THE EXPONENTIAL LAW FOR SPACES OF TEST FUNCTIONS
AND DIFFEOMORPHISM GROUPS
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ABSTRACT. We prove the exponential law A(E x F,G) = A(E, A(F,G))
(bornological isomorphism) for the following classes A of test functions: B
(globally bounded derivatives), WP (globally p-integrable derivatives), S
(Schwartz space), D (compact support), BM] (globally Denjoy—Carleman),
WIMLP  (Sobolev-Denjoy—Carleman), S%%] (Gelfand-Shilov), and DIM]
(Denjoy—Carleman with compact support). Here E, F,G are convenient vec-
tor spaces which are finite dimensional in the cases of D, WP, D[M], and
WIMLp Moreover, M = (M) is a weakly log-convex weight sequence of
moderate growth. As application we give a new simple proof of the fact that
the groups of diffeomorphisms Diff 3, Diff WP DiffS, and DiffD are C°
Lie groups, and that Diff B{M}, Diffw{Mbp, Dif—fsg}}, and Diff D{M}| for
non-quasianalytic M, are CtM} Lie groups, where DiffA = {Id+f : f €
A(R™,R™), infyern det(l, +df (x)) > 0}. We also discuss stability under com-
position.

1. INTRODUCTION

In this paper we prove the bornological isomorphism
(1) AE x F,G) =2 A(E, A(F, G))

for several classes A of test functions. It is called exponential law, since it takes the
form GP*F = (GF)E if one writes A(X,Y) =YX,

The exponential law is well-known in the categories of C°°, real analytic, and
holomorphic functions; see [8]. In [9], [10], and [II] we established the exponential
law for local Denjoy—Carleman classes CI™!, provided that M = (My) is weakly
log-convex and has moderate growth. (The notation C [M] stands for the classes
C1M} of Roumieu type as well as for the classes C(M) of Beurling type, cf. Subsec-
tion ) In all these cases the underlying spaces E, F, G are so-called convenient
vector spaces, i.e., locally convex spaces that are Mackey complete.

We shall prove for the following classes A of test functions (see Sections
and [6] for the precise definitions):
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Smooth functions with globally bounded derivatives B (= Dy in [19])
Smooth functions with p-integrable derivatives WP (= Dy, in [19])
Rapidly decreasing Schwartz functions S

Smooth functions with compact support D

Global Denjoy—Carleman classes B[M]

Sobolev-Denjoy—Carleman classes WM]»

Gelfand—Shilov classes S %]

e Denjoy—Carleman functions with compact support D

(M]

For the sequence L = (L) we just assume Ly > 1 for all k.

The underlying spaces are again convenient vector spaces, except for D, WP
DM and WIMLP when E, F, G are assumed to be finite dimensional. The definition
of the classes B, S, BIM] and S {%] makes obvious sense between arbitrary Banach
spaces. By definition, a C°°-mapping f : E — F between general convenient vector
spaces belongs to the class if the composite £ o f o ig : Eg — R is in the class
for each continuous linear functional £ : F — R and each closed absolutely convex
bounded subset B C E, where ig : Eg — E denotes the inclusions of the linear
span Ep of B which equipped with the Minkowski functional is a Banach space.

For finite dimensional parameter spaces we have the following continuous in-
clusions, where 1 < p < ¢ < oo; for the inclusions marked by * we assume that
M = (M) is derivation closed.

D S WP > ool B c>

R R AR R

piMy o gtM} _ pAMYp o ppiMYg ot giMY o oM}

LT

DM) >_>3% s WMp (M) L gM) (M)

We are grateful to a referee who pointed out that
(2) D(R’ x R™, R") = D(RY, D(R™, R"™))

does not hold topologically, contrary to, e.g., [21 p. 415]. Namely, the right hand
side is not barrelled since it contains a complemented subspace isomorphic to the
projective tensor product of the space of rapidly decreasing sequences with the space
of finite sequences which is complete but not barrelled, see [4, Chap II, §4, no 1,
proposition 14]. But holds bornologically, i.e., in the category of convenient
vector spaces, see Theorem [5.5

Every continuous function with compact support in an infinite dimensional Ba-
nach space is identically zero. So it makes little sense to go beyond finite dimensional
vector spaces in . Note that, as DM C S{%], S%] is certainly non-trivial if
M = (Mjy) is non-quasianalytic.

The paper is organized as follows. Due to fundamental differences in the proofs
for the classes defined by means of L*°-estimates on one hand and LP-estimates on
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the other hand, we treat these cases separately. After collecting preliminaries on
weight sequences in Section [2] we devote the Sections [3] and (4] to working up to
the B, S, BMl and S %] exponential law which is finally proved in Section We
introduce the respective classes of mappings between Banach spaces and extend
them to convenient vector spaces in Section [3| In Section [4] we provide projective
descriptions in the Roumieu case, show that it suffices to test with continuous linear
functionals that detect bounded sets, and prove a uniform boundedness principle.
The D and DM exponential law is treated at the end of Section

The W and WIMP exponential law is treated in Section @

In Section we show that the BM} WwiMbp, 834}}, and DM} exponential law
fails if M or L have non-moderate growth.

None of the classes A of test functions form a category since there are no iden-
tities. In Section 8] we prove that B and B! are closed under composition, in
contrast to all other cases. In fact the “Oth derivative” of the composite function
may not have the required decay properties at infinity. We show that stability
under composition holds if one requests the defining properties only from the first
derivative onwards.

In the final Section [J] we apply the results of this paper to give a new simple
proof, in particular cases, of the fact that

Diff A = Dif A(R") := {F =1d+f : f € A(R",R"), ieann det (I, + df (z)) > 0}

is a Lie group. It was shown in [16] (and Diff D was already treated in [15] and [14])
that the groups of diffeomorphisms (1 < p < g < o)

Diff D >——= Diff S >——= Diff WP >~ Diff W9 =~ Diff B

are C*°-regular Lie groups. The arrows describe C'*° injective group homomor-
phisms. Each group is a normal subgroup of the groups on its right. In [12] we
proved that, provided that M = (M) is log-convex, has moderate growth, and in
the Beurling C™) D C¥, and that L = (L) satisfies L, > 1 for all k, the groups
of CM1_diffeomorphisms

Dif DM] ~» DiffS %%] = DifwiMlr 5 DigWMhe ~ 5 Dif BIM]

are CMl_regular Lie groups. The arrows describe C™! injective group homomor-
phisms. Each group is a normal subgroup in the groups on its right. This was done
by showing (via a careful application of Faa di Bruno’s formula) that C'*°-curves
and C™M]_Banach plots, respectively, are preserved by the group operations, that is
composition and inversion.

In Section [9] we use the exponential laws established in this paper to conclude
in a simple way that Diff D, DiffS, Diff WP Diff B are C*° Lie groups and that
Diff DIM}, Diﬁs%}, DifW{Mbp DiffB{M} are CTM} Lie groups provided that
M = (My) is non-quasianalytic. In these cases we know that it suffices to show that
the group operations take D or DM} -curves to C or C{M}_curves, respectively;

see [9]. By the exponential law we may consider the D or DM} _curves in
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A(R™, R™) simply as elements in A(R x R",R™), and thus the assertions reduce to
results on composition and inversion of mappings in several real variables.

Notation. We use N = Ny oU{0}. For each multi-index a = (o, ..., a,) € N* we
write a! = !+, o] = a1+ -+ ay,, and f()(z) = 0% f(2) = %f(m)

BRCEAE
By f®)(z) = d*f(z) we mean the k-th order Fréchet derivative of f at z, and
drf(x) = OF|i=of(x + tv) denotes the k times iterated directional derivative in
direction v.

For a mapping f: X xY — Z weset fV : X — ZY, fV(z)(y) := f(x,9), and
conversely, for a mapping g : X — ZY weset ¢" : X xY — Z, ¢"\(z,y) := g(z)(y).

For locally convex spaces E let Z(FE) denote the set of all closed absolutely
convex bounded subsets B C E. Let .%4(E) denote the collection of all continuous
seminorms on E. For B € #(F) we denote by Fp the linear span of B equipped
with the Minkowski functional ||z||p = inf{\ > 0 : 2 € AB}. If E is a convenient
vector space, then Ep is a Banach space. For U C E we set Up := igl(U), where
ig : Fg — F is the inclusion of Eg in E. The collection of compact subsets K C U
is denoted by £ (U).

We denote by E* (resp. E') the dual space of continuous (resp. bounded) linear
functionals. L(E1,..., Ey; F) is the space of k-linear bounded mappings Fq X - - - X
E), — F;if E; = E for all i, we also write £¥(E; F). If E and F are Banach spaces,
then || || zx(m;r) denotes the operator norm on L*(E; F).

We subsume both the Beurling case (M) and the Roumieu case {M} under
the symbol [M]. Statements that involve more than one [M] symbol must not be
interpreted by mixing (M) and {M}.

2. PRELIMINARIES

2.1. Weight sequences. A weight sequence is a sequence M = (M) =
(Mpy)k=0,1,... of positive real numbers satisfying My =1 < M.

We say that M = (My,) is log-convex if k — log M}, is convex, or equivalently,

(1) MP < My,_1Myi1, keN.

If M = (My,) is log-convex, then M = (Mj) has the following properties:
(2) M = (My) is weakly log-convex, i.e., k! M}, is log-convex,
(3) (My)'/* is non-decreasing,

(4) M;My, < Mjqy, for j,keN,

(5) M{ My, > M; My, -+~ M,,, for a; € Nsg, a1+ +aj =k,
cf. [II] or [I7].

We say that M = (M},) is derivation closed if

(6) sup (Mkﬂ)% < 00,

keN-o N My
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and that M = (M}) has moderate growth if
My \7+%

7 sup (]7> < 00.
g jkeNso N Mj My,
Obviously, implies (6). If M = (My,) is derivation closed, then also k! Mj, is
derivation closed and we have
(8) (k+ ) Myyj < CI*FD RN for k,j €N
for some constant C > 1.

A weakly log-convex weight sequence M = (Mj,) is called quasianalytic if

oo

(9) > (k! M) VR = oo,

k=1

and non-quasianalytic otherwise. We refer to [9],[10], [T1], or [I7] for a detailed
exposition of the connection between these conditions on M = (Mj) and the prop-
erties of C1M],

2.2. Local Denjoy—Carleman classes. Let E, F' be Banach spaces, U C E open,
and let M = (Mj) be a weight sequence. We define the local Denjoy—Carleman
classes

CM(U, F) = {f € C*(U,F):VK € #(U)Vp>0: |fII}, < 00}7
oMYy, F) .= {f € C®(U,F):VK € #(U) p>0: |fII}, < oo},

where

Hf(k)(x)HEk(E;F)

M . _
I fll%,p : sup DRI,

zeEK

See [I1, 4.2] for the locally convex structure of these spaces. The elements of
CM)(U, F) are said to be of Beurling type; those of C1M} (U, F') of Roumieu type.

The classes C™] can be extended to convenient vector spaces, and they then
form cartesian closed categories if the weight sequence M = (Mj,) is log-convex and
has moderate growth. This has been developed in [9], [10], and [IT].

