.

Proof. Obviously, ‖f‖∞ ≤ ‖f‖p. For q < ∞, setting r = ∞ and t = p/q in
Proposition 4.7 implies

‖f‖q ≤ ‖f‖p/qp ‖f‖1−p/q∞ ≤ ‖f‖p/qp ‖f‖1−p/qp = ‖f‖p. �

Proposition 4.9. If µ(X) <∞ and 1 ≤ p < q ≤ ∞, then Lq(µ) ⊆ Lp(µ) and

‖f‖p ≤ µ(X)1/p−1/q‖f‖q.

Proof. By Hölders inequality 4.2, for 1/r + 1/r′ = 1,

‖|f |p‖1 ≤ ‖1‖r′‖|f |p‖r = µ(X)1/r′
(ˆ

X

|f |pr dµ
)1/r

and thus

‖f‖p ≤ µ(X)1/pr′‖f‖pr.
Setting r = q/p gives the assertion. �

4.3. Completeness

Let 1 ≤ p ≤ ∞. The normed space (Lp(µ), ‖ ‖p) comes with a natural notion
of convergence. A sequence (fi) in Lp(µ) is called (strongly) convergent if there
exists an element f ∈ Lp(µ) such that ‖fi − f‖p → 0 as i→∞. A sequence (fi) in
Lp(µ) is a Cauchy sequence if for all ε > 0 there is k ∈ N so that ‖fi − fj‖p < ε
if i, j ≥ k. Recall that a normed space is complete if each Cauchy sequence is
convergent.

Theorem 4.10 (Riesz–Fischer). Let 1 ≤ p ≤ ∞. The space Lp(µ) is complete and
hence a Banach space.

Proof. Let 1 ≤ p < ∞. Let (fi) be a Cauchy sequence in Lp(µ). Choose i1
such that ‖fi1−fj‖p < 1/2 for j ≥ i1, choose i2 > i1 such that ‖fi2−fj‖p < 1/22 for
j ≥ i2, etc. In this way we obtain a subsequence (fik) such that ‖fik−fik+1

‖p < 1/2k

for all k ≥ 1. Let us define

F := |fi1 |+
∞∑
k=1

|fik+1
− fik |.

Then F is an element of Lp(µ), by the monotone convergence theorem 3.14, since,
for all m ≥ 1, ∥∥∥|fi1 |+ m∑

k=1

|fik+1
− fik |

∥∥∥
p
≤ ‖fi1‖p + 1.

In particular, F (x) is finite for µ-a.e. x, and for such x the series fi1(x) +∑∞
k=1 fik+1

(x) − fik(x) is absolutely convergent, and thus the sequence of partial
sums

fi1(x) +

m∑
k=1

fik+1
(x)− fik(x) = fim+1

(x)

converges to some number f(x). Since |fik(x)| ≤ F (x) and F ∈ Lp(µ), the
dominated convergence theorem 3.22 implies that f ∈ Lp(µ), and in turn that



44 4. LP -SPACES

‖fik − f‖p → 0 as k →∞, since |fik − f |p → 0 and |fik − f |p ≤ (2F )p µ-a.e. That
‖fi − f‖p → 0 as i→∞ follows from

‖fi − f‖p ≤ ‖fi − fik‖p + ‖fik − f‖p.

Let (fi) be a Cauchy sequence in L∞(µ). The sets Ei = {x : |fi(x)| > ‖fi‖∞}
and Ejk = {x : |fj(x) − fk(x)| > ‖fj − fk‖∞} and thus also their union E for
all i, j, k ∈ N have measure zero. On Ec the sequence fi converges uniformly to
a bounded function f . Extending f by 0 on E we obtain a measurable bounded
function satisfying ‖fi−f‖∞ → 0. (In more details: clearly, fi converges pointwise
to a function f on Ec. To see uniform convergence, let, for given ε > 0, k be such
that supx∈Ec |fi(x) − fj(x)| < ε/2 for i, j ≥ k, and for x ∈ Ec choose ix ≥ k such
that |f(x)−fix(x)| < ε/2. Then |f(x)−fj(x)| ≤ |f(x)−fix(x)|+|fix(x)−fj(x)| < ε
for j ≥ k, independently of x. In particular, |f(x)| ≤ |f(x) − fk(x)| + |fk(x)| ≤
ε+ supx∈Ec |fk(x)| for all x ∈ Ec, i.e., f is bounded.) �

Corollary 4.11. Let 1 ≤ p ≤ ∞. Any Cauchy sequence in Lp(µ) has a subsequence
that converges pointwise µ-a.e.

Proof. This was shown in the proof of Theorem 4.10; see also Proposition
4.24 and Theorem 4.25. �

Corollary 4.12. L2(µ) is a Hilbert space with inner product 〈f, g〉 =
´
X
fg dµ.

Proof. 〈f, g〉 is well-defined by Hölder’s inequality 4.2 and it is easy to see
that it defines an inner product on L2(µ). Since ‖f‖2 = 〈f, f〉1/2, the completeness
follows from Theorem 4.10. �

4.4. Convolution and approximation by smooth functions

We will see in this section that Lp-functions on open subsets of Rn can be
approximated by nicer functions if 1 ≤ p < ∞. We start with the following
proposition.

Proposition 4.13. Let S denote the class of all simple functions s on X satisfying
µ({x : s(x) 6= 0}) <∞. If 1 ≤ p <∞, then S is dense in Lp(µ).

Proof. Clearly, S ⊆ Lp(µ). Let f ∈ Lp(µ), f ≥ 0. By Theorem 3.6, there
exist simple functions 0 ≤ s1 ≤ s2 ≤ · · · ≤ f so that si(x) → f(x) for µ-a.e. x.
Thanks to si ≤ f we have µ({x : si(x) 6= 0}) <∞, i.e., si ∈ S. Since |f−si|p ≤ fp,
the dominated convergence theorem 3.22 implies that ‖f − si‖p → 0. The general
complex case follows immediately. �

For the rest of the section let X be an open subset of Rn equipped with the
Lebesgue measure λ; we shall write Lp(X) instead of Lp(λ) and

´
X
f dx instead of´

X
f dλ.

Theorem 4.14 (Approximation by continuous functions). For 1 ≤ p < ∞, the
class Cc(X) of continuous functions with compact support in X is dense in Lp(X).

Proof. By Proposition 4.13, it suffices to show that, for each measurable
E ⊆ X with λ(E) < ∞, χE is the Lp-limit of a sequence of functions in Cc(X).
Since λ is regular, see Theorem 2.9, for given ε > 0 there exist an open set U and a
compact set K such that K ⊆ E ⊆ U ⊆ X, λ(E) < λ(K)+ ε, and λ(U) < λ(E)+ ε.
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Let L be a compact neighborhood of K contained in U . If f is a continuous function
on R so that 0 ≤ f ≤ 1 and f |{t≤0} ≡ 1 and f |{t>1/2} ≡ 0, then

g(x) := f
(

1− dist(x, Lc)

dist(K,Lc)

)
is a continuous function with support in L and 1 on K. So χK ≤ g ≤ χU and hence

χK − χE ≤ g − χE ≤ χU − χE
which implies

(g − χE)+ ≤ χU − χE and (g − χE)− ≤ χE − χK .

Therefore, using (a+ b)p ≤ (2 max(a, b))p ≤ 2p(ap + bp) for a, b ≥ 0,ˆ
X

|g − χE |p dx =

ˆ
X

((g − χE)+ + (g − χE)−)p dx

≤ 2p
ˆ
X

((g − χE)+)p + ((g − χE)−)p dx

≤ 2p+1ε.

This finishes the proof, since ε was arbitrary. �

Note that Cc(X) is not dense in L∞(X). If f is a bounded and continuous
function on X then

‖f‖∞ = sup
x∈X
|f(x)|. (4.2)

Clearly, ‖f‖∞ ≤ supx∈X |f(x)|. Conversely, for any ε > 0 there exists a nonempty
open subset U ⊆ X such that |f(y)| ≥ supx∈X |f(x)| − ε for all y ∈ U . So the
supremum of |f(x)| on the complement of any null set is ≥ supx∈X |f(x)| − ε,
since this complement has nonempty intersection with U . As ε > 0 was arbitrary
we obtain (4.2). Consequently, any limit of functions in Cc(X) with respect to
‖ ‖∞ must be continuous, but there are elements in L∞(X) with no continuous
representative.

Let f and g be complex valued functions on Rn. We formally define their
convolution f ∗ g by

(f ∗ g)(x) :=

ˆ
Rn
f(x− y)g(y) dy.

One has to be careful to make sure that the definition makes sense. The integral is
well-defined for all x ∈ Rn, if we require that f ∈ Lp(Rn) and g ∈ Lq(Rn) for p, q
conjugate exponents, by Hölder’s inequality 4.2. But actually more is true:

Theorem 4.15 (Young’s inequality). Let 1 ≤ p, q, r ≤ ∞ be such that 1/p+ 1/q =
1/r + 1. If f ∈ Lp(Rn) and g ∈ Lq(Rn), then f ∗ g ∈ Lr(Rn) and

‖f ∗ g‖r ≤ ‖f‖p‖g‖q. (4.3)

Proof. We may assume without loss of generality that f and g are Borel
functions, since there exist Borel functions which coincide with f and g a.e., by
Proposition 3.9. Then the mapping (x, y) 7→ f(x− y)g(y) is also a Borel function,
since (x, y) 7→ x− y and (x, y) 7→ y are Borel.

The case r =∞ follows easily from Hölder’s inequality 4.2:

|(f ∗ g)(x)| ≤
ˆ
Rn
|f(x− y)g(y)| dy ≤ ‖f‖p‖g‖q,

where we used translation invariance of the integral.
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So assume r <∞. Set h(x) = (f ∗ g)(x) =
´
Rn f(x− y)g(y) dy; we shall see in

the course of the proof that h(x) is defined and finite for a.e. x.

Set s = p(1 − 1/q) and let q′ be the conjugate exponent of q. By Hölder’s
inequality 4.2,

|h(x)| ≤
ˆ
Rn
|f(x− y)g(y)| dy =

ˆ
Rn
|f(x− y)|1−s|f(x− y)|s|g(y)| dy

≤
(ˆ

Rn
|f(x− y)|(1−s)q|g(y)|q dy

)1/q( ˆ
Rn
|f(y)|sq

′
dy
)1/q′

,

where we used translation invariance of the integral. Since sq′ = p, we have

|h(x)|q ≤
(ˆ

Rn
|f(x− y)|(1−s)q|g(y)|q dy

)
‖f‖sqp .

Note that 1/p+ 1/q = 1/r + 1 implies that r ≥ q; in fact, r = pq/(p+ q − pq) and
p ≥ p+q−pq. So t := r/q ≥ 1 and we can apply Minkowski’s integral inequality 4.5:

‖|h|q‖t ≤ ‖|g|q‖1‖|f |(1−s)q‖t‖f‖sqp = ‖g‖qq‖f‖
(1−s)q
t(1−s)q‖f‖

sq
p

and hence

‖h‖r ≤ ‖g‖q‖f‖1−sr(1−s)‖f‖
s
p

which is (4.3), since (1− s)r = p. �

In particular, the convolution of f, g ∈ L1(Rn) is a function f ∗ g ∈ L1(Rn)
satisfying

‖f ∗ g‖1 ≤ ‖f‖1‖g‖1,
and, for f ∈ L1(Rn) and g ∈ Lp(Rn), f ∗ g ∈ Lp(Rn) with

‖f ∗ g‖p ≤ ‖f‖1‖g‖p. (4.4)

Assuming that all integrals in question exist, the convolution is commutative,
f ∗ g = g ∗ f , by Theorem 3.33, associative, (f ∗ g) ∗ h = f ∗ (g ∗ h), by Fubini’s
theorem 3.27, and satisfies

supp(f ∗ g) ⊆ supp f + supp g; (4.5)

indeed, if x 6∈ supp f + supp g then for all y ∈ supp g we have x− y 6∈ supp f , and
hence f(x− y)g(y) = 0 for all y.

We denote by L1
loc(Rn) the set of locally integrable functions, i.e., measurable

functions f : Rn → C such that
´
K
|f(x)| dx < ∞ for all bounded measurable

subsets K ⊆ Rn, and Ckc (Rn) is the class of k times continuously differentiable
functions on Rn with compact support.

Lemma 4.16. If ϕ ∈ Ckc (Rn) and f ∈ L1
loc(Rn), then ϕ ∗ f ∈ Ck(Rn), and

∂α(ϕ ∗ f) = (∂αϕ) ∗ f.

Proof. Clearly, ϕ ∗ f is well-defined. The lemma then follows from Theo-
rem 3.38. �

For a function f on Rn and y ∈ Rn we consider the translation

Tyf(x) := f(x− y), x ∈ Rn. (4.6)

Note that ‖Tyf‖p = ‖f‖p, for 1 ≤ p ≤ ∞.

Lemma 4.17. For 1 ≤ p < ∞, translation is continuous in the Lp-norm, i.e., if
f ∈ Lp(Rn) and z ∈ Rn, then limy→0 ‖Ty+zf − Tzf‖p = 0.
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Proof. It suffices to assume that z = 0, since Ty+z = TyTz. If g ∈ Cc(Rn),
then the support of Tyg is contained in a fixed compact set K for all |y| ≤ 1, and
thus ˆ

Rn
|Tyg(x)− g(x)|p dx ≤ ‖Tyg − g‖p∞ λ(K)→ 0, as y → 0,

since g is uniformly continuous. If f ∈ Lp(Rn) and ε > 0, then there exists g ∈
Cc(Rn) with ‖g − f‖p ≤ ε/3, by Theorem 4.14, and so

‖Tyf − f‖p ≤ ‖Tyf − Tyg‖p + ‖Tyg − g‖p + ‖g − f‖p ≤ ε,

for y sufficiently small. �

For any function ϕ on Rn and ε > 0 we set

ϕε(x) = ε−nϕ(x/ε), x ∈ Rn. (4.7)

If ϕ ∈ L1(Rn), then
´
Rn ϕε(x) dx is independent of ε, by Theorem 3.33, and, for

every r > 0 we have limε→0

´
|x|≥r ϕε(x) dx = 0, indeed

ˆ
|x|≥r

ϕε(x) dx =

ˆ
|x|≥r

ε−nϕ(x/ε) dx =

ˆ
|x|≥r/ε

ϕ(x) dx.

Proposition 4.18. Let ϕ ∈ L1(Rn) with
´
Rn ϕ(x) dx = a, and let 1 ≤ p < ∞. If

f ∈ Lp, then ‖f ∗ ϕε − af‖p → 0 as ε→ 0.

Proof. By Theorem 3.33,

f ∗ ϕε(x)− af(x) =

ˆ
Rn

(f(x− y)− f(x))ϕε(y) dy

=

ˆ
Rn

(f(x− εz)− f(x))ϕ(z) dz

=

ˆ
Rn

(Tεzf(x)− f(x))ϕ(z) dz,

and by Minkowski’s integral inequality 4.5,

‖f ∗ ϕε − af‖p =

ˆ
Rn
‖Tεzf − f‖p|ϕ(z)| dz.

Now ‖Tεzf − f‖p → 0 as ε→ 0, by Lemma 4.17, and as ‖Tεzf − f‖p ≤ 2‖f‖p, the
assertion follows from the dominated convergence theorem 3.22. �

If
´
Rn ϕdx = 1 we say that the family {ϕε}0<ε≤1 is an approximate identity.

A mollifier is a nonnegative function ϕ ∈ C∞c (Rn) satisfying ‖ϕ‖1 = 1.

Example 4.19. Consider the function

ψ(x) :=

{
exp 1

|x|2−1 |x| < 1

0 |x| ≥ 1
.

Then ϕ = (
´
ψ dx)−1ψ is a mollifier.

Theorem 4.20 (Approximation by smooth functions). For 1 ≤ p < ∞, C∞c (X)
is dense in Lp(X).

Proof. Let f ∈ Lp(X) and let δ > 0. We may assume that f ∈ Lp(Rn) by
setting f ≡ 0 on Xc. By Theorem 4.14, there exists g ∈ Cc(Rn) so that

‖f − g‖p ≤ δ/2.
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Let ϕ be a mollifier and let ϕε be defined by (4.7). By Lemma 4.16 and (4.5),
gε := ϕε ∗ g ∈ C∞c (Rn). By Proposition 4.18, ‖gε − g‖p ≤ δ/2 for sufficiently small
ε. Thus,

‖gε − f‖p ≤ ‖gε − g‖p + ‖g − f‖p ≤ δ
which implies the assertion. �

Lemma 4.21 (Smooth Urysohn lemma). If K ⊆ Rn is compact and U is an open
set containing K, then there exists f ∈ C∞c (Rn) such that 0 ≤ f ≤ 1, f |K ≡ 1, and
supp f ⊆ U .

Proof. Let δ := dist(K,U c), V := {x : dist(x,K) < δ/3}, and let ϕ be a
mollifier with suppϕ ⊆ Bδ/3(0). Then f := χV ∗ ϕ is as required. �

Finally, we will show that, for 1 ≤ p <∞, Lp(X) is separable, i.e., it contains
a countable dense subset.

Lemma 4.22. If 1 ≤ p <∞, then the set of step functions is dense in Lp(Rn).

Proof. By Proposition 4.13, simple functions s so that λ({x : s(x) 6= 0}) <∞
are dense in Lp(Rn). Such s are finite linear combinations of characteristic functions
of sets E with λ(E) < ∞. So it suffices to show that for given ε > 0 there exists
a step function f so that ‖χE − f‖p ≤ ε. By Proposition 2.15, there exist almost
disjoint cubes Q1, . . . , Qm such that λ

(
E4

⋃m
i=1Qi

)
< ε, and thus f =

∑m
i=1 χQi

satisfies ˆ
|χE − f |p dλ ≤ λ

(
E4

m⋃
i=1

Qi

)
< ε. �

Theorem 4.23 (Separability). For 1 ≤ p <∞, Lp(Rn) is separable.

Proof. Let f ∈ Lp(Rn) and let ε > 0. By Lemma 4.22, there is a step
function s satisfying ‖f −s‖p ≤ ε/2. We may conclude that there is a step function
t satisfying ‖f−t‖p ≤ ε and such that the real and imaginary parts of the coefficients
and the coordinates of the boxes appearing in the canonical form of t are all rational
numbers. So the set of step functions with rational real and imaginary parts of the
coefficients and rational coordinates of the boxes appearing in its canonical form is
dense in Lp(Rn). �

4.5. Modes of convergence

Let (X,S, µ) be a measure space. A sequence fi of measurable complex valued
functions on X is said to be Cauchy in measure if

∀ε > 0 µ({x : |fi(x)− fj(x)| ≥ ε})→ 0 as i, j →∞,

and we say that fi converges in measure to f if

∀ε > 0 µ({x : |fi(x)− f(x)| ≥ ε})→ 0 as i→∞.

Proposition 4.24. If fi → f in L1(µ), then fi → f in measure.

The converse is not true.

Proof. If Ei,ε := {x : |fi(x)− f(x)| ≥ ε}, thenˆ
|fi − f | dµ ≥

ˆ
Ei,ε

|fi − f | dµ ≥ εµ(Ei,ε)

goes to 0 as i→∞. �
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Theorem 4.25. If fi is Cauchy in measure, then there is a measurable function f
such that fi → f in measure, and there is a subsequence of fi that converges to f
µ-a.e. If also fi → g in measure, then f = g µ-a.e.

