A NEW PROOF OF BRONSHTEIN’S THEOREM
ADAM PARUSINSKI AND ARMIN RAINER

ABSTRACT. We give a new self-contained proof of Bronshtein’s theorem, that any continu-
ous root of a C"~11-family of monic hyperbolic polynomials of degree n is locally Lipschitz,
and obtain explicit bounds for the Lipschitz constant of the root in terms of the coefficients.
As a by-product we reprove the recent result of Colombini, Orrid, and Pernazza, that a
Cm-curve of hyperbolic polynomials of degree n admits a C'!'-system of its roots.

1. INTRODUCTION

Choosing regular roots of polynomials whose coefficients depend on parameters is a clas-
sical much studied problem with important connections to various fields such as algebraic
geometry, partial differential equations, and perturbation theory.

This problem is of special interest for hyperbolic polynomials whose roots are all real.
Probably the first result in this direction was obtained by Glaeser [9] who studied the square
root of a nonnegative smooth function. The most important and most difficult result in this
field is Bronshtein’s theorem [6]: any continuous root of a CP~"!-curve of monic hyperbolic
polynomials, where p is the maximal multiplicity of the roots, is locally Lipschitz with
uniform Lipschitz constants; cf. Theorem 2.1, A multiparameter version follows immediately;
see Theorem . A different proof was later given by Wakabayashi [23] who actually proved
a more general Holder version; for a refinement of Bronshtein’s method in order to show this
generalization see Tarama [22]. Kurdyka and Paunescu [I1] used resolution of singularities to
show that the roots of a hyperbolic polynomial whose coefficients are real analytic functions
in several variables admit a parameterization which is locally Lipschitz; in one variable we
have Rellich’s classical theorem [20] that the roots may be parameterized by real analytic
functions.

A CP-curve of monic hyperbolic polynomials with at most p-fold roots admits a differen-
tiable system of its roots. Using Bronshtein’s theorem, Mandai [I2] showed that the roots
can be chosen C! if the coefficients are C?P, and Kriegl, Losik, and Michor [10] found twice
differentiable roots provided that the coefficients are CP. Recently, Colombini, Orrii and
Pernazza [7] proved that CP (resp. C?P) coefficients suffice for C'* (resp. twice differentiable)
roots and that this statement is best possible.

In this paper we present a new proof of Bronshtein’s theorem. Our proof is simple and
elementary. The main tool is the splitting principle, a criterion that allows to factorize
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polynomials under elementary assumptions. The coefficients of the factors can be expressed
in a simple way in terms of the coefficients of the original polynomials, so that the bounds
on the coefficients and their derivatives can be also carried over. Thanks to this we obtain
explicit bounds on the Lipschitz constant of the roots. As a by-product we give a new proof
of the aforementioned result of Colombini, Orrt, and Pernazza on the existence of C'-roots;
see Theorem [2.4]

Note that the statements of Theorem [2.1, Theorem [2.2] and Theorem [2.4] are best possible
in the following sense. If the coefficients are just CP~%! then the roots need not admit a
differentiable parameterization. Moreover, the roots can in general not be parameterized by
Che-functions for any o > 0 even if the coefficients are C°. Some better conclusions can be
obtained if additional assumptions are made; see [I], [3], [4], [5], [15], [17].

Convention. We will denote by C(n,...) any constant depending only on n,...; it may
change from line to line. Specific constants will bear a subscript like C}(n) or Cy(n).

2. BRONSHTEIN’S THEOREM

Let I C R be an open interval and consider a monic polynomial
P,(t)(2) = Pu(Z2) = Z"+ Y a;() 2", tel
j=1

We say that P,(t), t € I, is a CP~"'-curve of hyperbolic polynomials if (a;)7_, € CP~H(1,R")
and all roots of P,(t) are real for each ¢t € I.

Note that ordering the roots of a hyperbolic polynomial P,(Z) = Z" + > 7, a; 2"
increasingly, Al(a) < A(a) < --- < Al(a), provides a continuous mapping AT = (/\})7;:1 ;
H,, — R"™ on the space of hyperbolic polynomials of degree n, see e.g. [I, Lemma 4.1], which
can be identified with a closed semialgebraic subset H,, C R™, see e.g. [13].

By a system of the roots of P,(t), t € I, we mean any n-tuple A\ = (\;)j_; : [ — R"
satisfying

Fu(t)(2) =
j
Note that any continuous root uy of P,(t), t € I, i.e., uy € C°(I,R) and P,(¢)(u1(t)) = 0 for
all t € I, can be completed to a continuous system of the roots p = (p;)}_;, cf. [16, Lemma

6.17).