3. CLASSES OF TEST FUNCTIONS BETWEEN CONVENIENT VECTOR SPACES

3.1. Between Banach spaces. Let F, F' be Banach spaces, U C FE open.

Smooth functions with globally bounded derivatives. Consider
B(U, F) := {f e C(U,F) : || < oo for all k € N},

where

k
171 = sup 1F® @) 2 (25

with its natural Fréchet topology.
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Rapidly decreasing Schwartz functions. Consider
S(E,F):= {f e C°(E,F) : || < oo for all k, ¢ € N},

where

k.l
LIS = sup (1 + )" 17 @) 22y

with its natural Fréchet topology.

Global Denjoy—Carleman classes. Let M = (My) be a weight sequence, and
let p > 0. Consider the Banach space

By (U, F) == {f € C*(U,F) : |Iflli},, < oo},

where

15 M @)l x5 )

M
= Ssu
||fHU,p keg pkk'Mk

xeU

We define the Fréchet space

BM(U, F) := lim BY (U, F)
neN
and
BMY (U, F) = li_néBﬁ/[(U, F)
ne

which is a compactly regular (LB)-space and thus (¢*°-)complete, webbed, and
(ultra-)bornological; see [I2, Lemma 4.9].

Gelfand—Shilov classes. Let L = (Ly), M = (My) be weight sequences, and let
p > 0. Consider the Banach space

SM(E,F) = {f € C®(E,F) : ||fll5 < oo}.

with the norm

(A [z )*19 @) e 2,y
pk""Z k'E'LkMg '

L,M
1/, = sup
k,¢€EN
zER
We define the Fréchet space
S() (B, F) :=lim S}, (B, F)
neN

and

SOV (B, F) = 1im S}, (B, F)
neN

which is a compactly regular (LB)-space and thus (¢*°-)complete, webbed, and
(ultra-)bornological; see [I12, Lemma 4.9].
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3.2. Between convenient vector spaces. For convenient vector spaces E, F,
¢*-open U C FE, and weight sequences L = (Ly), M = (M}) we define:

B(U, F) := {feCOO( F): VWB;eofoiBeB(UB,R)}
S(E,F) := {feCOO( F): VZVB:EofoiBeS(EB,R)}
BM(U, F) = {fecm( F):YEVB: o foz‘BeB[M](UB,]R)}
sil(E,F) = {feOOO( F):V(VB: o foipecSh (EB,]R)}

where { € F*, B € #(E), and Ug = UNEg. It will follow from Lemma [3.4] that for
Banach spaces F, F' this definition coincides with the one given in Subsection

For A € {B,S,BM S } (it A e {S, S } we set U = E), we equip A(U, F)
with the initial locally convex structure mduced by all linear mappings

0B AUBR), frslo foip.

AU, F)
Then A(U, F') is a convenient vector space as ¢*°-closed subspace in the product
[, 5 A(Up,R), since smoothness can be tested by composing with the inclusions
Ep — E and with the £ € F*| see [8, 2.14.4 and 1.8]. This shows at the same time,
that in the definition of A(U, F') it is not necessary to require that f is C'*°.

3.3. Related classes defined by boundedness conditions. Consider the col-
lections

Gp:={S) : Be B(E),k € N},
Ss = (=" : Be B(E),k,t €N},
Spun = {S{, ,: B € B(E),p >0},
Spimy g = {ZUB,p p>0}, BeZBE),
Ssan = {5 B e B(E),p>0},
Sgum = {5, BEB(E)}, BeHB(E),

{ry>

of set-valued mappings

2B ) = { 1P @)1, 52 € Up, iz < 1,
SEO(F) = {0+ el FO @), ve) 7 € B Juills < 1},
FE () (ve, ..., v8)
St () :={ kk,le :keN,erB,HviHEgl},
LM (L + llzlls)* F O @) (or, -y ve) |
Yo (f) = { R LM, :k,t € N,z € Ep, |vi||s g1}.
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For C*°-mappings f we define

feBy(U,F) VY € 6 : X(f) is bounded in F,
feS(EF VY € 65 : X(f) is bounded in F,
(M)

VY € G : 2(f) is bounded in F
VB € #(E) 3% € Gguy g : X(f) is bounded in F,

REERE

(L)b v e 6SELM>) : 2(f) is bounded in F,
Fesyi (B VB € B(E) 3% € S 4 p, - B(f) is bounded in F.
’ Ly

Moreover, we call a subset F of such functions f bounded in the corresponding
space, when the conditions above are satisfied for (J,c » X(f) instead of ¥(f).

3.4. Lemma. We always have

Bb(Uv F) = B(UvF)v
Sy(E, F) = S(E, F),
. B, (U, F) = BYD(U, F),
M M
SEL)?b(E,F) = SEL))(E,F)
We have
2) B (U, F) = BM(U, F),
SV (B F) =S (B, F),

{L}.0 {r}

if there exists a Baire vector space topology on the dual F* for which ev, is contin-
wous for all x € F.

Moreover, the bounded sets of both sides of the equalities are the same.

Proof. Let f: E DU — F be C*. Then, for A € {B,&B(M),Sé%)},

feEAUF) <Y e F*V3 e &y :%({o f)is bounded in R
= VE eG4 Ve F:4(X(f)) is bounded in R
<= VX € 6 4 : 3(f) is bounded in F
— feAWU,F),
which shows . The same argument with some obvious changes shows the equiv-
alence of the boundedness of a set F C C*°(U, F) in A(U, F) and in A,(U, F).

Let f € AU, F) for A€ {BOM}, SHI. Fix B € #(B) and, for 3 € & 4 5 and
C > 0, consider the sets

Aso = {e €F* |yl < Corallye (o f)}}

which are closed subsets in F™* for the given Baire topology. We have UE’C Asc =
F* and by the Baire property there exist ¥ and C such that the interior int(Ax, ¢)
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of As, ¢ is non-empty. If ¢y € int(Ay ¢), then for each ¢ € F* there is a 6 > 0 such
that 6¢ € int(As; ) — {o, and, hence, since

3¢ o )P (@)(vr,.. ) < (L +Lo) o /P (@)(vr,... )| +[(lo o )P (@)(vn,...)|

we conclude that the set 2(¢ o f) is bounded (by 2C/§). So the set 3(f) is bounded,
and thus f € A,(U, F).

To see that a set F C C°°(U, F) which is bounded in A(U, F) is also bounded
in Ay(U, F) it suffices to repeat the argument with Ay, o = {£ € F* : |y| <
ClorallyeUperE(Co f)}H} O

3.5. Proposition ([I2, Prop. 5.1]). Let M = (My), L = (L) be weight sequences,
and let E, F be convenient vector spaces. We have the following inclusions.

S(B,F) B(E, F) C<(E, F)

| -

E,F) > CM}(E,
(

SMI(E, F) > BM(E, F) > CM)(E, F)

4. WORKING UP TO THE EXPONENTIAL LAW

4.1. Projective descriptions in the Roumieu cases. We define
X = {(rg)ken C Rsg : rro® — 0 for all o > 0}
R = {(ry) € # : rk1¢ > Thye for all k, ¢ € N}.

Lemma. Let a, > 0 for a € N™. The following are equivalent:

(1) do>0: sup H<oo
(2) V(i) € Z : supria|aa < 00
(3) V(ry) € Z 36 > 0:sup 5‘°‘|r‘a|aa < o0

Proof. Set by, := max|q|—j da-
(1) = (2) There exists o > 0 such that
T|a|0a = r|a‘0|a|(aa/0|a‘)
is bounded uniformly in o € N™.
(2) = (3) Use 6 = 1.
(3) = (1) For (ry) € #' there exists 6 > 0 so that

sup 6% ry, by = sup max sled T|a| Ga = SUD slel Tla| Ga < 00.
keN keN |a|=k aeN™
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By [8, 9.2(4=1)] the formal power series ), - bit* has positive radius of conver-

gence. Thus (by/0") and hence also (aq/c!®l), is bounded for some o > 0. This
implies (1). O

For a C*°-mapping f : E O U — F between Banach spaces and a positive
sequence (ry) consider

(k)
EZI\]/{(Tk)(f) = {Tk f (x)k(;ujuk L) Uk)

LM (fy._ {Tk+e(1 + |2k FO (2) (01, . . ., ve)

tkeNyzel, v < 1}

kteN,ze B, |u < 1}.

B,(ry) k) Ly My
) M WM LM _ LM
In particular, for o > 0 we have EU(U,k)(f) =3, (f) and X (O.—k)(f) =g, (f)

Define
Spony = {ch\f(rk) : (k) € Z4,

Gf;m} = {Zgn) ¢ (k) € B},

Proposition. For a C*®-mapping f : E O U — F between Banach spaces E and
F the following are equivalent.

(1) fis BOMY = MY

(2) For each X € &f .y, the set X(f) is bounded in F.

(3) For each sequence (ry) € #' there exists § > 0 such that the set E]L‘,/{(Tk 5k.)(f)
is bounded in F.

Moreover, the following are equivalent.

(1) fisSP =g}

{L}.b {L} -
(2) For each X € Gg{mf the set X(f) is bounded in F.
Ly
(3) For each sequence (1) € Z' there exists 6 > 0 such that the set Zé](\/rjk 6k)(f)
1s bounded in F.
Proof. For A = BM} get
ay = su 1F® @)l ex 2ir)
b 168 k" Mk: !
and for A = Sg/f}} set
@ Al O@ e
R - K0 LM, :
and apply Lemma -

4.2. Testing with bounded linear functionals that detect bounded sets.

Lemma. Let E be a Banach space, let U C E be open, and let F' be a convenient
vector space. Let . be a family of bounded linear functionals on F which together
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detect bounded sets (i.e., B C F is bounded if and only if {(B) is bounded for all
te 7). Then:

feBUF) < (o feB(UR) foralte.,

feSEF) < (o feS(E,R) foralle.?,
feBM(UF) « (o feBM(UR) foralte.?,
FeSHB,F) < (o feS)NER) foraile..

Proof. For C*°-curves this follows from [8, 2.1 and 2.11], and, by composing with
such, it follows for C'*°-mappings f: U — F.

For A € {B,S, B(M),SE%)} we have, by Lemma

feAUF) — feA(U,F)
< VX € 64 : E(f) is bounded in F
= VeSS VEeGyu: UE(f)) =X o f)is bounded in R

since . detects bounded sets.

For A € {B{M},SE%}} we have, by Proposition

feAUF) < Yl e F*:lo fe AE,R)
= Ve F*VYe&h: %(¢o f)is bounded in R
— VX € &% : ¥(f) is bounded in F
= VEE&”VZGGJI}: X(¢ o f) is bounded in R

since . detects bounded sets. O

4.3. The uniform boundedness principle.

Theorem. Let E, F, G be convenient vector spaces and let U C F be c*-open.

A linear mapping T : E — B({U,G), T : E — S(F,G), T : E — BM\(U,G), or
T:E— SFL\? (F,G) is bounded if and only if ev, oT : E — G is bounded for every

x €U orx e F, respectively.

Proof. (=) For x € U and £ € G*, the linear mapping £ o ev, = A(z,¥) : A(U,G) —
R is continuous, thus ev, is bounded. Therefore, if T is bounded then so is ev, oT.