Proof. The sequence fi has a subsequence hj satisfying

µ({x : |hj(x)− hj+1(x)| ≥ 1/2j}) ≤ 1/2j .

Set Ej := {x : |hj(x)− hj+1(x)| ≥ 1/2j} and Fk :=
⋃∞
j=k Ej . Then µ(Fk) ≤ 21−k.

If x 6∈ Fk, then for all i ≥ j ≥ k,

|hi(x)− hj(x)| ≤
i−1∑
`=j

|h`+1(x)− h`(x)| ≤
i−1∑
`=j

2−` ≤ 21−j . (4.8)

It follows that hj is pointwise Cauchy on (Fk)c. For F =
⋂∞
k=1 Fk, we have µ(F ) =

0, and we define f(x) := limj→∞ hj(x) for x 6∈ F and f(x) := 0 for x ∈ F . Then f is
measurable and hj → f µ-a.e. For x 6∈ Fk and j ≥ k, we have |hj(x)−f(x)| ≤ 21−j ,
by (4.8), and hence hj → f in measure, since µ(Fk)→ 0 as k →∞. It follows that
fi → f in measure, since

{x : |fi(x)− f(x)| ≥ ε} ⊆ {x : |fi(x)− hj(x)| ≥ ε/2} ∪ {x : |hj(x)− f(x)| ≥ ε/2}.

If fi → g in measure, then

{x : |f(x)− g(x)| ≥ ε} ⊆ {x : |f(x)− fi(x)| ≥ ε/2} ∪ {x : |fi(x)− g(x)| ≥ ε/2}

implies f = g µ-a.e. �

Convergence a.e. does not imply convergence in measure. However, this impli-
cation holds on a finite measure space, actually more is true:

Theorem 4.26 (Egorov’s theorem). Let µ(X) < ∞ and let f1, f2, . . . and f be
measurable complex valued functions on X such that fi → f µ-a.e. Then for every
ε > 0 there is a set E ⊆ X such that µ(E) < ε and fi → f uniformly on Ec.

Proof. Without loss of generality assume that fi(x)→ f(x) for every x ∈ X.
For k, ` ∈ N define

Ek,` :=
⋃
i≥k

{x : |fi(x)− f(x)| ≥ 1/`}.

Clearly, Ek,` ⊇ Ek+1,` and
⋂∞
k=1Ek,` = ∅, thus limk→∞ µ(Ek,`) = 0, by Lemma 1.1.

So, given ε > 0, we find a subsequence k` such that µ(Ek`,`) < ε/2`. For E =⋃∞
`=1Ek`,`, we have µ(E) < ε, and |fi(x) − f(x)| < 1/` if i > k` and x 6∈ E. It

follows that fi → f uniformly on Ec. �

Let us call the type of convergence in the conclusion of Egorov’s theorem al-
most uniform convergence. The following diagram summarizes different modes
of convergence fi → f of a sequence of measurable complex valued functions on a
measure space (X,S, µ).
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uniform convergence

��
pointwise convergence

��
fi → f µ-a.e., |fi| ≤ g ∈ L1(µ)

��

+3 µ-a.e. convergence

L1 − convergence

��
convergence in measure

��

almost uniform convergenceks

KS

µ-a.e. convergence for a subsequence µ(X) <∞, µ-a.e. convergence

KS

Theorem 4.27 (Lusin’s theorem). Let f be a Lebesgue measurable complex valued
function defined on a Lebesgue measurable set E ⊆ Rn with λ(E) < ∞. Then for
every ε > 0 there exists a compact set K ⊆ E such that λ(E \K) ≤ ε and such that
f |K is continuous.

Proof. Assume without loss of generality that f is real valued and defined
on Rn by setting f ≡ 0 in Ec. For each positive integer i, let {Bij}∞j=1 be a

collection of disjoint Borel sets so that R =
⋃∞
j=1Bij and diamBij < 1/i. Set

Eij := E ∩ f−1(Bij). By regularity of λ, Theorem 2.9, there are compact sets
Kij ⊆ Eij satisfying λ(Eij \Kij) < ε/2i+j . Since E =

⋃∞
j=1Eij ,

λ
(
E \

∞⋃
j=1

Kij

)
≤ λ

( ∞⋃
j=1

(Eij \Kij)
)
< ε/2i.

By Lemma 1.1, limk→∞ λ(E\
⋃k
j=1Kij) = λ(E\

⋃∞
j=1Kij), and so there are integers

ki such that λ(E \
⋃ki
j=1Kij) < ε/2i. The sets Li :=

⋃ki
j=1Kij are compact. Choose

bij ∈ Bij and define gi : Li → R be setting gi|Kij = bij ; the sets Ki,1, . . . ,Ki,ki

are compact and disjoint, so their mutual distance is positive, and gi is continuous.
As diamBij < 1/i, we have |f(x) − gi(x)| < 1/i for all x ∈ Li. Then the set
K :=

⋂∞
i=1 Li is compact, we have

λ(E \K) ≤
∞∑
i=1

λ(E \ Li) < ε,

and gi → f uniformly on K. It follows that f |K is continuous. �

This does not mean that f is continuous at every x ∈ K; consider e.g. χQ∩[0,1].

4.6. The distribution function

Let f : X → C be a measurable function on a measure space (X,S, µ). The
distribution function df of f is defined by

df (α) := µ({x ∈ X : |f(x)| > α}), α ≥ 0.
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It follows from the definition that df is decreasing. Let us set Ef,α := {x ∈ X :
|f(x)| > α}.

Lemma 4.28. Let (X,S, µ) be a measure space and let f, g : X → C be measurable
functions. Then for all α, β > 0:

(1) If |f | ≤ |g| µ-a.e., then df ≤ dg.
(2) dcf (α) = df (α/|c|) for every c ∈ C \ {0}.
(3) df+g(α+ β) ≤ df (α) + dg(β).
(4) dfg(αβ) ≤ df (α) + dg(β).

Proof. (1) If |f | ≤ |g| µ-a.e., then df (α) = µ(Ef,α) ≤ µ(Eg,α) = dg(α).

(2) We have Ecf,α = Ef,α/|c|.

(3) & (4) If |f(x) + g(x))| > α + β then |f(x)| > α or |g(x)| > β. Similarly if
|f(x)g(x))| > αβ. �

The distribution function df does not provide information about the behavior
of f near any given point. However, the Lp-norm (p <∞) of f can be computed if
we only know df .

Proposition 4.29. Let (X,S, µ) be a σ-finite measure space. If f is a measurable
function on X and 0 < p <∞, thenˆ

|f |p dµ = p

ˆ ∞
0

αp−1df (α) dα. (4.9)

Proof. By Fubini’s theorem 3.27,

p

ˆ ∞
0

αp−1df (α) dα = p

ˆ ∞
0

αp−1

ˆ
X

χEf,α dµ dα

=

ˆ
X

ˆ |f(x)|

0

pαp−1 dα dµ

=

ˆ
X

|f(x)|p dµ. �

Remark 4.30. This result holds without the assumption of σ-finiteness; cf. [5,
6.24].

Let (X,S, µ) be a measure space, and let 1 ≤ p < ∞. The weak Lebesgue
space Lp,∞(µ) is defined as the set of all measurable functions f such that

‖f‖p,∞ := inf
{
C > 0 : df (λ) ≤ (C/α)p for all α > 0

}
(4.10)

= sup
α>0

αdf (α)1/p <∞.

By definition L∞,∞(µ) := L∞(µ). As usual two functions in Lp,∞(µ) are considered
equal if they are equal µ-a.e.

By Lemma 4.28, we obtain that

‖cf‖p,∞ = |c|‖f‖p,∞,

for each c ∈ C \ {0}, and

‖f + g‖p,∞ ≤ 2(‖f‖p,∞ + ‖g‖p,∞).

Moreover, ‖f‖p,∞ = 0 implies that f = 0 µ-a.e. That means that Lp,∞(µ) is a
quasinormed space. One can show that it is complete.
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Proposition 4.31 (Chebyshev’s inequality). Let 1 ≤ p < ∞. If f ∈ Lp(µ) then
f ∈ Lp,∞(µ) and

‖f‖p,∞ ≤ ‖f‖p. (4.11)

Proof. We have for all α > 0,

‖f‖pp =

ˆ
|f |p dµ ≥

ˆ
Ef,α

|f |p dµ ≥ αpµ(Ef,α) = αpdf (α). �

The inclusion Lp(µ) ⊆ Lp,∞(µ) is strict. For example, the function f(x) =
|x|−1/p is in Lp,∞(R) but not in Lp(R) (with the Lebesgue measure).

Proposition 4.32. Let (X,S, µ) be a finite measure space. If 1 ≤ q < p <∞ then
Lp,∞(µ) ⊆ Lq(µ) and

‖f‖q ≤
( p

p− q

)1/q

µ(X)1/q−1/p‖f‖p,∞, f ∈ Lp,∞(µ). (4.12)

Proof. Let f ∈ Lp,∞(µ). Then df (α) ≤ min{µ(X), α−p‖f‖pp,∞}, by (4.10).

Thus, for A := µ(X)−1/p‖f‖p,∞, using Proposition 4.29,

‖f‖qq = q

ˆ ∞
0

αq−1df (α) dα

≤ q
ˆ A

0

αq−1µ(X) dα+ q

ˆ ∞
A

αq−p−1‖f‖pp,∞ dα

= Aq µ(X) +
q

p− q
Aq−p ‖f‖pp,∞

= µ(X)1−q/p‖f‖qp,∞ +
q

p− q
µ(X)1−q/p‖f‖qp,∞

=
p

p− q
µ(X)1−q/p‖f‖qp,∞. �

Proposition 4.33. If 1 ≤ p < q < r <∞, then

Lp,∞(µ) ∩ Lr,∞(µ) ⊆ Lq,∞(µ)

and

‖f‖q,∞ ≤ ‖f‖tp,∞‖f‖1−tr,∞, where
1

q
=
t

p
+

1− t
r

.

Proof. Since tq/p+ (1− t)q/r = 1, for all α > 0,

αqdf (α) = (αdf (α)1/p)tq(αdf (α)1/r)(1−t)q ≤ ‖f‖tqp,∞‖f‖(1−t)qr,∞ . �



CHAPTER 5

Absolute continuity of measures

5.1. Complex measures

Let (X,S) be a measurable space. A complex measure is a mapping ν :
S→ C satisfying

ν
( ∞⋃
i=1

Ei

)
=

∞∑
i=1

ν(Ei),

if Ei ∈ S are pairwise disjoint. Note that setting Ei = ∅ for all i yields ν(∅) = 0.
A positive measure is a complex measure only if it is finite. The above series is
independent of the order of its terms, i.e., it converges unconditionally and hence
absolutely.

Complex measures arise naturally. For instance, let µ be a positive measure on
X and let f ∈ L1(µ). Then ν(E) =

´
E
f dµ is a complex measure; cf. the proof of

Corollary 3.16 and use the dominated convergence theorem 3.22.

For a complex measure ν one defines its total variation by

|ν|(E) := sup
{ ∞∑
i=1

|ν(Ei)| : E =

∞⋃
i=1

Ei, Ei ∈ S disjoint
}
.

By definition we have

|ν(E)| ≤ |ν|(E)

and, if ν is a positive measure, then |ν|(E) = ν(E).

Theorem 5.1. The total variation |ν| of a complex measure ν is a finite positive
measure.

The total variation |ν| is the smallest positive measure that dominates ν, i.e., if
µ is a positive measure such that |ν(E)| ≤ µ(E) for all E ∈ S, then |ν|(E) ≤ µ(E)
for all E ∈ S. The fact that |ν| is finite implies that every complex measure is
bounded: |ν(E)| ≤ |ν|(E) ≤ |ν|(X).

Proof. Let Ei ∈ S be disjoint and E =
⋃∞
i=1Ei. In order to see that |ν| is a

positive measure we need to show

|ν|(E) =

∞∑
i=1

|ν|(Ei). (5.1)

If |ν|(Ei) =∞ for some i, then clearly |ν|(E) =∞; so let us assume that |ν|(Ei) <
∞ for all i. Let ε > 0. For each i, there are disjoint Eij ∈ S so that Ei =

⋃∞
j=1Eij

and |ν|(Ei) ≤
∑∞
j=1 |ν(Eij)|+ ε/2i. Then

∞∑
i=1

|ν|(Ei) ≤
∞∑

i,j=1

|ν(Eij)|+ ε ≤ |ν|(E) + ε,

since E =
⋃∞
i,j=1Eij is a disjoint union. This implies

∑∞
i=1 |ν|(Ei) ≤ |ν|(E).

53
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Conversely, if Fj ∈ S are disjoint and E =
⋃∞
j=1 Fj , then

∞∑
j=1

|ν(Fj)| =
∞∑
j=1

∣∣∣ ∞∑
i=1

ν(Fj ∩ Ei)
∣∣∣

≤
∞∑
j=1

∞∑
i=1

|ν(Fj ∩ Ei)|

=

∞∑
i=1

∞∑
j=1

|ν(Fj ∩ Ei)|

≤
∞∑
i=1

|ν|(Ei),

and taking the supremum over all such partitions {Fj} we may conclude that
|ν|(E) ≤

∑∞
i=1 |ν|(Ei). Thus, we proved (5.1) and |ν| is a positive measure.

It remains to show that |ν|(X) < ∞. Since |ν|(E) ≤ |Re ν|(E) + | Im ν|(E),
we may assume that ν is real valued. That |ν|(X) <∞ will follow from the claim
that, if E ∈ S and |ν|(E) =∞, then E = A ∪B with disjoint A,B ∈ S and

|ν(A)| ≥ 1 and |ν|(B) =∞.

Indeed, this assertion can be applied recursively (starting with E = X) to obtain
disjoint sets A1, A2, . . . ∈ S with |ν(Ai)| ≥ 1 for all i. This leads to a contradiction,
since ν(

⋃∞
i=1Ai) =

∑∞
i=1 ν(Ai), but this series cannot converge.

Let us prove the claim. Suppose that |ν|(E) = ∞. Then there exist disjoint
sets Ei ∈ S with E =

⋃∞
i=1Ei so that

∞∑
i=1

|ν(Ei)| ≥ 2 + |ν(E)|.

Set E+ :=
⋃
ν(Ei)≥0Ei and E− :=

⋃
ν(Ei)<0Ei. Then the previous inequality

becomes

|ν(E+)|+ |ν(E−)| ≥ 2 + ||ν(E+)| − |ν(E−)||
and thus |ν(E±)| ≥ 1. Since E = E+ ∪ E− and so |ν|(E) = |ν|(E+) + |ν|(E−),
|ν|(E+) =∞ or |ν|(E−) =∞ (or both). �

A real measure ν : S → R (often called a signed measure) can be decom-
posed into positive and negative variations,

ν = ν+ − ν− where ν± :=
|ν| ± ν

2
.

By Theorem 5.1, ν± are finite positive measures. This is known as the Jordan
decomposition. If ν = ν1− ν2 is any other decomposition into positive measures,
then ν1 ≥ ν+ and ν2 ≥ ν−; see the remarks after Theorem 5.7.

If ν is a real measure and f is |ν|-integrable, then the integral of f with respect
to ν is defined by ˆ

f dν :=

ˆ
f dν+ −

ˆ
f dν−.

This definition can evidently be extended to any complex measure ν by applying
it to the real and imaginary part of ν.

One can show that the set of all complex measures on a measurable space X
equipped with the norm ‖ν‖ = |ν|(X) forms a Banach space.
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5.2. Absolute continuity and decomposition of measures

Let (X,S) be a measurable space, and let µ be a positive measure on S. In
the following we assume that ν, ν1, ν2, etc., are further either positive or complex
measures on S.

We say that ν is absolutely continuous with respect to µ, and write ν � µ,
if, for each E ∈ S, µ(E) = 0 implies ν(E) = 0. For instance, the measure ν(E) =´
E
f dµ, where f ∈ L1(µ), satisfies ν � µ; we shall see below that every measure

absolutely continuous with respect to µ is of this form.

Two measures ν1 and ν2 on S are called mutually singular, and we write
ν1 ⊥ ν2, if they are supported on disjoint sets, i.e., there exist disjoint E1, E2 ∈ S
such that νi(E) = 0 if E ∩ Ei = ∅, i = 1, 2. For instance, the Lebesgue measure
and the Dirac measure on Rn are mutually singular.

Lemma 5.2.

(1) If νi � µ, i = 1, 2, then ν1 + ν2 � µ.
(2) If νi ⊥ µ, i = 1, 2, then ν1 + ν2 ⊥ µ.
(3) If ν1 � µ and ν2 ⊥ µ, then ν1 ⊥ ν2.
(4) If ν � µ and ν ⊥ µ, then ν = 0.
(5) If ν � µ, then |ν| � µ.

Proof. (1) is obvious.

(2) There exist E1, E2, E ∈ S such that Ei ∩ E = ∅ and νi is supported on
Ei, i = 1, 2, and µ is supported on E. Then ν1 + ν2 is supported on E1 ∪ E2 and
(E1 ∪ E2) ∩ E = ∅.

(3) There exists E2 ∈ S so that ν2 is supported on E2 and µ(E2) = 0. Since
ν1 � µ, ν1(E2) = 0 and hence ν1 has support in Ec2.

(4) By (3), ν ⊥ ν and hence ν = 0.

(5) Suppose that µ(E) = 0 and let E =
⋃∞
i=1Ei for disjoint Ei ∈ S. Then

µ(Ei) = 0 for all i. Since ν � µ we have ν(Ei) = 0 for all i, and thus
∑
i |ν(Ei)| = 0.

This implies |ν|(E) = 0. �

Theorem 5.3 (Lebesgue–Radon–Nikodym theorem). Let µ and ν be positive finite
measures on a measurable space (X,S). Then we have

(1) There is a unique pair of positive measures νa and νs on S such that

ν = νa + νs, νa � µ, νs ⊥ µ, νa ⊥ νs.

(2) There is a unique f ∈ L1(µ) such that

νa(E) =

ˆ
E

f dµ, E ∈ S.

The decomposition ν = νa + νs is called the Lebesgue decomposition of ν
with respect to µ. Part (2) is known as the Radon–Nikodym theorem. The
function f in (2) is called the Radon–Nikodym derivative of νa with respect to µ;
one writes dνa = f dµ or f = dνa/ dµ.

Proof. To see uniqueness in (1) let ν′a and ν′s be another pair satisfying (1).
Then νa−ν′a = ν′s−νs, νa−ν′a � µ, and ν′s−νs ⊥ µ, and thus νa−ν′a = ν′s−νs = 0,
by Lemma 5.2. Uniqueness in (2) follows from Proposition 3.21.

Set ϕ = ν + µ. Then ϕ is a positive finite measure on S, and we haveˆ
X

f dϕ =

ˆ
X

f dν +

ˆ
X

f dµ
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which is obvious for characteristic functions of sets in S, hence for simple functions,
and thus also for arbitrary measurable functions. If f ∈ L2(ϕ), then∣∣∣ˆ

X

f dν
∣∣∣ ≤ ˆ

X

|f | dν ≤
ˆ
X

|f | dϕ ≤ ϕ(X)1/2‖f‖L2(ϕ),

by Hölder’s inequality 4.2. We may infer that f 7→
´
X
f dν is a bounded linear

functional on L2(ϕ). By Corollary 4.12 and Theorem A.8, there exists g ∈ L2(ϕ)
such that, for all f ∈ L2(ϕ), ˆ

X

f dν =

ˆ
X

fg dϕ.

