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Abstract. Moser’s theorem [13] states that the diffeomorphism group of a
compact manifold acts transitively on the space of all smooth positive densities

with fixed volume. Here we describe the extension of this result to manifolds

with corners. In particular we obtain Moser’s theorem on simplices. The proof
is based on Banyaga’s paper [1], where Moser’s theorem is proven for manifolds

with boundary. A cohomological interpretation of Banyaga’s operator is given,
which allows a proof of Lefschetz duality using differential forms.

1. Introduction. In [13] Moser proved that on a connected compact oriented man-
ifold M without boundary there exists for any two positive volume forms µ0 and µ1

with
∫
M
µ0 =

∫
M
µ1 an orientation preserving diffeomorphism ϕ with ϕ∗µ1 = µ0.

In [1] Banyaga extended this to compact oriented manifolds with boundary and
showed that the diffeomorphism can be chosen such that it restricts to the identity
on the boundary. On a manifold with corners one cannot expect the diffeomor-
phism to be the identity on the boundary, since at a corner x of index 2 or higher
the derivative of such a diffeomorphism would have to be the identity: in this case
x lies in the boundary of at least two codimension 1 strata of ∂M . So the derivative
at x restricted to two codimension 1 subspaces is the identity and thus it has to
be the identity on the whole space; in particular the Jacobian determinant there
equals 1.

Moser’s theorem on manifolds with corners is needed for example in [2]. Even on
simplices it does not seem to be known, but is highly desirable. In fact, Banyaga’s
method [1] gives just the desired result. But this is not immediately obvious and
it took us a long time to realize it. Therefore we think that it is worthwhile to
write the proof with all details. Along the way we also prove Stokes’ theorem on
manifolds with corners.

For related results see [5] for a version of Moser’s theorem on bounded domains
in Rm with low differentiability requirements furnishing diffeomorphisms with only
low regularity using PDE techniques; this does not imply the result given here. See
also the recent book [4] for results on k-forms instead of volume forms. A version
on non-compact manifolds is in [8] which also sketches a proof for non-compact
manifolds with boundary which differs from Banyaga’s proof.
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2. Manifolds with corners alias quadrantic (orthantic) manifolds. For
more information we refer to [7], [11], [10]. Let Q = Qm = Rm≥0 be the posi-
tive orthant or quadrant. By Whitney’s extension theorem or Seeley’s theorem,
the restriction C∞(Rm)→ C∞(Q) is a surjective continuous linear mapping which
admits a continuous linear section (extension mapping); so C∞(Q) is a direct sum-
mand in C∞(Rm). A point x ∈ Q is called a corner of codimension (or index)
q > 0 if x lies in the intersection of q distinct coordinate hyperplanes. Let ∂qQ
denote the set of all corners of codimension q.

A manifold with corners (recently also called a quadrantic manifold) M is a
smooth manifold modeled on open subsets of Qm. We assume that it is connected
and second countable; then it is paracompact and each open cover admits a subor-
dinated smooth partition of unity. Any manifold with corners M is a submanifold
with corners of an open manifold M̃ of the same dimension, and each smooth func-
tion on M extends to a smooth function on M̃ . We do not assume that M is
oriented, but for Moser’s theorem we will eventually assume that M is compact.
Let ∂qM denote the set of all corners of codimension q. Then ∂qM is a submanifold
without boundary of codimension q in M ; it has finitely many connected compo-
nents if M is compact. We shall consider ∂M as stratified into the connected
components of all ∂qM for q > 0. Abusing notation we will call ∂qM the boundary
stratum of codimension q; this will lead to no confusion. Note that ∂M itself is not
a manifold with corners. We shall denote by j∂qM : ∂qM → M the embedding of
the boundary stratum of codimension q into M , and by j∂M : ∂M →M the whole
complex of embeddings of all strata.

Each diffeomorphism of M restricts to a diffeomorphism of ∂M and to a diffeo-
morphism of each stratum ∂qM . The Lie algebra of Diff(M) consists of all vector
fields X on M such that X|∂qM is tangent to ∂qM . We shall denote this Lie
algebra by X(M,∂M).

3. Differential forms. There are several differential complexes on a manifold with
corners. If M is not compact there are also the versions with compact support.