(<) Suppose that ev, oT is bounded for all z € U. By definition it is enough to
show that T is bounded for Banach spaces E, F', and G = R which follows from the
closed graph theorem [8], 52.10], as A(U, R) is a Fréchet space if A € {B,S, BM)}
or a compactly regular (LB)-space and thus webbed if A € {B{M},ng}}}, see
Subsection B.11 O
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M
5. THE B, S, D, BIM], S{L]}, AND DIM] EXPONENTIAL LAW
[M]

First we prove the exponential law for B, S, BIM!, and S[L] . At the end of the

section we obtain the D and the DIM! exponential law as an application of the B
and the BIM! case, respectively.

5.1. Theorem. Let L = (L), M = (M) be weakly log-convex weight sequences
with moderate growth. For convenient vector spaces E1, Eo, F' and ¢*-open U; C E;
we have the exponential law:

B(Uy x Uz, F) = B(Uy, B(Uz, F)),
S(E1 X Ea, I) = S(E1, S(EBr, F)),
BM(Uy x Uy, F) = BM(Uy, BM (U, F)),
SH (B x By, F) = S[] (B, S} (Ba, F))

Remark. In the BIMl-exponential law the inclusion (2) holds without M = (M)
having moderate growth, the inclusion (C) without M = (M}) being weakly log-

convex. The analogous statement holds for the S%]—exponential law, where the
inclusions hold without the respective conditions for M = (My) and L = (Ly).

Proof. Let A € {B,S,B[M],S{%]}. We have the C°°-exponential law C*°(U; x
Us, F) = C®(Uy,C>®(Uy, F)), by [8, 3.12]; thus, in the following all mappings are
assumed to be smooth. We have the following equivalences, where B € #(Ey x Es)
and B; € %(El)

fEAWU x Uy, F) <=Vl F*YB:lo foigecA(U; x Us)p,R)
<=V e€F*VBy,By:{o fo(ig xig,) € A(U1)B, X (U2)B,,R)

For the second equivalence we use that every bounded B C FE; X Fs is contained
in By X By for some bounded B; C E;, and, thus, the inclusion (E; X Es)p —
(E1)p, X (E1)B, is bounded. On the other hand,

Y e AUy, AUy, F)) <= VB : f¥ o ip, € A(U1)p,, A(Us, F))
<~V ecF* VBl,BQ : A(iBQ,K) o fv o iBl S A((Ul)Bl,.A((UQ)BZ,R))

For the second equivalence we use Lemma[4:2] and the fact that the linear mappings
A(ip,,{) generate the bornology. These considerations imply that we may restrict
to Banach spaces F; and F = R.

Direction (=). Let f € A(Uy x Uz, R). Tt is clear that f" takes values in A(Us, R).
Moreover, the mapping fV : Uy — A(Ua, R) is C* with d&/ f¥ = (9] f)V; this can
be proved in the same way as the claim in [I1] 5.2]. We have to show that

(1) fv : U1 %A(UQ,R) iSA:.Ab.
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Case A € {B,S}. For A = B, (1) is equivalent to

Vi € N: U (1Y) is bounded in B(Us, R)
<= Vky,ky € N: sup {”y”%) Ly € 28611)(fv)} < 00

(2) <= Vki,ka €N: sug 05208 f (), 29) (0], ... VR VT, U7 )] < 00,
€Uy
lvill e, <1
for A =S8 to

VEy, 6 € N: SEY (1Y) is bounded in S(Us, R)
<= Vkq,ko, 01,0 € N: sup{||y||gz2’e2) (Y € Egﬁl’el)(fv)} < 00
< Vki,ko, 01,05 € N:
(3) sup (1 + [[e1llg, )™ (1 + |[w2llm,) 2|05 08 f (21, 22)(vf, .. 501, ... )| < o0

z; €U;
llvjllm; <1

which is true as f € A(U; x Uz, R) by assumption (and by the polarization formula
8 7.13.1]).

Case A € {B(M),SE%)}. We prove the case A = SE%). The following arguments

also give a proof for A = BM) if we set k; = 0 and take the suprema over z; € U;.

BOD(Uy, R) ==1im  B)!(Uz,R) L; R
/ |
U, >B%(U27R)

S(z) (Fz R) —=1lim S}, (B2, R) —— R
E, ~SH, (Ez,..R)

By Lemma it suffices to show that fV : E; — Sg/{m (E2,R) is SEJLW)) = Sgg?b
for each py > 0, since every ¢ € 8%%)(EQ,R)* factors over some S}Y (Es,R).

Thus it suffices to prove that, for all py, ps > 0, the set Eé’fil(fv) is bounded in

S}J\{ 0, (B2, R), or, equivalently,

(4)
(1+ 2]l e,)= (1 + [|l21[|,) ™ (05207 £ (w1, w2) (0], - 0 508, o) < 00
kxlfeglN pl2€2+£2 pllﬁ—M1 kol kql6o) 44! Lkz Lkl Mfz Mfl .
v} 1=, <1

Since L = (Ly) and M = (M},) have moderate growth (2.1)7)), i.e.,

(5) Lk)1+k‘2 < ’I'kIJrkszlLk2 and Mgl_;,_g,z < T61+£2M51 MZQ for some 7 > 0,
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using () < 2, and setting p := 5= min{p1, p2}, the left-hand side of is ma-
jorized by

(6)

sup (1+ [|wallm,)"> (1 + [|l21 ]|, )" 1052 07 f (w1, wo) (v, v) 08, 0]
T1e€Ez pk1+k2+el+£2 (kl + kQ)‘ (61 + eQ)' Lk1+k2 M21+e2

ki l;EN

v} 1=, <1

(M)

which is finite as f € S(L) (E1 x E2,R) by assumption.

Case A c {BIM}, S?LV[}}}. We prove the case A = SJ{LJLW}}. The following arguments

also give a proof for A = BIM} if we set k; = 0 and take the suprema over z; € Uj.

BM (U, R) lim B (Up,R) ——~R
/| |
U > B, (U2, R)
S (B, R) == lim Sp,, (B2, R) L .Rr
d T
Ey > St (B2, R)

We show that fV : E; — liénp2 S%pz (E2,R) is Sif}%b C 834}}. It suffices to prove
that there exist p;,p2 > 0 such that Zé’i\il(fv) is bounded in S%pz (F2,R), or,
equivalently, holds. Since f € SFLV[}}(El x F5,R), there exists p > 0 so that @
is finite. Setting p; := 27p we have again that the left-hand side of is majorized

by @
Direction (<). Let f¥ : Uy — A(Us,R) be A. Then f¥ : Uy — A(U2,R) —

C>(Us,R) is C*°, since the latter inclusion is evidently bounded.

Case A € {B,S}. That fV : U; — A(Us,R) is A = A implies or (3), respec-
tively, and hence f € A(U; x Us, R), since

(™) A flarag) =sym (Y0 0P flera) ).

k1+ko=k

where sym denotes symmetrization of multilinear mappings, and, if A = S, using

Yo (Ata)A+a) =27 Y <:1>(1+a1)k1(1+a2)k2

k1+ko=Fk ki+ka=k
=27 (24 a; + ay)”
(8) >27F (14 a1 +ax)k, (a1,a0 >0),
for a; = ||z1]|g, and az = ||22||, and choosing the Banach norm

9) (21, 22) |5y x> = [l21 ]l + [J22]| 2,
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on E; X E,. Note that, if ag, x, > 0 and by, := Zk1+k2:k Ak, ky, then

(10) QAky ko <b < (k + 1) max Ak, kos k= ki + ko.
k1+ko=Ek

Case A € {BM), S(M)} As before we prove the case A = S): the case A = B

(L)
follows from the same arguments.

(L) ’

For each py > 0, the mapping f¥ : B} — S} p2(E2, R) is S(L) = SEL) p- So for

all p1,p2 > 0 the set ZEI pl(fv) is bounded in SM ., (£2,R) and hence ( (@) holds.
Since L = (L) and M = (M) are weakly log-convex, we have (cf. (2.1]{))

(11) kq! ko! Llekz < (k‘l + k‘g)' Lk1+k2 and /1! 45! MglMgz < (fl + fg)' Mgl+g2,
the left-hand side of majorizes
(12)

(1+ [l )2 (1 + |21 ll )" 05207 f w1, w2) (v, - - v 508, 0d))|
kﬁﬁegi\l p§2+£2 mth (kl + k2) (Zl + KQ)' Lk1+k2 M@1+42
llog 1, <1

This implies the statement, using (7)) and (8) for a; = ||z1]|| g, and as = ||22|| g, and
choosing the Banach norm @ on E; x Fy. In the situation of we have

b Ak, k b
13 sup —— < sup L2 < sup —.
(13) keN (20)F 7 gy kaen pPrTR2 T ey pF

Case A € {B{M},SFLW}}}. We prove the case A = S}]LW}}, the case A = BM}

follows from the same arguments.
The inductive limit lgl SM 2 (F3,R) is compactly regular, by Lemma ﬂ So
the dual space (13 2
L.po (E2,R)* of Banach spaces. Thus f" : By —
ligp2 Sﬁ{m (Eq,R) is S}L} »» by Lemma By regularity, there exists p; > 0 so

that the set 221%1 (fV) is contained and bounded in S%pz (E2,R) for some py > 0.
Then the proof can be finished as in the Beurling case. ([l

(F2,R))* can be equipped with the Baire topology
of the countable hmlt 1&1 SM

Let us show that the identities in Theorem [5.1] are bornological isomorphisms.
Note that we cannot simply conclude boundedness of the mappings

.A(Ul X UQ,F) = .A(U1,A(U2,F))

from the exponential law as in the C™ case [8] 3.13] or the C!M! case [IT] 5.5]. The
reason is that no linear mapping except 0 belongs to A.

5.2. Theorem. Let L = (Ly) and M = (M}) be weakly log-convex and have mod-
erate growth. For convenient vector spaces Fyi, FEo, and F and c*-open subsets



16 ANDREAS KRIEGL, PETER W. MICHOR, AND ARMIN RAINER

U; C E;, we have bornological isomorphisms:
B(U, x Uy, F) = B(Uy, B(Us, F)),
S(Ey X Ey, F) = S(F1,S(Eq, F))
BM(U, x Uy, F) = BM(Uy, BM(U,, F)),
F) =

SE(Er x Ba, F) = S (B, S (Ba, F)).

)

(2]

Proof. This is a consequence of the uniform boundedness principle, Theorem [£.3]
First we check that the mapping
(1) AUy x Uy, F) 3 f = fY(x) € A(Us, F)

is bounded for each = € U;. By definition we may suppose that E; and F' are
Banach spaces, in fact:

.A(Ul XUQ,F) .A(UQ,F)
A(iBl XiB2 ,f)l \LA(’LB2 ,f)
A((U1)B, x (U2)B,,R) = = = = - = A((U2)B,,R)

Then boundedness of ([I)) is easily shown. In the Roumieu cases A € {BM} S EJ}} }
we use the fact that any bounded subset in A(U; x Uy, F') is contained and bounded
in some step of the inductive limit describing A(U; x Us, F') and hence its image
under is contained and bounded in the corresponding step of the inductive limit

describing A(Us, F).
Conversely, we need to show that
(2) AU, AUz, F)) 5 g = g™ (z,y) € F

is bounded for all (z,y) € Uy x Us. But the mapping is just the composite
evy o ev, and thus bounded.