In particular, for all E ∈ S,

ν(E) =

ˆ
X

χEg dϕ =

ˆ
E

g dϕ.

It follows that g(x) ≥ 0 for ϕ-a.e. x, and since

µ(E) = ϕ(E)− ν(E) =

ˆ
E

(1− g) dϕ,

we also have g(x) ≤ 1 for ϕ-a.e. x. Without loss of generality we may assume that
0 ≤ g(x) ≤ 1 for all x. We obtain, for f ∈ L2(ϕ),ˆ

X

(1− g)f dν =

ˆ
X

f dν −
ˆ
X

fg dν =

ˆ
X

fg dϕ−
ˆ
X

fg dν =

ˆ
X

fg dµ. (5.2)

Set A := {x : 0 ≤ g(x) < 1} and B := {x : g(x) = 1}, and define

νa(E) := ν(A ∩ E), νs(E) := ν(B ∩ E), E ∈ S.

Taking f = χB in (5.2) we find 0 =
´
B

(1 − g) dν =
´
B
g dµ = µ(B), and hence

νs ⊥ µ. Since g is bounded and ϕ is finite, f = (1 + g + g2 + · · ·+ gk)χE ∈ L2(ϕ),
for E ∈ S, and inserting f in (5.2) givesˆ

E

(1− gk+1) dν =

ˆ
E

g(1 + g + g2 + · · ·+ gk) dµ.

For x ∈ B, 1− gk+1(x) = 0, and for x ∈ A, gk+1(x)↘ 0 as k →∞, and therefore
the left side converges to νa(E), by the monotone convergence theorem 3.14. The
integrand of the right side converges monotonically to a positive measurable func-
tion h, and, by the monotone convergence theorem 3.14, we find that, for E ∈ S,

νa(E) =

ˆ
E

h dµ.

For E = X we see that h ∈ L1(µ), since νa(X) < ∞. So we have proved (2). In
particular, νa � µ which completes the proof of (1). �

Corollary 5.4 (Lebesgue–Radon–Nikodym theorem). We have the following ex-
tensions:

(1) Theorem 5.3 remains true if µ is a positive σ-finite measure and ν is a
complex measure (where νa and νs now are complex measures).

(2) If µ and ν are positive σ-finite measures, then Theorem 5.3 still holds with
the restriction that the function f is no longer in L1(µ).

Proof. If µ is σ-finite, then
⋃∞
i=1Xi = X for disjoint Xi ∈ S with µ(Xi) <∞.

(1) Suppose first that ν is positive with ν(X) < ∞. Then we may apply
Theorem 5.3 to each Xi. The Lebesgue decompositions of the restrictions of ν
to Xi add up to a Lebesgue decomposition of ν. We obtain L1-functions fi on
Xi with respect to the restriction of µ to Xi. Then f :=

∑∞
i=1 fiχXi satisfies
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νa(E) =
´
E
f dµ and is L1(µ), since ν(X) < ∞. If ν is complex valued, we apply

this to positive and negative variations of the real and imaginary part of ν.

(2) This follows in the same way as (1); we can assume that also ν(Xi) < ∞.
The function f satisfies

´
Xi
f dµ <∞ for each i. �

The result fails if we go beyond σ-finiteness. For example, on X = R consider
the σ-algebra L(R) of Lebesgue measurable sets and let µ be the counting measure
and ν = λ the Lebesgue measure on L(R). Then ν � µ, but there is no function
f satisfying dν = f dµ. If there were such f , then f(x0) > 0 for some x0 ∈ R and
0 < f(x0) =

´
{x0} f dµ = ν({x0}) = 0.

Proposition 5.5 (Characterization of absolute continuity). Let µ and ν be mea-
sures on a measurable space (X,S), µ positive and ν complex. Then the following
are equivalent:

(1) ν � µ.
(2) For each ε > 0 there is a δ > 0 so that |ν(E)| < ε for all E ∈ S with

µ(E) < δ.

Proof. Clearly, (2) implies (1). Assume that (2) does not hold. Then there is
ε > 0 and there are Ei ∈ S so that µ(Ei) < 2−i and |ν(Ei)| ≥ ε. Let us set Fk :=⋃∞
i=k Ei and F =

⋂∞
k=1 Fk. Then µ(Fk) ≤ 2−k+1 and µ(F ) = limk→∞ µ(Fk) = 0,

by Lemma 1.1. Similarly, |ν|(F ) = limk→∞ |ν|(Fk) ≥ ε > 0. Thus we do not have
|ν| � µ, and hence (1) does not hold, by Lemma 5.2. �

Theorem 5.6 (Polar decomposition). Let ν be a complex measure on a measurable
space (X,S). Then there exists a measurable function f on X satisfying |f(x)| = 1
for all x ∈ X, and such that

dν = f d|ν|.

Proof. The Radon–Nikodym theorem 5.3 implies that there is a function
f ∈ L1(|ν|) so that dν = f d|ν|. Let us show that |f(x)| = 1 for all x ∈ X.

Set Ea := {x : |f(x)| < a} and let Ea =
⋃∞
i=1Eai be a partition of Ea. Then

∞∑
i=1

|ν(Eai)| =
∞∑
i=1

∣∣∣ˆ
Eai

f d|ν|
∣∣∣ ≤ ∞∑

i=1

a|ν|(Eai) = a|ν|(Ea),

and hence |ν|(Ea) ≤ a|ν|(Ea). This implies that |ν|(Ea) = 0 if a < 1, and therefore
|f | ≥ 1 |ν|-a.e.

On the other hand, whenever |ν|(E) > 0,∣∣∣ 1

|ν|(E)

ˆ
E

f d|ν|
∣∣∣ =
|ν(E)|
|ν|(E)

≤ 1.

We will show that this implies that |f | ≤ 1 |ν|-a.e. Take an open disk Br(c)

in the complement of the closed unit disk B1(0) in C. It suffices to show that

E := f−1(Br(c)) is a |ν|-null set, since B1(0)
c

is a countable union of such disks.
If |ν|(E) > 0 then∣∣∣ 1

|ν|(E)

ˆ
E

f d|ν| − c
∣∣∣ =

∣∣∣ 1

|ν|(E)

ˆ
E

(f − c) d|ν|
∣∣∣ ≤ r,

a contradiction.

By redefining f on the set {x : |f(x)| 6= 1}, the statement follows. �
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Theorem 5.7 (Hahn decomposition). Let ν be a signed measure on a measurable
space (X,S). Then there exist disjoint sets P,N ∈ S such that X = P ∪N and

ν+(E) = ν(P ∩ E) and ν−(E) = −ν(N ∩ E), E ∈ S.

Proof. By Theorem 5.6, dν = f d|ν| for a measurable function f with |f | = 1.
Since ν is real valued, so is f ; this is true a.e. and everywhere after redefining f .
Thus f(X) = {±1}. Set P := {x : f(x) = 1} and N := {x : f(x) = −1}. Note that

1 + f(x)

2
=

{
f(x) x ∈ P
0 x ∈ N

,

and since ν+ = (|ν|+ ν)/2, we have for E ∈ S,

ν+(E) =
1

2

ˆ
E

(1 + f) d|ν| =
ˆ
P∩E

f d|ν| = ν(P ∩ E).

That ν−(E) = −ν(N ∩E) follows from ν = ν+ − ν− and from ν(E) = ν(P ∩E) +
ν(N ∩ E). �

As a corollary we obtain that the Jordan decomposition is minimal in the
following sense: if ν = ν1 − ν2 for positive measures ν1 and ν2 then ν1 ≥ ν+ and
ν2 ≥ ν−. In fact, as ν ≤ ν1 we have ν+(E) = ν(P ∩ E) ≤ ν1(P ∩ E) ≤ ν1(E).



CHAPTER 6

Differentiation and integration

6.1. The Lebesgue differentiation theorem

Recall that L1
loc(Rn) is the set of measurable functions f : Rn → C such that´

K
|f(x)| dx <∞ for all bounded measurable subsets K ⊆ Rn.

For f ∈ L1
loc(Rn), x ∈ Rn, and r > 0 we consider the average Arf(x) of f

over the open ball Br(x),

Arf(x) :=
1

λ(Br(x))

ˆ
Br(x)

f(y) dy =

 
Br(x)

f(y) dy.

We shall use the notation
ffl
E
f dx = λ(E)−1

´
E
f dx whenever E is bounded and

measurable, λ(E) > 0, and f ∈ L1
loc(Rn).

Lemma 6.1. The mapping (0,∞)× Rn 3 (r, x) 7→ Arf(x) ∈ C is continuous.

Proof. The functions χBr(x) converge pointwise to χBr0 (x0) on the set Rn\{x :

|x − x0| = r0} as (r, x) tends to (r0, x0). Thus, χBr(x) → χBr0 (x0) λ-a.e. on Rn.

Moreover, |χBr(x)| ≤ χBr0+1(x0) if r < r0+1/2 and |x−x0| < 1/2. By the dominated
convergence theorem 3.22, we haveˆ

Br(x)

f(y) dy →
ˆ
Br0 (x0)

f(y) dy,

and since λ(Br(x)) = λ(B1(0))rn → λ(B1(0))rn0 = λ(Br0(x0)), the statement
follows. �

For f ∈ L1
loc(Rn) we may define the Hardy–Littlewood maximal function

Mf by

Mf(x) := sup
r>0

Ar|f |(x) = sup
r>0

 
Br(x)

|f(y)| dy.

Then Mf is measurable, since (Mf)−1((a,∞)) =
⋃
r>0(Ar|f |)−1((a,∞)) is open,

by Lemma 6.1.

Lemma 6.2. Let C be a collection of open balls in Rn, and U =
⋃
C. If c < λ(U),

then there are finitely many disjoint B1, . . . , Bk ∈ C so that
∑k
j=1 λ(Bj) > 3−nc.

Proof. By Theorem 2.9, there is a compact set K ⊆ U with λ(K) > c. The
set K is covered by finitely many balls A1, . . . , A` ∈ C. Let B1 be one of the balls
Ai with maximal radius. Let B2 be a ball of maximal radius among the balls Ai
disjoint from B1. Let B3 be a ball of maximal radius among the balls Ai disjoint
from B1 and B2, etc., until the collection of Ai is exhausted. If Ai 6∈ {B1, . . . , Bk}
then Ai ∩ Bj 6= ∅ for some j, and if j is the smallest integer with that property,
then the radius of Ai is at most that of Bj . Consequently, Ai ⊆ B∗j , where B∗j
is the open ball concentric with Bj whose radius is three times that of Bj . Then

59
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B∗1 , . . . , B
∗
k cover K and so

c < λ(K) ≤
k∑
j=1

λ(B∗j ) = 3n
k∑
j=1

λ(Bj). �

Theorem 6.3 (M is weak type (1, 1)). For each f ∈ L1(Rn) and each a > 0, we
have

λ({x : Mf(x) > a}) ≤ C

a

ˆ
Rn
|f(x)| dx,

where C is a constant depending only on n.

Proof. Set Ea := {x : Mf(x) > a} and let x ∈ Ea. Then there exists
rx > 0 so that Arx |f |(x) > a. The collection of balls {Brx(x)}x∈Ea covers Ea,
and by Lemma 6.2, given c < λ(Ea) there exist x1, . . . , xk ∈ Ea so that the balls

Bj = Brxj (xj) are disjoint and
∑k
j=1 λ(Bj) > 3−nc. Thus,

c < 3n
k∑
j=1

λ(Bj) ≤
3n

a

k∑
j=1

ˆ
Bj

|f(x)| dx ≤ 3n

a

ˆ
Rn
|f(x)| dx.

Letting c→ λ(Ea) yields the result. �

A sublinear mapping T (i.e. |T (f + g)| ≤ |Tf | + |Tg| and |T (cf)| = c|Tf | for
c > 0) is called weak type (p, q) for 1 ≤ p ≤ ∞ and 1 ≤ q < ∞ if T maps Lp(µ)
into Lq,∞(µ) and ‖Tf‖q,∞ ≤ C‖f‖p for all f ∈ Lp(µ).

Theorem 6.3 means that the Hardy–Littlewood maximal operator M satisfies
‖Mf‖1,∞ ≤ C‖f‖1 for f ∈ L1(Rn), so it is weak type (1, 1); see also Corollary 7.11.

Proposition 6.4. If f ∈ L1
loc(Rn) then limr→0Arf(x) = f(x) for λ-a.e. x ∈ Rn,

i.e.,

lim
r→0

 
Br(x)

(f(y)− f(x)) dy = 0 for λ-a.e. x ∈ Rn. (6.1)

Proof. It suffices to show that, for eachN ∈ N, we have limr→0Arf(x) = f(x)
for λ-a.e. x ∈ BN (0). As, for x ∈ BN (0) and r ≤ 1, the values of Arf(x) depend
only on the values of f(y) for y ∈ BN+1(0), we may replace f by χBN+1(0)f and

hence assume that f ∈ L1(Rn).

Let ε > 0. By Theorem 4.14, there is a continuous function g with ‖f−g‖1 ≤ ε.
By continuity of g, for each x ∈ Rn,

|Arg(x)− g(x)| ≤
 
Br(x)

|g(y)− g(x)| dy ≤ sup
y∈Br(x)

|g(y)− g(x)| → 0

as r → 0. Now

|Arf(x)− f(x)| ≤ Ar|f − g|(x) + |Arg(x)− g(x)|+ |g(x)− f(x)|,

and taking lim supr→0 = limε→0 sup0<r<ε on both sides we find

lim sup
r→0

|Arf(x)− f(x)| ≤M(f − g)(x) + |g(x)− f(x)|.

This implies that

Ea := {x : lim sup
r→0

|Arf(x)− f(x)| > a}

satisfies

Ea ⊆ {x : M(f − g)(x) > a/2} ∪ {x : |g(x)− f(x)| > a/2}.
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It follows from Theorem 6.3 and Chebyshev’s inequality 4.31 that

λ(Ea) ≤ 2(C + 1)

a

ˆ
Rn
|f(x)− g(x)| dx ≤ 2(C + 1)

a
ε.

As ε > 0 was arbitrary, λ(Ea) = 0.

Since limr→0Arf(x) = f(x) if and only if lim supr→0 |Arf(x) − f(x)| = 0, we
have limr→0Arf(x) = f(x) if x 6∈

⋃∞
k=1E1/k. This implies the assertion. �

We will show in the next theorem that (6.1) remains true if we replace the
integrand by its absolute value. A Lebesgue point of a function f ∈ L1

loc(Rn) is
a point x ∈ Rn so that

lim
r→0

 
Br(x)

|f(y)− f(x)| dy = 0.

Let Lf denote the set of all Lebesgue points of f .

Theorem 6.5. If f ∈ L1
loc(Rn) then λ((Lf )c) = 0.

Proof. Let c ∈ C. Applying (6.1) to x 7→ |f(x)− c| shows that

lim
r→0

 
Br(x)

|f(y)− c| dy = |f(x)− c|

except on a null set Ec. Let D be a countable dense subset of C. Then E =
⋃
c∈D Ec

is a null set. Assume x 6∈ E. For each ε > 0 there is c ∈ D so that |f(x) − c| < ε,
and thus

lim sup
r→0

 
Br(x)

|f(y)−f(x)| dy ≤ lim sup
r→0

 
Br(x)

|f(y)−c| dy+ ε = |f(x)−c|+ ε < 2ε.

Since ε was arbitrary, the proof is complete. �

We shall now establish Theorem 6.5 for families of sets more general than
{Br(x)}r. A family of Borel sets {Er}r>0 is said to shrink nicely to x if

• Er ⊆ Br(x) for all r > 0,
• there is a > 0 so that λ(Er) > aλ(Br(x)) for all r > 0.

The sets Er need not contain x.

Theorem 6.6 (Lebesgue differentiation theorem). Let f ∈ L1
loc(Rn). Then, for

each x ∈ Lf and each family {Er}r>0 that shrinks nicely to x,

lim
r→0

 
Er

|f(y)− f(x)| dy = 0 and lim
r→0

 
Er

f(y) dy = f(x).

Proof. Since {Er}r>0 shrinks nicely to x,

1

λ(Er)

ˆ
Er

|f(y)− f(x)| dy ≤ 1

aλ(Br(x))

ˆ
Br(x)

|f(y)− f(x)| dy → 0

as r → 0, by Theorem 6.5. The second equality may be written in the form

lim
r→0

 
Er

(f(y)− f(x)) dy = 0

and thus is a consequence of the first. �

Corollary 6.7 (Antiderivatives). If f ∈ L1(R) and F (x) =
´ x
−∞ f(t) dt, x ∈ R,

then F ′(x) = f(x) on every Lebesgue point of f .
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Proof. For Er = [x, x+ r), Theorem 6.6 shows that, for x ∈ Lf ,

lim
r→0

F (x+ r)− F (x)

r
= lim
r→0

1

r

ˆ x+r

x

f(y) dy = lim
r→0

 
Er

f(y) dy = f(x),

so the right derivative of F at x exists and equals f(x). Similarly for the left
derivative. �

6.2. Derivatives of measures

The Radon–Nikodym theorem provides an abstract notion of derivative of a
complex measure with respect to a positive measure. On the measurable space
(Rn,B(Rn)) we can define a pointwise derivative of a complex measure with respect
to Lebesgue measure which coincides λ-a.e. with the Radon–Nikodym derivative.

Theorem 6.8. Let µ be a complex Borel measure on Rn with Lebesgue decompo-
sition dµ = dν + f dλ. Then for λ-a.e. x ∈ Rn,

lim
r→0

µ(Er)

λ(Er)
= f(x),

for every family {Er}r>0 that shrinks nicely to x.

Proof. By the Radon–Nikodym theorem 5.3, f ∈ L1(Rn). So, by Theorem
6.6, it suffices to show that, for λ-a.e. x ∈ Rn,

lim
r→0

ν(Er)

λ(Er)
= 0

for every family {Er}r>0 that shrinks nicely to x. We may assume without loss of
generality that ν is positive and Er = Br(x), thanks to∣∣∣ν(Er)

λ(Er)

∣∣∣ ≤ |ν|(Er)
λ(Er)

≤ |ν|(Br(x))

aλ(Br(x))
.

Let A be a Borel set such that ν(A) = λ(Ac) = 0, and set

Fk :=
{
x ∈ A : lim sup

r→0

ν(Br(x))

λ(Br(x))
>

1

k

}
.

To complete the proof it is enough to show that λ(Fk) = 0 for all k.

Since ν is finite (because µ is finite), ν is regular, by Theorem 2.7. Hence, for
given ε > 0 there is an open set U ⊇ A so that ν(U) < ε. By definition of Fk, if
x ∈ Fk then there is a ball Bx := Brx(x) ⊆ U such that ν(Bx) > k−1λ(Bx). Set
V :=

⋃
x∈Fk Bx and choose c < λ(V ). By Lemma 6.2, there exist x1, . . . , xj so that

Bx1
, . . . , Bxj are disjoint and

c < 3n
j∑
i=1

λ(Bxi) ≤ 3nk

j∑
i=1

ν(Bxi) ≤ 3nkν(V ) ≤ 3nkν(U) < 3nkε.

