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Abstract. We prove existence of large families of solutions of Einstein-
complex scalar field equations with a negative cosmological constant,
with a stationary or static metric and a time-periodic complex scalar
field.
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1. Introduction

There is currently considerable interest in the literature in space-times
with a negative cosmological constant Λ. As a contribution to this, in two
recent papers [12, 13] we have provided proofs of existence of infinite di-
mensional families of non-singular strictly stationary space times, solutions
of the Einstein equations with a negative cosmological constant and with
various matter sources. The families of solutions constructed in [13] include
stationary metrics with a time-periodic complex scalar field Φ, which are
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often referred to as boson stars. (By “strictly stationary” we mean that
the Killing vector is timelike everywhere.) The Einstein-complex scalar field
solutions we constructed can (but do not need to) have the usual AdS confor-
mal structure at conformal infinity, and are driven by the asymptotic value
of the scalar field, after requiring that the scalar-field potential G(|Φ|2) sat-
isfies

(1.1) −n2 <
2n(n− 1)

|Λ|
G′(0) < 0 ,

in space-time dimension n + 1. This might be seen as undesirable, since
massive or massless linear scalar fields do not fulfill (1.1). The object of this
work is to show how to modify the arguments in [13] to construct non-trivial
boson star solutions for linear or nonlinear scalar fields with finite total
energy of the field and with “mass-squared parameter”1 G′(0) in the range
(1.3) and, if desired, usual conformal structure at the conformal boundary
at infinity.

For definiteness we consider the Einstein equations involving a complex
scalar field with a potential G(|Φ|2), so that the equation to be satisfied by
Φ reads

(1.2) ∇µ∇µΦ−G′(|Φ|2)Φ = 0 ,

and we note that the arguments here easily extend to include further energy-
momentum tensors with additional contributions from further matter mod-
els as in [13]. We prove the following, where we normalise Λ as in (3.9)
below:

Theorem 1.1. Let
g̊ := −V̊ 2dt2 + g̊ijdx

idxj

be a static, vacuum, C2-conformally compactifiable (n+1)-dimensional met-

ric with V̊ > 0 such that the associated operator ∆L + 2n (see (3.4) below)

has no kernel in L2. Let ψ̊ 6≡ 0 and ω̊ ∈ R∗ solve the eigenvalue equation
(3.13), and assume that the associated eigenspace is one-dimensional. If

(1.3) −n2 < 4G′(0) ,

then for all time-independent θ̊idx
i small enough in C2,α

1 and for all σ ∈ C
with modulus small enough there exists a time-independent metric

−V 2(dt+ θidx
i)2 + gijdx

idxj

near to and asymptotic to −V̊ 2(dt + θ̊idx
i)2 + g̊ijdx

idxj, solution of the
Einstein-complex scalar field equations with Φ of the form

(1.4) Φ(t, x) = σeiωtχ(x) ,

where x denotes space-variables, with χ decaying to zero at the conformal
boundary, with ω close to ω̊, θ close to θ̊ and χ close to ψ̊.

1In the linear case, in which we have G′(|Φ|2) ≡ G′(0) for all Φ, when G′(0) ≥ 0 the
parameter G′(0) is usually identified with the square of the mass of the field.
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The proof of Theorem 1.1 is to be found in Section 3.1.

The asymptotic behaviour of the solutions can be described precisely, see
Remark 3.1 and compare Section 7 of [13]. The solutions have complete
asymptotic expansions in terms of (possibly non-integer) powers of ρ and
ln ρ, with the following behaviour in local coordinates near the conformal
boundary ∂M

(1.5) V = V̊ + o(ρ−1) , θi = θ̊i + o(1), gij = g̊ij + o(ρ−2) ,

where ρ is a coordinate which vanishes precisely at the conformal boundary.
In fact, the deviation of the metric from the corresponding vacuum solution
is determined by the asymptotic behaviour of the scalar field, which in the
current case is

(1.6) Φ = O(ρ(n+
√

4`2G′(0)+n2)/2) ,

This should be contrasted with the boson stars constructed in [13], where
any small frequency ω is allowed, but

(1.7) Φ = O(ρ(n−
√

4`2G′(0)+n2)/2) .

The requirement that Φ tends to zero at the conformal boundary led to the
already-mentioned restriction (1.1) on the potential, which does not arise
with the asymptotics (1.6).

The energy-momentum tensor decays as

(1.8) O(ρn+
√

4`2G′(0)+n2
) ,

which gives a finite total energy of the scalar field.

The condition on the kernel of ∆L + 2n is satisfied by the anti-de Sitter
metric, or by small perturbations thereof constructed in [4, 5, 11]. We solve

explicitly the eigenvalue equation for ψ̊ in this case, and check that some
solutions have the required properties.

In Section 3.5 we establish a similar existence result near the anti-de Sitter
metric for solutions of the form

(1.9) Φ(r, θ, ϕ) = σei(ω(σ)t−mϕ)χ(σ, r, θ) ,

with Z 3 m 6= 0, with V , g and θ invariant under rotations of the azimuthal
angle ϕ, with χ near ψ̊ 6≡ 0.

Our analysis is based on the observation that time-periodic solutions
which decay to zero at infinity can be associated with eigenfunctions of
the elliptic operator resulting from the linearisation of the scalar field equa-
tion. The associated eigenvalues determine the allowed frequencies. We
use eigenfunctions in anti-de Sitter space-time as a seed to construct one-
parameter families of solutions. We prove compactness of the associated
resolvent, which guarantees a discrete frequency spectrum at constant σ in
whole generality.

In an appendix we generalise a result in [24] to establish differentiability
of eigenvalues and eigenfunctions with respect to the metric, which allows
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us to use the implicit function theorem to prove existence of the desired
solutions.

We note that our methods do not seem to easily generalise to black hole
configurations with a periodic complex scalar field and stationary geometry,
as constructed numerically in [14].

The reader is referred to [9, 10, 16, 21, 28] for boson stars and black holes
with Λ = 0.

