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Abstract. We show that smooth curves of monic complex polynomials Pa(Z) = Zn +∑n
j=1 ajZ

n−j , aj : I → C with I ⊂ R a compact interval, have absolutely continuous roots
in a uniform way. More precisely, there exists a positive integer k and a rational number
p > 1, both depending only on the degree n, such that if aj ∈ Ck then any continuous
choice of roots of Pa is absolutely continuous with derivatives in Lq for all 1 ≤ q < p, in
a uniform way with respect to maxj ‖aj‖Ck . The uniformity allows us to deduce also a
multiparameter version of this result. The proof is based on formulas for the roots of the
universal polynomial Pa in terms of its coefficients aj which we derive using resolution of
singularities. For cubic polynomials we compute the formulas as well as bounds for k and p
explicitly.
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2 ADAM PARUSIŃSKI AND ARMIN RAINER

Introduction

This paper is dedicated to the solution of a basic problem in perturbation theory and
differential analysis. Given a monic polynomial with smooth coefficients (or a matrix with
smooth entries) it is natural to ask for the optimal regularity of the roots (or of the eigen-
values). For instance, this question arises in finding local solutions of partial differential
equations with multiple characteristics.

In connection with the study of a class of pseudodifferential systems, Spagnolo [26] asked
whether a smooth (C∞) curve of monic complex polynomials admits a locally absolutely
continuous parameterization of its roots. And if so, whether it is possible to choose the
absolutely continuous roots uniformly with respect to the coefficients on compact subin-
tervals. We answer these questions affirmatively and prove the following stronger result;
see also Theorem 3.5. Our proof builds on the recent result of Ghisi and Gobbino [7] who
found the optimal regularity of radicals of functions that we combine with the resolution of
singularities.

Main Theorem. For every n ∈ N>0 there is k = k(n) ∈ N>0 and p = p(n) > 1 such that
the following holds. Let I ⊂ R be a compact interval and let

Pa(t)(Z) = Zn +
n∑
j=1

aj(t)Z
n−j ∈ Ck(I)[Z]

be a monic polynomial with coefficients aj ∈ Ck(I), j = 1, . . . , n.

(1) Let λj ∈ C0(I), j = 1, . . . , n, be a continuous parameterization of the roots of Pa
on I. Then the distributional derivative of each λj in I is a measurable function
λ′j ∈ Lq(I) for every q ∈ [1, p). In particular, each λj ∈ W 1,q(I) for every q ∈ [1, p).

(2) This regularity of the roots is uniform. Let {Paν ; ν ∈ N},

Paν(t)(Z) = Zn +
n∑
j=1

aν,j(t)Z
n−j ∈ Ck(I)[Z], ν ∈ N ,

be a family of curves of polynomials, indexed by ν in some set N , so that the set of
coefficients {aν,j; ν ∈ N , j = 1, . . . , n} is bounded in Ck(I). Then the set

{λν ∈ C0(I);Paν (λν) = 0 on I, ν ∈ N}

is bounded in W 1,q(I) for every q ∈ [1, p).

Lq denotes the Lebesgue space and W 1,q the Sobolev space with respect to Lebesgue
measure. We want to stress the fact that a continuous curve of monic complex polynomials
Pa(t), t ∈ R, allows for a continuous parameterization of its roots. This is no longer true if
the parameter space has more than one dimension due to monodromy. For multiparameter
families of polynomials we obtain the following result; see also Theorem 4.1.

Multiparameter Theorem. Let k = k(n) ∈ N>0 and p = p(n) > 1 be as above. Let
U ⊂ Rm be open and let Pa(x)(Z) ∈ Ck(U)[Z] be a monic polynomial with coefficients
aj ∈ Ck(U), j = 1, . . . , n.
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(1) Let λ ∈ C0(V ) represent a root of Pa, i.e., Pa(λ) = 0, on a relatively compact open
subset V b U . Then the distributional gradient of λ in V is a measurable function
∇λ ∈ [Lq(V )]m for every q ∈ [1, p). In particular, λ ∈ W 1,q(V ) for every q ∈ [1, p).