Indeed, for any convenient vector spaces F, F, and ¢>*-open U C FE, and each
x € U the evaluation mapping ev,, : A(U, F) — F is bounded, since ¢ o ev, is
continuous for all £ € F*, by Subsection [3:2} Alternatively, the C* exponential
law yields boundedness of ev : A(U, F) x U — F as follows: the mapping associated
via the exponential law is the inclusion A(U, F)) — C*(U, F') which obviously is
smooth. ([
(M)

5.3. Remark. If F;, F are Banach spaces and A € {B,S7B(M)7S(L)

even get topological isomorphisms

(1) AUy x Uy, F) > f s fY € AUy, A(Us, F))

provided that we equip A(Us, A(Us, F)) (= Ay(Ur, Ap (U, F)) by Lemma[3.4) with
the Fréchet topology generated by the basis of neighborhoods of zero

(2) {g:2(9) € Ve}

where ¥ € & 4 and {V;} is a basis of neighborhoods of zero in A(Us, F). It is easy
to see that the mapping is then continuous, and thus the statement follows from
the open mapping theorem.

} then we
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5.4. The exponential law for smooth functions with compact support.
For locally convex spaces F' let
DR F):= lim CFR,F),
Keot' (RY)

where
CEREF):={fecC®R,F): f(z) =0VYz ¢ K},

supplied with the locally convex injective limit topology for the former and the
subspace topology induced from the topology of uniform convergence in each de-
rivative separately on C>°(R’, F) for the latter space. Note that on C(R?, F) this
coincides with the topology induced from By (R, F') mentioned in the Remark
Thus a subset F C C2(R?, F) is bounded therein if and only if for each multi-index
a the set {f(®)(z): 2 € RY, f € F}is bounded in F. By Lemma this is in turn
equivalent to the boundedness in B(R’, F). The injective limit is a strict inductive
limit hence regular since C$5, (R, F) is a closed topological subspace of C3¢(R?, F)
for every K' C K.

If, in addition, M = (M) is a weight sequence, then let
DM(R, F):= lim  CRI(RY,F),
Kext' (RY)
where
Cx(®R', F) = {f € (MR’ F) : f(x) = 0Va ¢ K},
supplied with the locally convex injective limit topology for the former space and
the subspace topology induced from B! (R, F) for the latter space. Again the

injective limit is a strict inductive limit hence regular since C ) (R, F) is a closed
topological subspace of C’%M] (R, F) for every K' C K.

5.5. Theorem. Let M = (M) be a weakly log-convex weight sequences with mod-
erate growth. We have bornological isomorphisms

D(R* x R™,R") = D(RY, D(R™, R"™))
DIMI(R? x R™ R"™) = DIMI(R DIMI(R™ R™))

Proof. Let us first consider the case D. The bounded subsets 7 C D(R’, F) in
this regular inductive limit are exactly those sets for which there exists a compact
subset K C R’ such that F is contained and bounded in C3¢(R*, F) C B(RY, F).

Thus a subset 7 C D(R’, D(R™,R")) is bounded if and only if there exists a
compact K C Rf such that f(z) = 0forall f € F and all z ¢ K and F is bounded in
B(R!, D(R™,R"™)). Boundedness in B(R’, D(R™,R")) means, that for every multi-
index o there exists a compact set K C R™ such that {f(®)(z):z € RY, f € F}
is contained in C$5, (R™,R") and is bounded in B(R™,R"). Since f(®)(z)(y) =0
provided f(z)(y) = 0 for all z, it is enough to consider & = 0. Thus the boundedness
of F is equivalent to the existence of the compact set K x K% such that f"(z,y) =0
for all (z,y) ¢ K x K° and the boundedness in B(R’, B(R™,R")). By Theorem
this is equivalent to the boundedness of {f" : f € F} in B(R* x R™ ,R") and thus
to that of {f" : f € F} in D(R® x R™ R").
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We consider now the case DIMI: A subset F C DIMI(R¢ F) is bounded if and
only if there exists a compact K C R’ such that f(z) = 0 for all f € F and all
z ¢ K and F is bounded in BM(R®,F). For F = R" or F = DIMI(R™ R"),
by Lemma the set F is bounded in BIMI(R? F) if and only it is bounded in
Bl[)M] (RY, F); here we use that DM} (R™ R™) is a Silva space and hence satisfies the
assumptions of Lemma Boundedness of F in BIMI(R¢, DIMI(R™ R™)) means
boundedness of

F@(x
Zp::{pa”a“(]w)al:aeNé, z € RY, fef}
in DIMI(R™ R™) for some p > 0if []={ }, or for all p > 0if [] = (). So there
exists a compact subset K’ = K, C R™ such that %, is contained in C%\,ﬂ (R™ R™)
and is bounded in BIMI(R™ R™). Thus F is bounded in DIM/(R! DIMI(R™ R™))
if and only if there exists a compact set K x K’ such that f"(x,y) = 0 for all
f € F and for all (z,y) ¢ K x K’, and F is bounded in BMI(R¢, BIMI(R™ R™)).
By Theorem the latter is equivalent to the boundedness of {f" : f € F} in
BIMI(R! x R™,R"). Thus F is bounded in DIMI(R DIMI(R™ R™)) if and only if
{f": f € F} is bounded in DIMI(R? x R™,R™). O

6. THE WP AND WIMIP EXPONENTIAL LAW
In this section we prove the exponential law for WP and for WMl»,

6.1. In finite dimensions.

Smooth functions with globally p-integrable derivatives. For p € [1, o]
consider
WP(R™,R) = WP(R™) = (| WEP(R™)
keN
= {f e C*°(R™): ||f(a)||Lp(Rm) <ooforall ae Nm}
with its natural Fréchet topology, and set
WeoP(R™, R") := (W>P(R™,R))".

These classes where denoted by Dp» in [I9] p. 199]. The most important case is
Wee2(R™) = H>°(R™). Note that W°>°(R™) = B(R™), so henceforth we restrict
ourselves to the case p € [1,00).

Sobolev—Denjoy—Carleman classes. Let M = (M}) be a weight sequence, let
p € [1,00), and let p > 0. Consider the Banach space

m O(R™ M,
WRR™) = {f € C=®™) : || I}, < oo},
where (a)
£ e @m)
f Mp . _ Sup —————= -
Il = sup =~ ||l My
We define the Fréchet space

WODP(R™) = lim WP (R™)
neN "
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and
WP (™) = tig WAL ()
neN
which is a compactly regular (LB)-space and thus (¢*°-)complete, webbed, and
(ultra-)bornological, see [12, Lemma 4.9], and set

W[M],p(Rm7 R") — (W[M],p(Rm))n_

6.2. Proposition ([I12, Prop. 5.1]). Let M = (M) and L = (Ly) be weight se-
quences, where Ly > 1 for all k. We have the following inclusions, where we
omit the source R™ and the target R™, i.e., we write A instead of A(R™ R™). Let
1 <p < q < oo For the inclusions marked by * we assume that M = (My) is
derivation closed.

D S WP > Y04 B c>

]

piMy o gtMy ypMYp o * pp{Mla o * o giMY o oM}

L L ]

DM) >—>SE%) - s WMp (Mg o BM) (M)

All inclusions are continuous. If the target is R (or C) then all spaces are algebras,
provided that M = (My,) is weakly log-convex, and each space in

D(R™) > S(R™) >—= W>PR™) > W>IR™) > B(R™)

is a B(R™)-module, and thus an ideal in each space on its right, likewise each space
m

DIM] (R™) > S%%] (R™) —> W[M],p(Rm) - o W[M],q(Rm) -~ BIM] (R™)

is a BMI(R™)-module, and thus an ideal in each space on its right.

Remark. The fact that D is dense in W°? (but not in B) and the Sobolev
inequality imply that each element of W°P must tend to 0 at infinity together
with all its iterated partial derivatives.

6.3. Lemma. Let f € CYR"™) N WLP(RY™") and let 2o € R. Then fY(xq) =
f(xo, ) € CHR™) N LP(R™) and

(1) 1£Y (o)l ey < C Nl fllwrn@ren,

for a universal constant C.
In particular, the set {fV(z) : x € R} is bounded in LP(R").

Proof. Choose a decreasing C*°-function ¢ : R — R satisfying ¢|{z<¢} = 1 and
@l{z>13 = 0. Let B(xo,7) := {(x,y) € R? : (x—x0)*+yi+---+y2 < r?} be the open
ball of radius r centered at (zg,0) € R1™ and let B, (xg,7) := B(zo,7)N{z > 20}
be its right half. We define

P(z,y) = @(\/($—$0)2+y%+...+y%_r).
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Then ¢» = 1 on B(xp,r) and ¢ = 0 outside of B(xg,r + 1). Since |f|P is locally
Lipschitz and since 0, (|f|P) = p|f|P~ (sgn f) (0. f) a.e. (see, e.g., 23, Thm 2.1.11]
or [13, Thm 6.17]), the fundamental theorem of calculus implies

/ fray< [ ulipdy
B(zg,r)N{z=x0} {z=z0}

_— / 0. (V1117) d(z,)
B (zo,m+1)
_ / (O0) 1P + p o 1P~ (sen ) (0x f) d(z )
By (wo,m+1)
< / 00117+ p 11 f17 10 f] d(z, )
B+(CE(),T+1

<C 1P+ 10 £ d(,y)
By (xo,r+1)

for some constant only depending on ¢, using || < 1,
|z —woll¢’ (V/(x —20)® + 47 + - +y2 —7)|
Vi =202 +yi +- 42

and p|f[P~10.f] < (p — 1)|f|P + 0. f|P, by Young’s inequality. Letting r — +o0
implies the statement. O

|021] = < Nl oo (m)

6.4. Proposition. If f € WP(R™) and zo € RY, then fV(xo) € W>P(R") and
(1) 1Y (20) | o@ny < C I fllwiairer@esny, o €N,

for a universal constant C.

Proof. For £ =1 this follows from applying Lemma to Oy f(z,y). The general
statement follows by induction on . O

6.5. Vector-valued functions of class W>? and WIMIP, Let M = (M},) be a
weight sequence. For a locally convex space F' we define

WooR(R™, F) = {f € C®(R™, F):VYa Vs: ||s o fO o@m) < oo},

@
W(M)’p(Rm,F) = {f e C®[R™,F):VsVo: sup Is © /% llie@n) < oo},
aeN™ O"O‘||O(|!M‘a|

s o f(a)”LP(Rm)
wibe@rm py.={feC®®R™ F):Vs 3o | }
( ) ) {f ( ) ) S d0 asg\]pm a\a||a|!M‘a| )

where o € N, s € SN (F), 0 > 0, and .ZA4 (F) is the collection of all continuous

seminorms on F'.

We shall need a projective description for W{M}» (R™, F). For a C*°-mapping
f: R™ — F into a locally convex space F', a positive sequence (rg), p € [1,00),
and s € .ZA(F) consider

||S (¢] f(a) HLp(]Rm)
|a|!M\a|

M, L . m
287(7{;)(]?) = {T|a‘ ra€eN },
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and define
Sl iy = {BVP i s € IN(F), (ry) € #Y,

S’(Tk)

where Z and %' were defined in Subsection [4.1]

6.6. Lemma. For a C*°-mapping f : R™ — F into a locally convex space F the
following are equivalent.

(1) £ is Wi,

(2) For each ¥ € &\, . the set B(f) is bounded in R.