Letting c→ λ(V ) we may conclude that λ(Fk) = 0. �

For a complex Borel measure µ on Rn we call

(Dµ)(x) = lim
r→0

µ(Br(x))

λ(Br(x))

the derivative of µ at x ∈ Rn, provided that the limit exists. Theorem 6.8 tells
us that the derivative of a complex Borel measure exists |Leb-a.e. and equals the
Radon–Nikodym derivative of the absolutely continuous part of µ with respect to
λ.
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6.3. The fundamental theorem of calculus

A function f : [a, b] → C, a, b ∈ R, is said to be absolutely continuous on
[a, b], we write f ∈ AC([a, b]), if for each ε > 0 there is a δ > 0 so that for any
n ∈ N and any disjoint collection of subintervals (ai, bi) ⊆ [a, b]

n∑
i=1

(bi − ai) < δ =⇒
n∑
i=1

|f(bi)− f(ai)| < ε. (6.2)

Obviously, f ∈ AC([a, b]) is uniformly continuous on [a, b]. Note that AC([a, b])
forms a vector space.

Lemma 6.9. Let I = [a, b] and let f ∈ L1(I). Then

F (x) := F (a) +

ˆ x

a

f(t) dt, x ∈ I,

is absolutely continuous on I.

Proof. Let µ be the measure on I defined by dµ = f dλ. Since µ � λ and
hence |µ| � λ by Lemma 5.2, for each ε > 0 there is a δ > 0 so that |µ|(E) < ε if
λ(E) < δ, by Proposition 5.5. It follows that F is absolutely continuous on I, as
F (y)− F (x) = µ((x, y)) for a ≤ x < y ≤ b. �

Proposition 6.10. For a continuous nondecreasing function f : I = [a, b] → R
the following are equivalent:

(1) f ∈ AC(I).
(2) f maps sets of measure zero to sets of measure zero.
(3) f is differentiable a.e. on I, f ′ ∈ L1(I), and

f(x)− f(a) =

ˆ x

a

f ′(t) dt, x ∈ I.

Property (2) is called the Lusin (N)-property.

Proof. (1) ⇒ (2) Let E ⊆ I be measurable and λ(E) = 0. Without loss of
generality assume that E ⊆ (a, b). Let ε > 0. Then there is δ > 0 such that (6.2)
holds. There exists an open set V with E ⊆ V ⊆ I and λ(V ) < δ, by Theorem 2.9.
Let (ai, bi) denote the connected components of V . Then λ(V ) =

∑
(bi − ai) < δ

and thus
∑

(f(bi) − f(ai)) < ε, by (6.2), where we first consider partial sums and
then proceed to the limit. Since f(E) ⊆

⋃
[f(ai), f(bi)] and the latter is a Borel set

of measure bounded by ε, we we may conclude that λ(f(E)) = 0 (as λ is complete).

(2) ⇒ (3) We define

g(x) := x+ f(x), x ∈ I.
Then g has the Lusin (N)-property, since, if f maps an interval J of length ` to
an interval of length `′, then g(J) is an interval of length ` + `′. We claim that
g maps measurable sets E ⊆ I to measurable sets. Indeed, by Corollary 2.10,
E = E0 ∪E1 where λ(E0) = 0 and E1 is a Fσ-set. In particular, E1 is a countable
union of compact sets and, as g is continuous, so is g(E1). Since g has the Lusin
(N)-property, λ(g(E0)) = 0 and we may conclude that g(E) = g(E0) ∪ g(E1) is
measurable.

We define
µ(E) := λ(g(E)), E ⊆ I measurable.

Then µ is a positive bounded measure on the Lebesgue measurable sets E ⊆ I,
since g is injective and so σ-additivity of λ transfers to µ. Moreover, µ� λ, since g
has the Lusin (N)-property. By the Radon–Nikodym theorem 5.3, there exists h ∈
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L1(I) such that dµ = h dλ. Consequently, for E = [a, x] we find g(E) = [g(a), g(x)]
and

g(x)− g(a) = λ(g(E)) = µ(E) =

ˆ
E

h dλ =

ˆ x

a

h(t) dt,

which gives

f(x)− f(a) =

ˆ x

a

(h(t)− 1) dt, x ∈ I.

By Corollary 6.7, f ′ = h− 1 a.e., and (3) is shown.

(3) ⇒ (1) follows from Lemma 6.9. �

To any function f : I = [a, b]→ C we associate the total variation function

Tf (x) := sup
{ n∑
i=1

|f(xi)− f(xi−1)| : n ∈ N, a = x0 < · · · < xn = x
}
, x ∈ I.

In general 0 ≤ Tf (x) ≤ Tf (y) ≤ ∞ if x < y. We say that f is of bounded
variation, and write f ∈ BV (I), if Tf (b) < ∞; V ba (f) = Tf (b) is called the total
variation of f .

Proposition 6.11. An absolutely continuous function f : I = [a, b] → R has
bounded variation. The functions Tf , Tf + f , and Tf − f are nondecreasing and
absolutely continuous on I.

Proof. For ε = 1 there is a δ > 0 such that (6.2) holds. Set n := b2(b− a)/δc
and divide [a, b] into n intervals [xi−1, xi] of equal length (b−a)/n. Since (b−a)/n <
δ, (6.2) implies that V xixi−1

(f) ≤ 1 and therefore

V ba (f) =

n∑
i=1

V xixi−1
(f) ≤ n <∞,

whence f has bounded variation on I.

If a = x0 < · · · < xn = x < y ≤ b then

Tf (y) ≥ |f(y)− f(x)|+
n∑
i=1

|f(xi)− f(xi−1)|

and hence Tf (y) ≥ |f(y)− f(x)|+ Tf (x) and, in particular,

Tf (y) ≥ f(y)− f(x) + Tf (x) and Tf (y) ≥ f(x)− f(y) + Tf (x).

Thus Tf , Tf + f , and Tf − f are nondecreasing.

It remains to show that Tf is absolutely continuous on I. For a ≤ x < y ≤ b,

Tf (y)− Tf (x) = sup
{ n∑
i=1

|f(xi)− f(xi−1)| : n ∈ N, x = x0 < · · · < xn = y
}
.

(6.3)

For ε > 0 there is a δ > 0 such that (6.2) holds. Let (aj , bj) be disjoint subintervals

of I so that
∑N
j=1(bj − aj) < δ. Applying (6.3) to each (aj , bj), we get

N∑
j=1

(Tf (bj)− Tf (aj)) ≤ ε,

by (6.2). Thus Tf is absolutely continuous on I. �
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Example 6.12 (Cantor function). The Cantor function f from Example 3.5 is not
absolutely continuous. In fact, f(C) = [0, 1] and so the Lusin (N)-property fails.

f is differentiable a.e., f ′ = 0 on [0, 1] \ C, but 1 = f(1) − f(0) 6=
´ 1

0
f ′(t) dt = 0.

However, f has bounded variation with V 1
0 (f) = 1.

Theorem 6.13 (Fundamental theorem of calculus). For a function f : I = [a, b]→
C the following are equivalent:

(1) f ∈ AC(I).
(2) f(x) = f(a) +

´ x
a
g(t) dt for some g ∈ L1(I).

(3) f is differentiable a.e. in I, f ′ ∈ L1(I), and f(x) = f(a) +
´ x
a
f ′(t) dt.

Proof. (2) ⇒ (1) is Lemma 6.9 and (3) ⇒ (2) is trivial.

(1) ⇒ (3) Without loss of generality assume that f is real valued. Write

f =
Tf + f

2
− Tf − f

2
.

By Proposition 6.11, the functions f± := (Tf ± f)/2 are nondecreasing and ab-
solutely continuous, and by Proposition 6.10, f± satisfy (3). It follows that
f = f+ − f− satisfies (3). �

Corollary 6.14 (Integration by parts). If f, g ∈ AC([a, b]) then fg ∈ AC([a, b]),
and ˆ b

a

f ′(x)g(x) dx = f(b)g(b)− f(a)g(a)−
ˆ b

a

f(x)g′(x) dx.

Proof. Let ε > 0. Then there is δ > 0 so that for any finite disjoint collection
of subintervals (ai, bi) ⊆ [a, b] with

∑n
i=1(bi − ai) < δ we have

n∑
i=1

|f(bi)− f(ai)| < ε and

n∑
i=1

|g(bi)− g(ai)| < ε.

Let C := max{‖f‖∞, ‖g‖∞}. Then

|f(bi)g(bi)− f(ai)g(ai)| ≤ |f(bi)||g(bi)− g(ai)|+ |g(ai)||f(bi)− f(ai)|

and thus
n∑
i=1

|f(bi)g(bi)− f(ai)g(ai)| ≤ 2Cε.

Hence fg ∈ AC([a, b]). By Theorem 6.13,

f(b)g(b)− f(a)g(a) =

ˆ b

a

(fg)′(x) dx

and, as f , g, and fg are differentiable a.e., the desired formula follows from the
product rule. �

6.4. Rademacher’s theorem

Let A ⊆ Rn. Recall that a mapping f : A→ Rm is said to be Lipschitz if

Lip(f) := sup
x,y∈A
x 6=y

|f(x)− f(y)|
|x− y|

<∞.

We say that f is locally Lipschitz if the restriction f |K to every compact subset
K ⊆ A is Lipschitz.
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Theorem 6.15 (Lipschitz extensions). Let A ⊆ Rn and let f : A → Rm be

Lipschitz. Then there exists a Lipschitz extension f̃ : Rn → Rm of f with
Lip(f̃) ≤

√
mLip(f).

Proof. If m = 1 we may define

f̃(x) := inf
a∈A

(
f(a) + Lip(f)|x− a|

)
.

Indeed, if x ∈ A then for all a ∈ A,

f̃(x) ≤ f(x) ≤ f(a) + Lip(f)|x− a|

and thus f̃(x) = f(x). For x, y ∈ Rn,

f̃(x) ≤ inf
a∈A

(
f(a) + Lip(f)(|y − a|+ |x− y|)

)
= f̃(y) + Lip(f)|x− y|,

and symmetrically f̃(y) ≤ f̃(x) + Lip(f)|x− y|.
If f = (f1, . . . , fm) : A→ Rm, then f̃ := (f̃1, . . . , f̃m) is as required, since

|f̃(x)− f̃(y)|2 =

m∑
i=1

|f̃i(x)− f̃i(y)|2 ≤ mLip(f)2|x− y|2. �

Actually, by Kirszbraun’s theorem there is an extension f̃ with Lip(f̃) =
Lip(f); cf. [4].

We shall now prove Rademacher’s theorem that a Lipschitz function f :
Rn → Rm is differentiable a.e. That is at a.e. x ∈ Rn there exists a linear mapping
T : Rn → Rm such that

lim
y→x

|f(y)− f(x)− T (x− y)|
|x− y|

= 0.

If such a linear mapping exists, it is obviously unique. We denote it by df(x) and
call it the derivative of f at x.

Theorem 6.16 (Rademacher). Let f : Rn → Rm be locally Lipschitz. Then f is
differentiable a.e.

Proof. We may assume without loss of generality that m = 1 and that f is
Lipschitz, by Theorem 6.15, since differentiability is a local property.

For v ∈ Rn with |v| = 1, we consider the directional derivative of f at x,

dvf(x) := lim
t→0

f(x+ tv)− f(x)

t

provided this limit exists. We claim that dvf(x) exists for a.e. x ∈ Rn.

We work with the Dini derivatives dvf(x) and dvf(x). Since f is continuous,

dvf(x) := lim sup
t→0

f(x+ tv)− f(x)

t
= lim
k→∞

sup
0<|t|<1/k

t∈Q

f(x+ tv)− f(x)

t

is Borel measurable, by Theorem 3.4; the same holds for

dvf(x) := lim inf
t→0

f(x+ tv)− f(x)

t
.

Consequently, the set

Ev := {x ∈ Rn : dvf(x) fails to exist} = {x ∈ Rn : dvf(x) < dvf(x)}

is a Borel set; note that dvf(x), dvf(x) ∈ R since f is Lipschitz. For fixed x, v ∈
Rn with |v| = 1 then function R 3 t 7→ f(x + tv) is Lipschitz, hence absolutely
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continuous, and thus differentiable at a.e. t ∈ R, by Theorem 6.13. So H1(Ev∩L) =
0 for each line L whose direction is v. By Fubini’s theorem 3.27, Ev is a null set.

If we take the standard unit vectors in Rn for v, we may conclude that the
gradient

∇f(x) := (∂1f(x), . . . , ∂nf(x))

exists for a.e. x ∈ Rn.

We next claim that dvf(x) = ∇f(x) · v for a.e. x ∈ Rn. Let ϕ ∈ C∞c (Rn). We
have ˆ

Rn

(f(x+ tv)− f(x)

t

)
ϕ(x) dx = −

ˆ
Rn
f(x)

(ϕ(x)− ϕ(x− tv)

t

)
dx.

As | f(x+v/k)−f(x)
1/k | ≤ Lip(f), the dominated convergence theorem 3.22 yields

ˆ
Rn
dvf(x)ϕ(x) dx = −

ˆ
Rn
f(x)dvϕ(x) dx

= −
ˆ
Rn
f(x)∇ϕ(x) · v dx

= −
n∑
i=1

ˆ
Rn
f(x)∂iϕ(x)vi dx

=

n∑
i=1

ˆ
Rn
∂if(x)ϕ(x)vi dx

=

ˆ
Rn
ϕ(x)∇f(x) · v dx,

where we used Fubini’s theorem 3.27, the absolute continuity of f on lines, and
Corollary 6.14. Since the equality holds for every ϕ ∈ C∞c (Rn), we have dvf(x) =
∇f(x) · v for a.e. x ∈ Rn; cf. Proposition 3.21.

Choose a countable dense subset {v1, v2, . . .} of Sn−1. Set

Ek := {x ∈ Rn : dvkf(x) and ∇f(x) exist and satisfy dvkf(x) = ∇f(x) · vk}
and E :=

⋂∞
k=1Ek. Then λ(Ec) = 0.

Let us show that f is differentiable at every x ∈ E. Fix x ∈ E. For v ∈ Sn−1

and t ∈ R \ {0} consider

Q(x, v, t) :=
f(x+ tv)− f(x)

t
−∇f(x) · v.

Then, for w ∈ Sn−1,

|Q(x, v, t)−Q(x,w, t)| ≤ |f(x+ tv)− f(x+ tw)|
|t|

+ |∇f(x) · (v − w)|

≤ Lip(f)|v − w|+ |∇f(x)||v − w|
≤ (
√
n+ 1) Lip(f)|v − w|. (6.4)

Fix ε > 0 and choose an integer N sufficiently large such that if v ∈ Sn−1 then

|v − vk| ≤
ε

2(
√
n+ 1) Lip(f)

(6.5)

for some k ∈ {1, . . . , N}. Since Q(x, vk, t) → 0 as t → 0, there exists δ > 0 such
that

|Q(x, vk, t)| < ε/2 for 0 < |t| < δ, k = 1, . . . , N. (6.6)

By (6.4), (6.5), and (6.6), for each v ∈ Sn−1 there exists k ∈ {1, . . . , N} such that

|Q(x, v, t)| ≤ |Q(x, vk, t)|+ |Q(x, v, t)−Q(x, vk, t)| < ε
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if 0 < |t| < δ; the same δ works for all v ∈ Sn−1. Let y ∈ Rn, y 6= x. Then
y = x+ tv with v = (y − x)/|y − x| and t = |x− y|, and therefore

|f(y)− f(x)−∇f(x) · (y − x)|
|y − x|

= |Q
(
x, y−x|y−x| , |x− y|

)
| → 0

as y → x. So f is differentiable at x with df(x) = ∇f(x). �



CHAPTER 7

The dual of Lp

7.1. The dual of Lp

Let (X,S, µ) be a measure space, and let 1 ≤ p ≤ ∞. A linear functional
on Lp(µ) is a linear mapping ` : Lp(µ) → C. A linear functional ` on Lp(µ) is
continuous if

‖fk − f‖p → 0 implies `(fk)→ `(f),

or equivalently,
|`(f)| ≤ C‖f‖p, f ∈ Lp(µ),

for some constant C > 0, i.e., ` is bounded. This equivalence holds on any normed
space; see Lemma A.1. To see it directly, assume that fk ∈ Lp(µ) so that∣∣∣`( fk

‖fk‖p

)∣∣∣ =
|`(fk)|
‖fk‖p

→∞.

Then gk := fk/‖fk‖p ∈ Lp(µ) satisfies ‖gk‖p ≤ 1 and∥∥∥ gk
|`(gk)|

∥∥∥
p
→ 0,

whereas ∣∣∣`( gk
|`(gk)|

)∣∣∣ = 1.

The dual of Lp(µ) is the set of all continuous linear functionals on Lp(µ); it is
denoted by Lp(µ)∗. The space Lp(µ)∗ is a vector space and carries a natural norm,
the operator norm,

‖`‖ := sup{|`(f)| : ‖f‖p ≤ 1} = inf{C : |`(f)| ≤ C‖f‖p for all f ∈ Lp(µ)}.

Let q be the conjugate exponent of p. Hölder’s inequality 4.2 implies that a
function g ∈ Lq(µ) defines a continuous linear functional `g on Lp(µ) via

`g(f) :=

ˆ
X

gf dµ. (7.1)

We shall see that every continuous linear functional on Lp(µ) has the form (7.1), if
1 < p <∞ and if p = 1 provided that µ is σ-finite. We will use the following result
(compare with Proposition 4.4).

Proposition 7.1. Let 1 ≤ p, q ≤ ∞ be conjugate exponents. Suppose that g : X →
C is measurable and such that

• fg ∈ L1(µ) for all f ∈ S := {simple f : µ({x : f(x) 6= 0}) <∞},
• the quantity Mq(g) := sup{|

´
fg dµ| : f ∈ S, ‖f‖p = 1} is finite,

• {x : g(x) 6= 0} is σ-finite.

Then g ∈ Lq(µ) and Mq(g) = ‖g‖q.

Proof. We claim that a bounded measurable function f with ‖f‖p = 1 that
vanishes outside a set F of finite measure satisfies |

´
fg dµ| ≤Mq(g). By Corollary

3.7, there are simple functions si converging pointwise to f and satisfying |si| ≤ |f |.

69
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Since |si| ≤ ‖f‖∞χF and χF g ∈ L1(µ), we have |
´
fg dµ| = limi→∞ |

´
sig dµ| ≤

Mq(g), by the dominated convergence theorem 3.22.

Suppose that q < ∞. By assumption, E := {x : g(x) 6= 0} =
⋃∞
i=1Ei where

Ei ⊆ Ei+1 and µ(Ei) <∞. By Corollary 3.7, there are simple functions si converg-
ing pointwise to g and satisfying |si| ≤ |g|. If we set gi := siχEi , then gi converge
pointwise to g, satisfy |gi| ≤ |g|, and gi vanishes outside of Ei. Define

fi(x) :=

{
‖gi‖1−qq |gi(x)|q−1|g(x)|−1g(x) g(x) 6= 0

0 g(x) = 0
.

Then ‖fi‖p = 1 and by Fatou’s lemma 3.17,

‖g‖q ≤ lim inf
i→∞

‖gi‖q = lim inf
i→∞

ˆ
|figi| dµ

≤ lim inf
i→∞

ˆ
|fig| dµ = lim inf

i→∞

ˆ
fig dµ ≤Mq(g),

by the first paragraph. Thus, Mq(g) = ‖g‖q by Hölder’s inequality 4.2.