(2) The regularity of the roots is uniform. Let {Paν ; ν ∈ N} be a family of polynomials,
indexed by ν in some set N , so that the set of coefficients {aν,j; ν ∈ N , j = 1, . . . , n}
is bounded in Ck(U). Let V b U . Then the set

{λν ∈ C0(V );Paν (λν) = 0 on V , ν ∈ N}

is bounded in W 1,q(V ) for every q ∈ [1, p).

In [26] Spagnolo proved that the pseudodifferential n× n system

ut + iA(t,Dx)u+B(t,Dx)u = f(t, x), (t, x) ∈ I × U,

where A(t, ξ), B(t, ξ) are matrix symbols of order 1 and 0, respectively, and A(t, ξ) is
homogeneous of degree 1 in ξ for |ξ| ≥ 1, is locally solvable in the Gevrey class Gs for
1 ≤ s ≤ n/(n−1) and semi-globally solvable in Gs for 1 < s < n/(n−1) under the following
assumptions: the eigenvalues of A(t, ξ) admit a parameterization τ1(t, ξ), . . . , τn(t, ξ) such
that each τj(t, ξ) is absolutely continuous in t, uniformly with respect to ξ, i.e.,

|∂tτj(t, ξ)| ≤ µ(t, ξ)(1 + |ξ|2)
1
2 , with µ( , ξ) equi-integrable on I,(A1)

and for each ξ the imaginary parts of the τj(t, ξ) do not change sign for varying t and j, i.e.,

∀ξ either Im τj(t, ξ) ≥ 0, ∀t, j, or Im τj(t, ξ) ≤ 0, ∀t, j.(A2)

Our Main Theorem implies that the Assumption (A1) is automatically satisfied. Indeed,
this follows by applying the Main Theorem to the characteristic polynomial of the matrix
(1 + |ξ|2)−

1
2A(t, ξ) and noting that the entries of (1 + |ξ|2)−

1
2A(t, ξ) and its iterated partial

derivatives with respect to t are globally bounded in ξ, since A(t, ξ) is a symbol of order 1.
Spagnolo formulated the removal of Assumption (A1) as an open problem in [26], p. 1122,

and he successfully tackled the case of quadratic and cubic polynomials in [25]. Note that the
problems of smoothly choosing roots of polynomials on one hand and eigenvalues of arbitrary
quadratic matrices on the other hand are equivalent; whereas the perturbation theory for
normal matrices is easier and allows for stronger results, cf. Rainer [24] and references therein.

We would like to remark that our result represents a complex analogue of Bronshtein’s
Theorem on the regularity of the roots of hyperbolic polynomials. A monic polynomial is
called hyperbolic if all its roots are real. Bronshtein’s Theorem, first proved in Bronshtein [4]
and generalizing the classical Glaeser inequality [8], states that any continuous parameteri-
zation of the roots of a hyperbolic polynomial of degree n with Cn−1,1 coefficients is locally
Lipschitz. It plays a crucial role for weakly hyperbolic Cauchy problems. Different proofs
appeared in Wakabayashi [28] and in Parusiński and Rainer [20].

In the absence of hyperbolicity the roots cannot fulfill a Lipschitz condition and in a certain
sense absolute continuity is the best one can hope for; in fact the degree of summability p
tends to 1 as n goes to∞. The first result towards absolute continuity of the roots is probably
Lemma 1 in Colombini, Jannelli, and Spagnolo [5] which states that for a real-valued non-
negative function f of class Ck,α on a compact interval I, with k ∈ N≥1 and 0 ≤ α ≤ 1, the
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radical f 1/(k+α) is absolutely continuous on I and satisfies

‖(f
1

k+α )′‖k+α
L1(I) ≤ C(k, α, I)‖f‖Ck,α(I).

Tarama [27] extended this lemma to real-valued functions (not necessarily non-negative). A
better summability for the weak partial derivatives of f 1/(k+1) was obtained by Colombini
and Lerner [6] for non-negative Ck+1 functions f of several real variables.