2. Properties of solutions near the anti-de Sitter metric: a
summary

The results here give a rigorous proof of existence of the near-AdS subset
of the numerical solutions of [7], and provide many new near-AdS boson
stars in all dimensions. The resulting solutions near the anti-de Sitter met-
rics form a countable family of one-parameter solutions with finite total
energy. More precisely, there is a discrete family of frequencies ω̊k,K (cf.
(3.39) below), k,K ∈ N, tending to infinity as k and K tend to infinity, such
that:

(1) Near the lowest frequency ω̊0,0 we obtain a family of solutions pa-
rameterised by σ.

(2) When θ̊ is spherically symmetric, near each higher frequency ω̊0,K ,
K ∈ N, we obtain a family of spherically symmetric solutions pa-
rameterised by σ. The metrics are time-independent, and are static
if |V̊ θ̊|̊g vanishes at the conformal boundary at infinity.

(3) When θ̊ is axially symmetric, near each higher frequency ω̊k,0 and
ω̊k,1 we obtain a family of stationary axially symmetric metrics pa-
rameterised by σ, with a field of the form (1.9) with |m| = k in
dimensions n ≥ 3, with the value |m| = k − 1 also being allowed in
dimension n = 3.

In this list |σ| is of course assumed to be small. Keeping in mind that we

are assuming in this section that −V̊ 2dt2 + g̊ is the anti-de Sitter metric,
the solutions are uniquely determined by |σ| and the restriction of θ̊ to
the conformal boundary, after compensating the phase of σ by a shift of
the time variable. Uniqueness holds within the class of solutions near the
anti-de Sitter solution, as guaranteed by the implicit function theorem.

3. Boson stars

3.1. The argument. We wish to prove existence of continuous families
of boson stars, i.e., solutions of the Einstein-scalar field equations with a
complex scalar field Φ of the form (1.4) where σ is a complex constant
varying over a neighborhood of the origin in the complex plane. The metrics
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we construct will take the form

g = −V 2(dt+ θidx
i︸ ︷︷ ︸

=θ

)2 + gijdx
idxj︸ ︷︷ ︸

=g

,(3.1)

∂tV = ∂tθ = ∂tg = 0 ,(3.2)

and will be near a metric of the form

(3.3) g̊ := −V̊ 2dt2 + g̊ ≡ −V̊ 2dt2 + V̊ −2dr2 + r2 h̊AB(xc)dxAdxB︸ ︷︷ ︸
=:̊h

,

where V̊ depends only upon r. We note, however, that the construction
below works near any stationary solution satisfying the non-degeneracy and
one-dimensional-kernel conditions spelled-out in Theorem 1.1 whenever a
non-trivial seed pair (ψ̊, ω̊) solving (3.6) at g̊ is available.

Let ∆L be the Lichnerowicz Laplacian acting on symmetric two-tensor
fields u, defined as [8, § 1.143]

(3.4) ∆Luij = −DkDkuij +Riku
k
j +Rjku

k
i − 2Rikjlu

kl .

We will assume that the operator ∆L + 2n associated with the Riemannian
metric

g̊ := V̊ 2dt2 + g̊

has no L2-kernel; in such cases the metric g̊ is called non-degenerate. Large
classes of non-degenerate Einstein metrics are described in [2, 3, 5, 27].

Substituting (1.4) into (1.2), one obtains(
V Dk(V g

kj∂j)− V 2G′(|σχ|2)
)
χ

+ (1− V 2θkθ
k)ω2χ− iωV 2(θj∂jχ+ V −1Dj(V θ

jχ)) = 0 .
(3.5)

Denoting by ψ the linearised counterpart of χ, the linearisation of (3.5)
reads2 (

V Dk(V g
kj∂j)− V 2G′(0)︸ ︷︷ ︸

=:P̂

)
ψ

+ (1− V 2θkθ
k)ω2ψ − iωV 2(θj∂jψ + V −1Dj(V θ

jψ)) = 0 .

(3.6)

We note the gauge freedom in θ arising from the coordinate transformations
t→ t+ λ, leading to gauge transformations θ → θ + dλ, which can be used
to get rid of some of the terms above.

We are ready now to pass to the

Proof of Theorem 1.1: We show below that, under our hypotheses, there
exists a differentiable map (χ, ω),

(3.7) (g, V, θ) 7→
(
χ = χ(g, V, θ), ω = ω(g, V, θ)

)
,

2Our notation is: Φ for the possibly nonlinear scalar field, χ for the time independent
part thereof, φ for the linearised scalar field, and finally ψ for the linearised counterpart
of χ.
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which to triples (g, V, θ) near (̊g, V̊ , 0) assigns a non-trivial solution to (3.5).

For σ and θ̊ small enough one can then use the implicit function theorem
near (σ, g, V, θ) = (0, g̊, V̊ , 0) to solve the remaining Einstein-scalar field
equations
(3.8)

V (−∆gV + nV ) = −1
2ω

2|σχ|2 +G′(|σχ|2)V
2|σχ|2
n−1 ,

Rij + ngij−V −1DiDjV =
1

2V 2
λikλ

k
j +

1

2
<(∂iσχ∂jσχ)

+
1

2
(θiθjω

2|σχ|2 − ωθi=(σχ∂jσχ)− ωθj=(σχ∂iσχ))

+
gij
n− 1

G′(|σχ|2)|σχ|2) ,

V −1Dj(V λij) = ω=(σχ∂iσχ)− θiω2|σχ|2 ,

where = denotes the imaginary part, with

λij = −V 2(∂iθj − ∂jθi) .
We have also normalised the cosmological constant Λ to

(3.9) Λ = −n(n− 1)

2
.