• Differential forms that vanish near ∂M . If M is compact, this is the same
as the differential complex Ωc(M \ ∂M) of differential forms with compact
support in the open interior M \ ∂M .
• Ω(M,∂M) = {α ∈ Ω(M) : j∗∂qMα = 0 for all q ≥ 1}, the complex of

differential forms that pull back to 0 on each boundary stratum.
• Ω(M), the complex of all differential forms. Its cohomology equals singular

cohomology with real coefficients of M , since R → Ω0 → Ω1 → . . . is a
fine resolution of the constant sheaf on M ; for that one needs existence of
smooth partitions of unity and the Poincaré lemma which holds on mani-
folds with corners. The Poincaré lemma can be proved as in [12, 9.10] in
each quadrant.

If M is an oriented manifold with corners of dimension m and if µ ∈ Ωm(M) is a
nowhere vanishing form of top degree, then X(M) 3 X 7→ iXµ ∈ Ωm−1(M) is a
linear isomorphism. Moreover, X ∈ X(M,∂M) (tangent to the boundary) if and
only if iXµ ∈ Ωm−1(M,∂M).
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4. Towards the long exact sequence of the pair (M,∂M). Let us consider
the short exact sequence of differential graded algebras

0→ Ω(M,∂M)→ Ω(M)→ Ω(M)/Ω(M,∂M)→ 0 .

The complex Ω(M)/Ω(M,∂M) is a subcomplex of the product of Ω(N) for all
connected components N of all ∂qM . The quotient consists of forms which extend
continuously over boundaries to ∂M with its induced topology in such a way that
one can extend them to smooth forms on M ; this is contained in the space of
‘stratified forms’ as used in [15]. There Stokes’ formula is proved for stratified
forms.

5. Proposition (Stokes’ theorem). For a connected oriented manifold M with
corners of dimension dim(M) = m and for any ω ∈ Ωm−1

c (M) we have∫
M

dω =

∫
∂1M

j∗∂1Mω .

Note that ∂1M may have several components. Some of these might be non-
compact.

We shall deduce this result from Stokes’ formula for a manifold with boundary by
making precise the fact that ∂≥2M has codimension 2 in M and has codimension
1 with respect to ∂1M . The proof also works for manifolds with more general
boundary strata, like manifolds with cone-like singularities. A lengthy full proof
can be found in [3].

Proof. We first choose a smooth decreasing function f on R≥0 such that f = 1 near
0 and f(r) = 0 for r ≥ ε. Then

∫∞
0
f(r)dr < ε and for Qm = Rm≥0 with m ≥ 2,∣∣∣ ∫

Qm

f ′(|x|) dx
∣∣∣ = Cm

∣∣∣ ∫ ∞
0

f ′(r)rm−1 dr
∣∣∣ = Cm

∣∣∣ ∫ ∞
0

f(r)(rm−1)′ dr
∣∣∣

= Cm

∫ ε

0

f(r)(rm−1)′ dr ≤ Cmεm−1 ,

where Cm denotes the surface area of Sm−1 ∩ Qm. Given ω ∈ Ωm−1
c (M) we use

the function f on quadrant charts on M to construct a function g on M that is 1
near ∂≥2M =

⋃
q≥2 ∂

qM , has support close to ∂≥2M and satisfies
∣∣∫
M
dg ∧ ω

∣∣ < ε.

Then (1 − g)ω is an (m − 1)-form with compact support in the manifold with
boundary M \ ∂≥2M , and Stokes’ formula (cf. [12, 10.11]) now says∫

M\∂≥2M

d((1− g)ω) =

∫
∂1M

j∗∂1M ((1− g)ω) .

But ∂≥2M is a null set in M and the quantities∣∣∣ ∫
M

d((1− g)ω)−
∫
M

dω
∣∣∣ and

∣∣∣ ∫
∂1M

j∗∂1M ((1− g)ω)−
∫
∂1M

j∗∂1Mω
∣∣∣

are small if ε is small enough. �

6. Lemma. Let M be an oriented connected manifold with corners of dimension
dim(M) = m. For each form ω ∈ Ωmc (M \ ∂M) with

∫
ω = 1 there exists a

continuous linear operator

Iω : Ωmc (M)→ Ωm−1
c (M,∂M) such that:
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• d Iω(α) = α− ω
∫
α for all α ∈ Ωmc (M).