The case of radicals of functions was completely settled recently by Ghisi and Gobbino
[7] by finding their optimal regularity. They showed that, if f is a real-valued continuous
function and there exists g ∈ Ck,α(I) so that |f |k+α = |g| on I, then f ′ ∈ Lpw(I), where
1
p

+ 1
k+α

= 1, and

‖f ′‖p,w,I ≤ C(k) max
{

[Höldα,I(g
(k))]

1
k+α |I|

1
p , ‖g′‖

1
k+α

L∞(I)

}
;

in particular, f ∈ W 1,q(I) for every q ∈ [1, p). Here Lpw(I) denotes the weak Lebesgue space

equipped with the quasi-norm ‖f‖p,w,I := supr≥0

{
r · L1({t ∈ I; |f(t)| > r})

1
p
}

, where L1 is

the one dimensional Lebesgue measure. By Höldα,I(g
(k)) we mean the α-Hölder constant of

g(k) on I, and |I| = L1(I) is the length of the interval I. Ghisi and Gobbino also provided
examples that show that the assumptions as well as the conclusion in their theorem are best
possible. We use this result in a substantial way.

The mentioned results all treat special cases, where the algebraic structure of the polyno-
mials is very simple: the roots are either given by radicals or can be expressed by radicals (by
Cardano’s formulas). A different approach was pursued in Rainer [22], where no restrictions
on the algebraic structure of the polynomial were imposed. Under the assumption that no
two roots meet with infinite order of contact it was shown that the roots of a C∞ curve of
monic polynomials are locally absolutely continuous. We also mention Rainer [23], where it
was proved that the roots of a monic polynomial whose coefficients are functions in several
variables that belong to any quasianalytic class satisfying some stability properties admit a
parameterization by (special) functions of bounded variation.

Our proof of the Main Theorem is based on formulas for the roots of the universal monic
polynomial Pa in terms of its coefficients a = (a1, . . . , an) ∈ Cn. The derivation of these
formulas represents the third major result of this paper; see Theorem 1.6. Using Hironaka’s
resolution of singularities [11], we construct a tower of smooth principalizations

M1 = Cn σ2←−M2
σ3,2←−M3

σ4,3←− · · · σn,n−1←− Mn

which successively principalize the generalized discriminant ideals Dm ⊂ C[a], m = 2, . . . , n,
that encode the stratification of the space of polynomials by root multiplicity. In fact, the
zero set of Dm is exactly the set of those a ∈ Cn for which Pa has at most m − 1 distinct
roots. We show that, locally on Mn, the roots of the pulled back polynomial Pσ∗n(a) are given
by rational linear combinations

∑n
m=1Am ϕm ◦ σn,m where

ϕm = fαmm ψm(y
1/qm
m,1 , . . . , y1/qm

m,rm , ym,rm+1, . . . , ym,n).

Here σm = σ2 ◦σ3,2 ◦ · · ·◦σm,m−1, σn,m = σm+1,m ◦ · · ·◦σn,n−1, fm ∈ Dm is a local generator of
σ∗m(Dm), ψm is a convergent power series, qm ∈ N≥1, αm ∈ 1

qm
N≥1, and (ym,i) is a privileged

system of local coordinates so that f−1
m (0) is given by ym,1 · · · ym,rm = 0 (cf. Subsection
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1.3 and Definition 1.4). These formulas are obtained in a natural way by a consecutive
factorization procedure of the pull-backs Pσ∗i (a), i = 2, . . . , n, so that each step contributes
exactly to one summand. Thanks to these formulas we are able to reduce the problem to
radicals of functions and use the result of Ghisi and Gobbino (cf. Lemma 3.4).

The paper is divided into three parts. The first part presents the three main results of this
paper. Section 1 is devoted to the formulation of the result on the formulas for the roots; see
Theorem 1.6. In Section 2 we mainly fix notation on function spaces. The Main Theorem 3.5
is proved in Section 3, assuming validity of Theorem 1.6, and the Multiparameter Theorem
4.1 is deduced in Section 4.

The second part of the paper is dedicated to the proof of Theorem 1.6. The strategy
of the proof is briefly outlined in Section 5. In Section 6 we find a convenient criterion of
principality of the ideals Dm. In Sections 7 and 8 we further develop the necessary tools
utilized in the proof of Theorem 1.6 which is finally carried out in Section 9.

In the third part we illustrate our method of proof by discussing the case of cubic polyno-
mials in detail. Here the resolution is explicit, and we can specify more precisely the degree
of differentiability of the coefficients and the degree of summability of the derivative of the
roots, namely k(3) = 6 and p(3) = 6/5.