In (3.8) the field χ and the frequency ω are understood as functions of
(g, V, θ) given by the map (3.7). The reader is referred to the accompanying
papers [12, 13] for analytical details concerning (3.8). We simply mention
that the behaviour of the metric functions in local coordinates near the
conformal boundary is given by (1.5). A precise set of weighted function
spaces that can be used when invoking the implicit function theorem in the
proof are, e.g.,

V − V̊ ∈ Ck+2,α
1 , g − g̊ ∈ Ck+2,α

2 ,(3.10)

θ − θ̊ ∈ Ck+2,α
2 ,(3.11)

for some k ≥ 0 and α ∈ (0, 1), with small norms in those spaces. Here, as
elsewhere, ρ is a defining function for the conformal boundary at infinity,
with V̊ behaving as ρ−1 for small ρ, and with ρ2g̊ extending smoothly to

a positive-definite tensor field at ρ = 0. Finally, a tensor field u is in Ck,ασ
if and only if ρ−σu belongs to the usual Hölder space Ck,α(M), the norm
being defined with respect to a fixed conformally compact metric on M , say
g̊, in (A.1) below.

Alternatively, one can carry-out the proof in L2-type Sobolev spaces,
weighted to reflect the asymptotic behaviours just described, which are
Hilbert spaces. �

Remark 3.1. When analysing the spectral properties of the operators as-
sociated with the equations satisfied by the scalar field Φ, and thus χ, one
works in a subspace of the Hilbert space H2

δ′ , with δ′ restricted as in the
proof of Proposition 3.3. It follows, however, from the equations at hand
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that the solutions satisfy

(3.12) Φ = O(ρ(
√

4`2G′(0)+n2+n)/2) ,

and in fact Φ will be in a weighted Hölder space with this decay weight and
differentiability class as high as desired.

Remark 3.2. The above argument applies to real χ’s and σ’s, with θ̊ ≡ 0,
in which case static metrics are obtained.

It thus remains to show the existence of non-trivial solutions of (3.5) such
that the map (3.7) exists and is differentiable.

3.2. A spectral problem. The aim of this section is to establish Corol-
lary 3.4 below, which guarantees a discrete set of frequencies for the problem
at hand.

We start by considering the ψ-equation (3.6) with θ ≡ 0:

(3.13) Pψ :=
V√
det g

∂i(V
√

det ggij∂jψ) = (−ω2 + V 2G′(0))ψ , ω ∈ R∗ .

It is convenient to get rid of the first-order-derivative terms in the operators
at hand. For this we define

(3.14) ψ = V −1/2u .

Using P = V 2∆g + V DiV Di, we find

Pψ = V 3/2

(
∆g +

1

4
V −2|dV |2g −

1

2
V −1∆gV

)
u(3.15)

= V 3/2

(
∆g +

1

4
V −2|dV |2g −

n

2

)
u

=: V −1/2V 2
(

∆g + V︸ ︷︷ ︸
=:PV

)
u .

So ψ is an eigenfunction of

(3.16) P̂ := P − V 2G′(0) .

if and only if u is an eigenfunction of V 2(PV −G′(0)), with the same eigen-

value. We wish to show that P̂ has compact resolvent. This might seem
surprising at first, as it is well known that for asymptotically hyperbolic
metrics the operator ∆g does not have a compact resolvent when acting,
e.g., on L2(dµg). The rationale for compactness in our case is that the prin-
cipal symbol of our operator contains a multiplicative factor V 2 in front of
∆g, with V going to infinity as the boundary is approached.

Let us set
L := V 2(PV −G′(0) + λV −2) .

We will show that L, and then P̂ , have discrete spectra when acting on
suitable weighted L2-spaces. Similarly to [27] and [6], for δ ∈ R we denote



8 CHRUŚCIEL, DELAY, KLINGER, KRIEGL, MICHOR, AND RAINER

by L2
δ the space of functions (or tensors) u ∈ L2

loc for which the following
norm is finite :

‖u‖2L2
δ

=

∫
M
|u|2gρ2δdµg

(recall that ρ is a defining function for the conformal boundary at infinity).
Similarly, for k ∈ N and δ ∈ R, we denote by Hk

δ the space of functions (or

tensors) in Hk
loc, having covariant derivatives up to order k in L2

δ , with the
obvious norms.

A triple (M,V, g) will be said asymptotically hyperbolic if

(S1 ×M,V 2dt2 + g)

is C2-conformally compactifiable, with sectional curvatures approaching mi-
nus one at the conformal boundary. In this work we always assume V > 0.
The Riemannian counterparts V 2dt2 + g of the (n + 1)-dimensional AdS
metrics −V 2dt2 + g provide examples of asymptotically hyperbolic metrics.

We have:

Proposition 3.3. Let (M, g, V ) be conformally compact and asymptoti-

cally hyperbolic. For G′(0) > −n2/4 set s :=
√

4G′(0) + n2. The operator
V 2(PV − G′(0)) has compact resolvent when acting on L2

δ if δ2 < s2/4. In
particular it has a discrete spectrum on this space.

Proof. For the proof it is useful to keep in mind that the asymptotic be-
haviour of the kernel of

P̂ + λ = V 2
(
V −

1
2 (PV −G′(0) + λV −2)V

1
2
)

is governed by the characteristic indices of (PV−G′(0)+λV −2), with a further

shift by 1/2 due to the V 1/2 factor. The indices for (PV − G′(0) + λV −2)
are the solutions σ± of the equation

σ(n− 1− σ) +
n

2
− 1

4
+G′(0) = 0 ,

independently of λ, that is

σ± =
(n− 1)± s

2
.

In either case the length of the characteristic interval for P̂ +λ is s, centered
at n/2.

To account for the above, and for the multiplication of PV by V 2 ∼ ρ−2

when passing to P̂ , we choose δ′ ∈ R such that δ−2 ≤ δ′ < δ and δ′2 < s2/4.
In order to show that the resolvent of our operator is compact, we will prove
that its domain is a subset of H2

δ′ and so is compactly embedded in L2
δ (cf.,

e,g., [27, Lemma 3.6 (d)] or [6, Theorem 2.3 (6)]).

We first claim that we have an inequality of the form:

(3.17) −
∫
M
u(PV −G′(0))u dµg ≥ C(ε)

∫
M
u2dµg,

for all u smooth and compactly supported in {ρ < ε}, C(ε) being a positive
constant. For that, by, e.g., [12, Lemma 3.4], there exists a constant 0 <
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C < (n − 1)2/4, which can be made as close to (n − 1)2/4 as desired by
choosing ε small enough, such that for u as above we have∫

M
|du|2gdµg ≥ C

∫
M
u2dµg .