• If α vanishes on ∂≥2M , i.e., αx = 0 for all x ∈ ∂≥2M , then Iω(α) vanishes
on ∂M .

For a compact oriented manifold with boundary, this is due to Banyaga [1]. We
call Iω the Banyaga operator.

Proof. We first construct Iωm for the case when M is a partial quadrant Qmp :=

Rp≥0 × Rm−p = {x ∈ Rm : x1 ≥ 0, . . . , xp ≥ 0}.

We construct Iωm by induction on the dimension m and start with Iω0 = 0. We
shall use a smooth function g with compact support in R>0 and

∫
g(u)du = 1.

For Q = Q1
1 = R≥0 let ω = g(u)du. Then for α = a(u)du ∈ Ω1

c(Q) we put

Iω1 (α)(u) : =

∫ u

0

(
a(t)− g(t)

∫
Q

a(v)dv
)
dt so that

dIω1 (α) = α− ω
∫
α and Iω1 (α)(0) = 0 ,

and thus Iω1 (α) ∈ Ω0(R≥0, {0}). For Q = Q1
0 = R we just integrate from −∞ to u.

Note that Iω1 (α)(u) vanishes for large u, so it has compact support. Thus Iω1 has
all desired properties.

For general Q = Qmp = Rp≥0 × Rm−p we shall use:

ω = g(u1)du1 ∧ · · · ∧ g(um)dum =: ω′ ∧ g(um)dum ,

d : Ωm−1(Q)→ Ωm(Q), d =

m−1∑
i=1

dui ∧ ∂ui + dum ∧ ∂um =: d′ + dum ∧ ∂um .

Any form α ∈ Ωmc (Qmp ) can be written as α = α1(um) ∧ dum for a smooth curve

α1 :

{
R→ Ωm−1

c (Qm−1
p ) if 0 ≤ p ≤ m− 1 ,

R≥0 → Ωm−1
c (Qm−1

p−1 ) if p = m.

Following an idea of de Rham [6] used by [1], we define the auxiliary operator

Ĩωm(α) = Iω
′

m−1(α1(um)) ∧ dum+

+ (−1)m−1ω′ ·


∫ um

−∞

( ∫
Qm−1

p
α1(t)− g(t)

∫
Qm

p
α
)
dt if 0 ≤ p ≤ m− 1 ,∫ um

0

( ∫
Qm−1

p−1
α1(t)− g(t)

∫
Qm

p
α
)
dt if p = m,

which is in Ωm−1(Qmp , ∂Q
m
p ): The first summand by induction on m and because

it contains dum. The second summand since the integral starts at 0 in the relevant
case. Ĩωm(α) has compact support: The first summand by induction, and the second
summand since ω′ has compact support in the first m− 1 variables, and since the
integral vanishes for large um.

The exterior derivative of Ĩωm(α): For the first summand we get

d
(
Iω
′

m−1(α1(um)) ∧ dum
)

= d′Iω
′

m−1(α1(um)) ∧ dum =
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=
(
α1(um)− ω′

∫
Qm−1

α1(um)
)
∧ dum by induction

= α− (ω′ ∧ dum)

∫
Qm−1

α1(um) .

The exterior derivative of the second summand is

(−1)m−1dum ∧ ω′
(∫

Qm−1

α1(um)− g(um)

∫
Qm

α
)

= (ω′ ∧ dum)

∫
Qm−1

α1(um)− (ω′ ∧ g(um)dum)

∫
Qm

α

which proves dĨωm(α) = α− ω
∫
Qm α.

Let h : R → R be a smooth function equal to 1 for t ≤ 1 and to 0 for t ≥ 2.
Then we define

Iωm(α) =

{
Ĩω(α) if 0 ≤ p ≤ m− 1 ,

Ĩωm(γ) + ρ∗Ĩωm(ρ∗β) if p = m,

where β = h(um)α1(0) ∧ dum and γ = α − β, and where ρ : Qmm → Qmm is the
permutation of the last two variables um and um−1. Both β and γ have compact
support. We also have d Iωm(α) = γ − ω

∫
γ + (ρ∗)2β − ρ∗ω

∫
ρ∗β = α− ω

∫
α.