Assume that q =∞. For ε > 0 set A := {x : |g(x)| ≥M∞(g) + ε}. If µ(A) > 0
there is a subset B ⊆ A with 0 < µ(B) < ∞, since {x : g(x) 6= 0} is σ-finite.
Set f(x) := µ(B)−1χB(x)g(x)/|g(x)| if g(x) 6= 0 and f(x) := 0 otherwise. Then
‖f‖1 = 1 and

´
fg dµ = µ(B)−1

´
B
|g| dµ ≥ M∞(g) + ε which contradicts the first

paragraph. Thus ‖g‖∞ = M∞(g). �

Theorem 7.2 (Dual of Lp). Let 1 ≤ p, q ≤ ∞ be conjugate exponents. For 1 <
p <∞, the mapping Lq(µ) ∈ g 7→ `g ∈ Lp(µ)∗, where

`g(f) =

ˆ
X

gf dµ,

is an isometric isomorphism. The same is true for p = 1 provided that µ is σ-finite.
For p =∞ it is isometric but not surjective. So in all cases

‖`g‖ = ‖g‖q. (7.2)

Proof. Hölder’s inequality 4.2 implies that `g ∈ Lp(µ)∗ if g ∈ Lq(µ). That
‖`g‖ = ‖g‖q follows from Proposition 4.4.

Let us show surjectivity for 1 ≤ p < ∞. Let ` ∈ Lp(µ)∗. Assume first that
µ(X) <∞. Then, for each E ∈ S, χE ∈ Lp(µ), and

ν(E) := `(χE), E ∈ S,

defines a complex measure. Indeed, if Ei ∈ S are pairwise disjoint, then∥∥∥ k∑
i=1

χEi −
∞∑
i=1

χEi

∥∥∥
p
→ 0,

by the dominated convergence theorem 3.22, and hence, by continuity of `,

ν
( ∞⋃
i=1

Ei

)
= `
( ∞∑
i=1

χEi

)
=

∞∑
i=1

`(χEi) =

∞∑
i=1

ν(Ei).

If µ(E) = 0, then χE = 0 in Lp(µ), and thus ν(E) = 0, i.e., ν � µ. By the
Radon–Nikodym theorem 5.3, there exists g ∈ L1(µ) so that

`(χE) = ν(E) =

ˆ
E

g dµ =

ˆ
X

χEg dµ, E ∈ S.

We may conclude that `(f) =
´
fg dµ holds for each simple function f and that

|
´
fg dµ| ≤ ‖`‖‖f‖p. Thus, g ∈ Lq(µ), by Proposition 7.1. Since ` and `g are
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continuous linear functionals on Lp(µ) that coincide on the set of simple functions,
Proposition 4.13 implies that `(f) = `g(f) for all functions f ∈ Lp(µ).

If µ is σ-finite, there are sets Xi ⊆ Xi+1 so that X =
⋃∞
i=1Xi and µ(Xi) <∞.

We may identify Lp(Xi) with the subspace of Lp(X) of functions that vanish on
Xc
i . Then ` ∈ Lp(Xi)

∗ and so, by the preceding argument, there exists gi ∈ Lq(Xi)
with ‖gi‖q = ‖`|Lp(Xi)‖ ≤ ‖`‖ and so that `(f) = `gi(f) for all f ∈ Lp(Xi). We
have gi = gj µ-a.e. on Xi if i < j. So we may define g on X by setting g|Xi = gi.
By the monotone convergence theorem 3.14, ‖g‖q = limi→∞ ‖gi‖q ≤ ‖`‖, thus
g ∈ Lq(µ). And g satisfies `(f) = `g(f) for all f ∈ Lp(µ), since fχXi → f in Lp(µ)
and therefore

`(f) = lim
i→∞

`(fχXi) = lim
i→∞

`gi(fχXi) = lim
i→∞

ˆ
Xi

gf dµ = `g(f).

Finally, suppose that µ is arbitrary and that p > 1 (consequently q <∞). By
the previous paragraph, for each σ-finite subset E ⊆ X there is a unique gE ∈ Lq(E)
with `(f) = `gE (f) for all f ∈ Lp(E) and ‖gE‖q ≤ ‖`‖. If F is σ-finite and F ⊇ E,
then gF = gE µ-a.e. on E and hence ‖`‖ ≥ ‖gF ‖q ≥ ‖gE‖q. Then

M := sup
{
‖gE‖q : σ-finite E ⊆ X

}
≤ ‖`‖.

Let Ek be a sequence of σ-finite subsets in X such that ‖gEk‖q → M , and set
F :=

⋃∞
k=1Ek. Then F is σ-finite and ‖gF ‖q = M . If G ⊇ F is σ-finite, thenˆ

|gF |q dµ+

ˆ
|gG\F |q dµ =

ˆ
|gG|q dµ ≤Mq =

ˆ
|gF |q dµ,

whence gG\F = 0 and gG = gF µ-a.e. In particular, if f ∈ Lp(µ) then the set

G := F ∪ {x : f(x) 6= 0} is σ-finite (as {x : f(x) 6= 0} =
⋃∞
i=1{x : |f(x)| > 1/i}),

and thus `(f) =
´
fgG dµ =

´
fgF dµ. So we may take g = gF . �

Corollary 7.3. If 1 < p <∞ then Lp(µ) is reflexive.

Proof. Let q be the conjugate exponent. By Theorem 7.2, we have an iso-
metric isomorphism Lp(µ)∗ ∼= Lq(µ). So if h ∈ Lp(µ)∗∗ ∼= Lq(µ)∗ then there exists
g ∈ Lp(µ) such that

h(f) =

ˆ
X

gf dµ, f ∈ Lp(µ)∗ ∼= Lq(µ).

Consequently, h coincides with the evaluation mapping evg : f 7→ f(g), hence
ev : Lp(µ)→ Lp(µ)∗∗ is surjective, i.e., Lp(µ) is reflexive. �

The dual space of L∞(µ) is much larger than L1(µ), see the following example;
its description will not be given here.

Example 7.4. Consider the interval [0, 1] with the Lebesgue measure λ. The
mapping ev0 : f 7→ f(0) is a bounded linear functional on the subspace C([0, 1])
of L∞([0, 1]). By the Hahn–Banach theorem A.2, there exists ` ∈ L∞([0, 1])∗ such
that `(f) = f(0) for all f ∈ C([0, 1]). Let fk ∈ C([0, 1]) be given by fk(x) :=
max{1 − kx, 0}. Then `(fk) = fk(0) = 1 for all k and fk(x) → 0 for all x > 0.
So for any g ∈ L1([0, 1]) we have

´
[0,1]

fkg dλ → 0, by the dominated convergence

theorem 3.22. Thus ` cannot be of the form `g for any L1-function g.

7.2. Weak convergence

Let (X,S, µ) be a measure space, and let 1 ≤ p ≤ ∞. A sequence of functions
fk ∈ Lp(µ) is said to converge weakly to f ∈ Lp(µ), and we write fk ⇀ f , if

`(fk)→ `(f) for all ` ∈ Lp(µ)∗.
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Obviously, strong convergence implies weak convergence.

Proposition 7.5. If f ∈ Lp(µ) and `(f) = 0 for all ` ∈ Lp(µ)∗, then f = 0 (where
we assume that µ is σ-finite in the case p =∞).

Consequently, weak limits in Lp(µ) are unique.

Proof. This follows from (7.2), in fact, if q is conjugate to p, then

‖f‖p = ‖`f‖ = sup
‖g‖q≤1

∣∣∣ˆ fg dµ
∣∣∣ = sup

‖g‖q≤1

|`g(f)| = 0,

and thus f = 0. �

The following is a particular case of the Banach–Alaoglu theorem.

Theorem 7.6. If 1 < p < ∞ then a bounded sequence in Lp(µ) has a weakly
convergent subsequence.

Proof. This follows from a fundamental result of functional analysis which
states that a Banach space is reflexive if and only if its closed unit ball is weakly
sequentially compact, cf. [2].

We will give a direct proof in the case that X is an open subset of Rn and µ = λ
is the Lebesgue measure. Let fi be a bounded sequence in Lp(X). By extending
each fi by 0 outside X we may assume that fi ∈ Lp(Rn). By Theorem 7.2, we may
identify Lp(Rn)∗ with Lq(Rn), where q is conjugate to p. By Theorem 4.23, there
is a dense sequence of functions gj ∈ Lq(Rn).

Consider the sequence of numbers Ci1 :=
´
fig1 dx which is bounded, by

Hölder’s inequality 4.2. By passing to a subsequence denoted by f1
i we may assume

that Ci1 → C1. Repeating this argument with f1
i , we can pass to a further subse-

quence f2
i so that

´
f2
i g2 dx → C2, and inductively we obtain a countable family

of subsequences such that for the kth subsequence (and all further subsequences)´
fki gk dx → Ck as i → ∞. Then the sequence defined by Fj := f jj satisfies´
Fjgk dx→ Ck as j →∞ for all k.

If g ∈ Lq(Rn) and ε > 0, then ‖g − gk‖q ≤ ε for some k. Thus∣∣∣ˆ Fjg dx−
ˆ
Fig dx

∣∣∣ ≤ ˆ
|Fj ||g − gk| dx+

ˆ
|Fi||gk − g| dx

+
∣∣∣ ˆ Fjgk dx−

ˆ
Figk dx

∣∣∣
≤ 2ε sup

j
‖Fj‖p + ε,

for sufficiently large i and j. Hence the limit limj→∞
´
Fjg dx exists. Setting

`(g) := limj→∞
´
Fjg dx we obtain a bounded linear functional on Lq(Rn). By

Theorem 7.2, there exists f ∈ Lp(Rn) such that `(g) =
´
fg dx for all g ∈ Lq(Rn).

The proof is complete. �

7.3. Interpolation theorems

We have seen in Proposition 4.7 that Lp(µ) ∩ Lr(µ) ⊆ Lq(µ) ⊆ Lp(µ) + Lr(µ)
provided that 1 ≤ p < q < r ≤ ∞, and the first inclusion is bounded. Now
we investigate the question whether a linear operator which is bounded on Lp(µ)
and Lr(µ) is also bounded on Lq(µ). We need a preliminary lemma from complex
analysis.
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Lemma 7.7 (Three lines lemma). Let S := {z ∈ C : 0 ≤ Re z ≤ 1} and let
f : S → C be bounded continuous and holomorphic in the interior of the strip S. If
|f(z)| ≤M0 for Re z = 0 and |f(z)| ≤M1 for Re z = 1, then |f(z)| ≤M1−t

0 M t
1 for

Re z = t and 0 < t < 1.

Proof. For ε > 0 define fε(z) := f(z)Mz−1
0 M−z1 exp(εz(z − 1)). Then fε

satisfies the assumptions with M0 and M1 replaced by 1. Moreover, |fε(z)| → 0 as
| Im z| → ∞ (uniformly for 0 ≤ Re z ≤ 1). So |fε(z)| ≤ 1 for z on the boundary of
a rectangle {z : 0 ≤ Re z ≤ 1, | Im z| < A}. The maximum principle implies that
|fε(z)| ≤ 1 for z ∈ S. Thus, for Re z = t,

|f(z)|M t−1
0 M−t1 = lim

ε→0
|fε(z)| ≤ 1,

and the lemma is proved. �

We are ready to prove the Riesz–Thorin interpolation theorem which
shows that the answer to the above question is yes.

Theorem 7.8 (Riesz–Thorin). Let (X,S, µ) and (Y,T, ν) be measure spaces and
let p0, p1, q0, q1 ∈ [1,∞]. If q0 = q1 = ∞ we also assume that ν is σ-finite. Let
pt, qt, 0 < t < 1, be defined by

1

pt
=

1− t
p0

+
t

p1
,

1

qt
=

1− t
q0

+
t

q1
.

If T : Lp0(µ) + Lp1(µ)→ Lq0(ν) + Lq1(ν) is a linear mapping such that

‖Tf‖q0 ≤M0‖f‖p0 , for all f ∈ Lp0(µ),

‖Tf‖q1 ≤M1‖f‖p1 , for all f ∈ Lp1(µ),

then for all 0 < t < 1,

‖Tf‖qt ≤M1−t
0 M t

1‖f‖pt , for all f ∈ Lpt(µ). (7.3)

Proof. If p0 = p1 = p, then by Proposition 4.7,

‖Tf‖qt ≤ ‖Tf‖1−tq0 ‖Tf‖
t
q1 ≤M

1−t
0 M t

1‖f‖p
for all f ∈ Lp(µ), and we are done. So we may assume that p0 6= p1, and thus
pt <∞, for all 0 < t < 1.

Let SX be the class of simple functions s on X with µ({x : s(x) 6= 0}) < ∞,
and SY the class of simple functions s on Y with ν({x : s(x) 6= 0}) <∞. We shall
show that (7.3) holds for all f ∈ SX . Since SX is dense in Lp(µ), by Proposition

4.13, we may conclude that T |SX has a unique extension T̃ to Lpt(µ) satisfying the

same estimate there. It remains to prove that T = T̃ on Lpt(µ). For f ∈ Lpt(µ)
choose a sequence fn ∈ SX with |fn| ≤ |f | and fn → f pointwise; cf. Corollary 3.7.
Set E := {x : |f(x)| > 1}, g = χEf , and gn = χEfn. If p0 < p1 (which we
may assume without loss of generality), then g ∈ Lp0(µ) and f − g ∈ Lp1(µ) (cf.
Proposition 4.7) and, by the dominated convergence theorem 3.22, ‖fn− f‖pt → 0,
‖gn− g‖p0 → 0, and ‖(fn− gn)− (f − g)‖p1 → 0. It follows that ‖Tgn−Tg‖q0 → 0
and ‖T (fn−gn)−T (f−g)‖q1 → 0. By passing the a subsequence we get Tgn → Tg
ν-a.e. and T (fn− gn)→ T (f − g) ν-a.e., by Corollary 4.11, and may conclude that
Tfn → Tf ν-a.e. By Fatou’s lemma 3.17,

‖Tf‖qt ≤ lim inf ‖Tfn‖qt ≤ lim inf M1−t
0 M t

1‖fn‖pt = M1−t
0 M t

1‖f‖pt
and (7.3) is proved.

Let us show that (7.3) holds for all f ∈ SX . By Proposition 7.1,

‖Tf‖qt = sup
{∣∣∣ˆ

Y

(Tf)g dν
∣∣∣ : g ∈ SY , ‖g‖q′t = 1

}
,
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where q′t is the conjugate exponent to qt; the set {y : Tf(y) 6= 0} is σ-finite either
since Tf ∈ Lq0(ν) ∩ Lq1(ν) or, if q0 = q1 = ∞, by assumption. We may assume
that f 6= 0 and that ‖f‖pt = 1, by rescaling. Thus in order to show that (7.3) holds
for all f ∈ SX it suffices to prove the following claim.

Claim: If f ∈ SX , ‖f‖pt = 1, then∣∣∣ˆ
Y

(Tf)g dν
∣∣∣ ≤M1−t

0 M t
1, for g ∈ SY , ‖g‖q′t = 1.

Let f =
∑m
j=1 ajχEj and g =

∑n
k=1 bkχFk be canonical representations, and

write aj = |aj |eiϕj and bk = |bk|eiψk . Define

π(z) :=
1− z
p0

+
z

p1
, τ(z) =

1− z
q0

+
z

q1
, z ∈ C,

so that π(t) = 1/pt and τ(t) = 1/qt for 0 < t < 1. Fix t and set

fz :=

m∑
j=1

|aj |
π(z)
π(t) eiϕjχEj ;

note that π(t) > 0. If τ(t) < 1 set

gz :=

n∑
k=1

|bk|
1−τ(z)
1−τ(t) eiψkχFk ,

otherwise, if τ(t) = 1, set gz = g for all z. Assume that τ(t) < 1 (the case τ(t) = 1
follows similarly). Consider the entire function

Φ(z) :=

ˆ
Y

(Tfz)gz dν =

m∑
j=1

n∑
k=1

|aj |
π(z)
π(t) |bk|

1−τ(z)
1−τ(t) ei(ϕj+ψk)

ˆ
Y

(TχEj )χFk dν

which is bounded on the strip {z ∈ C : 0 ≤ Re z ≤ 1}. By the three lines lemma
7.7, the claim follows if we show that |Φ(z)| ≤ M0 for Re z = 0 and |Φ(z)| ≤ M1

for Re z = 1. By Hölder’s inequality 4.2, for s ∈ R,

|Φ(is)| ≤ ‖Tfis‖q0‖gis‖q′0 ≤M0‖fis‖p0‖gis‖q′0 .

Since π(is) := 1/p0 + is(1/p1 − 1/p0) and 1− τ(is) = (1− 1/q0) + is(1/q1 − 1/q0),

|fis| =
m∑
j=1

|aj |
Re(π(is))
π(t) χEj = |f |

Re(π(is))
π(t) = |f |

pt
p0 ,

|gis| =
n∑
k=1

|bj |
Re(1−τ(is))

1−τ(t) χFk = |g|
Re(1−τ(is))

1−τ(t) = |f |
q′t
q′0 ,

and hence ‖fis‖p0p0 = ‖f‖ptpt = 1 and ‖gis‖
q′0
q′0

= ‖g‖q
′
t

q′t
= 1. Thus, |Φ(z)| ≤ M0 for

Re z = 0. A similar computation shows |Φ(z)| ≤ M1 for Re z = 1. The proof is
complete. �

The second fundamental interpolation result is the Marcinkiewicz interpola-
tion theorem. Let T be a mapping from some vector space F of measurable func-
tions on (X,S, µ) to the space of measurable functions on (Y,T, ν). Then T is called
sublinear if for all f, g ∈ F and c > 0, |T (cf)| = c|Tf | and |T (f+g)| ≤ |Tf |+|Tg|.

Theorem 7.9 (Marcinkiewicz). Let (X,S, µ) and (Y,T, ν) be measure spaces and
let p0, p1, q0, q1 ∈ [1,∞] satisfy p0 ≤ q0, p1 ≤ q1, and q0 6= q1. Let pt, qt, 0 < t < 1,
be defined by

1

pt
=

1− t
p0

+
t

p1
,

1

qt
=

1− t
q0

+
t

q1
. (7.4)
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If T is a sublinear mapping on Lp0(µ)+Lp1(µ) to the space of measurable functions
on Y such that

‖Tf‖q0,∞ ≤M0‖f‖p0 , for all f ∈ Lp0(µ),

‖Tf‖q1,∞ ≤M1‖f‖p1 , for all f ∈ Lp1(µ),
(7.5)

then for all 0 < t < 1,

‖Tf‖qt ≤Mt‖f‖pt , for all f ∈ Lpt(µ), (7.6)

where Mt depends only on Mi, pi, qi, t, for i = 0, 1.

In other words, if the sublinear mapping T is weak type (p0, q0) and (p1, q1)
then T is strong type (pt, qt), i.e., T maps Lpt(µ) to Lqt(ν) and ‖Tf‖qt ≤ C‖f‖pt
holds for all f ∈ Lpt(µ).

In the proof we make use of the following simple lemma.

Lemma 7.10. Let f be measurable and let A > 0. For EA = {x ∈ X : |f(x)| > A}
set hA := fχEcA + A(sgn f)χEA and gA = f − hA. Then dgA(α) = df (α + A) and
dhA(α) = df (α) if α < A and dhA(α) = 0 if α ≥ A.