(3) For s € LN (F) and each sequence (ry) € %' there exists 6 > 0 such that
the set ©MP )(f) is bounded in R.

s,(rg 6%
Proof. Set
lIs o O Lo@m)
Us.o = ;
’ |Oé" M|a‘!
and apply Lemma [£.1] O

6.7. Lemma. We have f € W{Mbp(RE WAMLP(R™)) if and only if

1
(e 105 (£ @)1 gy d) >
1 Jo,7>0: sup
o aenpen TPV BTl My My

Proof. By definition f € W{Mb»(RE W{Mbr(R™)) if and only if

fle | e re)
9 {M}prmY) 3 : ”SO—
2) Vs € SH(WEEHER™)) 30> 0 sup T laf! My,

Now, if we denote by i, : WMP(R™) < W{M}LP(R™) the canonical inclusion and
s is a seminorm on WM}I2(R™)  then

se SN (WIMPP(R™)) = V7 > 0:5 0 i, € SN (WMP(R™))
<~ Vr>03C>0:s501i. <C(| ||RmT
Thus implies .

Let us prove the converse. By Lemma is equivalent to

so f@],,
(3)  Vse s/ (WMPRM) V() eZ: sup w%
aeN? laf! M)

For (t;) € Z and g € C*°(R™) set

||9(5)||Lp(Rm)
|BI! Mg

If g € WIMEP(R™), then there exist o, C' > 0 so that

191352100 = sup t

| ||9(B)||LP(Rm)

< Cllgllgn’ys

— 18
9||lpm = sup tig|o
| ||R J(tg) genim 18l
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cf. the proof of Lemma (1) = (2). That is || ||HJ§4,,1p(tk) € SN (WIMEP(R™)) for
all (tx) € #Z. Thus implies

1
(St S 10505 f2 (. y)|P dydax) @
Y(ty), (ry) € Z : sup o718 R R '2 I’M Y <
aENE, BN B! x|t Mg Mq

In particular, for ¢;, = r;, and assuming ryr; > ri4; for all k, j, we have

1
(e o 10507 £ (2 )P dydzr)
Y(ry) € %' : sup  Tq R_IR < 0o
(re) (a,B)ENE X Nm Pl |ﬂ|!\a|!Mlﬂ|M\al

Applying Lemma [£.1] to

1/p
(e S 10508 17 (@, )|P dye)
Bl ! Mg Mo

Ao, B =

we may conclude that

1
050 sy e fen |00 @) dyda)r
(@.pentsnm  olFIBI B ol Mg M,

that is . O

Now we are ready to prove the exponential law.

6.8. Theorem. Let M = (My) be a weakly log-convex weight sequence with moder-
ate growth. We have

WoP(RE x R™ R™) = WP (RE, WP (R™, R™)),
wMlp(RE x R™ R™) = WMbp(RE wiMlp(R™ R™)).
Remark. In the WIMl-P_exponential law the inclusion (2) holds without M =
(M) having moderate growth, the inclusion (C) without M = (M},) being weakly
log-convex.

Proof. Let A € {WP, wiMlp }. We may assume without loss of generality that
n=1.

Direction (=). Let f € A(R x R™). By Proposition and as M = (Mj) has
moderate growth and is thus derivation closed, f takes values in A(R™). Moreover,
the mapping fV : R® — A(R™) is O with d&/ f¥ = (9] f)V; this can be proved as
follows.

Since A(R™) is a convenient vector space, by [8, 5.20] it is enough to show that
the iterated unidirectional derivatives d? f¥(z) exist, equal & f(x, )(v7), and are
separately bounded for x, resp. v, in compact subsets. For j = 1 and fixed z, v,
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and y consider the smooth curve ¢ : ¢t — f(x + tv,y). By the fundamental theorem

Lt =@ ) - oy @wie = L240 v)

t
/ / (tsr)drds

zt/ S/ 0} f(x + tsrv, y)(v,v) dr ds.
o Jo

By Lemma and as M = (M},) is derivation closed, (07 f)V(K)(B, B) is bounded
in A(R™) for each compact subset K C R? and the closed unit ball B C Rf, and so
this expression is Mackey convergent to 0 in A(R™) as t — 0. Thus d,, f(z) exists
and equals 01 f(z, )(v).

Now we proceed by induction, applying the same arguments as before to
(df)" « (2,9) = O] f(2,9)(v") instead of f. Again (9F(d]f")")V(K)(B, B) =
(8712 f)V(K)(B, B,v,...,v) is bounded, and also the separated boundedness of
d} £V (z) follows. So the claim is proved.

Next we show that
(1) YR — AR™) is A.
Note that by Fubini’s theorem

L0 @ e = [ [ 10507 1)) duda

= ||f OCWB) HIZ,Z’(RI’. XRm)'

(2)

Case A = WP, is equivalent to
(3) Va € N¢ Vs € 24 (WP(R™)) : /R [s((f¥) @) (z))]Pde < oo
)
(4) VaeN,BeN™: /W 195 1A @) oy A = 1N g ey < 00
which is true, since f € W>P(R¢ x R™), by assumption.
Case A=WODr, is equivalent to

lIs o (f) o (rey
aeN? 0"04 |05|'M\oc|

(5) Yo >0 Vs € S (WEDP(RM))

v

1
o U 1B @ o)
p
aeN? BeN™ 7-|/3|0-|04\ |ﬁ"|0¢|'M|5‘M‘a|

(6) Yo, 7> 0:

—  swp ”.f(a’ﬁ)”LP(RZx]RM)
aene genm TIAlalel B[ el Mg M4

which is true, as M = (Mj) has moderate growth (see (2.1)7) or (5.1J15))), since
f e WP(RE x R™), by assumption.

< 0
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Case A = WiMbP, The assumption f € W{MbP(R? x R™) implies, as M = (M)
has moderate growth and by , that

1
Ui 15T @ @)L, gy d)
7 Jo,7>0: sup
g aentgenm  TAlolel|B|lalt Mg Mq

— w 1£CP) || Lo e crm) o
aeNt BeN™ Tlﬂla‘al ‘ﬂ|'|0¢|'M‘B‘M|a|

By Lemma we may conclude ().
Direction (<). Let fV : R = A(R™) be A. Then fV : R — AR™) — C®(R™)

is C*°, since the latter inclusion is bounded, by the general Sobolev inequalities.
Case A = WP, That f¥ : R® — W>P(R™) is WP is equivalent to which
in turn yields that f € WP(R? x R™).

Case A = WP, That fV : RE — WMP(R™) is WMP is equivalent to ,
which implies f € WP (REXR™), as M = (M) is weakly log-convex (see 4])
or GIT)).

Case A = WiMb»r, By Lemma v e wiMbp(RE WiMbp(R™)) if and only

if holds, and implies f € WIMbP(RY x R™), as M = (M) is weakly log-
convex. (]

6.9. Topology on W P(R! WP(R™ R")) and WMl»(R! WIMLp(R™ R™)).
On WP (R WooP(R™, R™)) we consider the Fréchet topology generated by the
following fundamental system of seminorms

(1) g /||af* @)Y ) @ ) aeN', BeN™

Analogously, we consider on WM)P(RE WM)p(R™ R™)) the Fréchet topology
generated by the fundamental system of seminorms

1
(2) S 3 L { A Gl etk
aeN, BeN™ T|ﬂ|o’\06| ‘B|'|O¢|'M‘5‘M|a| ’

o, 7> 0.

In view of Lemma we consider on W{Mbp(RE WAMEr(R™ R™)) the locally
convex topology generated by the fundamental system of seminorms

(Jone 105 @)|2 gy )
(3) g+ sup  tigTal R Lr(® )

o (rw), (k) € 2.
Q€N BeNm 181Nt Mg M,

6.10. Theorem. Let M = (My) be a weakly log-convex weight sequence with mod-
erate growth. We have bornological isomorphisms

WooP(RE x R™ R™) = WP (RY, WP (R™, R™)),
WMlr(RE x R™ R™) = wMlr(RE wiMle(R™ R™)),

where the topology on the right-hand side is the one introduced in Subsection [6.9;
for WP and WMP the isomorphisms are even topological.
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Proof. For A € {Wo?, WP} the statement follows from the open mapping
theorem if we show that the mapping

AR" x R™ R™) > f s f¥ € AR, AR™,R™)),
which is bijective by Theorem is continuous. But this follows from (6.8}4) and

from ([6.8l6)).

For A = W{M}bP we argue as follows. A subset B is bounded in W{M}r(R¢ x
R™ R™) if and only if

£ Lo e )
(1) Jo>0: sup < o0
aent genm 01T IBL B[l Mg M

feB
by the properties of M = (Mj). Using Lemma twice we may conclude that
is equivalent to
(2) V(ry),(tx) € Z:  sup  tgr ”f(aﬁ)HLP(WXRm) < oo

k)s \tk ‘ 1B |ex]
et pen B! Mg Miq
€B

which means exactly that BY is bounded in W{M}bp(RE WMbp(R™ R™)) O

6.11. Tensor product representations. It is well-known (see [I9, p. 199]) that
D(R") is dense in W*?(R™). In the next lemma we show that DM (R™) is dense
in WMLP(R™) provided that M = (M) is non-quasianalytic.

Lemma. Let M = (My) be a weakly log-conver non-quasianalytic weight sequence.
Then DIMI(R™) is dense in WIMLP(R™).

Proof. Let ¢ € DIMJ(R™) be such that ©l{zj<1y = 1 and set i (x) := p(x/k) for
k € N>1. By Proposition 6.9 o f € DIMI(R™) C WIMLP(R") and we have

0°(F — gl ()] < |7 |+Z(>f(5) Vi@ (/)

B<a
<2l ¥ (51O @Il - 81 M.
B<La
Since 1 — ¢y (x) vanishes for |z| < k, we conclude that
||8a(f—90kf)HLP(R" p“"‘f8||a—ﬂ\!M|a,m
ol 1F PN o (gl
plelall Mg, ‘ ’pﬁgx PR el ol Mg,

1 o (121>}
< 206l z ( ) b

i 1P Lo (2] k1)
e plBIIBIN Mg

where we used weak log-convexity of M = (M}), and consequently,

sup o (f — @kf)”LP(Rn) < 2g|
o (p)lla|! M

< 20/l , m

M | £& ||LP({\L|>k})
RnWSHP |5‘ |
g pPlBI Mg
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as k — oo. This implies the assertion. ([

Theorem. Let M = (M) be a weakly log-convex non-quasianalytic weight sequence
with moderate growth. We have linear topological isomorphisms

WP(R™ x R™) = WP(R™) ® W>P(R")
wiMlp(R™ R 2 WiMle(R™) & WMlr(R™)

where WP (R™) ® WP(R™) (resp. WIMLp(R™) & WIMLP(R™) ) denotes the com-
pletion with respect to the topology on WP (R™)@WP(R") (resp. WIMP(R™)®
WIMLp(R™) ) induced by its inclusion in WP(R™ x R™) (resp. WIMLP(R™ x R™) ).