If α vanishes on ∂≥2Qm, then α1(um) vanishes on ∂≥2Qm−1 in both cases. If

p < m then Ĩωm(α) vanishes on ∂Qm by induction and so does Iωm(α). If p = m then

Iω
′

m−1(α1(um)) need not vanish on {um = 0}∩Qm ⊆ ∂Qmm, and thus Ĩωm(α) need not
vanish everywhere on ∂Qmm. Clearly, if α1(um) vanishes on {um = 0} ∩ Qm, then

so does Iω
′

m−1(α1(um)). If α vanishes on ∂≥2Qmm, then so do β and γ. Moreover,

γ vanishes on {um = 0} ∩ Qmm and β vanishes on each {ui = 0} ∩ Qmm for i < m,
thus ρ∗β vanishes on {um = 0} ∩ Qmm. The second summand in the definition of

Ĩωm(α) causes no problems, since the integral starts at 0 in the relevant case and
ρ∗ω = −ω. Consequently, Iωm(α) vanishes on ∂Qmm if α vanishes on ∂≥2Qmm. This
finishes the construction of Iωm by induction.

In order to change to another m-form ω̃ ∈ Ωmc (Qmp \ ∂Qmp ) with
∫
Qm

p
ω̃ = 1 we

put

I ω̃m(α) = Iωm(α)− Iω(ω̃)

∫
Qm

p

α .

Now we extend the operators Iωm to the oriented manifold with corners M . We
construct an oriented atlas similarly to [1, lemme 1] with the property that all charts
contain a common chart U0. Choose x0 ∈ M \ ∂M and a closed neighborhood V0

of x0 in M \∂M which is diffeomorphic to a closed ball in Rm. For each y ∈M \V0

choose an oriented open chart ϕy : Uy → Qmpy centered at y onto some partial

quadrant, xy ∈ Uy \ ∂Uy and a smooth embedded curve cy in M \ ∂M from xy to
x0. Then choose a vector field Xy with Xy(cy(t)) = c′y(t) for each t that vanishes

at y and on ∂M . The flow Fl
Xy

t moves xy along cy to x0 and keeps y and ∂M fixed.

Fl
Xy

1 also maps an open neighborhood of xy in Uy to an open neighborhood of x0,
which we may extend to an open neighborhood of V0 via a diffeomorphism ψy of
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M that is the identity near y and near ∂M . Now consider the charts

ψy(Fl
Xy

1 (Uy))−ψ
−1
y → Fl

Xy

1 (Uy)−Fl
Xy
−1→ Uy −ϕy→ Qmpy

and call the resulting atlas again (Uy, ϕy). We choose a smooth partition of unity
λy with a locally finite family of supports subordinated to this atlas (most of the
λy are 0). Finally we choose the chart (U0, ϕ0) inside

⋂
y Uy which is possible since

the intersection contains the neighborhood V0.

Choose ω ∈ Ωmc (U0) with
∫
M
ω = 1 and let

Iω(α) :=
∑
y

ϕ∗yI
(ϕ−1

y )∗ω
m

(
(ϕ−1
y )∗(λy.α)

)
∈ Ωm−1

c (M,∂M) with

dIω(α) =
∑
y

ϕ∗ydI
(ϕ−1

y )∗ω
m

(
(ϕ−1
y )∗(λy.α)

)
=
∑
y

ϕ∗y

(
(ϕ−1
y )∗(λy.α)− (ϕ−1

y )∗ω ·
∫
Qy

(ϕ−1
y )∗(λy.α)

)
= α− ω

∫
M

α .

The sum is finite since α has compact support. The change to an arbitrary form
ω̃ ∈ Ωmc (M \ ∂M) with

∫
ω̃ = 1 is as above. �

7. Theorem (Moser’s theorem for manifolds with corners). Let M be a compact
connected smooth manifold with corners, possibly non-orientable. Let µ0, µ1 ∈
Dens+(M) be smooth positive densities with

∫
M
µ0 =

∫
M
µ1. Then there exists

a diffeomorphism ϕ : M →M such that µ1 = ϕ∗µ0. Moreover, ϕ can be chosen to
be the identity on ∂M if and only if µ0 = µ1 on ∂≥2M .