Proof. Note that gA = (sgn f)(|f | −A)χEA and thus |gA(x)| > α if and only
if |f(x)| > α + A. This implies dgA(α) = df (α + A). The second statement is
obvious. �

Proof of Theorem 7.9. Assume that p0 = p1 = p (and hence p 6= ∞) and
(say) q0 < q1 <∞. Then (7.5) implies

dTf (β) ≤
(M0‖f‖p

β

)q0
, dTf (β) ≤

(M1‖f‖p
β

)q1
and, by Proposition 4.29 (and Remark 4.30), with A = ‖f‖p and q = qt,

‖Tf‖qq = q

ˆ ∞
0

βq−1dTf (β) dβ

= q

ˆ A

0

βq−1dTf (β) dβ + q

ˆ ∞
A

βq−1dTf (β) dβ

≤ qMq0
0 ‖f‖q0p

ˆ A

0

βq−q0−1 dβ + qMq1
1 ‖f‖q1p

ˆ ∞
A

βq−q1−1 dβ

=
qMq0

0

q − q0
‖f‖qp +

qMq1
1

q1 − q
‖f‖qp

which implies the statement. If q1 =∞ then ‖Tf‖∞ ≤M1‖f‖p and thus dTf (β) =
0 if β > M1‖f‖p. So it suffices to repeat the computation with A = M1‖f‖p.

Let us now consider the case p0 < p1 and q0 < ∞ and q1 < ∞. Let p = pt,
q = qt and f ∈ Lp(µ). Then, with the notation of Lemma 7.10,ˆ

|gA|p0 dµ = p0

ˆ ∞
0

αp0−1dgA(α) dα = p0

ˆ ∞
0

αp0−1df (α+A) dα

= p0

ˆ ∞
A

(α−A)p0−1df (α) dα ≤ p0

ˆ ∞
A

αp0−1df (α) dα,

ˆ
|hA|p1 dµ = p1

ˆ ∞
0

αp1−1dhA(α) dα = p1

ˆ A

0

αp1−1df (α) dα,

by Proposition 4.29 (and Remark 4.30). Moreover,ˆ
|Tf |q dν = q

ˆ ∞
0

βq−1dTf (β) dβ = 2qq

ˆ ∞
0

βq−1dTf (2β) dβ.
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Since T is sublinear,

dTf (2β) ≤ dTgA(β) + dThA(β)

for all β,A > 0, by Lemma 4.28. Let us apply this for A = βr, where

r :=
p0(q0 − q)
q0(p0 − p)

=
p1(q1 − q)
q1(p1 − p)

,

by (7.4). By assumption (7.5),

βq0dTgA(β) ≤ (‖TgA‖q0,∞)q0 ≤ (M0‖gA‖p0)q0 ,

βq1dThA(β) ≤ (‖ThA‖q1,∞)q1 ≤ (M1‖hA‖p1)q1 ,

and thus

‖Tf‖qq ≤ 2qq

ˆ ∞
0

βq−1
(
dTgA(β) + dThA(β)

)
dβ

≤ 2qq

ˆ ∞
0

βq−1
(
(M0‖gA‖p0/β)q0 + (M1‖hA‖p1/β)q1

)
dβ

≤ 2qqMq0
0 p

q0/p0
0

ˆ ∞
0

βq−q0−1
(ˆ ∞

βr
αp0−1df (α) dα

)q0/p0
dβ

+ 2qqMq1
1 p

q1/p1
1

ˆ ∞
0

βq−q1−1
( ˆ βr

0

αp1−1df (α) dα
)q1/p1

dβ

=

1∑
i=0

2qqMqi
i p

qi/pi
i

ˆ ∞
0

(ˆ ∞
0

ϕi(α, β) dα
)qi/pi

dβ,

where

ϕi(α, β) := χi(α, β)αpi−1df (α)β(q−qi−1)pi/qi ,

χ0 := χ{(α,β):α>βr}, χ1 := χ{(α,β):α<βr}.

Since qi/pi ≥ 1, Minkowski’s integral inequality 4.5 givesˆ ∞
0

(ˆ ∞
0

ϕi(α, β) dα
)qi/pi

dβ ≤
(ˆ ∞

0

(ˆ ∞
0

ϕi(α, β)qi/pi dβ
)pi/qi

dα
)qi/pi

.

If q1 > q0, then q − q0 > 0 and r > 0, and α > βr if and only if α1/r > β, whenceˆ ∞
0

(ˆ ∞
0

ϕ0(α, β)q0/p0 dβ
)p0/q0

dα

=

ˆ ∞
0

( ˆ α1/r

0

βq−q0−1 dβ
)p0/q0

αp0−1df (α) dα

= (q − q0)−p0/q0
ˆ ∞

0

αp0−1+p0(q−q0)/(q0r)df (α) dα

= (q − q0)−p0/q0
ˆ ∞

0

αp−1df (α) dα

= |q − q0|−p0/q0p−1‖f‖pp.

If q1 < q0, then q − q0 < 0 and r < 0, and α > βr if and only if α1/r < β, whenceˆ ∞
0

(ˆ ∞
0

ϕ0(α, β)q0/p0 dβ
)p0/q0

dα

=

ˆ ∞
0

( ˆ ∞
α1/r

βq−q0−1 dβ
)p0/q0

αp0−1df (α) dα

= (q0 − q)−p0/q0
ˆ ∞

0

αp0−1+p0(q−q0)/(q0r)df (α) dα
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= (q0 − q)−p0/q0
ˆ ∞

0

αp−1df (α) dα

= |q − q0|−p0/q0p−1‖f‖pp.
Similarly, ˆ ∞

0

(ˆ ∞
0

ϕ1(α, β)q1/p1 dβ
)p1/q1

dα ≤ |q − q1|−p1/q1p−1‖f‖pp.

So for all f ∈ Lp(µ) with ‖f‖p = 1,

‖Tf‖q ≤ 2q1/q
( 1∑
i=0

Mqi
i (pi/p)

qi/pi

|q − qi|

)1/q

=: Mp.

Since T is sublinear, in particular, |T (cf)| = c|Tf | if c > 0, (7.6) follows.

In the remaining cases q0 = ∞ or q1 = ∞ we indicate how to modify the
arguments.

If p1 = q1 = ∞ (hence p0 ≤ q0 < ∞), use A = β/M1. Then ‖ThA‖∞ ≤
M1‖hA‖∞ ≤ β and thus dThA(β) = 0.

If p0 < p1 <∞ and q0 < q1 =∞, use A = (β/B)r with B = M1(p1‖f‖pp/p)1/p1

and r = p1/(p1 − p).
Similarly, if p0 < p1 < ∞ and q1 < q0 = ∞, use A = (β/B)r with B chosen

such that dTgA(β) = 0. �

Let us apply the Marcinkiewicz interpolation theorem 7.9 to the Hardy–
Littlewood maximal operator M defined by

Mf(x) = sup
r>0

 
Br(x)

|f(y)| dy, f ∈ L1
loc(Rn).

Corollary 7.11. There is a constant C > 0 such that, for 1 < p <∞,

‖Mf‖p ≤ C
p

p− 1
‖f‖p, f ∈ Lp(Rn). (7.7)

Proof. Clearly, ‖Mf‖∞ ≤ ‖f‖∞ for f ∈ L∞(Rn), and by Theorem 6.3,
‖Mf‖1,∞ ≤ C‖f‖1 for f ∈ L1(Rn). Obviously, M is sublinear. Then (7.7) follows
from the Marcinkiewicz interpolation theorem 7.9; the constant Cp/(p− 1) results
from an inspection of the proof of Theorem 7.9. �





CHAPTER 8

The Fourier transform

8.1. The Fourier transform on L1

For a function f ∈ L1(Rn) the Fourier transform f̂ is defined by

f̂(ξ) :=

ˆ
Rn
f(x)e−2πiξ·x dx, ξ ∈ Rn, (8.1)

where ξ · x := ξ1x1 + · · · + ξnxn; we shall also write Ff = f̂ . It follows from

Theorem 3.37 that f̂ is continuous on Rn. Moreover, as

|f̂(ξ)| ≤
ˆ
Rn
|f(x)| dx = ‖f‖1,

f̂ is bounded and satisfies

‖f̂‖∞ ≤ ‖f‖1. (8.2)

Note that we have equality in (8.2) if f ≥ 0:

|f̂(0)| =
ˆ
Rn
f(x) dx = ‖f‖1 = ‖f̂‖∞.

Next we collect elementary properties of the Fourier transform. For y, η ∈ Rn
we consider the translation operator Tyf(x) := f(x− y), x ∈ Rn, cf. (4.6), and the
modulation operator,

Mηf(x) := e2πiη·xf(x), x ∈ Rn. (8.3)

We have the commutation relations

TyMη = e−2πiη·yMηTy.

Recall that C0(Rn) denotes the space of all continuous functions f : Rn → C so
that |f(x)| → 0 as |x| → ∞. Note that C0(Rn) is the closure of Cc(Rn) with respect
to ‖ ‖∞. Indeed, if fi ∈ Cc(Rn) converge uniformly to f ∈ C(Rn), then for each
ε > 0 there is i ∈ N such that ‖fi − f‖∞ < ε, and hence |f(x)| < ε if x 6∈ supp fi,
i.e., f ∈ C0(Rn). Conversely, for f ∈ C0(Rn) and each positive integer consider the
compact set Ki := {x : |f(x)| ≥ 1/i}. Choose gi ∈ Cc(Rn) so that 0 ≤ gi ≤ 1 and
gi|Ki = 1. Then fi := fgi ∈ Cc(Rn) satisfies ‖fi − f‖∞ = ‖f(gi − 1)‖∞ ≤ 1/i.

Lemma 8.1. Let f, g ∈ L1(Rn), y, η ∈ Rn, and a > 0. Then:

(1) (Tyf)̂ = M−y f̂ and (Mηf)̂ = Tη f̂ .

(2) (f(ax))̂(ξ) = a−nf̂(a−1ξ) and (f(−x))̂(ξ) = f̂(−ξ).

(3) (f ∗ g)̂ = f̂ ĝ.

(4) If x 7→ xαf(x) is in L1(Rn) for all |α| ≤ k, then f̂ ∈ Ck(Rn) and

∂αf̂ = ((−2πix)αf(x))̂.
(5) If f ∈ Ck(Rn), ∂αf ∈ L1(Rn) for all |α| ≤ k, and ∂αf ∈ C0(Rn) for all
|α| ≤ k − 1, then

(∂αf)̂(ξ) = (2πiξ)αf̂(ξ).

79
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(6)
´
f̂g dx =

´
fĝ dx.

Proof. (1) We have

(Tyf )̂ (ξ) =

ˆ
Rn
f(x− y)e−2πiξ·x dx =

ˆ
Rn
f(x)e−2πiξ·(x+y) dx = e−2πiξ·y f̂(ξ)

and

(Mηf )̂ (ξ) =

ˆ
Rn
f(x)e−2πi(ξ−η)·x dx = f̂(ξ − η) = Tη f̂(ξ).

(2) Both assertions follow from

(f(ax))̂ (ξ) =

ˆ
Rn
f(ax)e−2πiξ·x dx = |a|−n

ˆ
Rn
f(x)e−2πia−1ξ·x dx = |a|−nf̂(a−1ξ),

where either a > 0 or a = −1.

(3) By Young’s inequality 4.15, f ∗ g ∈ L1(Rn) and so, by Fubini’s theorem
3.27,

(f ∗ g)̂ (ξ) =

ˆ
Rn

ˆ
Rn
f(x− y)g(y)e−2πiξ·x dy dx

=

ˆ
Rn

ˆ
Rn
f(x− y)e−2πiξ·(x−y)g(y)e−2πiξ·y dx dy

= f̂(ξ)

ˆ
Rn
g(y)e−2πiξ·y dy = f̂(ξ)ĝ(ξ).

(4) By Theorem 3.38,

∂αf̂(ξ) =

ˆ
Rn

(−2πix)αf(x)e−2πiξ·x dx = ((−2πix)αf(x))̂ (ξ).

(5) By partial integration, cf. Corollary 6.14,

(∂αf )̂ (ξ) =

ˆ
Rn
∂αf(x)e−2πiξ·x dx = (2πiξ)α

ˆ
Rn
f(x)e−2πiξ·x dx = (2πiξ)αf̂(ξ).

(6) Both integrals equal
´ ´

f(x)g(ξ)e−2πix·ξ dx dξ, by Fubini’s theorem 3.27.
The proof is complete. �

Let S(Rn) denote the Schwartz space of rapidly decreasing functions:

S(Rn) := {f ∈ C∞(Rn) : ‖f‖k,α <∞ for all k ∈ N, α ∈ Nn},
where

‖f‖k,α := sup
x∈Rn

(1 + |x|)k|∂αf(x)|.

Lemma 8.2. We have:

(1) If f ∈ S(Rn) then ∂αf ∈ Lp(Rn) for all α ∈ Nn and all 1 ≤ p ≤ ∞.
(2) Let f ∈ C∞(Rn). Then f ∈ S(Rn) if and only if xβ∂αf(x) is bounded for

all α, β if and only if ∂α(xβf(x)) is bounded for all α, β.
(3) S(Rn) is a Fréchet space with the topology defined by the seminorms ‖ ‖k,α.

Proof. (1) If f ∈ S(Rn) then |∂αf(x)| ≤ C(k)(1 + |x|)−k for all k, and
(1 + |x|)−k ∈ Lp(Rn) if k > n/p, cf. (3.7).

(2) Clearly, |xβ | ≤ (1+ |x|)k if |β| ≤ k. On the other hand,
∑n
i=1 |xi|k is strictly

positive on the unit sphere |x| = 1, thus it has a positive minimum m there. We
may conclude that

∑n
i=1 |xi|k ≥ m|x|k, by homogeneity of both sides. Then

(1 + |x|)k ≤ 2k max{1, |x|k} ≤ 2k(1 + |x|k)
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≤ 2k
(

1 +m−1
n∑
i=1

|xi|k
)
≤ 2km−1

∑
|β|≤k

|xβ |.

The first equivalence follows. The second equivalence is an easy consequence of the
Leibniz formula.

(3) We must show completeness. Let fm be a Cauchy sequence in S(Rn), i.e.,
for all k, α, ‖fm − f`‖k,α → 0 as m, ` → ∞. Then for each α, the sequence ∂αfm
converges uniformly to a continuous function fα. Denoting ej the standard unit
vectors in Rn, we have

fm(x+ tej)− fm(x) =

ˆ t

0

∂jfm(x+ sej) ds,

and letting m→∞ we obtain

f0(x+ tej)− f0(x) =

ˆ t

0

fej (x+ sej) ds,

and hence fej = ∂jf
0. By induction, we find that fα = ∂αf0 for all α, thus

f := f0 ∈ C∞(Rn).

Let us show that f ∈ S(Rn). Since fm (being Cauchy) is bounded in S(Rn),
we have ‖fm‖α,k ≤ Cα,k for all m, thus

|∂αfm(x)| ≤ Cα,k(1 + |x|)−k

for all x and all m. Letting m → ∞ implies |∂αf(x)| ≤ Cα,k(1 + |x|)−k for all x,
i.e., ‖f‖α,k ≤ Cα,k.

Finally, we check that fm converges to f in S(Rn). For fixed α and k, set
gm(x) := (1 + |x|)k∂αfm(x) and g(x) := (1 + |x|)k∂αf(x). Then gm is a Cauchy
sequence with respect to ‖ ‖∞ which converges uniformly to g, since gm → g
pointwise and the limit is unique. That is ‖fm − f‖α,k = ‖gm − g‖∞ → 0 as
required. �

Proposition 8.3. The Fourier transform maps S(Rn) continuously into itself.

Proof. If f ∈ S(Rn) then xα∂βf(x) ∈ L1(Rn)∩C0(Rn) for all α, β, by Lemma

8.2. Thus, by Lemma 8.1, f̂ ∈ C∞(Rn) and

ξα∂βξ f̂(ξ) = (−1)|β|(2πi)|β|ξα[xβf(x)]̂ (ξ) = (−1)|β|(2πi)|β|−|α|[∂αx (xβf(x))]̂ (ξ).

Consequently,

|ξα∂βξ f̂(ξ)| ≤ (2π)|β|−|α|
ˆ
Rn
|∂αx (xβf(x))| dx

≤ (2π)|β|−|α|
ˆ
Rn

(1 + |x|)−n−1 dx sup
x∈Rn

(1 + |x|)n+1|∂αx (xβf(x))|

which implies the statement in view of Lemma 8.2. �

Lemma 8.4 (Riemann–Lebesgue). FL1(Rn) ⊆ C0(Rn).

Proof. The Fourier transform maps functions in C∞c (Rn) ⊆ S(Rn) to func-
tions in S(Rn) ⊆ C0(Rn). By Theorem 4.20, C∞c (Rn) is dense in L1(Rn), and if

‖fk − f‖1 → 0 then ‖f̂k − f̂‖∞ → 0, by (8.2). This implies the statement, since
C0(Rn) is closed with respect to ‖ ‖∞. �

At this point we compute the Fourier transform of a Gaussian function; this
is a preparation for the Fourier inversion formula.



82 8. THE FOURIER TRANSFORM

Lemma 8.5 (Fourier transform of the Gaussian). For f(x) = e−πa|x|
2

, where

a > 0, we have f̂(ξ) = a−n/2e−π|ξ|
2/a.

Proof. First suppose that n = 1. By Lemma 8.1,

(f̂)′(ξ) = (−2πixe−πax
2

)̂ (ξ) = ia−1(f ′)̂ (ξ) = ia−12πiξf̂(ξ) = −2πa−1ξf̂(ξ),

hence ∂ξ(e
πξ2/af̂(ξ)) = 0, and so eπξ

2/af̂(ξ) is constant. Thus

eπξ
2/af̂(ξ) = f̂(0) =

ˆ
R
e−πax

2

dx = a−1/2,

by Example 3.35. The case n = 1 and Fubini’s theorem 3.27 imply the general case,

f̂(ξ) =

ˆ
Rn
e−πa|x|

2

e−2πiξ·x dx =

n∏
j=1

ˆ
R
e−πax

2
j e−2πiξj ·xj dxj = a−n/2e−π|ξ|

2/a. �

Let us turn to inversion of the Fourier transform. For f ∈ L1(Rn), we define

f∨(x) := f̂(−x) =

ˆ
Rn
f(ξ)e2πiξ·x dξ, x ∈ Rn.

Theorem 8.6 (Fourier inversion theorem). If f ∈ L1(Rn) and f̂ ∈ L1(Rn), then
f coincides a.e. with a continuous function f0, and we have

(f̂)∨ = (f∨)̂ = f0.

Proof. For t > 0 and x ∈ Rn, set

ψ(ξ) := e2πiξ·x−πt2|ξ|2 = Mxe
−πt2|ξ|2

By Lemmas 8.1 and 8.5,

ψ̂(y) = Tx(t−ne−π|y|
2/t2) = t−ne−π|x−y|

2/t2 = ϕt(x− y),

for ϕ(x) = e−π|x|
2

, cf. (4.7). By Lemma 8.1,ˆ
Rn
e−πt

2|ξ|2e2πiξ·xf̂(ξ) dξ =

ˆ
f̂(ξ)ψ(ξ) dξ =

ˆ
f(y)ψ̂(y) dy = f ∗ ϕt

which converges to f in L1(Rn) as t→ 0, by Proposition 4.18. On the other hand,

since f̂ ∈ L1(Rn),

lim
t→0

ˆ
Rn
e−πt

2|ξ|2e2πiξ·xf̂(ξ) dξ =

ˆ
Rn
e2πiξ·xf̂(ξ) dξ = (f̂)∨(x),

by the dominated convergence theorem 3.22. It follows that f = (f̂)∨ a.e. and

analogously (f∨)̂ a.e. Being Fourier transforms of L1-functions, (f̂)∨ and (f∨)̂
are continuous. �

Corollary 8.7. If f ∈ L1(Rn) and f̂ = 0, then f = 0 a.e. �

Corollary 8.8. F : S(Rn)→ S(Rn) is an isomorphism.