Theorem 2.1 (Bronshtein’s theorem). Let P,(t), t € I, be a CP~!-curve of hyperbolic
polynomials of degree n, where p is the mazimal multiplicity of the roots of P,. Then any
continuous root of P, is locally Lipschitz.

Moreover if p = n then for any pair of intervals Iy € Iy € I and for any continuous root
A(t) its Lipschitz constant can be bounded as follows

- (Z - \(1), tel.

1

1

(2.1) Lip;, (\) < C(n, Jo, 1) (max|ja 5, g,

< C(n,Ip, 1) (1 + max aillon-11(7,))
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where the constants C(n, Iy, 1), C’(n, Iy, I) depend only on n and the intervals Iy, Iy. (More
precise bounds are stated in Subsection . )

If p < n then there exist uniform bounds on the Lipschitz constant provided the multiplic-
ities of roots are at most p “in a uniform way”. These bounds are stated in Subsection [].7

For an open subset U C R™ and p € N>, we denote by CP~11(U) the space of all functions
f € CP~Y(U) so that each partial derivative 9*f of order |a| = p — 1 is locally Lipschitz. It
is a Fréchet space with the following system of seminorms,

| fller-ra0y = | flleo-1(y + sup Lipg(9“f), Lipg(f) = sup
lal=p—1 eyek |7 =yl

where K ranges over (a countable exhaustion of) the compact subsets of U; on R™ we
consider the 2-norm || || = || ||2-

By Rademacher’s theorem, the partial derivatives of order p of a function f € CP~L1(U)
exist almost everywhere and coincide almost everywhere with the corresponding weak partial
derivatives.

Theorem readily implies the following multiparameter version.

Theorem 2.2. Let U C R™ be open and let P,(x), x € U, be a CP~ 1 -family of hyperbolic
polynomials of degree n, where p is the mazimal multiplicity of the roots of P,. Then any
continuous root of P, is locally Lipschitz.

Moreover, if p = n for any pair of relatively compact subsets Uy € Uy € U and for any
continuous root \(x) its Lipschitz constant can be bounded as follows

(2.2) Lipy,(A) < C(m,n, Uy, Uy) (max ||al||cn ) 1(U1))

< C(m, n, Ug, Uy) (1 + max ||ai||0n*1a1(Ul))>

where the constants C'(m,n, Uy, Uy), C’(m, n, Uy, Uy) depend only on m, n, and the sets Uy, Uy .

Proof. Let X be a continuous root of P,. Without loss of generality we may assume that
Uy and U; are open boxes parallel to the coordinate axes, U; = Hm I ;, 1 = 0,1, with
ly; € I for all j. Let x,y € Uy and set h := y — x. Let {e;}}2, denote the standard
unit vectors in R™. For any z in the orthogonal projection of Uy on the hyperplane x; = 0
consider the function A, ; : Ip; — R defined by A, ;(t) :== A(z + te;). By Theorem each
A.,j is Lipschitz and C' := sup, Llpf0 (As;) < oo. Thus

Jj+1

I\(z Z‘ x+thek Y x—l—thek ‘<(J||h||1 < ovm|hls.
7=0 k=1

The bounds ) follow from ([2.1)). O

Corollary 2.3. Let U C R™ be open. The push forward (\'), : C" LYU,R") D
CctY U, H,) — C%Y(U,R"™) is bounded.

Next we suppose that P,(t), t € I, is a CP-curve of hyperbolic polynomials of degree n,
where p is the maximal multiplicity of the roots of P,. Then the roots can be chosen C*.
We will give a new proof of this recent result of [7], see Theorem [2.4]
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For a function f(t) we denote by f'~(t9) (resp. f'"(to)) the left (resp. right) derivative of
f at the point t,.

Theorem 2.4. Let P,(t), t € I, be a CP-curve of hyperbolic polynomials of degree n, where
p s the mazximal multiplicity of the roots of P,. Then:

(1) Any continuous root A(t) of P, has both one-sided derivatives at everyt € I.
(2) These derivatives are continuous: for every ty € I we have

lim N¥(t) = N7 (to) ~ lim A*(t) = N (to).

t—ty t—t,

(3) There exists a differentiable system of the roots.
(4) Any differentiable root is C'.