Proof. All inclusions in the diagram

WP (R™) @ WP (R™) —> WP(R™ x R")

| |

D(R™) @ D(R") >—— D(R™ x R™)
as well as in

wMLp(R™Y @ WMLe(R?) > WML2(R™ x R™)

I |

D[M] (Rm) ® D[M] (R") D[M] (Rm % R”)

are dense, by the lemma. That DIM(R™) @ DIM(R") is dense in DIMI(R™ x R™)
can be seen as in the proof of [6, Thm 2.1]. O

Problem. Find an explicit description of the topology on WP (R™) @ WP (R™)
and WIMlp(R™) @ WIMLP(R™)) induced by the inclusion in W P(R™ x R") and
WIMLP(R™ x R™), respectively.

For instance, motivated by [I], one may consider the topology on W?(R™) ®
WeoP(R™) generated by the fundamental system of seminorms

(1)

po inf (19 zo@e)ile s () fPudayln), o eN"geN,
u€LY(R™) R™
[lull La@m)<1
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where the infimum is taken over all representations h = ), fi ® g; (f; and g; are
zero except for finitely many indices) and 1/p + 1/¢g = 1. By Holder’s inequality,

k
N p
||h(a,ﬁ)‘|1£p(Rmen):/R / ‘ E 1 )(x)gl(ﬁ)(y)‘ dzx dy

= /R sup ‘ /Rm zi: fi(a)(x)u(x) glw)(y) dx‘pdy

n weLi(R™)
[ull La@my<1

q
<[ SPwra sw (S][ rO@u )
n e uweLI(R™) Z m
[lull La@m)<1

=1 N o@)illn sup ([ F P uda)i|n
u€LI(R™) R™
[lull La @my)<1

P
aq

Thus, the topology generated by is at least as strong as the one induced by the
inclusion in WP(R™ x R™). Is it the same?

7. FAILURE OF EXPONENTIAL LAW FOR NON-MODERATE GROWTH

7.1. The exponential law fails if M = (M},) has non-moderate growth. The
BM} Sg/[}}, DM} WAMEP exponential law (actually the inclusion (Q)) fails if
M = (Mj) has non-moderate growth:

Theorem. Let M = (M) be a weakly log-convex non-quasianalytic weight sequence
with non-moderate growth and let L = (L) be a weight sequence satisfying 1 <
k!'Ly. Then:

o There exists f € S}%}(RQ,C) so that f¥ : R — SE/[}} (R,C) is not Sg/[}}.
e There exists f € BIM}(R? C) so that ¥ : R — BIM}(R,C) is not BIM},

e There exists f € DIMH(R? C) so that f : R — DIMH(R,C) is not DIM},
If furthermore M = (My,) is derivation closed then:

e There exists f € WIMbP(R2 C) so that f¥ : R — WIMbP(R C) is not
wiM}.p,

Proof. Since M = (M) has non-moderate growth, there exist j, /* oo and k,, > 0
such that

(1) (7Mk“ )ﬁ >n?n!L,.

My, M, - "
Since M = (M) is weakly log-convex, there exists g € CI1M}(R,C) such that
g®)(0) = i*hy, and hy, > k!M; for all k; see [20, Thm 1]. By defining f(s,t) :=
g(s +t), we have found f € CM}(R2,C) with 8% f(0,0) = il*lhyy) for all a € N2,
Choose a function ¢ € DIM}(R2 R) that is identically 1 in a neighborhood of
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the origin. Then f = ¢f is an element of DIM}(R?,C), ST (R?,C), and of
BIM}(R2,C) (by Propositions [3.5{ and and satisfies

(2) 9°£(0,0) = il®hyy),  hia > |al! My,  for all @ € N2

Case A=S } L}} Consider the linear functional ¢ : S 34}} (R,C) — C given by

§39n (in)
o)=Y o A

| | . n+jn :
— nljn! L,M; n

This functional is continuous, since
i3 g () (0) lgt)(0)] o\ Hin LM
‘ Z n'Jn'L M nntin ‘ = zn: ontinnlg,! L, Mj, (ﬁ) < C@) gl < oo,

for suitable o, where C(0) := Y, (£)" /" < 0o. However, £ o f¥ is not S,

{L}
1o fUIEM = sup (1+ [thP|(e o )@ (1)
p.geN oPtaplg! L,M,
teR

(setting t =p = 0)

i3 fn9) (0, 0)
= sup q'M ‘Zn'jn'L M;, nntin

qeN 09
4]n+‘1h(] 0
— ns _ b 2
?EIIN) o4 q! M, ‘ n!jn!L M;, nntin (by )

_ hjn,0)
= sup q'M Zn'jn'L M nnﬂn

gen 01
> sup g ) (setting g = k)
nen N Ly kyljn! My, M, nntin ghn "
kn + jn)! M
> sup ( +.7 ) kn+jn (by )

neN n' L k ‘]n'Mk ]\4’]71 nn“l’jn O—kn
(n n! Ln)kn"l']n

2 WL, et o oy @)
n2kn
> sup (asm!L, > 1 and j, > n)
neN 0"
- 50 (as kp, > 1),

for all o > 0.

Case A € {B{M } piM }}. An analogous computation shows that, for the continu-
ous linear functional ¢ : B{M}(R,C) — C given by

/ = e e——
(9) ; PR YA

we have that £ o fV is not BtM}. The case DM} follows immediately, since £ is
also a continuous linear functional on DM} (R, C).
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Case A = WMbPr Let h € C°(R?,C) satisfy supph C {|z| < 1}. If a & supp h,
we have

t
h(a +tz) = / O1h(a + sx)xy + O2h(a + sx)xads
0
and hence, for t =1, a = (—=1,0) and z = —a = (1,0),

1 1 1/
|h(0)|§/ |81h(571,0)|ds§(/ O1h(s = 1,07 ds) :
0 0
1/p

< ([onora)” <c( [ ol +1onepr )"

where the last inequality can be seen as in the proof of Lemmal6.3] In the following
we apply this to the function f from , where we assume that supp ¢ C {]z| < 1}.
By Proposition f is an element of W{M}»(R2 C). For arbitrary o, 7 > 1,

sup Je 151D @ 5 gy de ~ sup Jee [050] f (2, )P d(z, )

k,jEN (TkO'jj!k! Mij)p k,jEN (Tkajj'k' Mij)p
> sup Jeo [FO VR (@) [P d(2,y) + fgo | £ T2E0) (2, y) [P d(2, y)
" neN (Thngint2 (j, + 2)lkn! Mj, 42 My, )P

(jn:kn) p
= C7Psup —— 2|f- e
SR (PR (7 2k M 20, 7
> ( L sup (kn + jn)! M, +5, )p
“\Co? ey Thnoin (Jn + 2)1k,! M, oMy,
1 (n2n! Ly, )kntin\p
( sup —)

>

by (1)) and (2.1}8)

Cinen  Thogin
= OO,

where C and o7 are suitable constants, using that k! M}, is non-decreasing (because
log-convex) and derivation closed. In view of Lemma fY is not Wi{M}bp, (]

7.2. The exponential law fails if L = (L;) has non-moderate growth. We
shall now show that the S ‘{{ﬁ/j}}—exponen‘cial law (the inclusion (C)) also fails if L =

(Lg) has non-moderate growth; see Theorem below. We will use the Fourier
transform.

Let E be convenient. For a function g € S(R, E') we define its Fourier transform
Z g and its inverse Fourier transform #g¢ (see the lemma below) by

Fol€) = / o(@)e > dz,  Fg(€) = Fg(—0).

These integrals exist since integration commutes with continuous linear functionals

on F.

Let L = (Ly) and M = (M},) be weakly log-convex, non-decreasing, and deriva-
tion closed weight sequences. We shall use the classical result (see [3, p. 200])

1) FELYRC)=SHHRO) ad  FSH)RO) =S RC).

We give a short argument for the inclusion .#(S 34}} (R,C))CS J{Lf/[}} (R, C) in order
to demonstrate that the assumptions on L = (Ly) and M = (M}) are sufficient for
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(1); in the literature often also moderate growth is assumed, but this we want to
avoid in view of Theorem By partial integration,

mm{p a}

|
|EP(F 9) D ()] < (27)° Z e pqq o /|xq Lg®P=0(2)| dx.

Since g € S}L}}(R C) and |2|7¢ < (1 + |z])?~* < (1 + |=|)9, there are C,0 > 0 so
that

dx
€7(F9)D(€)] < (2m)° / T
ml§7q} p'q'
X Pt Ogbta—tt2 (g+2)!(p— €>!Lq+2Mp—£
— lp—0g—10)!
min{p,q} q'
<202m)%(q+2)!p! Lyt2 M, Z mamq*uz

<20(2m)%q + 2)!p! Lyy2 M, ap+ (1 +0)?
as M = (M) is non-decreasing. Thus, Fg € S%/I}}(R, C), since L = (L) is
derivation closed.

Lemma. We have:

(2) Ifg € SV (R, B) then Fg, Fg € S (R, B).
(3) We have F o F =F o F = donS%L} (R, E).
(4) Let f € S(R%,C). Then

F [(&1.6) = Fo(F1f" (€1))(&2),
where Z1 : S(R,S(R,C)) —» S(R,S(R,C)) and F# : S(R,C) —» S(R,C)

denote the respective Fourier transforms.

Proof. For each £ € E* we have f o Fg=.F({ o g)andl o Fg=.F({ o g). Thus
(2) follows from (T). Furthermore, for all £ € E*

log=FF{log) =FUoFg) =LoFFg
which implies (3). Finally,

9f(§1,§2):/ Fy, mp)em i@l eta) (g q)
R?
://f(xl,:rg)e’z’”mlgl dxq e~ 2282 gy
R JR

= [ A ) 2
= FZ(F1fY (1)) (&),
that is (4). -

Theorem. Let L = (Li) and M = (My) be weakly log-convex, non-decreasing,
non-quasianalytic, and derivation closed weight sequences. Assume that L = (Ly)
has non-moderate growth. Then:
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%ILMS} (R%,C) so that g¥ : R — S{M}(R, C) is not Sty

e There exists g € S {L} {L} -

Proof. Let f € S%ﬁ}(R{(C) be the function from Theorem [7.1, Then fY : R —

Sﬁ/l}} (R,C) is not Sg/[}}. Set g:=Ff € S}%}(Rz, C). Suppose for contradiction

that gV € SH (R, S{M}(R7 C)). By the above lemma, we have

{L} {L}
Ty o (Ff')=9g",
thus
FifY =F5 09" e STVR,SL(R,C)),
and hence
P =F 0 Fo0g” e SR ST R, 0),
a contradiction. O

8. STABILITY UNDER COMPOSITION

None of the classes A of test functions considered in this paper form categories,
since there are no identities; no non-zero linear mapping belongs to B. We shall see
in this section that B and B! are closed under composition, in contrast to all other
cases. The following example shows that the “Oth derivative” of the composite f o g
may not have the required decay properties at infinity, since g is globally bounded.

Example. Let f,g € D(R) be such that f|;_; ;) = 1 and |g| < 1. The composite
fog=Tlismnotin ., ., W*P(R), and hence neither in D(R) and nor in S(R).