Proof. By Proposition 8.3, F maps S(Rn) continuously into itself, and so

does the mapping f 7→ f∨, because f∨(x) = f̂(−x). By Theorem 8.6, these
mappings are inverse to each other. �

The Fourier transform of an L1-function need not be L1 as illustrated by the
following example.
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Example 8.9 (The sinc function). Clearly, the characteristic function of the in-
terval [−a, a] is in L1(R). Its Fourier transform

χ̂[−a,a](ξ) =

ˆ a

−a
e−2πixξ dx = −e

−2πiaξ

2πiξ
+
e2πiaξ

2πiξ
=

sin(2πaξ)

πξ

however is not an element of L1(R). In particular, the Fourier transform of
the rectangular function χ[−1/2,1/2] is the (normalized) sinc function sinc(x) =
sin(πx)/(πx).

By the lemma of Riemann–Lebesgue 8.4, the Fourier transform is a bounded
linear operator F : L1(Rn)→ C0(Rn). It is injective, but not surjective.

Proposition 8.10. The bounded linear operator F : L1(Rn) → C0(Rn) is injec-
tive, but not surjective.

Proof. Assume f, g ∈ L1(Rn) and f̂ = ĝ. Then f−g ∈ L1(Rn) and f̂− ĝ = 0.
Thus Corollary 8.7 implies f = g a.e.

Let us show that F : L1(Rn) → C0(Rn) is not surjective. For simplicity let
n = 1. It is more convenient to show that the inverse Fourier transform ( )∨ :
L1(R)→ C0(R) is not surjective. The assertion is then an immediate consequence:
if g ∈ C0(R) \ (L1(R))∨ then g(−x) ∈ C0(R) \FL1(R).

Assume that ( )∨ : L1(R) → C0(R) is surjective. By the open mapping theo-
rem A.3, there is a constant C > 0 such that

‖f‖1 ≤ C ‖f∨‖∞, for all f ∈ L1(R). (8.4)

For ε > 0 let gε(x) := ε−1/2e−πx
2/ε and fε := gε ∗ χ[−1,1]. Then fε ∈ L1(R), by

(4.3), and fε ∈ C0(R), by a simple computation. Thus by (8.4) and Example 3.35,

‖f̂ε‖1 ≤ C ‖fε‖∞ = C ‖gε ∗ χ[−1,1]‖∞ ≤ C ‖gε‖1 = C.

By Lemmas 8.1 and 8.5,

f̂ε(ξ) = ĝε(ξ) χ̂[−1,1](ξ) = e−πεξ
2

χ̂[−1,1](ξ)→ χ̂[−1,1](ξ)

pointwise as ε→ 0. So, by Fatou’s lemma 3.17,ˆ
R
|χ̂[−1,1]| dξ =

ˆ
R

lim
k→∞

|f̂1/k| dξ ≤ lim inf
k→∞

ˆ
R
|f̂1/k| dξ ≤ C,

a contradiction; see Example 8.9. �

8.2. The Fourier transform on L2

In the previous section we have seen that the Fourier transform is a bounded
linear operator (cf. (8.2) and Lemma 8.4)

F : L1(Rn)→ C0(Rn).

If we abandon the requirement that F be defined pointwise by (8.1), it can be
extended to other spaces.

Theorem 8.11 (Plancherel). If f ∈ L1(Rn) ∩ L2(Rn), then f̂ ∈ L2(Rn), and
F |L1(Rn)∩L2(Rn) extends uniquely to an isometric isomorphism on L2(Rn).

Proof. Let

F 1(Rn) := {f ∈ L1(Rn) : f̂ ∈ L1(Rn)}. (8.5)

Then F 1(Rn) ⊆ L2(Rn), since f̂ ∈ L1(Rn) implies f ∈ L∞(Rn) (cf. (8.2)) and thus
f ∈ L2(Rn), by Proposition 4.7. Moreover, F 1(Rn) is dense in L2(Rn), because
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S(Rn) ⊆ F 1(Rn) and S(Rn) is dense in L2(Rn), by Theorem 4.20. Let f, g ∈
F 1(Rn), and set h := ĝ. By Theorem 8.6,

ĥ(ξ) =

ˆ
Rn
ĝ(x)e−2πiξ·x dx =

ˆ
Rn
ĝ(x)e2πiξ·x dx = g(ξ),

and hence, by Lemma 8.1,ˆ
Rn
f(x)g(x) dx =

ˆ
Rn
f(x)ĥ(x) dx =

ˆ
Rn
f̂(x)h(x) dx =

ˆ
Rn
f̂(x)ĝ(x) dx,

i.e., F |F 1(Rn) preserves the L2-inner product. In particular,

‖f̂‖2 = ‖f‖2. (8.6)

Since F (F 1(Rn)) = F 1(Rn), by Theorem 8.6, F |F 1(Rn) extends by continuity to

an isometric isomorphism F̃ on L2(Rn).

It remains to check that F̃ = F on L1(Rn)∩L2(Rn). Let f ∈ L1(Rn)∩L2(Rn)

and ϕ(x) := e−π|x|
2

. Then f ∗ ϕε ∈ L1(Rn), by Young’s inequality (4.15), and

(f ∗ ϕε)̂ (ξ) = f̂(ξ)e−πε
2|ξ|2 ,

by Lemmas 8.1 and 8.5, and so (f ∗ ϕε)̂ ∈ L1(Rn), since f̂ is bounded. That
is f ∗ ϕε ∈ F 1(Rn). By Proposition 4.18, f ∗ ϕε converges to f in L1(Rn) and in

L2(Rn). We may infer ‖(f ∗ϕε)̂ −f̂‖∞ → 0, by (8.2), and ‖(f ∗ϕε)̂ −F̃f‖2 → 0, by
(8.6). By Corollary 4.11, there is a subsequence (f ∗ϕεk )̂ that converges pointwise

a.e. to f̂ as well as to F̃f . Therefore, F̃f = Ff a.e. �

We denote by f̂ = Ff also the Fourier transform of functions f ∈ L2(Rn).

Corollary 8.12 (Parseval’s theorem). If f, g ∈ L2(Rn) then 〈f, g〉 = 〈f̂ , ĝ〉, i.e.,
F : L2(Rn)→ L2(Rn) is unitary.

Proof. This follows from ‖f̂‖2 = ‖f‖2 by polarization,

2〈f, g〉 = ‖f + g‖22 − i‖f + ig‖22 − (1− i)‖f‖22 − (1− i)‖g‖22. �

The Fourier transform f̂ of a function f ∈ L2(Rn) is not given by the formula

(8.1); the integral in (8.1) may not exist. However, f̂ is the L2-limit of the functions

(χBr(0)f )̂ (ξ) =

ˆ
Br(0)

f(x)e−2πiξ·x dx

as r →∞. Here χBr(0)f ∈ L2(Br(0)) ⊆ L1(Br(0)), by Proposition 4.9, and so the
integral exists. By the monotone convergence theorem 3.14, ‖χBr(0)f − f‖2 → 0

as r → ∞ and hence ‖(χBr(0)f )̂ − f̂‖2 → 0, by Theorem 8.11. By the same

argument f̂ is the L2-limit of the Fourier transform of every sequence of functions
fm ∈ L1(Rn) ∩ L2(Rn) that converges to f in L2(Rn). By Corollary 4.11 there is
a subsequence that converges a.e., and so for f ∈ L1(Rn) ∩ L2(Rn) the integral in
(8.1) coincides a.e. with the extension provided by Theorem 8.11.

For instance, by Example 8.9,ˆ
[−r,r]

χ̂[−a,a](ξ) e
2πiξx dξ =

ˆ
[−r,r]

sin(2πaξ)

πξ
e2πiξx dξ

converges to χ[−a,a] in L2(R) as r →∞.

Corollary 8.13. The inversion formula f = (f̂)∨ continuous to hold on L2(Rn).
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Proof. By Theorem 8.11 the definition f∨(x) := f̂(−x) makes sense for f ∈
L2(Rn). Since f = (f̂)∨ holds on F 1(Rn) (cf. (8.5)), by Theorem 8.6, and since
F 1(Rn) is dense in L2(Rn), we can conclude the assertion from Theorem 8.11 (which

clearly holds also for f̂ replaced by f∨). �

By Plancherel’s theorem 8.11, the Fourier transform is a linear mapping

L1(Rn) + L2(Rn) → L∞(Rn) + L2(Rn) satisfying ‖f̂‖∞ ≤ ‖f‖1 for f ∈ L1(Rn)

and ‖f̂‖2 = ‖f‖2 for f ∈ L2(Rn). By the Riesz–Thorin interpolation theorem 7.8,
we get the following result for immediate Lp-spaces.

Theorem 8.14 (Hausdorff–Young inequality). Let 1 ≤ p ≤ 2 and let q be the

conjugate exponent to p. If f ∈ Lp(Rn) then f̂ ∈ Lq(Rn) and

‖f̂‖q ≤ ‖f‖p.

Proof. Apply the Riesz–Thorin interpolation theorem 7.8. �

In Lemma 8.5 we have seen by means of a Gaussian function that the Fourier
transform maps an acute peak to a broadly spread peak. This is a general property
of the Fourier transform that is called the uncertainty principle.

Theorem 8.15 (Heisenberg’s uncertainty principle). If f ∈ S(Rn), then

‖f‖22 ≤ 4π‖(xj − yj)f(x)‖2‖(ξj − ηj)f̂(ξ)‖2
for all y, η ∈ Rn, j = 1, . . . , n.

Thus f and f̂ cannot both be sharply localized about single points.

Proof. Replacing f by MηjejTyjejf , where ej is the jth standard unit vector
in Rn, we may assume that y = η = 0, in view of Lemma 8.1. Integration by parts
(cf. Corollary 6.14), Hölder’s inequality 4.2, and (8.6) yield

‖f‖22 =

ˆ
Rn
f(x)f(x)∂xjxj dx

= −
ˆ
Rn

(∂jf(x)f(x) + f(x)∂jf(x))xj dx

≤ 2‖xjf(x)‖2‖∂jf‖2
= 4π‖xjf(x)‖2‖ξj f̂(ξ)‖2,

where in the last step we again used Lemma 8.1 and (8.6). �

8.3. Paley–Wiener theorems

As seen in Lemma 8.1, the smoothness of a function is connected to the decay
of its Fourier transform at infinity (and vice versa). We shall see below that in the

extrem case, when f is compactly supported on R, its Fourier transform f̂ extends
to an entire function. Theorems that relate decay properties of a function (or
distribution) at infinity with analyticity of its Fourier transform are called Paley
Wiener theorems. We will investigate two such theorems.

The Fourier transform f̂ of a function f on R is by definition a function on

R. Often f̂ admits a holomorphic extension to some region in C which is not too
surprising, since e2πtz is an entire function of z for every real t.

Let us formally consider the integral that defines the inverse Fourier transform

f(z) =

ˆ ∞
−∞

F (t)e2πitz dt (8.7)
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and allow z to be a complex number. In general, this integral may not be well-
defined. We shall consider two situations which ensure the existence of this integral.

First we assume that F is supported on R+ := {x ∈ R : x > 0} and z lies in
the upper half-plane H := {z ∈ C : Im z > 0}. For F ∈ L2(R+) and z ∈ H, the
integral

f(z) =

ˆ ∞
0

F (t)e2πitz dt, z ∈ H, (8.8)

exists as Lebesgue integral, since |e2πitz| = e−2πt Im z is in L2(R+) for each z ∈ H.

Theorem 8.16 (Paley–Wiener I). If f is of the form (8.8), then f is holomorphic
in H and

sup
y>0

ˆ ∞
−∞
|f(x+ iy)|2 dx = C <∞. (8.9)

Conversely, if f is holomorphic in H and satisfies (8.9), then there exists F ∈
L2(R+) such that f has the representation (8.8) andˆ ∞

0

|F (t)|2 dt = C. (8.10)

Proof. Assume that F ∈ L2(R+) and that f is given by (8.8). By Theorem
3.39 (applied to each half-plane {z : Im z > δ}, δ > 0), f is holomorphic in H. For
fixed y > 0,

f(x+ iy) =

ˆ ∞
0

F (t)e−2πtye2πitx dt

and Plancherel’s theorem 8.11, yieldsˆ ∞
−∞
|f(x+ iy)|2 dx =

ˆ ∞
0

|F (t)|2e−4πty dt ≤
ˆ ∞

0

|F (t)|2 dt; (8.11)

we may consider F as a function in L2(R) by extending it by 0 on (−∞, 0]. This
shows (8.9).

Now let f be holomorphic in H and satisfy (8.9). Fix y > 0, α > 0, and let
γα denote the rectangular path with vertices ±α + i and ±α + iy. By Cauchy’s
theorem, for all t ∈ R, ˆ

γα

f(ζ)e−2πitζ dζ = 0. (8.12)

Let Φ(β), β ∈ R, be the integral of f(ζ)e−2πitζ along the line segment from β + i
to β + iy. If I denotes the real interval with endpoints 1 and y, then by Hölder’s
inequality 4.2,

|Φ(β)|2 =
∣∣∣ˆ
I

f(β + is)e−2πit(β+is) ds
∣∣∣2

≤
ˆ
I

|f(β + is)|2 ds
ˆ
I

e4πts ds =: Ψ(β)

ˆ
I

e4πts ds. (8.13)

By (8.9) and Fubini’s theorem 3.27,ˆ ∞
−∞

Ψ(β) dβ =

ˆ
I

ˆ ∞
−∞
|f(β + is)|2 dβ ds ≤ Cλ(I) = C|1− y|.

It follows that there is a sequence αk →∞ such that Ψ(±αk)→ 0. Hence, in view
of (8.13),

Φ(±αk)→ 0, (8.14)

for all t, and αk is independent of t.
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Let us consider

gk(y, t) :=

ˆ αk

−αk
f(x+ iy)e−2πitx dx.

Then (8.12) and (8.14) imply

e2πtygk(y, t)− e2πtgk(1, t)→ 0 as k →∞. (8.15)

If fy(x) := f(x+ iy), then fy ∈ L2(R) by (8.9). By Plancherel’s theorem 8.11,

‖gk(y, ·)− f̂y‖2 → 0 as k →∞.

By Corollary 4.11, there is a subsequence of (gk(y, t))k which converges to f̂y(t) for
a.e. t. Thus, if we define

F (t) := e2πtf̂1(t), t ∈ R,

then (8.15) implies that, for each y > 0, F (t) = e2πty f̂y(t) for a.e. t ∈ R. Applying
Plancherel’s theorem 8.11 givesˆ ∞

−∞
e−4πty|F (t)|2 dt =

ˆ ∞
−∞
|f̂y(t)|2 dt ≤ C,

for all y > 0, by (8.9). Letting y → ∞ implies F (t) = 0 for a.e. t < 0, and letting
y → 0 gives ˆ ∞

0

|F (t)|2 dt ≤ C. (8.16)

This implies that f̂y(t) = e−2πtyF (t) is in L1(R). Thus, by Corollary 8.13 (and the
arguments preceding it),

fy(x) =

ˆ ∞
−∞

f̂y(t)e2πitx dt,

that is

f(z) =

ˆ ∞
0

F (t)e−2πtye2πitx dt =

ˆ ∞
0

F (t)e2πitz dt, z ∈ H.

Finally, (8.10) follows from (8.16) and (8.11). �

Thanks to (8.9), the dominated convergence theorem 3.22 implies

lim
y→0+

ˆ ∞
−∞
|f(x+ iy)− F∨(x)|2 dx = 0. (8.17)

The theorem describes the structure of the Hardy space H2(H) of the upper
half-plane, i.e.,

H2(H) := {f : f holomorphic on H, ‖f‖H2(H) <∞},

which is a Hilbert space with norm given by

‖f‖H2(H) := sup
y>0

(ˆ ∞
−∞
|f(x+ iy)|2 dx

)1/2

.

Indeed, the above theorem implies the following corollary.

Corollary 8.17. The mapping F 7→ f(z) =
´∞

0
F (t)e2πitz dt yields an isomor-

phism between L2(R+) and H2(H). �
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Another way to make sense of the integral (8.7) is to require that F is compactly
supported. If 0 < A <∞ and F ∈ L2([−A,A]), then

f(z) =

ˆ A

−A
F (t)e2πitz dt, z ∈ C, (8.18)

clearly is well-defined.

Theorem 8.18 (Paley–Wiener II). If f is of the form (8.18), then f is entire and
there exists C > 0 such that

|f(z)| ≤ Ce2πA|z|, z ∈ C, (8.19)

and f |R ∈ L2(R). Conversely, if f is an entire function satisfying (8.19) for some
positive constants A and C, and f |R ∈ L2(R), then there exists F ∈ L2([−A,A])
such that f has the representation (8.18).

Entire functions f satisfying (8.19) are said to be of exponential type.

Proof. If f is of the form (8.18), then f is entire by Theorem 3.39, and

|f(z)| ≤
ˆ A

−A
|F (t)|e−2πt Im z dt ≤

ˆ A

−A
|F (t)| dt e2πA| Im z|

which implies (8.19). By Plancherel’s theorem 8.11, f |R ∈ L2(R).

Assume that f is an entire function satisfying (8.19) for some positive constants
A and C, and f |R ∈ L2(R). Define fε(x) := f(x)e−2πε|x|, for ε > 0 and x ∈ R. We
claim that

lim
ε→0

ˆ ∞
−∞

fε(x)e−2πitx dx = 0 for t ∈ R \ [−A,A]. (8.20)

This claim will imply the theorem as follows. By the dominated convergence
theorem 3.22, ‖fε − f |R‖2 → 0 as ε → 0, and so by Plancherel’s theorem 8.11,

‖f̂ε − f̂ |R‖2 → 0. Then, by (8.20) and Corollary 4.11, F := f̂ |R vanishes a.e.
outside [−A,A]. By Corollary 8.13, the representation (8.18) holds for a.e. real z,
and hence for all z ∈ C, because both sides of (8.18) are entire functions.

Let us prove (8.20). For real α let γα be the ray defined by γα(s) := seiα,
s ∈ [0,∞). Define

Φα(w) :=

ˆ
γα

f(z)e−2πwzdz = eiα
ˆ ∞

0

f(seiα)e−2πwseiα ds,

for w ∈ Πα := {w ∈ C : Re(weiα) > A}. By (8.19),

|f(seiα)e−2πwseiα | ≤ Ce2πAse−2πsRe(weiα) = Ce−2πs(Re(weiα)−A),

and so, by Theorem 3.39, Φα is holomorphic on the half-plane Πα. More is true for
α = 0 and α = π. Since f |R ∈ L2(R),

Φ0(w) =

ˆ ∞
0

f(s)e−2πws ds

is holomorphic in {w ∈W : Rew > 0} and

Φπ(w) = −
ˆ ∞

0

f(−s)e2πws ds = −
ˆ 0

−∞
f(s)e−2πws ds

is holomorphic in {w ∈W : Rew < 0}. Now, for t ∈ R,ˆ ∞
−∞

fε(x)e−2πitx dx = Φ0(ε+ it)− Φπ(−ε+ it). (8.21)
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We will show that any two of the functions Φα coincide on the intersection of their
domains of definition (i.e., they are analytic continuations of each other). Then

Φ0(ε+ it)− Φπ(−ε+ it) =

{
Φπ/2(ε+ it)− Φπ/2(−ε+ it) if t < −A,
Φ−π/2(ε+ it)− Φ−π/2(−ε+ it) if t > A,

evidently tends to 0 as ε→ 0, and (8.20) is proved.