3. PRELIMINARIES

3.1. Tschirnhausen transformation. A monic polynomial

PZ)=2"+) a;Z2"7, a=(a,..,a,) ER]

j=1

is said to be in Tschirnhausen form if a; = 0. Every P, can be transformed to such a form
by the substitution Z — Z — 2t which we refer to as Tschirnhausen transformation,

(3.1) Pi(Z) = Py(Z — %) = 2"+ 42", a=(a,...a,) € RI.
=2

We identify the set of monic real polynomials P, of degree n with R}, where a =

(a1, as,...,a,), and those in Tschirnhausen form with Rg_l. In what follows we write the

effect of the Tschirnhausen transformation on a polynomial P, simply by adding tilde, P;.
Thus let P; be a monic polynomial in Tschirnhausen form. Then

82:—26L2:)\%++)\i,

where the s; denote the Newton polynomials in the roots A; of P,. Thus, for a hyperbolic
polynomial P; in Tschirnhausen form,

SS9 — —2&2 2 0.
Lemma 3.1. The coefficients of a hyperbolic polynomial P; in Tschirnhausen form satisfy

%§|32|%:\/§]&2\%, i=2,...,n.

|
Proof. Newton’s identities give |a;| < %Z;ZQ |s;]|@i—;|, where @o = 1, which together with

(32) ‘Si%éysﬂév i:2a"'7n>

will imply the result by induction on i. To show ({3.2)) we note that it is equivalent to
(3.3) AL A< (A2 1 A2
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Each mixed term A;A! on the left-hand side of (3.3) may be estimated by the sum of all
AN terms with a,b > 0 on the right-hand side of (3.3)), in fact

i—1 .
2NN, = DA N OB ) < 3 ().
J

This implies the statement. U

3.2. Splitting. The following well-known lemma (see e.g. [I] or [2]) is an easy consequence
of the inverse function theorem.

Lemma 3.2. Let P, = PB,P., where P, and P. are monic complex polynomials without
common root. Then for P near P, we have P = Py p)P,p) for analytic mappings Ry > P

b(P) € RI®? and R? 3 P~ ¢(P) € R¥8P defined for P near P,, with the given initial
values.

Proof. The product P, = P, P, defines on the coefficients a polynomial mapping ¢ such that
a = ¢(b,c), where a = (a;), b = (b;), and ¢ = (¢;). The Jacobian determinant det dy(b, c)
equals the resultant of P, and P. which is nonzero by assumption. Thus ¢ can be inverted
locally. 0

If P; is in Tschirnhausen form and a@ # 0 then, the sum of its roots being equal to zero,
it always splits. The space of hyperbolic polynomials of degree n in Tschirnhausen form
can be identified with a closed semialgebraic subset H,, of Rg_l. By Lemma , the set
H? := H,, N {ay = —1} is compact.

Let p € H, N{ay # 0}. Then the polynomial

Qu(Z) = |as| 2 Pa(|d2|22) = Z" — Z"72 4 |aa| 232" + - + |ao| "Fa

is hyperbolic and, by Lemma , it splits, i.e., Q, = QpQ. and deg Qp, deg (). < n, on some
open ball B,(r) centered at p. Thus, there exist real analytic functions v; so that, on B,(r),

Z—)z' = ¢i(|d2|_%(~13, ey |C~lg|_%C~Ln), 1= 1, c. ,deg Pb;
likewise for ¢;. The splitting @, = Q@) induces a splitting F; = B, P, where
~ L ~ =3~ ~ =T~ .
(34) bi:\a2|2wi(\a2\ 2a3,...,|a2] 2(;Ln), 221,...,deng;

likewise for c¢;. Shrinking r slightly, we may assume that all partial derivatives of ¢; are
separately bounded on B,(r). We denote by b; the coefficients of the polynomial Pj resulting
from P, by the Tschirnhausen transformation.

Lemma 3.3. In this situation we have |by| < 2n|ds)|.
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Proof. Let (X;)%_, denote the roots of P, and ();)_, those of P,. Then, as |b;| < Z?Zl I\ <
(k‘zj L AHY2 and thus [Aj][by] < S OF

]1J’

k k
_ bi\2 1
Aol =D (N+7) €5 Z(k%? 62+ 2K[ B

j=1 =1

1 k k n

k—z kQ)\QJrkZ)\ZJerQZ)\é = Z 2n ) " A3 = dnls),
Jj=1 J=1 J=1

as required. O

3.3. Coefficient estimates. We shall need the following estimates. (Here it is convenient
to number the coefficients in reversed order.)

