ADDENDUM TO: “LIFTING SMOOTH CURVES OVER INVARIANTS FOR REPRESENTATIONS OF COMPACT LIE GROUPS, III” [J. LIE THEORY 16 (2006), NO. 3, 579–600.]

ANDREAS KRIEGL, MARK LOSIK, PETER W. MICHOR, AND ARMIN RAINER

Abstract. We improve the main results in [10] using a recent refinement of Bronshtein’s theorem [5] due to Colombini, Orrú, and Pernazza [6]. They are then in general best possible both in the hypothesis and in the outcome. As a consequence we obtain a result on lifting smooth mappings in several variables.

A recent refinement of Bronshtein’s theorem [5] and of some of its consequences due to Colombini, Orrú, and Pernazza [6] (namely theorem 1 below) allows to essentially improve our main results in [10]; see theorem 2 and corollary 3 below. The improvement consists in weakening the hypothesis considerably: In [10] we needed a curve c to be of class (i) C^k in order to admit a differentiable lift with locally bounded derivative, (ii) C^{k+d} in order to admit a C^1-lift, and (iii) C^{k+2d} in order to admit a twice differentiable lift.

It turns out that theorem 2 and corollary 3 are in general best possible both in the hypothesis and in the outcome. In theorem 4 and corollary 5 we deduce some results on lifting smooth mappings in several variables.

Refinement of Bronshtein’s theorem. Bronshtein’s theorem [5] (see also Wakahayashi’s version [15]) states that, for a curve of monic hyperbolic polynomials

$$P(t)(x) = x^n + \sum_{j=1}^{n} (-1)^j a_j(t)x^{n-j}.$$

with coefficients $a_j \in C^n(\mathbb{R})$ (1 ≤ j ≤ n), there exist differentiable functions λ_j (1 ≤ j ≤ n) with locally bounded derivatives which parameterize the roots of P. A polynomial is called hyperbolic if all its roots are real.

The following theorem refines Bronshtein’s theorem [5] and also a result of Mandai [14] and a result of Kriegl, Losik, and Michor [8]. In [14] the coefficients are required to be of class C^{2n} for C^1-roots, and in [8] they are assumed to be C^{3n} for twice differentiable roots.

1. Theorem ([6, 2.1]). Consider a curve P of monic hyperbolic polynomials (1). Then:

(i) If $a_j \in C^n(\mathbb{R})$ (1 ≤ j ≤ n), then there exist functions $\lambda_j \in C^1(\mathbb{R})$ (1 ≤ j ≤ n) which parameterize the roots of P.

(ii) If $a_j \in C^{2n}(\mathbb{R})$ (1 ≤ j ≤ n), then the roots of P may be chosen twice differentiable.

Counterexamples (e.g. in [6, section 4]) show that in this result the assumptions on P cannot be weakened.

Date: April 29, 2010.

2000 Mathematics Subject Classification. 22E45, 22C05.

Key words and phrases. invariants, representations, lifting differentiably.

AK was supported by FWF-Project P 23082-N13. PM was supported by FWF-Project P 21030-N13. AR was supported by FWF-Projects J 2771-N13 and P 22218-N13.
Improvement of the results in [10]. Let \(\rho : G \to O(V) \) be an orthogonal representation of a compact Lie group \(G \) in a real finite dimensional Euclidean vector space \(V \). Choose a minimal system of homogeneous generators \(\sigma_1, \ldots, \sigma_n \) of the algebra \(\mathbb{R}[V]^G \) of \(G \)-invariant polynomials on \(V \). Define

\[
d = d(\rho) := \max\{\deg \sigma_i : 1 \leq i \leq n\},
\]

which is independent of the choice of the \(\sigma_i \) (see [10, 2.4]).

If \(G \) is a finite group, we write \(V = V_1 \oplus \cdots \oplus V_l \) as orthogonal direct sum of irreducible subspaces \(V_i \). We choose \(v_i \in V_i \setminus \{0\} \) such that the cardinality of the corresponding isotropy group \(G_{v_i} \) is maximal, and put

\[
k = k(\rho) := \max\{d(\rho), |G|/|G_{v_i}| : 1 \leq i \leq l\}.
\]

The mapping \(\sigma = (\sigma_1, \ldots, \sigma_n) : V \to \mathbb{R}^n \) induces a homeomorphism between the orbit space \(V/G \) and the image \(\sigma(V) \). Let \(c : \mathbb{R} \to V/G = \sigma(V) \subseteq \mathbb{R}^n \) be a smooth curve in the orbit space (smooth as a curve in \(\mathbb{R}^n \)). A curve \(\tilde{c} : \mathbb{R} \to V \) is called lift of \(c \) if \(\sigma \circ \tilde{c} = c \). The problem of lifting curves smoothly over invariants is independent of the choice of the \(\sigma_i \) (see [10, 2.2]).

2. **Theorem.** Let \(\rho : G \to O(V) \) be a representation of a finite group \(G \). Let \(d = d(\rho) \) and \(k = k(\rho) \). Consider a curve \(c : \mathbb{R} \to V/G = \sigma(V) \subseteq \mathbb{R}^n \) in the orbit space of \(\rho \). Then:

(i) If \(c \) is of class \(C^k \), then any differentiable lift \(\tilde{c} : \mathbb{R} \to V \) of \(c \) (which always exists) is actually \(C^1 \).

(ii) If \(c \) is of class \(C^{k+d} \), then there exists a global twice differentiable lift \(\tilde{c} : \mathbb{R} \to V \) of \(c \).