Acknowledgement. Part of the work was done while the second author enjoyed the
hospitality of the mathematics department at the university of Nice.

Notation and terminology. By a normal crossing we mean a function that is locally
equivalent to a monomial, i.e. equals a monomial times an analytic unit. The zero set of an
ideal I will be denoted by V (I ). For two real-valued functions ϕ and ψ we write ϕ ∼ ψ if
there exists C > 0 such that ϕ ≤ Cψ and ψ ≤ Cϕ. By dxe we denote the celling function,
that is the least integer bigger than or equal to x.

Part 1. Absolute continuity of roots

1. Formulas for the roots

1.1. Generalized discriminant ideals. Let

Pa(Z) = Zn +
n∑
j=1

ajZ
n−j(1.1)

be a unitary polynomial with coefficients a = (a1, . . . , an) ∈ Cn. We denote by ξ(a) =
{ξ1(a), . . . , ξn(a)} the unordered set of roots of Pa and assign to ai the weight i so that
homogeneous permutation invariant polynomials in ξ are precisely the weighted homogeneous
polynomials in a.

Let N ∈ N be a large constant fixed throughout the paper (N ≥ max1≤s≤n
(
n
s

)
). For 2 ≤

m ≤ n we denote by DN,m, or simply by Dm, the ideal of C[a] generated by all fN !/s ∈ C[a],
where f runs over all homogeneous polynomials in

∏
i 6=j∈I(ξi − ξj), I ⊂ {1, . . . , n}, |I| = m,

of degree s ≤ N in ξ, that are invariant by the permutations of ξi.

Example 1.1. DN,n is the principal ideal generated by the N !/n(n − 1)-th power of the
discriminant of Pa.
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By replacing Z by Z − a1/n we define a new polynomial

Pâ(Z) = Zn + â2Z
n−2 + · · ·+ ân := Pa(Z − a1/n).

Each âj is a weighted homogeneous polynomial in the ai’s of the weighted degree j. This
transformation a→ â, called Tschirnhausen transformation, shifts the roots of Pa by a1/n.
Since the polynomials in

∏
i 6=j∈I(ξi − ξj) are invariant by shifts of the roots, Tschirnhausen

transformation does not change the ideal Dm. Therefore, in what follows, we may suppose
without loss of generality that Pa is in Tschirnhausen form

Pa(Z) = Zn + a2Z
n−2 + · · ·+ an(1.2)

Proposition 1.2. Suppose that Pa is in Tschirnhausen form (1.2). Then DN,2 is the ideal
of C[a2, . . . , an] generated by the weighted homogeneous polynomials in a2, . . . , an of weighted
degree N !.

Proof. If Pa is in Tschirnhausen form then
∑n

i=1 ξi = 0 and hence ξi = 1
n

∑
j(ξi − ξj).

Therefore any polynomial in the ξi’s is a polynomial in the (ξi − ξj)’s. �

Thus the zero set V (D2) of D2 is exactly the set of those a for which Pa has precisely
one root (i.e. a2 = · · · = an = 0 if Pa is in Tschirnhausen form (1.2) and then this root is
zero). In general, the zero set of Dm consists of those a ∈ Cn for which Pa has at most m−1
distinct roots, cf. Corollary 6.4 below.

1.2. Smooth principalization of an ideal. Let I = (f1, . . . , fs) be an ideal of C[x],
x = (x1, . . . , xm). We shall assume I 6= (0). The blowing-up of I , σ : M = BlICm → Cm

can then be realized as follows, see for instance [10] Example 7.17.2. The variety M is the
irreducible component of

{(x, y) ∈ Cm × Ps−1; fi(x)yj = fj(x)yi, i, j = 1, . . . , s}
that projects surjectively onto Cm and σ is the projection on the first factor. Then M is the
union of finitely many standard affine charts Vi, where

Vi = M ∩ {(x, y1, . . . , ŷi . . . , ys) ∈ Cm × Cs−1; fi(x)yj = fj(x), j = 1, . . . , î, . . . , s}
is a subvariety of the affine space Cm × Cs−1 = {(x, y) ∈ Cm × Ps−1; yi = 1} with the

coordinates xj, j = 1, . . . ,m, and yj = fj/fi, j = 1, . . . , î, . . . , s. The pullback of I on Vi
is generated by fi, since fj = yjfi for j 6= i, and hence is an invertible ideal, i.e. principal
and generated by a non-zero divisor. The pullback of I on M , denoted by σ∗(I ), is an
invertible sheaf of ideals.