Lemma 3.4. Let P(z) = ag+az+- - - +aa™ € Clx] satisfy |P(z)| < A forxz € [0, B] C R.
Then '
la;] < (2n)"T'AB™I, j=0,...,n

Proof. We show the lemma for A = B = 1. The general statement follows by applying this
special case to the polynomial A~'P(By), y = B™'z. Let 0 =29 < 21 < --- < 1, = 1 be
equidistant points. By Lagrange’s interpolation formula (e.g. [I4} (1.2.5)]),

r—X;
ZP%H :
LEk—ij

J#k
and therefore . .
a; = Play) [[(ax — ) (=) ok,
k=0 Jj=0
7k

where 0;-“ is the jth elementary symmetric polynomial in (z¢)s.. The statement follows. [
A better constant can be obtained using Chebyshev polynomials; cf. [I4, Thm. 16.3.1-2].

3.4. Consequences of Taylor’s theorem. The following two lemmas are classical. We
include them for the reader’s convenience.

Lemma 3.5. Let I C R be an open interval and let f € CYY(I) be nonnegative or nonposi-
tive. For any to € I and M > 0 such that I, (M=) := {t : [t — to| < M| f(to)|2} C I and
M > (LipItD(M—l)(f/))% we have

[f(to)] < (M + M~ Lipy, (a1 ()1 (ta)|F < 2M|f(to)]2.

Proof. Suppose that f is nonnegative; otherwise consider — f. It follows that the inequality
holds true at the zeros of f. Let us assume that f(¢y) > 0. The statement follows from

0 flta+ )= F(t0) + Ftlh+ [ (L= 5)"(to-+ hs)dsi
0

with b = =M f(to)]2. O
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Lemma 3.6. Let f € C™ VY(I). There is a universal constant C(m) such that for allt € I
and k=1,...,m,

(3:5) [FOO] < Clm) I (1 fllzory + Lip (£ )1™).

Proof. We may suppose that I = (—9,d). If t € I then at least one of the two intervals
[t,t +£0), say [t,t + 0), is included in I. By Taylor’s formula, for ¢; € [t, ¢+ §),

m—1
f

>

k=0

Dt -0 < 170001 +] / %ﬂm)u st — ) ds (t — 6™

<\ fllzee(ry + Lip; (£ D)o,

and for & < m — 1 we may conclude (3.5) by Lemma For k£ = m, (3.5) is trivially
satisfied. U

4. PROOF OF THEOREM 2.1

4.1. First reductions. We assume that the maximal multiplicity p of the roots equals the
degree n of P,. If p < n then we may use Lemma to split P, locally in factors that have
this property. We discuss it in more detail at the end of the proof.

So let P,(t), t € I, be a C" Y-curve of hyperbolic polynomials of degree n. Without loss
of generality we may assume that n > 2 and that P, = P; is in Tschirnhausen form. Let
(Aj(t))j=y, t € I, be any continuous system of the roots of P;. Then

as(t) =0 <= M({t)=---=X\(t) =0.
We shall show that, for any relatively compact open subinterval Iy € [ and any t, €
Iy \ @5 '(0), there exists a neighborhood Iy, of o in I\ @, '(0) so that each \; is Lipschitz on
I;, and the Lipschitz constant Lip Lo (A;j) satisfies

Liplto ()‘]) < C<n7[07[1) (maX Hal”cn 1 1(]1))

where I; is any open interval satisfying Iy € I; € I. Here, recall, C(n, Iy, [;) stands for a
universal constant depending only on n, Iy, and I;.
This will imply Theorem [2.7] by the following lemma.

Lemma 4.1. Let I C R be an open interval. If f € C°(I) and each to € I\ f71(0) has a
neighborhood I, C I\ f~(0) so that L := SUPy e\ f-1(0) LiP,, (f) < oo, then f is Lipschitz
on I and Lip;(f) = L.

Proof. Let t,s € I. It is easy to see that |f(t) — f(s)] < L|t — s| if t and s belong to the
same connected component J of I'\ f~'(0). By continuity, this estimate also holds on the
closed interval J. If t € J; and s € Jo, t < s, and J; N Jo = 0, let 7; be the endpoint of J;
so that s <ry <ry <t. Then

[F(&) = FDI < (@) = fr2)| + [ (r1) = f(s)] < Lt = s].
Clearly, Lip;(f) = L. O
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4.2. Convenient assumption. The proof of the statement in Subsection [£.1 will be carried
out by induction on the degree of P,. We replace the assumption of Theorem by a new
assumption that will be more convenient for the inductive step. Before we state it we need
a bit of notation.