8.1. The cases B and B!, We want to consider mappings of class B or B™! but
only from the first derivative onwards. For Banach spaces E, F and open U C F,
we set

Bo1(U,F) = {f € C%(U,F): | fII{}) < oo for all k € N3 },

(k)
(M) — o . I f (x)”Ek(E;F)
B3(U,F) = {f € C°(U,F):Vp> OkENs;%)IEU M, < oo},

)
{M} ._ 00 . ||f ('r)HCk(E,F)
B U, F) = {f € C®(U,F): 3 > 0 S T < oo}.

For convenient vector spaces E, F' and ¢>*-open U C FE| let
Boy(U,F) = {f €C®(U,F):WYB:lo foipe le(UB,R)}
BM(U, F) = {f € C®(U,F):YIYB: Lo foipe BQ{](UB,R)},
where £ € F* and B € #(E). Note that B>; and B[ZIV{] were denoted By and BgM]
in [12).

Definition. Let A € {B,BM]}. An As;-(Banach) plot in a convenient vector
space F' is a A>i-mapping g : £ D U — F defined in an open convex subset U of
a Banach space FE.
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Proposition. Let M = (My,) be a log-convex weight sequence. Let f : U — F be a
mapping between a ¢ -open convex subset U of a convenient vector space E and a
Banach space F. Then:

feB<«= f oge€B for all B>i-plots g,
feBM = fogeBM for ail B -plots g.

Proof. The direction (<) follows from the definition by using g = ip, B € B(E).
For the direction (=) let g : G D V — U be an As;-plot, where A € {B, BMI}.
Fix some point zg € V.

Case A = B. Since B = By, for all k € N> the set {g(z0)} U U</« ng)(g) is
bounded in E and hence contained in some By, € %(F). By Faa di Bruno’s formula
for Banach spaces (see [2] for the 1-dimensional version), we find for k& > 1,

I(f © 9™ (@)ll () <

k! -
(1) 1F D (9@ ci(pom Fr 1997 @) 2oi (6188,
B> eenn) pp 160 lerom,
Jj=1 aGNJ;O ’ i=1 v
ar+-+aj=k

Since ¢’ : V. — L(G, Ep,) we have g(V) C Ep, (by integration as g(z¢) € By, and
V is convex), and thus taking the supremum over x € V, we deduce

il
I ool < w303 e TT

for each k > 1. For k = 0 we have

0 0
If o gl <A,

|(<X)

Case A = BM), Since BM) = BZEM)7 for all p > 0 the set

(k)
g ®(2)(vg,. ..,
(2) 21‘\/{0,21(9) = { (k)l(pkle k) tkeNsq,z eV, ||vllg < 1}

is bounded in E and hence {g(z)} UX{/, 5, (g) is contained in some B € #(E).
(Note that ¥/ ,(9) = E{\fp >1(9) U{g(x) : z € V}.) By (with By replaced by
B), (2.115), and since again g(V) C Ep, we find

I(f © 9™ (@)llex ()

<

k!M,, -

; 19 (g ( ||LJ(E F) 19" (@) || 2o (61 2)
<N~ M) L =
fz 1 Z H al'Ma

i1 aeNd '
ar+-+a;=Fk

(3)

E—1 . _
< MiCyCyprph Y <j B 1) (MipsCy) =" = MyCCypyppl(1+ MipsCy)F
>
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Given p > 0 take o > 0 so that p = \/o+0 and set p, = /7 and py = (CyM;) /0.
Then || f o gH%p < 00.
Case A = BIM}, Fix a sequence (1) € %'. By Proposition 4.1 the set

0o ¢)F)(z)(v,..., v
SV 2ty 21(0 0 9) = {rk pLo9) li!z)\;kl !

is bounded in R for each ¢ € E*. Thus the set {g(xo)}uzﬂ‘f(rk 2k -1 (g) is contained
in some B € #(F) and so, for k > 1,

tkheNzz e Vfuilla <1}

||9(k)(a)\|£k(G;EB) " _ 1
kM, 2k
Faa di Bruno’s formula (T)), (2.1JF), and (V) C Ep (as before) then give
(4)
[(f o 9)(k)($)||ck(G-F) Cy k—1 . M Crpy 1+ Mipp\*
)y < Mips) < ( ) .
kIM; Tk—zkz j—1 (Mipg) = 1+ Mp;s 2

IN

Thus ZAV/I(TkSk)(f o g) for § = 2(1 + Myps)~" is bounded in F. Proposition
|

implies the statement.

Remark. In particular, for a convenient vector space E, Banach spaces F, G, and
c¢*-open subsets U C E, V C G we have

feB(UF), geBV,U) = fogeB(V,F),
FeBM(U,F), ge BM(V,U) = f o g € BM(V, F).

Note that here we need not assume convexity of U and V' because g(V') is bounded
by assumption.

Theorem. Let M = (My) be a log-conver weight sequence. Let E, F,G be conve-
nient vector spaces, let U C E and V C F be c*™-open. Then:

feB(V,G), ge BU, V)= f o geB(V,G),
feBMv,.@), ge BM(U, V)= f o ge BM(V,Q).

Proof. We must show that for all B € B(FE) and for all £ € G* the composite
Lo fogoig:Up— R belongs to A.

U g 1% ! G
iBT % k\ J/
Ug R

By assumption, goig and £ o f are A. So the assertion follows from the remark. [

The proofs of the above proposition and theorem imply the following corollary.

Corollary. Let M = (My) be a log-convex weight sequence. Let E,F,G be conve-
nient, let U C E and V C F be c>*-open, and let V be convex. Then:

f (S le(MG), g € le(U,V) — f o gcE le(U,G),
FeB(v.6), ge BY (U, V)= fogeB (UG
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Thus, the B>1-mappings between convenient vector spaces form a category, and,
if M = (My) is log-convex, then the Bg\f}—mappings between convenient vector
spaces form a category. However, these categories are not cartesian closed as seen
by the following example.

Example. The function f : R* — R, (z,y) — zyisnot B>y, since f'(z,y) = (y z)

is not globally bounded on R%. However, fV : z — (y — zy) has values in B> (R, R)
and is B>;. In fact, (f¥) is the constant Id € B>1(R,R) and higher derivatives
vanish.

8.2. The cases S and S{%]. For Banach spaces E, F' we set
So1(B,F) = {f e C®(B,F) : ||f||%" < oo for all k € N, ¢ € Nzl},

Sy si (B F) = {f € C>®(E,F):

Vo >0

A+ [l O @) ey _ Oo}
kEN,LEN>, ,zEE ok e RV L M, ’

S F)={rec=(E,F):

L+ N2)* 1O @)l e o) _ OO}.

do >0
kENENs,,z€E ok 10V Ly, M,

For convenient vector spaces F, I, let
So1(B,F) = {f € C®(E,F):V{VB:lo foige Szl(EB,R)}

S (B, F) = {f €C®(E,F):V{YB:lo foipe 5%}21(&9,1&)},

where ¢ € F* and B € #(FE).

Theorem. Let M = (My) and L = (Ly) be weight sequences and assume that M
is log-convex. Let E, F,G be convenient. We have:

f€B1(F,G), g€ S>1(E, F)= f o g€Sx(EG),
FeBYIFG), geSL (B, F) = [ ogeShHL (EG).
Corollary. The S>1-mappings between convenient vector spaces form a category. If

M = (My,) is log-convez, then also the S%}Zl—mappings between convenient vector
spaces form a category. Neither of this categories in cartesian closed, by Example
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Proof. Let A € {S,S[}]'}. We must show that for all B € %(E) and for all £ € G*
the composite £ o f o g o ip: Ep — R belongs to A>1.

E L F—1 ¢
iBT / \lf
goip Lo f
Ep R

Thus it suffices to show the assertions under the assumption that £ and G are
Banach spaces which we adopt for the rest of the proof.
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Case A = S. Since § = &, for all p,g € N the set {g(0)} U U</, Eg’z)(g) is
bounded in F' and hence contained in some B, € Z#(F). By Faa di Bruno’s formula,
we find for ¢ > 1,

I/ 2 9O @)lera) _

q!
(1) 1£9) (g(x ) ”LJ(FB &) 2 199(@)| cos (57, )
<> D 1 -~ :
321 aend, i=1 v
a1+ tas=g

Since ¢’ : E — L(E;Fp,) we have g(E) C Fp, (by integration as g(0) € By).
Multiplying both sides with (1 + ||z||g)? and taking the supremum over = € E, we
deduce

J) -1 0,00;) ;
IIfIIF = ||g||( ) |||

Bq H ol < 00

If o gllP? < 'ZZ

for each p € N, ¢ € N>;.

Case A = S(})). Since S[J}) = S{}}),, for all p > 0 the set T, (g) (defined

in (8.1}2)) is bounded in F and hence {g(0)} U EEP >1(g) is contained in some

B e #(F). By (with B, replaced by B), [21]F), and since again g(E) C Fjp,
we find

(L+ llzllB)?lI(f o 9)“ ()||£‘1(EG)<

pq'L M,
: 179 (g(x) Hm(F G) g ( ||LO~<EF )
WY FFT 11 o :
i>1 aeNe i=1 "

ai+--to;=q

L A llells)? 199 (@)l 25 (8 Fs)
plaj! Ly M,

< MiCCopypg (1 + MipsCo)*™,

by the computation in 1- 3). Given p > 0 choose o > 0 so that p = \/o + o and
set py = /o and py = (CyM;)~'y/o. Then

L+ zle)?I(f o 9D @) comic)
+aplg\ L. M < o0
€ E,peN,gEN>, pPTaplq! Ly M,

Case A = SEL}} Fix a sequence (ry) € #'. By Proposition the set

(q)
LM — pig L+ 2]|lE)P (£ 0 g)' V(@) (v1, ..., vg) |
E,(rk 2’“),21(6 °g):= {Tp+q2 Pl L, M, :

pEN,geNsy,z € B, ||vi]|z < 1}
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is bounded in R for each ¢ € F*. Thus the set {g(0)} UEE (e 29), 31
in some B € #(F) and so, forp e N, ¢ € N>y, and z € E,

(g) is contained

(L+ ||zl 2)? [|9'D (@) || o (B Fp) Tp+q PR
plg! L, M, - 2rta’

Faa di Bruno’s formula (), (2.1]F), and g(E) C Fj (as before) then give

A+ ll2llB)II(f 0 9) (@) co(mia) .
p

<
plg! L, M, te =
: -1
‘ 1f9 (g ( ||[1J(F = g (x M eei(B:Fp) Ta
J Bv B K
=2 M | i
i1 aend i=1 o
o1+ taj=q

L LA llzle)” 19 (@)l 225 (87 ot
plag! LM,

< M Cypy (1+M1pf)p+q
>~ 1+M1,0f )
by the computation in 1 4). Thus EE (rd®), ((f o g) for § =2(1+ Mypy)~tis

bounded in G. Proposition [4.1| implies that f o g € S{L} >1(E, G); it suffices to
take a, , as defined in (4.1j4)) for ¢ > 1, set a, o := 0, and apply Lemma O

In Section [9] we also need the following result.