It holds that V → 1
4 −

n
2 as conformal infinity is approached. We deduce

that (3.17) is satisfied if G′(0) > −n2/4 with C(ε) as close as G′(0) + n2/4
as desired. We can thus use [6, Lemma 3.8] to conclude that for δ2 <
G′(0) + n2/4 = s2/4 there exists a positive constant C(ε, δ) such that

(3.18) ‖(PV −G′(0))u‖L2
δ
≥ C(ε, δ)‖u‖L2

δ
,

for all u smooth and compactly supported in {ρ < ε}.

Suppose, now, that V 2(PV − G′(0))u and u are in L2
δ . Since V behaves

as ρ−1 near the boundary, it holds that (PV − G′(0))u is in L2
δ−2 ⊂ L2

δ′ . It

follows from (3.18) and, e.g., [27, Proposition 6.5 (a)] that u ∈ H2
δ′ . �

Corollary 3.4. Let (M, g, V ) be conformally compact and asymptotically
hyperbolic. For G′(0) > −n2/4 and

δ2 <
s2

4
≡ G′(0) +

n2

4

the operator P̂ has compact resolvent when acting on L2
δ− 1

2

. In particular it

has a discrete spectrum on this space.

Proof. Since

P̂ = V −
1
2 [V 2(PV −G′(0))]V

1
2 ,

we have V
1
2ψ ∈ L2

δ (compare (3.14)) if and only if ψ ∈ L2
δ− 1

2

. �

Remark 3.5. The function ρβ is in L2
δ− 1

2

if and only if

β + δ − 1

2
>
n− 1

2
.

So ρ
n−s

2 is not in L2
δ− 1

2

if and only if δ ≤ s/2 and ρ
n+s

2 is in L2
δ− 1

2

if and

only if δ > −s/2.

3.3. Non-zero θ, and/or nonlinear scalar fields. We start by noting
that:

Proposition 3.6. For G′(0) > −n2/4, the operator (3.6) acting on L2
δ−1/2

with δ2 < s2/4 has compact resolvent as long as V (|θ|g + |Diθi|) is small
enough in L∞.

Proof. The operator (3.13), perturbed by a sufficiently small bounded op-
erator between the spaces above, will keep the compact resolvent property.

Indeed, for a bounded operator B : H → H whose norm is small, if P̂ has

compact resolvent then the sum P̂ +B still has compact resolvent, since

(3.19) (P̂ +B − µ)−1 = (Id +(P̂ − µ)−1B)−1(P̂ − µ)−1 .
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See also [20, IV.3.17] for a more general result.

Equation (3.6) provides such an operator if V (|θ|g + |Diθi|g) is small
enough in L∞. �

Note that in the setting above, for each x = (V, g) in an open set of such

pairs the resolvent R(x) := (P̂ (x) − z)−1 : H → H is a compact operator

for z in the resolvent set of P̂ (x).

It follows now from the Appendix that, given a simple eigenvector χ̊ of P̂
at (̊g, V̊ ) with frequency ω̊ 6= 0, there exists a differentiable map (ψ, ω),

(3.20) (g, V ) 7→
(
ψ = ψ(g, V ), ω = ω(g, V )

)
,

which to pairs (g, V ) near (̊g, V̊ ) assigns a non-trivial solution to (3.6). We

wish to extend this map to triples (g, V, θ) near (̊g, V̊ , 0). For this, it is
convenient to replace (3.6) by a self-adjoint version thereof. As in (3.14) we

set ψ = V −1/2u, and using (3.15) we have the following equivalent forms of
(3.5)

(3.21)

(P̂ + ω2)ψ = V 2
[
θkθ

kω2ψ + iω(θj∂jψ + V −1Dj(V θ
jψ)) +

(
G′(|σψ|2)−G′(0)

)
ψ
]

︸ ︷︷ ︸
=:F (θ,ω,σ,ψ)

⇐⇒
(

∆g + V︸ ︷︷ ︸
=:PV

−G′(0) + V −2ω2
)
u = V −3/2F (θ, ω, σ, V −1/2u) .

In the linear case the idea of the argument is as follows: Let ů be a simple
eigenfunction of PV with norm one and with eigenvalue −ω̊2. Write

u = ů+ δu , ω = ω̊ + δω

where δu is orthogonal to ů. Project the equation (3.21) into a component

orthogonal to ů, and another along ů. The operator P̂+ω̊ is an isomorphism
on the space orthogonal to ů, and the equation can therefore be solved for
δu as a differentiable function of ω and θ for all (ω, θ) close enough to (ω̊, 0).
One can then use the implicit function theorem to solve the equation along
ů for ω.

We note that the solution will depend differentiable upon g and V by the
results of Appendix A.

Let us pass to the details of the above. We denote by Pů the L2-orthogonal
projection operator on ů and by Pů⊥ the L2-orthogonal projection on ů⊥,
thus

Půf =

(∫
M
ůfdµg

)
ů , Pů⊥f = f − Půf .

We obtain yet another equivalent form of (3.6) by rewriting the second
equation in (3.21) as the following two equations

(PV + ω̊2)δu = (ω̊2 − ω2)δu+ Pů⊥
(
V −3/2F (θ, ω)(V −1/2(̊u+ δu)

)
,(3.22)

ω2 − ω̊2︸ ︷︷ ︸
δω(2ω̊+δω)

=

∫
ů
(
V −3/2F (θ, ω)(V −1/2(̊u+ δu)

)
dµg̊ .(3.23)
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We need to show that for real ω’s the right-hand side of (3.23) is real. For
this, some auxiliary notation is useful. Let us write the second of equations
(3.21) as Ax = y, where A is self-adjoint. Write x = x‖ + x⊥, where x‖ is
parallel to ů and x⊥ is orthogonal to ů, similarly for y. Then (3.22)-(3.23)
read

Ax‖ = y‖ , Ax⊥ = y⊥ .