In general, for arbitrary I , the blow-up space BlICm is singular. Using Hironaka’s
resolution of singularities [11], it is possible to give an algorithm of principalization of any
ideal by composing a sequence of smooth blow-ups (that is blowing-ups with smooth nowhere
dense centers). Then the blow-up space is non-singular. Such a principalization map is not
unique. We will use the following theorem that is a special case of Principalization III of
[13], see also Theorem 1.10 of [3].

Theorem 1.3. Let I 6= (0) be an ideal of C[x]. Then there exists a composition of smooth
blowing-ups, σ : M → Cm, such that :
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(1) σ∗(I ) is invertible and its zero set V (σ∗(I )) is a simple normal crossing divisor.
(2) The restriction σ|M\V (σ∗(I )) : M \ V (σ∗(I ))→ Cm \ V (I ) is an isomorphism.

Recall that a simple normal crossing divisor E ⊂M is the union E = ∪iEi of nonsingular
hypersurfaces Ei intersecting transversally.

1.3. Privileged coordinate system. The map σ of Theorem 1.3 is itself a blowing-up of
an ideal K ⊂ C[x] such that V (K ) = V (I ). (Because σ is birational and projective, see
[10], Ch. II Thm. 7.17 and Exercise 7.11 (c)). Thus M = BlK Cm. Denote V (σ∗(I )) by E
and let E = ∪iEi be the decomposition into irreducible components.

Let I = (f1, . . . , fs) and K = (h1, . . . , hl) and let V ⊂ BlK Cm be a standard affine
chart of BlK Cm. Then on V , σ∗(I ) is a principal ideal that is generated by some fi, say
f1, and σ∗(K ) by some hi, say h1. V is a subvariety of Cm × Cl−1 with the coordinates
xi, i = 1, . . . ,m, and hj/h1, j = 2, . . . , l. Each component Ei ∩ V is the zero set of a finite
number of functions regular on V , that is functions of the form P/hs1, s ∈ N, where P is a
polynomial in x.

Let p ∈ V . There is a neighborhood U of p in V , and a coordinate system y1, . . . , ym on
U , such that yi = Pi/h

s
1, Pi ∈ C[x], s ∈ N, and E ∩ U is given by y1 · · · yr = 0. (By taking

the maximum we may choose s independent of i.) Then

f1 = unit ·
r∏
i=1

ynii , h1 = unit ·
r∏
i=1

ymii ,(1.3)

with ni > 0 and mi > 0. Here by a unit we mean a function defined, analytic, and nowhere
vanishing on U .

1.4. Tower of smooth principalizations. For the ideals Dm, m = 2, . . . , n, we construct
a tower of smooth principalizations

M1 = Cn σ2←−M2
σ3,2←−M3

σ4,3←− · · · σn,n−1←− Mn.(1.4)

We take as σ2 a smooth principalization of D2 satisfying the conclusion of Theorem 1.3. Given
σ2, σ3,2, . . . , σm,m−1, we denote by σm : Mm → Cn the composition σm = σ2◦σ3,2◦· · ·◦σm,m−1,
and take as σm+1,m a smooth principalization of σ∗m(Dm+1). Then σm+1 = σm ◦ σm+1,m is a
smooth principalization of Dm+1. We denote σn,m = σm+1,m ◦ · · · ◦ σn,n−1.

By Subsection 1.3, σm is the blowing-up of an ideal Km ⊂ C[a].

Definition 1.4. By local data (f, h, Pi, s, r) for p ∈Mm we mean the following. A polynomial
f ∈ Dm that generates σ∗m(Dm) at p, a polynomial h ∈ Km that generates σ∗m(Km), a positive
integer s and polynomials Pi such that yi = Pi/h

s, i = 1, . . . , n, is a privileged system of
coordinates in a neighborhood U of p, and r such that f−1(0) is given by y1 · · · yr = 0.