For open intervals I and I so that Iy € I; € I, we set

Il :=1;\a,'(0), i=0,1.
For ty € I and r > 0 consider the interval
Ly (r) = (to — rlas(to)|2, to + rlas(to) |2).

Assumption. Let Iy € I; be open intervals. Suppose that (&;)%, € C" (I, R*!) are
the coefficients of a hyperbolic polynomial P; of degree n in Tschirnhausen form. Assume
that there is a constant A > 0, so that for all tq € I}, t € I,,(A™"),i=2,...,n, k=0,...,n,

(A1) I,(A ™Y C I,

1 (1)
(A.2) 271 < i) <2,
(A.3) @M (1)] < C(n) A* Jas(t)] ",

where C(n) is a universal constant. For k = n, (A.3) is understood to hold almost every-
where, by Rademacher’s theorem.

Condition (A.3) implies that

(A.4) |08 (las|~2a,) ()] < C(n) A |as(t)| 5.

More generally, if we assign a; the weight 7 and \&2|% the weight 1 and let L(xs, ..., x,,y) €
R[za, ..., Tn, ¥,y '] be weighted homogeneous of degree d, then

|OF L (dig, . ., @n, |62]?) (1) < C(n, L) A* |as(t)| 7.
4.3. Inductive step. Let P;, Iy, I1, A, tg be as in Assumption. We will show by induction
on deg P; that any continuous system of the roots of P; is Lipschitz on I, with Lipschitz
constant bounded from above by C(n) A. First we establish the following.

e For some constant Cj(n) > 1, the polynomial P;(¢) splits on the interval
I, (Ci(n)"'A™Y), that is we have P;(t) = P,(t)P.(t), where P, and P, are C" b1-
curves of hyperbolic polynomials of degree strictly smaller than n.

e After applying the Tschirnhausen transformation P, ~ P;, the coefficients (l;i)?iggpb
satisfy (A.1)—(A.3)) for suitable neighborhoods Jy, J; of to, and a constant B = C(n) A
in place of A.

We restrict our curve of hyperbolic polynomials P; to I;,(A™!) and consider
~ =3 ~ =1 — n—
g::(—l,\a2| 2ag, ..., |as 2an):[t0(A 1)—>IRQ L

Then a is continuous, by (A.2)), and bounded, by Lemma 3.1l Moreover, by (A.4)) and (A.2),

there is a universal constant C(n) so that, for t € I (A7),

(4.1) la'(t)[| < C1(n) Alaa(to)| 2.
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According to Subsection , choose a finite cover of HY by open balls B, (r), o € A, on
which we have a splitting P; = P, P. with coefficients of P, given by . There exists
r1 > 0 such that for any p € H? there is o € A so that B,(r1) C B,,(r); 2r; is a Lebesgue
number of the cover {B,, () }aca. Then, if Cy(n) is the constant from (4.1)),

(4.2) Ji = I (nCi(n) " A™Y) € a™ ! (Bago) (1)),
and on J; we have a splitting P;(t) = P,(t)P.(t) with b; given by (3.4)). Fix ro < and let
(43) J() = Ito (7’001 (n)ilAil).

(Here we assume without loss of generality that 71 < Cy(n).)

Let us show that the coefficients (b;)(4™ of P; satisfy (A.1)-(A.3) for the intervals .J; and
Jo from (4.2) and (4.3]). To this end we set

Ji= I\ by (0), i=0,1,
consider, for t; € J| and r > 0,
T (r) = (tr = r|ba(t1)]2, 61 + rlba(t1)]?),
and prove the following lemma.

Lemma 4.2. There exists a constant C' = C’(n, ro,71) > 1 such that for B = CA and for
(l”tl € J(,), te Jtl(B_l), izQ,...,deng, k:O,...,n,

(B.1) Jn (B C o,
(B.2) 271 < 210 <2,
ba(t1)

i—k
2 .

(B.3) 67 (1)) < C(n) B |ba(t)

for some universal constant C(n).

Proof. 1f
B Z (7"1 — 7’0)_1 2\/%01(71) A,

then by Lemma and (A.2)),
B ba(t1)|2 < (1 — 7o) Ci(m) ™ A7 faa(to)2.
and hence (B.1]) follows from (4.2)) and (4.3]), since t; € Jy.