Proof. (i) Let \(\tilde{c} \) be any differentiable lift of \(c \). Note that the existence of \(\tilde{c} \) is guaranteed for any \(C^d \)-curve \(c \), by [1]. In the proof of [10, 8.1] we construct curves of monic hyperbolic polynomials \(t \mapsto P(t) \) which have the regularity of \(\tilde{c} \) and whose roots are parameterized by \(t \mapsto \langle v_i \mid g\tilde{c}(t) \rangle \ (g \in G_{v_i} \setminus G) \).

If \(c \) is of class \(C^k \), then theorem [1(i)] provides \(C^1 \)-roots of \(t \mapsto P(t) \). By the proof of [10, 4.2] we obtain that the parameterization \(t \mapsto \langle v_i \mid g\tilde{c}(t) \rangle \) is \(C^1 \) as well. Hence \(\tilde{c} \) is a \(C^1 \)-lift of \(c \). Alternatively, the proof of [1(i)] in [5] actually shows that any differentiable choice of roots is \(C^1 \).

(ii) Let \(c \) be of class \(C^{k+d} \). The existence of a global twice differentiable lift \(\tilde{c} \) follows from the proof of [10, 5.1 and 5.2], where we use (i) instead of [10, 4.2].

3. **Corollary.** Let \(\rho : G \to O(V) \) be a polar representation of a compact Lie group \(G \). Let \(\Sigma \subseteq V \) be a section, \(W(\Sigma) = N_G(\Sigma)/Z_G(\Sigma) \) its generalized Weyl group, and \(\rho_\Sigma : W(\Sigma) \to O(\Sigma) \) the induced representation. Let \(d = d(\rho_\Sigma) \) and \(k = k(\rho_\Sigma) \). Consider a curve \(c : \mathbb{R} \to V/G = \sigma(\Sigma) \subseteq \mathbb{R}^n \) in the orbit space of \(\rho \). Then:

(i) If \(c \) is of class \(C^k \), then there exists a global orthogonal \(C^1 \)-lift \(\tilde{c} : \mathbb{R} \to V \) of \(c \).

(ii) If \(c \) is of class \(C^{k+d} \), then there exists a global orthogonal twice differentiable lift \(\tilde{c} : \mathbb{R} \to V \) of \(c \).

The examples which show that the hypothesis in [11] are best possible also imply that in general the hypothesis in [2] and [3] cannot be improved.

On the other hand the outcome of [2] and [3] cannot be refined either: A \(C^\infty \)-curve \(c \) does in general not allow a \(C^{1,\alpha} \)-lift for any \(\alpha > 0 \). See [7], [1], [4]. But see also [3] and [10, remark 4.2].

Note that the improvement affects also [13] part 6.
Lifting smooth mappings in several variables. From theorem 2 we can deduce a lifting result for mappings in several variables.

4. Theorem. Let \(\rho : G \to O(V) \) be a representation of a finite group \(G \), \(d = d(\rho) \), and \(k = k(\rho) \). Let \(U \subseteq \mathbb{R}^q \) be open. Consider a mapping \(f : U \to V/G = \sigma(V) \subseteq \mathbb{R}^n \) of class \(C^k \). Then any continuous lift \(\bar{f} : U \to V \) of \(f \) is actually locally Lipschitz.

Proof. Let \(c : \mathbb{R} \to U \) be a \(C^\infty \)-curve. By theorem 2(i) the curve \(f \circ c \) admits a \(C^1 \)-lift \(\bar{f} \circ c \). A further continuous lift of \(f \circ c \) is formed by \(\bar{f} \circ c \). By [12, 5.3] we can conclude that \(f \circ c \) is locally Lipschitz. So we have shown that \(\bar{f} \) is locally Lipschitz along \(C^\infty \)-curves. By Boman [2] (see also [11, 12.7]) that implies that \(\bar{f} \) is locally Lipschitz. □

In general there will not always exist a continuous lift of \(f \) (for instance, if \(G \) is a finite rotation group and \(f \) is defined near 0). However, if \(G \) is a finite reflection group, then any continuous \(f \) allows a continuous lift (since the orbit space can be embedded homeomorphically in \(V \)).

5. Corollary. Let \(\rho : G \to O(V) \) be a polar representation of a compact connected Lie group \(G \). Let \(\Sigma \subseteq V \) be a section, \(W(\Sigma) = N_G(\Sigma)/Z_G(\Sigma) \) its generalized Weyl group, \(\rho_\Sigma : W(\Sigma) \to O(\Sigma) \) the induced representation, \(d = d(\rho_\Sigma) \), and \(k = k(\rho_\Sigma) \). Let \(U \subseteq \mathbb{R}^q \) be open. Consider a mapping \(f : U \to V/G = \sigma(V) \subseteq \mathbb{R}^n \) of class \(C^k \). Then there exists an orthogonal lift \(\tilde{f} : U \to V \) of \(f \) which is actually locally Lipschitz.

Proof. The Weyl group \(W(\Sigma) \) is a finite reflection group, since \(G \) is connected. □

References

Andreas Kriegl: Fakultät für Mathematik, Universität Wien, Nordbergstrasse 15, A-1090 Wien, Austria
E-mail address: andreas.kriegl@univie.ac.at

Mark Losik: Saratov State University, ul. Astrakhanskaya, 83, 410026 Saratov, Russia
E-mail address: losikMV@info.sgu.ru

Peter W. Michor: Fakultät für Mathematik, Universität Wien, Nordbergstrasse 15, A-1090 Wien, Austria
E-mail address: peter.michor@univie.ac.at

Armin Rainer: Fakultät für Mathematik, Universität Wien, Nordbergstrasse 15, A-1090 Wien, Austria
E-mail address: armin.rainer@univie.ac.at