The right-hand side of (3.23) equals the scalar product of 〈x‖, y‖〉, so we
need to show that this scalar product is real. Now,

〈x, y〉 = 〈x‖, y‖〉+ 〈x⊥, y⊥〉 = 〈x‖, y‖〉+ 〈x⊥, Ax⊥〉 .
Since A is self-adjoint the last term is real, and thus 〈x‖, y‖〉 will be real if
and only if 〈x, y〉 is real. This is indeed the case, which can be seen by the
following calculation:

=
(∫

(̊u+ δu)
(
V −3/2F (θ, ω)(V −1/2(̊u+ δu)

)
dµg̊

)

= =

∫ u︸︷︷︸
V 1/2ψ

V −3/2F (θ, ω)(V −1/2u
)
dµg̊


= =

(∫
V −1ψ

(
V 2θkθ

kω2ψ + iωV 2(θj∂jψ + V −1Dj(V θ
jψ))

)
dµg̊

)
= ω<

(∫
ψ
(
V θj∂jψ +Dj(V θ

jψ)
)
dµg̊

)
= ω

∫
Dj(V θ

j |ψ|2)dµg̊

= 0 .

The following alternative argument applies for scalar fields with a nonlin-
ear potential V (Φ) = G(|Φ|2) with G(0) = 0 and G′(0) > −n2/4: Set

F̃ (θ, ω, σ, u) := V −3/2F (θ, ω, σ, V −1/2u) .

Let k + 2 > n/2 and consider the operator from

(δu, δω, σ, θ) ∈ (Hk+2 ∩ ů⊥)× R× R× C1,0
1

to (Hk ∩ ů⊥)× R, which sends (δu, δω, σ, θ) to a pair(
Pů⊥

(
(PV −G′(0) + V −2ω2)(δu)− F̃ (θ, ω, σ, ů+ δu)

)
,∫

ůF̃ (θ, ω, σ, ů+ δu)dµg̊ − (2V −2ω̊δω + V −2δω2)
)
.

The derivative in the first two variables at (0, 0, 0, 0) is the map which sends
(δu, δω) to(

Pů⊥
(
(PV −G′(0) + V −2ω̊2)(δu)

)
, −2V −2ω̊δω

)
.

The analysis of the linear problem just carried out shows that this is an
isomorphism for ω̊ 6= 0 (in weighted Sobolev spaces as spelled out elsewhere
in this paper, see e.g. [27] for the relevant analytical estimates), and the
implicit function theorem shows that for small θ and σ there exist (δu, δω)
solving (3.21).
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A positive answer to the following question would immediately extend our
analysis to non-simple eigenvalues (compare, however, Remark A.3, Appen-
dix A below):

Question 3.7. Let ψ̊ be an eigenvector of P̂ with eigenvalue λ̊ with mul-
tiplicity larger than one. Is it true that, under possibly some further nat-
ural restrictive conditions, there exists a neighborhood U of (V̊ , g̊) and a
differentiable map

(3.24) U 3 (V, g) 7→ (ψ, λ)

which to (V, g) assigns an eigenvector ψ of P̂ with eigenvalue λ:

(3.25) P̂ψ = λψ .

3.4. Explicit solutions. In order to apply our technique we need to make
sure that there exist non-trivial solutions of the eigenvalue problem (3.13),
with one-dimensional eigenspaces. For this we consider the operator P for
the (n+ 1)-dimensional anti-de Sitter metric,

(3.26) g̊ ≡ −V̊ 2dt2 + g̊ := −
(r2

`2
+ 1
)
dt2 +

dr2

r2

`2
+ 1

+ r2̊h ,

which we denote by P̊ . (We have ` = 1 with the normalization Λ = −n(n−1)
2 ,

used elsewhere in this work, but we do not impose this condition in this
section.) Thus

(3.27) P̊ψ = V̊ 2
(
r−(n−1)∂r(V̊

2rn−1∂rψ) + r−2∆h̊ψ
)
.

Let ψ =
∑
ψI(r)ϕI be the decomposition of ψ into eigenfunctions ϕI of ∆h̊,

∆h̊ϕI = λIϕI , where λI ∈ {−k(k + n− 2)}∞k=0. For each angular mode one
is thus led to a radial operator

(3.28) V̊ 2
(
r−(n−1)∂r(V̊

2rn−1∂rψI) + λIr
−2 .

We start with the equation

(3.29) V̊ 2
(
r−(n−1)∂r(V̊

2rn−1∂rψI) + λIr
−2ψI

)
= −ω2ψI +G′(0)V̊ 2ψI .

Defining a new variable z := −r2/`2 gives
(3.30)

∂2
zψI +

(
n/2

z
+

1

z − 1

)
∂zψI −

λI(z − 1) + `2ω2z + `2G′(0)z(z − 1)

4z2(z − 1)2
ψI = 0

which manifestly has three regular singular points, at 0, 1 and ∞. An
equation of this type, i.e. a homogeneous, linear, second order ODE with
three regular singular points, can be transformed to the hypergeometric
equation (see, e.g., [26, 4.3.1]): We define ψ̃I(z) := z−β1(z−1)−β2ψI(z) where
β1, β2 are roots of the indicial equation at z = 0 and z = 1 respectively,
given by

(3.31) β1 =
1

4

(√
(n− 2)2 − 4λI − n+ 2

)
, β2 = −1

2
`ω .
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The equation for ψ̃I is now

z(z − 1)∂2
z ψ̃I + ((2 +R/2− `ω) z − 1−R/2) ∂zψ̃I

−1

4

(
λI + n+ `2(G′(0)− ω2) + (2 +R)(`ω − 1)

)
ψ̃I = 0 ,

(3.32)

where, for λI = −k(k + n− 2),

R =
√

(n− 2)2 − 4λI = n− 2 + 2k .