Proof. We first prove the theorem for oriented M . In this case Dens+(M) equals
the space Ωm+ (M) of positive m-forms for m = dim(M). Put µt := µ0 + t(µ1 − µ0)
for t ∈ [0, 1]; then each µt is a volume form on M since these form a convex set.
We look for a curve of diffeomorphisms, t 7→ ϕt, with ϕ∗tµt = µ0; this curve has to
satisfy ∂

∂t (ϕ
∗
tµt) = 0. Since

∫
M

(µ1−µ0) = 0, we have [µ1−µ0] = 0 ∈ Hm(M). Fix

ω ∈ Ωmc (M \ ∂M) with
∫
ω = 1. Using lemma 6 we have

ψ := Iω(µ1 − µ0) ∈ Ωm−1(M,∂M) with

dψ = dIω(µ1 − µ0) = µ1 − µ0 − ω
∫
M

(µ1 − µ0) = µ1 − µ0 .

Put ηt := ( ∂∂tϕt)◦ϕ
−1
t ; then by well known formulas (see [12, 31.11], e.g.) we have:

0
wish
= ∂

∂t (ϕ
∗
tµt) = ϕ∗tLηtµt + ϕ∗t

∂
∂tµt = ϕ∗t (Lηtµt + µ1 − µ0) ,

0
wish
= Lηtµt + µ1 − µ0 = diηtµt + iηtdµt + dψ = diηtµt + dψ .

We can choose ηt uniquely by requiring that iηtµt = −ψ, since µt is non-degenerate
for all t. The time dependent vector field ηt is tangent to each boundary stratum
∂qM , since ψ ∈ Ω(M,∂M). Then the evolution operator ϕt = Φηt,0 exists for

t ∈ [0, 1] since M is compact, by [12, 3.30]. Moreover, ϕt : ∂M → ∂M . Thus ϕt
restricts to a diffeomorphism of M for each t. On M we have, using [12, 31.11.2],

∂
∂t (ϕ

∗
tµt) = ϕ∗t (Lηtµt + dψ) = ϕ∗t (diηtµt + dψ) = 0 ,
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so ϕ∗tµt = constant = µ0. If µ0 = µ1 on ∂≥2M , then ψ = Iω(µ1 − µ0) vanishes
on ∂M by lemma 6 and hence so does ηt, thus ϕt is the identity there.

If M is not orientable, we let p : or(M) → M be the 2-sheeted orientable
double cover of M : It is the Z2-principal bundle with cocycle of transition functions
sign det d(uβ ◦u−1

α )(uα(x)) where (Uα, uα) is a smooth atlas for M . Each connected
(thus orientable) chart of M appears twice as chart of or(M), once with each
orientation. Thus or(M) is again a smooth manifold with corners. Let τ : or(M)→
or(M) be the orientation reversing deck-transformation; see [12, 13.1]. Pullback
p∗ : Ω(M)→ Ω(or(M)) is an isomorphism onto the eigenspace Ω(or(M))τ

∗=1 of τ∗

with eigenvalue 1. The space Dens+(M) of positive smooth densities on M is via
p∗ isomorphic to the space of positive m-forms in the eigenspace Ωm(or(M))τ

∗=−1

of τ∗ with eigenvalue −1; these are the ‘formes impaires’ of de Rham. Note the
abuse of notation here: p∗ of a density differs (by local signs) from p∗ of a form.
See [12, 13.1 and 13.3] for more details.

We consider the pullback densities p∗µt as positive m-forms denoted by νt on
or(M) which satisfy τ∗νt = −νt, and for ω ∈ Ωmc (or(M)\∂ or(M)) with

∫
or(M)

ω = 1

we choose

ψ̃ = Iω(ν1 − ν0) ∈ Ωm−1(or(M), ∂ or(M)) which satisfies

dψ̃ = ν1 − ν0 − ω ·
∫

or(M)

(ν1 − ν0) = ν1 − ν0 .

Let ψ = 1
2 ψ̃ −

1
2τ
∗ψ̃, then again dψ = ν1 − ν0 and now also τ∗ψ = −ψ. A time-

dependent vector field ηt is uniquely given by iηtνt = −ψ.

iτ∗ηtνt = −iτ∗ηtτ∗νt = −τ∗(iηtνt) = τ∗ψ = −ψ =⇒ τ∗ηt = ηt .