Proposition ([12, Thm 6.3]). Let M = (M},) and L = (Ly) be weight sequences and
assume that M is log-conver. If g : R® — R"™ is a C*°-diffeomorphism satisfying
g(x) = x + o(x) as |x| = oo, we have the following implications:

feSM®R",RY), g€ Bsi(R",R") = f o g € S(R",R"),
f ESM](R” R"), g€ BY(R"R") = fog ESM](R” R™).

8.3. The cases W and WMlP, We set
WITP(R™) == {f € C®°(R™) : || £ po(rm) < 00 for all & € N™, |a| > 1},

f(a)HLP(Rm)
W(M)’p R™) := eC®R™): Vo >0 Hi < ,
>1 ( ) {f ( ) o aeNil’l,Exlzl olal |0¢|!M‘a| OO}

F e @m)
W{M},p R™ ::{ c C®°(R™): 90 >0 |‘7< }7
SR =S ECTRT) 30 >0 sw e, <

and
W R™RY) = (WP R™)", WPR™RY) = (W (R™))".
Theorem. Let M = (My,) be a log-convex derivation closed weight sequence. Then:
f€Bs1(R™R"), g € WSIP(RY,R™) = f o g € WP(R,R™),
;e BYI®™ R, g e WIPRER™) = f o g e WIIP(RY,RY).
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Proof. For simplicity we assume that { = m = n = 1; the general case will follow
by the same arguments from the Faa di Bruno’s formula for partial derivatives. For
h>1,

I(f © )™ lrrw _ B3 179 @ 119 o ﬁ 190 o )
h! - ]' Otl! Oli!
21 aen, i=2
> ai=h

since WJ7P(R) C Bx>1(R). This shows the first part of the theorem.

For the second part we may argue as follows. By the general Sobolev inequalities
there exist k € N>; a constant C' > 0, both depending only on p, so that
Hg(j)”Loo(R) < C”g(j)”W’cfP(R)-
Using that M = (M) is derivation closed and thus (2.1}f8)), we further have

k k

g wrwmy =D MgV NLe@ < Co D i (G +0)!Mj i < Cy)j' M.
=0 1=0

This permits to conclude the proof in the same way as the one of Proposition|8.1 [

In Section [9] we also need the following result.

Proposition ([12, Thm 6.2]). Let M = (My) be a log-convex weight sequence. If
g : R™ = R"™ is a C™-diffeomorphism satisfying inf,ecrn | det dg(x)| > 0, we have
the following implications:

feW=PR"R"), g€ B>1(R*",R") = f o g € W>P(R",R"),
f e wMIP@®™RY), g € BYY (R, R") = f o g e WIMPR",R").

8.4. The cases D and D!, We define
D51 (R™,R") := {f € C®°(R™,R") : f® € D(R™,R") for all « € N™,|a| > 1},
DPYY(R™, R") := Ds1 (R™,R") N BL(R™, R™).
Theorem. Let M = (M) be a log-convex weight sequence. Then:
f €B>1(R™R"), g € D>1(RY,R™) = f o g € D>1(RY,R"),
feBY®™ R"), ge DI(R,R™) = [ o g e DL](R,R™).

Proof. By Corollary [8:1] only the condition on the support must be checked. It
follows easily from the chain rule. (Il

Another immediate consequence of Corollary is the following.

Proposition. Let M = (My) be a log-convezr weight sequence. If g : R™ — R" is a
C*>-diffeomorphism, we have the following implications:

f € DR™,R"), g€ B>1(R",R") => f o g € D(R",R"),
fe DM@ R"), g e BM(R™R") = f o g e DMI(R",R").
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9. APPLICATION: GROUPS OF DIFFEOMORPHISMS ON R"
Let A € {D,S,Woo’p,B,D[M],S%], WwMlr BIMIY and set
Diff A = Diff A(R") := {F =1d+f: f € AR",R"), rlean det (L, + df (z)) > 0}.
It was shown in [I6] that the groups of diffeomorphisms (1 < p < ¢ < 00)

Diff D >—— Diff S > Diff WP > Diff W9 >~ Diff B

are C°°-regular Lie groups. The arrows describe C*° injective group homomor-
phisms. Each group is a normal subgroup of the groups on its right. In [12] we
proved that, provided that the weight sequence M = (My,) is log-convex, has mod-
erate growth, and in the Beurling C™) D C*, and that L = (L) satisfies Ly, > 1
for all k, the groups of C™I-diffeomorphisms

Dif DIM] =+ DiffS &4]] > Dif wWMlr = DifWMha =5 Diff BIM]

are CMl_regular Lie groups. The arrows describe C™! injective group homomor-
phisms. Each group is a normal subgroup in the groups on its right.

This was done by

e characterizing the C°-curves in the space A(R™ R") for A €
{D,S,W>P B}, and the CMlplots in the space A(R™,R") for A €
{DM] S{%] ,(WiMLe BIMIV respectively, and

e proving via this characterization that C*°-curves and C!™l-plots, respec-
tively, are preserved by the group operations, that is composition and in-
version.

The first step is based on the C* and C[M! exponential law while the second step
required a careful application of Faa di Bruno’s formula.

In this section we apply the exponential laws established in this paper to con-
clude in a simpler way that Diff D(R™), Diff S(R"), Diff WP (R"™), Diff B(R™) are
C> Lie groups as well as that Diff DM} (R), DiffS{) (R"), Diffw {Mbe(R"),
Diff BIM}H(R™) are C{M} Lie groups provided that M = (M}) is non-quasianalytic.

9.1. Diff D(R"), DiffS(R™), DiffW>»(R"), Diff B(R") are C*™ Lie groups. Let
us recall a well-known lemma; for a proof see, e.g., [12], 8.4].
Lemma. If A € GL(n) then ||A7Y| < |det A| 7L AL

Proposition. Let F € B>1(R",R") be a diffeomorphism of R™ satisfying
inf,ern det dF(z) > 0. Then F~' € B>1(R",R") and inf,eg~ det dF 1 (z) > 0.

Proof. Set G := F~!. Since F o G = Id we have
det dG(x) = (det dF(G(z)))™!,

and so ||G||]§§1n) < 00 and inf,egn det dG(z) > 0, in view of Lemmam Fix a € R
and set b = F(a) and T = F'(a)~! = G'(b). Defining

(1) p:=1d-T o F,
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we have
(2) G=T+¢ oG.
By Faa di Bruno’s formula, for £ > 2

W) pW(G() o GM(a)

k! k!
() (e1) (@)
P (G(x) (G (z) G)(z)
—i—symz Z 7l o ( ol X oo X o] )
j>2 a; >0
ar+-+a;=k
_ GW(2) ~T o F'(Glx)) o G¥(x)
B k!
() (e1) (@)
P (G(x) (G(z) G ()
+Symz Z i o ( gl X e X o] )

7j>2 a; >0
ar+-+a;=k

and hence we can conclude by induction that HGHS{? < ooforall k > 1, since (F')~!
is globally bounded by assumption. O

Let A € {D,S,W? B}. The elements of Diff A(R™) are smooth diffeomor-
phisms on R, since they are surjective proper submersions (cf. [16]). The compos-

ite of two elements in Diff A(R") is in Diff A(R"), by Propositions
and

If F = Id+f € DiffB(R"), then G = Id+g = F~! € B>1(R",R") and
inf,cgn det dG(z) > 0, by Proposition This implies that g € B>1(R™,R")
and clearly also g itself is globally bounded, as follows for instance from
(3) (Id+g) o Id+f)=1d <= f(z)+glxz+ f(z))=0.
So F~1 € Diff B(R"), and DiffB(R") forms a group.

If F =1d+f € Dif AR"™) for A € {D,S,W>?} then F € Diff B(R"), and
hence g = F~! —Id € B(R",R"), by the previous paragraph. We then conclude
that g € A(R™,R™), by applying Propositions and to
(4) (Id+f) o (Id+g) =1d < g(x)+ f(z+g(z)) =0.

So Diff A(R™) forms a group.

We shall now show that the group operations are C'°°, or equivalently, that they
preserve C*®-curves. Actually, it suffices that they take C'°°-curves with compact
support to C*°-curves; in the special curve lemma [8, 2.8] the curve may be cho-
sen with compact support. We will take advantage of this fact here. By the A
exponential law, Theorems and and by Proposition we have the
diagram

D(R, A(R",R")) —— A(R, A(R",R")) —— C>(R, A(R",R"))

®) [

AR x R, R)
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In order to check that composition on Diff A(R™) is C* let ¢t — Id+f(¢, ) and
t — Id+g(t, ) be in D(R, Diff A(R™)). Then f,g € A(RxR"™ R™), by . Consider

(6) (d+f(¢, ) o (Id+g(t, )(@) =z + g, z) + f(t,z+g(t, x))
and define the B>1-mapping (by Proposition
(7) P :RxR" - RxR" (t,z)— (t,z+ g(t,x)).

Then f o ¢ € A(R x R",R™) and so composition is C*° in view of and @,
by Propositions and ) — Idgxre tends to 0 at infinity in the case
A=S8.

In order to see that inversion is C* let ¢t — Id +f(¢, ) be in D(R, Diff A(R™)),
and let g be given by (Id+f)~! = Id +g. Then f € A(RxR",R"), by (5)). Consider

(8) (Id+f) o (ld+g) =1d <= g(t,z)+ f(t,z+g(t,z)) =0.
and define the B>1-mapping (by Proposition
(9) p:RXxR" >R xR" (t,x) = (t,x + f(t, x)).

Then ¢ o v = 9 o ¢ = Idrxrrn, where 9 is the mapping defined in . By
assumption inf ,)crxrn det dp(t, ) > 0, and hence Proposition implies that
¥ is B>y and satisfies inf(; ;)crxrn det di(t, ) > 0. So we may conclude that g is
B>1 and therefore B, in view of (8.

If t — Id+f(¢, ) is in D(R, DiffS(R™)), there is a compact interval [a, b] such
that if ¢ & [a,b], then f(¢, ) = 0 and so g(t, ) = 0, by (8). It follows that 1) —Idgxg»
tends to 0 at infinity. So we may conclude that ¢ € S(R x R™,R™) by applying

Proposition 8.2 to g = —f o ¢ (that is (§)).

The cases A € {D, WP} are analogous. It follows that inversion on Diff A(R™)
is C*.

9.2. Diff DO} (R), Diff S {7 (R™), Diftw 1} #(R™), Diff B (R™) are C1M} Lie
groups. The arguments of Subsection provide the proof of this statement, if
M = (My) is non-quasianalytic. In fact, in this case a mapping is CtM} if and only
if it preserves C1M}_curves, or equivalently, if it maps DM} -curves to CtM}-curves;
in the curve lemma [9] 3.6] the C{M}_curve may be chosen with compact support.
Furthermore we need to replace Proposition by the following proposition.

Proposition. Let M = (My) be a log-convezr derivation closed weight sequence.
Let I € B[ZIV{] (R™,R™) be a diffeomorphism of R™ satisfying inf,cgn~ det dF'(z) > 0.
Then F~* € BY(R™,R™) and inf,eg- det dF~(z) > 0.

That inf,egn det dF~1(z) > 0 was shown in the proof of Proposition That
Fle Bg](R",R") follows e.g. from [7], [22], [5], see also [12] and [I8].
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