Equation (3.32) is explicitly of the hypergeometric form, as already observed

in [19]. The solutions are, after expressing ψ̃I by ψI and z by r,

ψI(r) = (`2 + r2)−`ω/2
[
C1r

(2+R−n)/2
2F1

(
A1, B1, 1 +R/2,−r2/`2

)
+ C2r

(2−R−n)/2
2F1

(
A2, B2, 1−R/2,−r2/`2

)]
,

(3.33)

where

A1 :=
1

4
(−s+R+ 2− 2`w) , B1 =

1

4
(s+R+ 2− 2`ω) ,

A2 =
1

4
(−s−R+ 2− 2`w) , B2 =

1

4
(s−R+ 2− 2`ω) ,

s =
√

4`2G′(0) + n2, C1, C2 are constants and 2F1 is the usual hypergeo-
metric function:

(3.34) 2F1(a, b, c, z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!

with

(3.35) (a)n =

{
1 , for n = 0 ,

a(a+ 1) . . . (a+ n− 1) , for n > 0 .

Strictly speaking, (3.34) holds for |z| < 1, and analytic continuation should
be used otherwise.

Keeping in mind that λI ≤ 0, and since 2F1(a, b, c, 0) = 1 for all a, b, c,
the solutions are regular at r = 0 if and only if C2 = 0. For λI = 0 the
solutions converge to `−`ω at the origin, while for λI < 0 they converge to
zero there.

If a or b are non-positive integers then 2F1 is a polynomial. We will show
that these are the only solutions in our context.

In the polynomial case the term 2F1(a, b, c,−r2/`2) behaves, for r → ∞,

as r−2a if −a ∈ N, as r−2b if −b ∈ N and as r−2 max(a,b) if both −a ∈ N and
−b ∈ N. In order to analyse the behavior of 2F1(a, b, c, z) as |z| → ∞ in the
general case, the difference b− a is relevant:



14 CHRUŚCIEL, DELAY, KLINGER, KRIEGL, MICHOR, AND RAINER

Indeed, if b− a is not an integer, then [15, Eq. 15.8.2]

2F1(a, b, c,−r2/`2) =
π

sin(π(b− a))

[ r−2a`2a

Γ(b)Γ(c− a)

(
1 +O(r−2)

)
− r−2b`2b

Γ(a)Γ(c− b)
(
1 +O(r−2)

) ]
.

(3.36)

If b − a is a non-negative integer, say p, then 2F1(a, b, c,−r2/`2) has the
asymptotics [15, Eq. 15.8.8]
(3.37)

2F1(a, b, c,−r2/`2) =
r−2a`2a

Γ(a+ p)

(
(p− 1)!

Γ(c− a)

(
1 +O(r−2)

))
+
r−2b`2b

Γ(a)

(
ln(r2/`2)

p! Γ(c− a− p)
+

Γ′(a+ p)

Γ(a+ p)

+
Γ′(c− a− p)
Γ(c− a− p)

+ Γ′(1) +O(r−2)

)
.

If b− a is a negative integer, (3.37) applies with a and b interchanged.

In our case, in the hypergeometric function in the C1 term we have <(b−
a) = <(s/2) ≥ 0.

The question arises, how the asymptotic behaviour just seen fits with the
analysis in Section 3.2. To make contact with Corollary 3.4 we need to
check when ψI ∈ L2

δ+1/2 = L2(r−2δ−3dµg̊). In view of Remark 3.5 we see

that choosing

(3.38) −s
2
< δ <

s

2
,

the operator P̂ will have compact resolvent, and discrete spectrum.

With the choice (3.38) of the weighted spaces the r−2a term in both (3.36)
and (3.37) does not decay fast enough. Working in weighted spaces with a
weight as in (3.38), we thus need to ensure that the coefficient in front of
the r−2a term vanishes. Equivalently, either 1) b = (s+R+2−2`ω)/4 needs
to be a non-positive integer, say −K with K ∈ N, or 2) c − a should be a
non-positive integer −K. In case 1), this gives a polynomial solution and

r−(s+n)/2 behavior for ψI .

The bottom line is that the weighted-Sobolev space condition above will
be satisfied in case 1) if and only if

(3.39) ω =
n+

√
4`2G′(0) + n2 + 2(k + 2K)

2`
, for K = 0, 1, 2, 3, . . .

In case 2), one is similarly led to an overall minus sign at the right-hand
side of (3.39), resulting in the same value of ω2.

The solutions obtained in both cases differ only by a constant factor: a
change of ω → −ω in (3.33) leads to the same one-dimensional family of
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solutions, as follows from the identity [15, 15.8.1]

(3.40) 2F1(a, b, c, z) = (1− z)c−a−b2F1(c− a, c− b, c, z)
leaving only a prefactor `2`ω.

Different λI can lead to the same eigenvalue: the pair (k,K) gives the

same value of ω2 as (k′,K + k−k′
2 ) (for even k − k′).

Keeping in mind that our construction works best for simple eigenvalues,
we note that only the eigenvalue with k = 0 (λ0 = 0) and K = 0 is simple.

However, if we restrict the whole construction above to the space of spher-
ically symmetric eigenfunctions and spherically symmetric static metrics,
then all eigenvalues will be simple in this space, leading to a countable
family, parameterised by K, of one-parameter families of solutions, each
parameterised by σ, of the full system of equations.

3.5. Rotating solutions. In this section we let 0 6= k ∈ N and consider
frequencies ω near (3.39). Instead of (1.4) we assume that

(3.41) Φ(σ, r, θj , ϕ) = σei(ω(σ)t−mϕ)χ(σ, r, θj) ,

where we denote by (θj , ϕ), θj ∈ [0, π), ϕ ∈ [0, 2π) the usual angular coor-

dinates on Sn−1. For definiteness we assume that −V̊ 2dr2 + g̊ is the anti-de
Sitter metric, and that θ̊ = 0, and that χ will be near a given solution of the
eigenvalue problem. This will be consistent with (3.6) if we restrict ourselves
to a class of metrics, potentials V and forms θ which are invariant under ∂ϕ:

L∂ϕg = 0 , L∂ϕV = 0 ,L∂ϕθ = 0 .