We fix such local data for every p ∈ Mm (but allow to replace the neighborhood U by a
smaller one if necessary).

Definition 1.5. By a chain C = (pm, fm, hm, Pm,i, sm, rm) for pn ∈ Mn we mean the points
pm := σn,m(pn), m = 1, . . . , n, and the local data (fm, hm, Pm,i, sm, rm) for pm. We complete
this data for m = 1 by putting f1 = h1 = 1, P1,i = ai, and s1 = r1 = 0.
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When we specify the neighborhoods Um ⊂Mm of pm on which these local data are defined
we always assume that σm,m−1(Um) ⊂ Um−1.

M1 M2
σ2oo M3

σ3,2oo · · ·
σ4,3oo Mn−1

σn−1,n−2oo Mn

σn,n−1oo

U1

?�

OO

U2

?�

OO

σ2oo U3

?�

OO

σ3,2oo · · ·
σ4,3oo Un−1

?�

OO

σn−1,n−2oo Un
?�

OO

σn,n−1oo

p1

∈

p2

∈
�σ2oo p3

∈

�σ3,2oo · · ·�σ4,3oo pn−1

∈

�σn−1,n−2oo pn

∈

�σn,n−1oo

We pull back the polynomial Pa onto Mm via σm,

Pσ∗m(a)(Z) = Zn +
n∑
i=1

(ai ◦ σm)Zn−i.

The roots of Pσ∗n(a) are the pull-backs of the roots of Pa.

1.5. Formulas for the roots.

Theorem 1.6. [Formulas for the roots]
Given a tower (1.4), we may associate with every pm ∈ Mm a convergent power series ψm,
an integer qm ≥ 1, and a positive exponent αm ∈ 1

qm
N>0, such that the following holds. For

any chain C = (pm, fm, hm, Pm,i, sm, rm) the roots of Pσ∗n(a) in a neighborhood of pn are given
by

n∑
m=1

Am ϕm ◦ σn,m,(1.5)

where Am ∈ Q and

ϕm = fαmm ψm(y
1/qm
m,1 , . . . , y1/qm

m,rm , ym,rm+1, . . . , ym,n).(1.6)

Theorem 1.6 will be proved in Section 9.

Remark 1.7. Because fm is a normal crossing in ym,i, cf. (1.3),

fαmm ∈ C{(y1/qm
m,1 , . . . , y1/qm

m,rm , ym,rm+1, . . . , ym,n)}.

Hence ϕm of (1.6) is a fractional power series. It can be interpreted geometrically as follows.
Set

ym,i =

{
tqmi if i ≤ rm

ti if i > rm + 1.
(1.7)

Then ϕm is a convergent power series in t = (t1, . . . , tn). There are neighborhoods Um of

pm, σm,m−1(Um) ⊂ Um−1, and their branched covers τm : Ũm → Um, given by the formulas

(1.7), such that ψm ◦ τm and ϕm ◦ τm are analytic on Ũm. Since σ−1
m+1,m(f−1

m (0)) ⊂ f−1
m+1(0),

ym,i ◦σm+1,m, for i ≤ rm, is a normal crossings in ym+1,1, . . . , ym+1,rm+1 and therefore, we may
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suppose that σm+1,m ◦ τm+1 factors through τm, changing qm+1 if necessary. Thus we obtain
a sequence of branched covers τi making the following diagram commutative.

Ũ1 Ũ2
σ̃2oo Ũ3

σ̃3,2oo · · ·
σ̃4,3oo Ũn−1

σ̃n−1,n−2oo Ũn
σ̃n,n−1oo

U1 U2

��
τ2

σ2oo U3

��
τ3

σ3,2oo · · ·
σ4,3oo Un−1

��
τn−1

σn−1,n−2oo Un
��
τn

σn,n−1oo

Then Theorem 1.6 says that the roots of Pσ̃∗n(a) are combinations of analytic functions on Ũn
that are pull-backs of analytic functions on the Ũm’s.

Definition 1.8. By an extended chain E = (pm, fm, hm, Pm,i, sm, rm,Um) for pn ∈ Mn we
mean a chain C = (pm, fm, hm, Pm,i, sm, rm) and a system of neighborhoods Um of pm as in
Remark 1.7. By Theorem 1.6 for every pn ∈Mn there is an extended chain.