Next we claim that, on Ji,
~ 3. PO Y ~ |k
O (|as| 2 as, ..., |as| " 2a,)| < C(n) A* |as| 2.
(k-1

To see this we differentiate the following equation

use (A.4)),
(4.5) Orbi (|da| ~2as, ..., |da| 3 an) = 2(8]-72%)(@)&(\&2\*%%);

Jj=3

(4.4)

) times, apply induction on k&, and



10 ADAM PARUSINSKI AND ARMIN RAINER

recall that all partial derivatives of the 1;’s are separately bounded on a(J;) and these
bounds are universal. From (3.4 and we obtain, on J; and for all i = 1,...,deg B,
k=0,...,n,

i—k

(4.) b7 < C(n) A" o 7,
thus, as the Tschirnhausen transformation preserves the weights of the coefficients, cf. (A.4]),

i—k
)

657 < C(n) A" |ag| =

and so, by Lemma |3.3]

i—k

M) < C(n) A% |by| T ifi—k <0.

This shows (B.3) for i < k. (B.3) for & = 0 follows from Lemma (B.2) and the
remaining inequalities of (B.3)), i.e., for 0 < k < i, follow now from Lemma below. O

Lemma 4.3. There ezists a constant C(n) > 1 such that the following holds. If (A.1) and

(A.3) for k=0 and k =1, i =2,...,n, are satisfied, then so are (A.2)) and (A.3)) for k < i,
i =2,...,n, after replacing A by C(n)A.

Proof. By assumption, Lip;, 4-1)(@3)) < C(n)A?. Thus, by Lemma for f = @, and
M = C(n)z A, we get

@5(to)| < 2M as(to)| -
It follows that, for ¢ € I, ((6M)™1),

|aa(t) — as(to)| _ |as(to)| /1 _y [t —to® _ 1
4.7 . < — t —to| + 1 — s)|ao(ty + s(t — tg))|ds — < -
( ) |Cl2(t())| |&2(t0)|| 0| o ( )I 2(0 ( 0))| |a2(t0)| 9
That implies (A.2)). The other inequalities follow from Lemma . O

4.4. End of inductive step. In J;, any continuous root \; of P;, where F; is in Tschirn-
hausen form, is a root of either P, or P.. Say it is a root of P,. Then it has the form

(4.5) M0 =~ ),

where p1; is a continuous root of P; defined on a neighborhood of t;. By the inductive
assumption we may assume that p; is Lipschitz with Lipschitz constant bounded from above
by C(n)B. Hence \; is Lipschitz with Lipschitz constant bounded from above by C(n)A
(the constant C'(n) changes), as B = C' A and by for i = k = 1. This ends the inductive
step.

4.5. P; satisfies Assumption. Now we show that P; always satisfies Assumption. The
choice of A will provide the upper bound on the Lipschitz constant of the roots.

Proposition 4.4. Let P;i(t), t € I, be a C" Y -curve of hyperbolic polynomials of degree n
in Tschirnhausen form, and let Iy and I be open intervals satisfying Iy € Iy € I. Then its

coefficients (a;)i satisfy (A.1)—(A.3]).
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Proof. Let ¢ denote the distance between the endpoints of Iy and those of ;. Set

(4.9) A := max {5_1”512%00(11) (LlpI1 ay)) } Ay = maX{MHaQHLw }H’

where M; = Lip; (a; a" ™). Then we may choose

(410) A Z AO = 61’I1&X{A1, AQ}
For (A.1)—(A.2)) to be satisfied we need only A > 6A;. Indeed, clearly, for ¢, € I,
(4.11) I, (ATY) C 1.

Then Lemma implies that
@ (to)| < 241 |aa(to)|2.

It follows that, for to € I} and t € I;,((6A4;)"), we have (4.7) and hence (A.2). Ift € I;,(A™!)

then Lemma |3.6) E Lemma | and (A.2) imply (A.3). This ends the proof of Proposition
44 O

4.6. Bounds for p = n. Let A(t) € C°(I) be a root of P; that is in Tschirnhausen form
and let Iy € I, € I. By the inductive step Proposition 4.4, and Lemma [£.1] we have the
following bounds

. 1~ 1= . AN Lot 1
(412)  Lipg,(\) < C(n) max {07 s r,» (Lipy, (a4))F, mas { Myl | % )} }

S C(na IO; Il) (maX ||a1||cn 1 1(]1))

< C(n, Io, 1) (1 + max[|dillgn17,) )

where 4 is the distance between the endpoints of Iy and those of I, and M; = Lip, (dg"fl)).
Then the bounds stated in Theorem 2.1 follow from

max lail,; < C(n) (maXHazH ) < Cn) (1+max [laillgn-r17,))-

cn— 11([1) cn— 11(

The first inequality follows from the (weighted) homogeneity of the formulas for a; in terms
of (ai,...,a,). (The opposite inequality does not hold in general. Adding a constant to all
the roots of P, does not change the associated Tschirnhausen form P; but changes the norm
of the coefficients of P,.)