In particular, the time dependent vector field ηt is tangent to each boundary stratum
∂q or(M), and it projects to a time dependent vector field on M whose evolution
gives the curve of diffeomorphisms with all required properties. �

8. Cohomological interpretation of the Banyaga operator. For a connected
oriented manifold with corners M of dimension m (we assume that ∂M is not
empty) we consider the following diagram where only the dashed arrow Iω does
not fit in commutingly. Here ω ∈ Ωmc (M \ ∂M) is a fixed form with

∫
ω = 1. All

instances of R in the diagram are connected by identities which fit commutingly
into the diagram. Each line is the definition of the corresponding top de Rham
cohomology space. The integral in the first line induces an isomorphism in coho-
mology since M \ ∂M is a connected oriented open manifold. The bottom triangle
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commutes by Stokes’ theorem 5.

Ωm−1
c (M \ ∂M)

d //
� _

��

Ωmc (M \ ∂M)

∫
M\∂M

((// //
� _

��

Hm
c (M \ ∂M)

��

R

Ωm−1
c (M,∂M)

d //
� _

��

Ωmc (M,∂M) // //

∫
M

66Hm
c (M,∂M)

��

R

Ωm−1
c (M)

d //

∫
∂1M

◦j∗
∂1M ((

Ωmc (M) // //

∫
M

��

Iω
hh

Hm
c (M) 0

R

Claim.
∫
M

: Ωmc (M,∂M) = Ωmc (M)→ R induces Hm
c (M,∂M) = R.

Namely, given α, β ∈ Ωmc (M,∂M) with
∫
α =

∫
β, we have α − dIω(α) = ω

∫
M
α

and similarly for β. This implies α− β = d (Iω(α)− Iω(β)) and hence [α] = [β] in
Hm
c (M,∂M).

Claim. If M has non-empty boundary then Hm
c (M) = 0.

For any form α ∈ Ωmc (M) we have α− dIω(α) = ω
∫
M
α, so α equals a multiple of

ω modulo an exact form with compact support. Now choose β ∈ Ωm−1
c (M) with∫

M
dβ 6= 0; for example with

∫
∂1M

j∗∂1Mβ 6= 0. Then dβ − dIω(dβ) = ω
∫
M
dβ

shows that any multiple of ω is exact. Thus Hm
c (M) = 0.

9. Theorem (Poincaré–Lefschetz duality). For an oriented connected manifold
with corners of dimension m the cohomological integral

∫
∗ : Hm

c (M,∂M) → R
induces a non-degenerate bilinear form

P kM : Hk(M)×Hm−k
c (M,∂M)→ R given by

P kM ([α], [β]) =

∫
∗
[α] ∧ [β] =

∫
M

α ∧ β .

This is in fact the special case for real coefficients of Lefschetz’ duality [9]. In
[14] Lefschetz duality is proven for piecewise linear stratified ∂-pseudomanifolds
in terms of intersection homology. Here we can give a proof based completely on
differential forms.

Proof. Note first that Ωc(M,∂M) is a graded ideal in Ω(M), thus the integral
makes sense. The proof follows now, for example, [12, 12.14 – 12.16] with some
obvious changes. �
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48:484–491, 1973. Appendice à A.Borel and J.-P. Serre: Corners and arithmetic groups.

[8] R. E. Greene and K. Shiohama. Diffeomorphisms and volume-preserving embeddings of non-
compact manifolds. Trans. Amer. Math. Soc., 255:403–414, 1979.

[9] S. Lefschetz. Transformations of manifolds with a boundary. Proc. Natl. Acad. Sci. USA,
12:737–739, 1926.

[10] R. B. Melrose. Differential Analysis on Manifolds with Corners. 1996. http://www-

math.mit.edu/˜rbm/book.html.
[11] P. W. Michor. Manifolds of differentiable mappings. Shiva Mathematics Series 3, Orpington,

1980.

[12] P. W. Michor. Topics in differential geometry, volume 93 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, 2008.

[13] J. Moser. On the volume elements on a manifold. Trans. Amer. Math. Soc., 120:286–294,

1965.
[14] G. Valette. A Lefschetz duality for intersection homology. Geom. Dedicata, 169:283–299, 2014.

[15] G. Valette. Stokes’ formula for stratified forms. Ann. Polon. Math., 114(3):197–206, 2015.

Martins Bruveris: Department of Mathematics, Brunel University London, Uxbridge,

UB8 3PH, United Kingdom

E-mail address: martins.bruveris@brunel.ac.uk

Peter W. Michor: Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-

Platz 1, A-1090 Wien, Austria.

E-mail address: peter.michor@univie.ac.at
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