In the space of functions Φ of the form (3.41) the eigenspaces corresponding
to k = |m|, K = 0 in (3.39) are one-dimensional: Indeed, as already noted
above, the pair (k,K) leads to the same eigenvalue ω as (k′,K ′) if and only
if K ′ = K+ (k−k′)/2. As K is required to be non-negative this means that
k′ < k if K = 0. But the eigenfunctions of the Laplacian on Sn−1 take the
form (cf., e.g., [17, 18])

Y`1,...,`n−2,k(θ
j , ϕ) = ei`1ϕZ`2,...,`n−2,k(θ

j) ,

where |`1| ≤ `2 ≤ . . . ... ≤ k, and therefore there are no eigenfunctions which
behave as e−imϕ for k′ < k = |m|.

In dimension n = 3 the eigenspace corresponding to k = |m| + 1, K = 0
is also one-dimensional: In this case the eigenfunctions of the Laplacian are
parameterized by only 2 parameters, k and `1, and therefore there is at most
one eigenfunction of the form (3.41) for a fixed k. The only value k′ < k
with eigenfunctions of the required form is k′ = k− 1 = |m|, which does not
give the same ω for any integer value of K ′.

All our arguments can be repeated in this setting, leading to solutions of
the coupled equations with suitable ω for all σ in (3.41) small enough.
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Appendix A. Smooth dependence upon (V, g)
by A. Kriegl, P. Michor and A. Rainer

Let M be a non-compact smooth manifold (the Cauchy surface). Let
g̊ be a smooth background Riemannian metric on M with good prop-
erties (at least complete, or with bounded geometry, for example). Let
ρ ∈ C∞(M,R>0) be a fixed smooth positive function on M .

Let E →M be a tensor bundle like S2T ∗M . Then let ΓCk,α (̊g)(E) be the

Banach space of all Ck,α sections f of E (for each smooth curve c : R→M
the composition f ◦ c is Ck and its k-th derivative is locally Hölder of class
α) with norm (one of many equivalent conditions)

‖f‖Ck,α = sup
x∈M

(
|f(x)|+ |∇g̊f(x)|̊g + · · ·+ |(∇g̊)kf(x)|̊g

)
(A.1)

+ sup
0<distg̊(x,y)≤ε

‖(∇g̊)kf(x)− Pty,x((∇g̊)kf(y))‖g̊
distg̊(x, y)α

,

where we used the geodesic distance on M induced by g̊, the fiber metric
on ⊗kT ∗M ⊗ E induced by g̊, and the parallel transport Pty,x from y to x
along the short geodesic from x to y; here ε is smaller than the injectivity
radius of (M, g̊).

Below we will meet mappings on ΓCk,α (̊g)(E) which are real analytic;
since we are on a Banach space, these are given by convergent power series
of bounded multilinear homogeneous expressions. See [23, Sections 10 and
11]. These mappings will be visibly real analytic, since they will involve only
differentiations, multiplications, and inversion of matrices.

Moreover we let Γ
Ck,αr (̊g)

(E) = {s : ρ−rs ∈ ΓCk,α (̊g)(E)}. If E is the trivial

line bundle we just write Ck,αr (̊g)(M) instead of Γ
Ck,αr (̊g)

(M × R).

Let V̊ be a smooth positive function on M and let V be the space of

all functions V ∈ C∞(M,R) such that V − V̊ ∈ Ck+1,α
1 (̊g)(M) and V > 0

everywhere on M . Then V is an open set in an affine space modelled on a
Banach space.

Let M be the space of all Riemannian metrics g on M such that
g − g̊ ∈ Γ

Ck+2,α
2 (̊g)

(S2T ∗M). It then follows that also g−1 − g̊−1 ∈
Γ
Ck+2,α

2 (̊g)
(S2T ∗M). Note that M is an open set in an affine space mod-

elled on a Banach space of tensor fields on M .

(1) For each g ∈M the volume density vol(g) satisfies vol(g) = F (g) vol(̊g)

for a function F (g) =
√

det(gij)
det(̊gij)

∈ Ck+2,α(̊g)(M) with F (g) > 0 and 1
F (g) ∈

Ck+2,α(̊g)(M). Moreover, F (g) visibly depends real analytically on g.

(2) For each g ∈ M the Hilbert space L2(ρ2δ vol(g)) is isomorphic (but
not isometric) to L2(ρ2δ vol(̊g)) via the multiplication operator F (g) :
L2(ρ2δ vol(̊g))→ L2(ρ2δ vol(g)). So we may consider just one Hilbert space
L2(ρ2δ vol(̊g)) with different inner products 〈α, β〉g = 〈F (g)−1α, F (g)−1β〉̊g.
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We pass now to the description of our assumptions:

Assumptions A.1. Let U := V × M, an open subset in an affine space
modelled on a Banach space. For each x ∈ U , let A(x) be an unbounded
closed operator on L2(ρ2δ vol(g)), such that the domains satisfy D(A(x)) =

F (g)D(A(V̊ , g̊)).

In the case of interest in this paper x = (V, g).

The operators in this paper even have equality of all domains in
L2(ρ2δ vol(̊g)).

By replacing A(x) with F (g)−1A(x)F (g) we may assume that A is a map
from an open subset U := V ×M in an affine space modelled on a Banach
space to the set of unbounded closed operators on some fixed Hilbert space
H := L2(ρ2δ vol(̊g)) with common domain V = D(A(x)) ⊆ H. Furthermore,
we assume that A is real analytic in the sense, that for all vectors v ∈ V and
w ∈ H the composite x 7→ 〈A(x)v, w〉 is real analytic; see [23, Section 10]
for more information. This weak definition suffices due to the real analytic
uniform boundedness theorem [23, 11.12].

We emphasise that it is not assumed that the A(x)’s are self-adjoint or
with compact resolvent.

Theorem A.2. Under the assumptions A.1, let λ(x0) be a simple isolated
eigenvalue of A(x0) with eigenvector v(x0) ∈ V, where x0 ∈ U is fixed.