4.7. The case 2 < p < n. To show that the roots are Lipschitz it suffices, using Lemma 3.2}
to split P; locally in factors of degree smaller than or equal to p and apply the case n = p.

In order to have a uniform bound we need to know that the multiplicities of roots are at
most p “uniformly”. For this we order the roots of P; increasingly, A;(f) < Ao(t) < --- <
An(t), and consider
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We note that the numerator |\, (t) — A (£)] is of the same size as |az(t)|2, for P; in Tschirn-
hausen form, since then \;(¢) and A, (¢) have opposite signs and

1) = M(D)] > 52(0)} = V@O > Zh(0) ~ M)

There are the following changes in the way we proceed. First in the proof of Proposition [4.4]
we have to modify the formula for Ay as follows

~ pT_i 1 Pgi 1
(4.13) Ay = max{nznéapx {M,-||a2||Loo(h)}P , max {M;my* }» },
where M; = Liph(dgp*l)) and mgy = min, 7, |as(t)].

In (A.3)) of Assumption we may consider only the derivatives of order k < p. Therefore
the argument of the inductive step (proof of Lemma changes as follows. The first part
of the proof of Lemma does not change. Then we need (B.3) for ¢ = k in order to apply
Lemma [£.3] This is not available if i > p, which happens if deg P, > p, and then we have
only

i— i—p
2

b7] < C(n) A7 |62 7" < C(n) A7 o] 7",
where we may take A, = C(n)|as(t1)/bs(t1)|® A. Then, by Lemma , we conclude
Lemma[4.2] with A replaced by A,. This modification is no longer necessary when deg P, < p.

Thus during the induction process, say, P, — P, — --- — P; — P: with deg P, < p, for the
intervals I;, (A™%) D I, (4, ') D --+ D I, ,(A;"), the constant A is replaced by

A=Cm)at,) 7 A> C’(n)( Ga(ts)| |balts)] | Calts) )WA
bo(ts) I 1Ea(ts) do(ts)
Finally this gives the following bounds on the Lipschitz constant of each of the roots
(4.14)
Lipg, (A)

n—

1~ i . - 1 o b=t 1 p—i _ 1
<C(n) oy’ max{5 1Ha2Hz°°(Il)7(Llpl1(a/2))27r?<apx{MiHGQHLiO(Il)}p’r?f;)X{MimQQ }p}

n—p

p—n
S C(n, [0, Il) ahp (1 —+ m22p ) (1 -+ HliaX Hdi”cpfl’l(jﬂ)'
This completes the proof of Theorem [2.1] O

5. PROOF OF THEOREM [2.4]

5.1. PC™-functions. In the proof of Theorem [2.4]we shall need a result for functions defined
near 0 € R that become C™ when multiplied with the monomial 7.

Definition 5.1. Let p, m € N with p < m. A continuous complex valued function f defined
near 0 € R is called a PC™-function if t — t? f(t) belongs to C™.

Let I C R be an open interval containing 0. Then f : [ — C is PC™ if and only if it has
the following properties, cf. [21], 4.1], [I8, Satz 3], or [19, Thm 4]:

o feC™P(I),
e flnwy € C™(I\{0}),
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o lim, o t* f(m=P+k) () exists as a finite number for all 0 < k < p.
Proposition 5.2. If g = (g1,...,9,) is PC™ and F is C™ near g(0) € C", then F o g is
pC™,

Proof. Cf. [T9, Thm 9] or [17, Prop 3.2]. Clearly g and F o g are C"™? near 0 and C™ off 0.
By Faa di Bruno’s formula [8 [ ], for 1 <k <pandt+#0,

th(F o g)m=p+h)( Zztk ] EF(g(t) (tﬁ&g(al)(t) tﬁeg<ae>(t)>
(m—p+k)! vy e all T !
A={aeN a1+ - +ar=m—p+k}
Bi == max{a; —m+p,0}, |Bl=p1+ -+ B <k,

whose limit as ¢ — 0 exists as a finite number by assumption. 0

Let us prove Theorem [2.4. We suppose that P, is in Tschirnhausen form P, = P;. It
suffices to consider the case n = p. We show that every ¢, € I has a neighborhood in I on
which (1) and (2) (of Theorem hold. If as(ty) # 0 then P; splits on a neighborhood of tg
and we may proceed by induction on deg P,. If as(ty) = 0 then a}(ty) = 0 and we distinguish
two cases

o Case (i): as(to) = as(ty) = ajy(ty) = 0.