Suppose that 0 < β − α < π. If w = |w|e−i(α+β)/2, then

Re(weiα) = |w|Re(ei(α−β)/2) = |w| cos
α− β

2
=: |w|η > 0,

Re(weiβ) = |w|Re(ei(β−α)/2) = |w| cos
β − α

2
= |w|η.

Thus, w ∈ Πα ∩Πβ provided that |w| > A/η. Consider the path integralˆ
γ

f(z)e−2πwzdz, γ(t) = reit, t ∈ [α, β]. (8.22)

Since Re(wγ(t)) = |w|rRe ei(t−(α+β)/2) ≥ |w|rη and so, by (8.19),

|f(γ(t))e−2πwγ(t)| ≤ Ce2πr(A−|w|η),

the path integral (8.22) tends to 0 as r →∞ if |w| > A/η. Thus, Cauchy’s theorem
implies that Φα(w) = Φβ(w) if w = |w|e−i(α+β)/2 and |w| > A/η. By the identity
theorem for holomorphic functions Φα = Φβ on the intersection of their domains
of definition. �





APPENDIX A

Appendix

A.1. Basic set-theoretic operations

For an arbitrary index set A we have the distribution laws

E ∩
⋃
α∈A

Eα =
⋃
α∈A

E ∩ Eα and E ∪
⋂
α∈A

Eα =
⋂
α∈A

E ∪ Eα,

and de Morgan’s laws( ⋃
α∈A

Eα

)c
=
⋂
α∈A

(Eα)c and
( ⋂
α∈A

Eα

)c
=
⋃
α∈A

(Eα)c,

E \
⋃
α∈A

Eα =
⋂
α∈A

E \ Eα and E \
⋂
α∈A

Eα =
⋃
α∈A

E \ Eα.

A map f : X → Y induces maps f : P(X) → P(Y ) and f−1 : P(Y ) → P(X)
satisfying

f
( ⋃
α∈A

Eα

)
=
⋃
α∈A

f(Eα) and f
( ⋂
α∈A

Eα

)
⊆
⋂
α∈A

f(Eα),

f−1
( ⋃
α∈A

Eα

)
=
⋃
α∈A

f−1(Eα) and f−1
( ⋂
α∈A

Eα

)
=
⋂
α∈A

f−1(Eα),

f−1(Ec) = (f−1(E))c,

E ⊆ F ⇒ f(E) ⊆ f(F ) and E ⊆ F ⇒ f−1(E) ⊆ f−1(F ),

E ⊆ f−1(f(E)) and E ⊇ f(f−1(E)).

A.2. Banach spaces

Let K denote either R or C and let X be a vector space over K. A function
‖ ‖ : X → [0,∞) is called a seminorm if

• ‖λx‖ = |λ|‖x‖ for all x ∈ X and λ ∈ K,
• ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X,

and it is called a norm if additionally

• ‖x‖ = 0 if and only if x = 0.

A vector space equipped with a norm is called a normed space. The norm induces
a metric d(x, y) = ‖x − y‖ and hence a topology on X. A normed space that is
complete with respect to the induced metric is called a Banach space.

A linear mapping T : X → Y between normed spaces is called bounded if it
is bounded on bounded sets, i.e., there is a constant C ≥ 0 such that

‖Tx‖ ≤ C‖x‖ for all x ∈ X.

Lemma A.1. For a linear mapping T : X → Y between normed spaces, the fol-
lowing are equivalent:

(1) T is bounded,
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(2) T is continuous,
(3) T is continuous at 0.

Proof. (1)⇒ (2) We have ‖Tx−Ty‖ = ‖T (x−y)‖ ≤ C‖x−y‖ ≤ ε whenever
‖x− y‖ ≤ ε/C.

(2) ⇒ (3) Obvious.

(3)⇒ (1) By assumption there is δ > 0 so that ‖Tx‖ ≤ 1 when ‖x‖ ≤ δ. Thus,

1 ≥ ‖T (δ‖x‖−1x)‖ = δ‖x‖−1‖Tx‖,
and so T is bounded. �

The space L(X,Y ) of all bounded linear mappings between normed spaces X
and Y is a normed space with respect to the operator norm

‖T‖ := sup
‖x‖=1

‖Tx‖ = sup
x 6=0

‖Tx‖
‖x‖

= inf
{
C : ‖Tx‖ ≤ C‖x‖ for all x

}
.

It is easy to see that L(X,Y ) is complete if so is Y . For T ∈ L(X,Y ) and S ∈
L(Y, Z) we have ST ∈ L(X,Z) with

‖ST‖ ≤ ‖S‖‖T‖,
in particular, L(X,X) is an algebra. If X is complete, L(X,X) is a Banach algebra.

A bounded linear mapping T ∈ L(X,Y ) is an isomorphism if T is bijective
and T−1 is bounded. We say that T is an isometry if ‖Tx‖ = ‖x‖ for all x ∈ X.
An isometry is an isomorphism onto its image.

The dual space X∗ of a normed space X is the space of bounded linear
functionals on X, i.e., X∗ = L(X,K). It is always a Banach space with respect
to the operator norm. That there are plenty of bounded linear functionals on a
normed space is a consequence of the Hahn–Banach theorem.

Theorem A.2 (Hahn–Banach theorem).
Real version. Let X be a real vector space, M a linear subspace of X, and ` a
linear functional on M such that `(x) ≤ p(x) for x ∈M , where p : X → R satisfies
p(x + y) ≤ p(x) + p(y) and p(λx) = λp(x) for all x, y ∈ X and λ ≥ 0. Then there

is a linear functional ˜̀ on X such that ˜̀(x) ≤ p(x) for all x ∈ X and ˜̀|M = `.

Complex version. Let X be a complex vector space, M a linear subspace of X,
and ` a complex linear functional on M such that |`(x)| ≤ p(x) for x ∈ M , where

p is a seminorm. Then there is a complex linear functional ˜̀ on X such that
|˜̀(x)| ≤ p(x) for all x ∈ X and ˜̀|M = `.

Let M be a closed linear subspace of a normed space X and let x ∈ X \M .
Then there exists ` ∈ X∗ such that `(x) 6= 0 and `|M = 0. Indeed, if we let
δ := infy∈M ‖x − y‖ and define ` on M + Cx by setting `(y + λx) := λδ, then
|`(y + λx)| = |λ|δ ≤ |λ|‖λ−1y + x‖ = ‖y + λx‖ and the Hahn–Banach theorem
implies the statement.

If we take M = {0} and x 6= 0 we get ` ∈ X∗ so that `(x) 6= 0. Thus, the
bounded linear functionals on X separate points: if x 6= y there is ` ∈ X∗ with
`(x− y) 6= 0, that is `(x) 6= `(y).

For x ∈ X we may consider the functional evx : X∗ → C defined by evx(`) :=
`(x). Then the mapping x 7→ evx is a linear isometry from X into X∗∗, in fact

| evx(`)| = |`(x)| ≤ ‖`‖‖x‖
which implies ‖ evx ‖ ≤ ‖x‖, on the other hand ‖x‖ ≤ ‖ evx ‖, since by the previous
paragraphs there is ` ∈ X∗ such that ‖x‖ = `(x) = evx(`).



A.3. HILBERT SPACES 93

Since X∗∗ is always complete, the closure cl(X̂) of X̂ := {evx : x ∈ X} in X∗∗

is a Banach space; cl(X̂) is the completion of X, and cl(X̂) = X̂ if X is complete.

The mapping x 7→ evx embeds X into cl(X̂) as a dense subspace.

If X̂ = X∗∗ then X is called reflexive. For instance, finite dimensional vector
spaces are reflexive, since X̂ and X∗∗ have the same dimension.

Theorem A.3 (Open mapping theorem). Let X and Y be Banach spaces. Any
surjective bounded linear mapping T : X → Y is open, i.e., T takes open sets to
open sets.

Consequently, a bijective bounded linear mapping between Banach spaces is an
isomorphism.

Theorem A.4 (Closed graph theorem). Let X and Y be Banach spaces. Any
closed linear mapping T : X → Y , i.e., the graph Γ(T ) := {(x, y) ∈ X × Y : y =
Tx} is closed in X × Y , is bounded.

Theorem A.5 (Uniform boundedness principle or Banach–Steinhaus theorem).
Let X be a Banach space, Y a normed space, and let A be a subset of L(X,Y ). If
supT∈A ‖Tx‖ <∞ for all x in some nonmeager subset of X, then supT∈A ‖T‖ <∞.

A.3. Hilbert spaces

Let H be a complex vector space. An inner product on H is a mapping
H ×H → C : (x, y) 7→ 〈x, y〉 such that

• 〈ax+ by, z〉 = a〈x, z〉+ b〈y, z〉 for all x, y ∈ H and a, b ∈ C,

• 〈x, y〉 = 〈y, x〉 for all x, y ∈ H,
• 〈x, x〉 > 0 for all x 6= 0.

A complex vector space equipped with an inner product is called a pre-Hilbert
space. In a pre-Hilbert space we set ‖x‖ :=

√
〈x, x〉. Then we have the Schwarz

inequality

|〈x, y〉| ≤ ‖x‖‖y‖, for all x, y ∈ H,
with equality if and only if x and y are linearly dependent. Indeed, assume without
loss of generality that ‖x‖ = ‖y‖ = 1. Then 〈x, y〉 6= 0 and 〈x, y〉 = a|〈x, y〉| for
some a ∈ C with |a| = 1. Now, for t ∈ R,

0 ≤ 〈a−1x− ty, a−1x− ty〉 = 1− 2tRe(a−1〈x, y〉) + t2 = 1− 2t|〈x, y〉|+ t2.

The right-hand side is minimal for t = |〈x, y〉| and so |〈x, y〉| ≤ 1 as required.

The Schwarz inequality implies that ‖ ‖ is a norm on H,

‖x+ y‖2 = ‖x‖2 + 〈x, y〉+ 〈y, x〉+ ‖y‖2 ≤ (‖x‖+ ‖y‖)2.

A pre-Hilbert space that is complete with respect to the norm ‖x‖ =
√
〈x, x〉 is

called a Hilbert space.

In any pre-Hilbert space we have the parallelogram law,

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2), for all x, y ∈ H.

Lemma A.6. Any closed convex subset A of a Hilbert space H contains a unique
element of smallest norm.

Proof. Set δ := infx∈A ‖x‖ and choose a sequence xn ∈ A such that ‖xn‖ → δ.
By the parallelogram law and convexity of A,

‖xn − xm‖2 = 2(‖xn‖2 + ‖xm‖2)− ‖xn + xm‖2 ≤ 2(‖xn‖2 + ‖xm‖2)− 4δ2,
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since (xn + xm)/2 ∈ A and hence ‖xn + xm‖ ≥ 2δ. This implies that xn is Cauchy
and so xn → x ∈ A, since A is closed. As

|‖xn‖ − ‖x‖| ≤ ‖xn − x‖ → 0

we have ‖x‖ = δ. If there is another y ∈ A with ‖y‖ = δ, then by the parallelogram
law

‖x− y‖2 = 2δ2 − 4‖(x+ y)/2‖2 ≤ 0,

and hence x = y. �

LetH be a Hilbert space, and let A be a subset ofH. We define the orthogonal
complement

A⊥ := {x ∈ H : 〈x, y〉 = 0 for all y ∈ A}.
Then A⊥ is a closed linear subspace of H; indeed, if A⊥ 3 xn → x and y ∈ A, then

|〈x, y〉| = |〈xn, y〉 − 〈x, y〉| = |〈xn − x, y〉| ≤ ‖xn − x‖‖y‖ → 0.

Proposition A.7. If M is a closed linear subspace of H, then H = M ⊕M⊥, i.e.,
each x ∈ H is of the form x = y + z for unique elements y ∈ M and z ∈ M⊥.
Moreover, y and z are the unique elements in M and M⊥ whose distance to x is
minimal.

Proof. By Lemma A.6, there is a unique element y ∈M such that ‖x− y‖ ≤
‖x − u‖ for all u ∈ M . Set z := x − y. If u ∈ M , then after multiplication by a
nonzero scalar we may assume that 〈z, u〉 ∈ R, and then

R 3 t 7→ ‖z + tu‖2 = ‖z‖2 + 2t〈z, u〉+ ‖u‖2

is real valued. Since z + tu = x − (y − tu) and y − tu ∈ M , this function has a
minimum at t = 0 and hence its first derivative vanishes at t = 0, that is 〈z, u〉 = 0.
It follows that z ∈M⊥.

If z′ ∈M⊥ then ‖x− z′‖2 = ‖x− z‖2 + ‖z− z′‖2 ≥ ‖x− z‖2, and thus z is the
unique element in M⊥ with minimal distance to x.

If x = y′ + z′ with y′ ∈ M and z′ ∈ M⊥, then y − y′ = z − z′ ∈ M ∩M⊥ and
so y − y′ = z − z′ = 0. �

Theorem A.8 (Riesz). Let ` be a bounded linear functional on a Hilbert space H.
Then there is a unique y ∈ H such that `(x) = 〈x, y〉 for all x ∈ H.

Proof. If ` = 0 choose y = 0. Otherwise M = ker ` is a proper closed
subspace of H and there exists a unit vector z ∈ M⊥, by Proposition A.7. Since
`(x)z − `(z)x ∈M , for each x ∈ H, we find

0 = 〈`(x)z − `(z)x, z〉 = `(x)− `(z)〈x, z〉,

i.e., y := `(z)z is as required.

If u ∈ H so that `(x) = 〈x, u〉 for all x ∈ H, then 〈x, v − u〉 = 0 for all x, and
hence u = v. �

For y ∈ H, `y(x) := 〈x, y〉 defines a bounded linear functional on H satisfying
‖`y‖ = ‖y‖, by the Schwarz inequality. So the mapping y 7→ `y is a conjugate-linear
isometry from H onto H∗, by Theorem A.8. It follows that a Hilbert space H is
reflexive in a strong sense: H is naturally isomorphic to H∗, not only to H∗∗.

A subset {xα}α∈A of a pre-Hilbert space H is called orthonormal if

〈xα, xβ〉 =

{
1 α = β

0 α 6= β
.
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An orthonormal set {xα}α∈A and any element x satisfy Bessel’s inequality:∑
α∈A
|〈x, xα〉|2 ≤ ‖x‖2,

where the sum is understood as sup
{∑

α∈A0
|〈x, xα〉|2 : A0 ⊆ A finite

}
. Indeed,

let M be the linear subspace generated by {xα}α∈A0
. By Proposition A.7, x =∑

α∈A0
cαxα + y for y ∈M⊥, and so 〈x, xα〉 = cα and ‖x‖2 =

∑
α∈A0

|cα|2 + ‖y‖2,
by orthonormality. It follows that the sum in Bessel’s inequality has only countably
many nonzero terms.

An orthonormal set {xα}α∈A in a Hilbert space H is called complete if its
orthogonal complement is {0}. If {xα}α∈A is a complete orthonormal set {xα}α∈A
in H, then each x ∈ H can be written in the form

x =
∑
α∈A
〈x, xα〉xα, (A.1)

where the sum has only countably many nonzero terms and converges in the
norm topology. To see this, let us enumerate by α1, α2, . . . the indices α for
which 〈x, xα〉 6= 0. By Bessel’s inequality, the series

∑∞
i=1 |〈x, xαi〉|2 converges,

and hence ‖
∑n
i=m+1〈x, xαi〉xαi‖2 =

∑n
i=m+1 |〈x, xαi〉|2 → 0 as m,n → ∞. So∑∞

i=1〈x, xαi〉xαi converges, since H is complete. The difference x−
∑∞
i=1〈x, xαi〉xαi

is zero, because {xα}α∈A is complete, and (A.1) is shown. From this we obtain
Parseval’s identity

‖x‖2 = lim
n→∞

‖
n∑
i=1

〈x, xαi〉xαi‖2 = lim
n→∞

n∑
i=1

|〈x, xαi〉|2 =
∑
α∈A
|〈x, xαi〉|2,

which in turn implies that {xα}α∈A is complete. For this reason a complete or-
thonormal set in a Hilbert space is called a Hilbert basis.

Every Hilbert space has a Hilbert basis. For by Zorn’s lemma there exists
a maximal orthonormal set and it is easy to see that it must be complete. A
Hilbert space is separable if and only if it has a countable Hilbert basis (then
every Hilbert basis is countable). This can be proved using the Gram–Schmidt
orthonormalization process; in this case the existence of a Hilbert basis follows
without using Zorn’s lemma.

An invertible linear mapping U : H1 → H2 between Hilbert spaces that pre-
serves inner products, i.e.,

〈Ux,Uy〉 = 〈x, y〉, for all x, y ∈ H1,

is called unitary. Unitary mappings are isometries, and conversely, surjective
isometries between Hilbert spaces are unitary which follows from the polarization
identity

4〈x, y〉 = ‖x+ y‖2 + ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2.

Let H be a Hilbert space with Hilbert basis {xα}α∈A. For x ∈ H consider
the element x̂ in the Hilbert space `2(A) defined by x̂(α) := 〈x, xα〉. The mapping
x 7→ x̂ is an isometry from H to `2(A) by Parseval’s identity. It is surjective and
thus also unitary. For if f ∈ `2(A) then

∑
α∈A |f(α)|2 < 0 and so the partial sums

of the series
∑
f(α)xα form a Cauchy sequence (by similar arguments as before).

Then x :=
∑
f(α)xα exists in H and x̂ = f . This implies the following theorem.

Theorem A.9. All separable infinite dimensional Hilbert spaces are isomorphic to
`2(N).
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A.4. Fréchet spaces

A topological vector space is a vector space endowed with a topology in
which addition and multiplication by scalars are continuous. A locally convex
space is a topological vector space whose topology has a basis consisting of convex
sets.

If X is a vector space and {pα}α∈A is a family of seminorms on X, then
the topology generated by the balls B(x, α, ε) := {y ∈ X : pα(x − y) < ε}, for
x ∈ X, α ∈ A, and ε > 0, turns X into a locally convex space. Actually, in every
locally convex space the topology can be defined by means of a family of seminorms
{pα}α∈A.

Let T : X → Y be a linear mapping between locally convex spaces X and Y
with topologies defined by families {pα}α∈A and {qβ}β∈B of seminorms, respec-
tively. Then T is continuous if and only if for each β ∈ B there are α1, . . . , αn ∈ A
and C > 0 such that qβ(Tx) ≤ C

∑n
i=1 pαi(x).

A locally convex space X with topologies definded by a family {pα}α∈A of
seminorms is Hausdorff if and only if for each x 6= 0 there exists α ∈ A so that
pα(x) 6= 0. If X is Hausdorff and A is countable, then the topology of X is given
by the translation invariant metric

d(x, y) :=
∑
α

2−α
pα(x− y)

1 + pα(x− y)
;

we say that X is metrizable. A complete Hausdorff locally convex space whose
topology is defined by a countable family of seminorms is called a Fréchet space.
The open mapping theorem and the closed graph theorem remain valid for Fréchet
spaces.
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Fundamental theorem of calculus, 65
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isodiametric, 37

Jensen’s, 40

Minkowski’s, 42

Minkowski’s integral, 41

Schwarz, 40, 93

Young’s, 45

inner product, 93

integral, 22

double, 26

iterated, 26

positive function, 20

simple function, 19

isometry, 92

isomorphism, 92

Jordan decomposition, 54
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Lebesgue point, 61
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mollifier, 47

monotone class, 2
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total variation, 64
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