Then one may extend λ and v to locally defined real analytic mappings,
such that λ(x) is a simple isolated eigenvalue of A(x) with corresponding
eigenvector v(x) for x near x0 in U .

If λ is real-valued and non-negative (e.g. A(x) is symmetric for some
inner product possibly different from the given one), then the non-negative

root ω(x) =
√
λ(x) is locally Lipschitz in x. On the subset of those x for

which λ(x) > 0 the function ω(x) depends real analytically on x.

It is in general not possible to have a differentiable function ω(x) such
that ω(x)2 = λ(x), see e.g. [1, 5.2].

Proof. The following argument is adapted from [1, 7.4] and [22, Proof of
resolvent lemma]: For each x ∈ U consider the norm ‖u‖2x := ‖u‖2H +
‖A(x)u‖2H on V. Since A(x) is closed, (V, ‖ ‖x) is also a Hilbert space with
inner product 〈u, v〉x := 〈u, v〉H+〈A(x)u,A(x)v〉H . Then U 3 x 7→ 〈u, v〉x is
real analytic for fixed u, v ∈ V, and by the multilinear uniform boundedness
principle [23, 5.18 and 11.14], the mapping x 7→ 〈 , 〉x is real analytic into
the space of bounded bilinear forms on (V, ‖ ‖x0). By the exponential
law [23, 3.12 and 11.18] the mapping (x, u) 7→ ‖u‖2x is real analytic from
U × (V, ‖ ‖x0) to R for each fixed x0. Thus, all Hilbert norms ‖ ‖x are
equivalent: for B ⊂ U bounded, {‖u‖x : x ∈ B, ‖u‖x0 ≤ 1} is bounded
by CB,x0 in R, so ‖u‖x ≤ CB,x0‖u‖x0 for all x ∈ B. Moreover, each A(x)
is a globally defined operator (V, ‖ ‖x0) → H with closed graph and is
thus bounded, and by using again the (multi)linear uniform boundedness
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principle [23, 5.18 and 11.14] as above we see that x 7→ A(x) is real analytic
U → L((V, ‖ ‖x0), H).

We consider the global resolvent set

R = {(x, µ) ∈ U × C : A(x)− µ : (V, ‖ ‖x0)→ H is invertible}
which is an open subset of U ×C, since (A(x)−µ) ◦ (A(x0)−µ0)−1 ∈ L(H)
and equals Id for (x, µ) = (x0, µ0). By assumption, λ(x0) is a simple isolated
eigenvalue of A(x0) with eigenvector v(x0). We choose a smooth positively
oriented curve γ in C which contains only λ(x0) in its interior and all other
eigenvalues of A(x0) in the exterior; in particular, {x0} × γ ⊂ R. Since
γ ⊂ C is compact, we may cover {x0} × γ by finitely many open sets of the

form Wi×W̃i contained in R; for U1 =
⋂
Wi we then have U1×γ ⊂ R where

U1 is an open neighborhood of x0 in U . By [20, III.6.17], for x ∈ U1 the
spectrum of A(x) is separated into the two parts contained in the interior
and in the exterior of γ and the resolvent integral

P (x) = − 1

2πi

∫
γ
(A(x)− µ)−1 dµ : H → V ⊆ H

is a projection operator onto the sum of all generalized eigenspaces of all
eigenvalues of A(x) in the interior of γ, for x ∈ U1. We now argue as in
the proof of [1, 7.8, Claim 1] (see also [23, 50.16, Claim 1]) as follows: By
replacing A(x) by A(x)− z0 if necessary we may assume that 0 is not in the
interior of γ. Since U1 3 x 7→ P (x) is a smooth (even real analytic) mapping
into the space of bounded projections in L(H) with finite dimensional ranges,
the rank of P (x) cannot fall locally, and it cannot increase locally since the
distance in L(H) of P (x) to the subset of operators of rank 1 is continuous
in x and is either 0 or ≥ 1. Namely: Let x∗ ⊗ y be rank-1 operator and
dim(P (H)) > 1; choose x ∈ kerx∗ ∩P (H), then (P − x∗ ⊗ y)(x) = x, hence
‖P − x∗ ⊗ y‖ ≥ 1. See also [20, I.§4.6 and I.6.36].

So we conclude that for x in a (possibly smaller) open set U1 there is
only one (counted with multiplicity) eigenvalue (denoted λ(x)) of A(x) in
the interior of γ and hence P (x) is a projection on its eigenspace. See
also [20, IV.§3.4-5].

Then v(x) := P (x)v(x0) is an eigenvector for A(x) depending real ana-
lytically on x near x0. The corresponding eigenvalue is also real analytic,
since

λ(x) =
〈A(x)v(x), v(x)〉̊g

‖v(x)‖2g̊
.

Near positive λ(x0)’s the square root is obviously also real analytic. If the
smooth eigenvalue λ(x) is always non-negative, then the non-negative square

root ω(x) =
√
λ(x) is locally Lipschitz in x by [25]. �

Remark A.3. The assumption that λ(x0) is a simple eigenvalue of A(x0)
is quite essential in the above theorem. Near eigenvalues with higher mul-
tiplicity the situation becomes much more difficult. Real analytic curves
of self-adjoint or normal unbounded operators with compact resolvent and
common domain of definition admit real analytic choices of their eigenvalues
and eigenvectors. However, if the parameter space is at least 2-dimensional,
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examples can be given with no differentiable choice for self-adjoint opera-
tors and no continuous choice for normal operators. If the parameter space
is finite dimensional, then, locally, the eigenvalues and eigenvectors can be
chosen real analytically after blowing up the parameter space. Even less can
be said if the operators depend only smoothly on a parameter and distinct
eigenvalues have infinite order of contact. Without normality even real an-
alytic curves of diagonalisable matrices need not admit smooth choices of
the eigenvalues. All this can be found in [30] and the references therein.
For the optimal (Sobolev) regularity of the eigenvalues of smooth curves of
arbitrary quadratic matrices see [29].
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[29] A. Parusiński and A. Rainer, Optimal Sobolev regularity of roots of polynomials, ac-
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