o Case (11): as(ty) = ay(ty) = 0 and aj(ty) # 0.
To simplify the notation we suppose to = 0. Fix a continuous root A(t) defined in a neigh-
borhood of 0.
5.2. Proof of (1). In Case (i), A(t) = o(t) and hence X is differentiable at 0 and X' (0) = 0.
In Case (ii), ao(t) ~ t? and hence a;(t) = O(t"). Therefore,

a(t) = (t7%a(t),t 2 as(t), ... .t "an(t)) : L —» Rp"

defined on a neighborhood I; of 0 is continuous. By Lemma [3.2) P, splits. The splitting
P, = ByP, induces a splitting P; = B, F,, where the b; are given by
(5.1) by =t (t %A, ..., t "a,), i=1,...,deg Py
and similar formulas hold for b;. Then b; and b; are of class C* at 0, by Proposition 5.2] and

of class C™ in the complement of 0. Moreover we may choose the splitting such that A(¢) for
t > 0is a root of B, and all the roots of Py are equal. The latter gives

b2(0) = B5(0) = b5(0) =0
Thus, A(t) can be expressed as in ([{.8) with b; of class C' and p; differentiable at 0 (4/5(0) =
0). This finishes the proof of (1).

5.3. Proof of (2). This is the heart of the proof. In Case (i) the continuity of the one-sided
derivatives at 0 follows from (4.12)) and the following lemma.

Lemma 5.3. Suppose Case (i) holds. Then for any ¢ > 0 there is 6 > 0 such that for
In = (—=0,9) and I; = (—24,20) and Ay defined by (4.10) we have Ay < e.

Proof. This follows immediately from the formula (4.10)). O
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To show the continuity in Case (ii) we need a similar result for F;.

Lemma 5.4. Suppose Case (ii) holds. Then, under the assumptions of Subsection for
any € > 0 there is a neighborhood I. of 0 in I such that for every ty € I.\ {0} the conditions

(A1) -(A.3)) are satisfied for Py with A <e.

Proof. Since P; is not necessarily of class C9°8 % we cannot use directly Lemma and the
induction on deg P,. But the proof is similar and we sketch it below.

Let Iy = Iy = (—4,6) and Iy = (—%,2). Since b4(0) = 0 and by(t) is of class C?, the
constant A; of for b can be made arbitrarily small, provided 6 is chosen sufficiently
small. This is what we need to get f with arbitrarily small A.

By Lemmam Ez(k)(O) —=0fori=2,...deghPy, k=0,..,i Fix A> 0. Since every b; is of
class C%, there is a neighborhood I in which holds for i = 2, ...,n, k =i, and then, by
Lemma [£.3] in a smaller neighborhood, also for i = 2,...,n, k <.

Finally, given A > 0 we show (A.3) for i < k < n and ¢ sufficiently small. Let A denote
the constant A for which (A.1)—(A.3]) holds for P,. By ({4.6),

B (0] < CA* ax(t)] T < Cm) A" o (1)]ba(t)
which gives the required result since, for k > i, o(t) = |by(t)/aa(t)|"2 = o(1). O

i

—k
2
Y

5.4. Proof of (3). We proceed by induction on n. The case n = 1 is obvious. So assume
n > 1. Set ' ={t €I :ay(t) = aj(t) = 0}. Its complement is a countable union of
disjoint open intervals, I \ F' = |J, I. At each t, € I \ F' the polynomial P; splits, and, by
the induction hypothesis, there exists a local differentiable system of the roots of P; near
to. We may infer that there exists a differentiable system on each interval I;. For, if the
(say) right endpoint ¢, of the domain Iy of A = ();)}_, belongs to I, there exists a local
system p = (p;)%_, with t; € I,. We may choose ty € Iy N I, and extend (A;); by (to(;));
on the right of ¢, beyond ¢, where o is a suitable permutation. Extending by 0 on F' yields
a differentiable system (\;); of the roots on I (the derivatives vanish on F).

5.5. Proof of (4). It follows immediately from (2).
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