We filter the coefficient space Cn by the zero sets of discriminant ideals Σm := V (Dm),

Cn ⊃ Σn ⊃ · · · ⊃ Σ2.

By Corollary 6.4, a ∈ Σm if and only if Pa(Z) has at most m − 1 distinct roots. If a(t) :
R ⊃ I → Cn is continuous then Ωm := I \ a−1(Σm) defines a filtration by open subsets
I ⊃ Ω2 ⊃ · · · ⊃ Ωn. Because σm is an isomorphism over Cn \ Σm, a|Ωm has a lift âm to Mm.
For m = n we write â := ân.

Mn

σn
��

I ⊃ Ωn
a //

â

66

Cn

Lemma 1.9. [Addendum to Theorem 1.6]
Let E = (pm, fm, hm, Pm,i, sm, rm,Um) be an extended chain for pn ∈ Mn and let J be a
connected component of â−1(Un). Let λ(t) be a continuous root of Pa(t)(Z) on J . Then there

are continuous choices of radicals fαmm (a(t)) and y
1/qm
m,1 (âm(t)), . . . , y

1/qm
m,rm(âm(t)), such that

λ(t) =
n∑

m=1

Am ϕm(t),(1.8)

where

ϕm(t) = fαmm (a(t))ψm(y
1/qm
m,1 (âm(t)), . . . , y1/qm

m,rm(âm(t)), ym,rm+1(âm(t)), . . . , ym,n(âm(t))).

(1.9)

Lemma 1.9 will be proved in Subsection 9.1.

2. Function spaces

In this section we fix notation for function spaces and present an extension lemma.
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2.1. Function spaces. Let Ω ⊂ Rn be open and bounded. We denote by C0(Ω) the space
of continuous complex-valued functions on Ω. For k ∈ N ∪ {∞} we set

Ck(Ω) = {f ∈ CΩ; ∂αf ∈ C0(Ω), 0 ≤ |α| ≤ k},
Ck(Ω) = {f ∈ Ck(Ω); ∂αf has a continuous extension to Ω, 0 ≤ |α| ≤ k},

where Ω denotes the closure of Ω.
Note that Ck(Ω) is a Banach space when equipped with the norm

‖f‖Ck(Ω) := sup
|α|≤k
x∈Ω

|∂αf(x)|.

For k ∈ N and p ≥ 1 we consider the Sobolev space

W k,p(Ω) = {f ∈ Lp(Ω); ∂αf ∈ Lp(Ω), 0 ≤ |α| ≤ k},

where ∂αf denote distributional derivatives. On bounded intervals I ⊂ R the Sobolev
space W 1,1(I) coincides with the space AC(I) of absolutely continuous functions on I if we
identify each W 1,1-function with its unique continuous representative. Recall that a function
f : Ω→ R on an open subset Ω ⊂ R is absolutely continuous if for every ε > 0 there exists
δ > 0 so that

∑n
i=1 |ai−bi| < δ implies

∑n
i=1 |f(ai)−f(bi)| < ε whenever [ai, bi], i = 1, . . . , n,

are non-overlapping intervals contained in Ω.
Let Ω ⊂ Rn be open and bounded, and let 1 ≤ p <∞. A measurable function f : Ω→ C

belongs to the weak Lp-space Lpw(Ω) if

‖f‖p,w,Ω := sup
r≥0

{
r · Ln({x ∈ Ω; |f(x)| > r})

1
p

}
<∞,

where Ln denotes the n-dimensional Lebesgue measure. For 1 ≤ q < p <∞ we have (cf. [9]
Example 1.1.11)

(2.1) ‖f‖q,w,Ω ≤ ‖f‖Lq(Ω) ≤
( p

p− q

) 1
qLn(Ω)

1
q
− 1
p‖f‖p,w,Ω

and hence Lp(Ω) ⊂ Lpw(Ω) ⊂ Lq(Ω) ⊂ Lqw(Ω) with strict inclusions. Note that ‖ ‖p,w,Ω is
only a quasinorm; more precisely, for fj ∈ Lpw(Ω) we have

(2.2)
∥∥∥ m∑
j=1

fj

∥∥∥
p,w,Ω

≤ m
m∑
j=1

‖fj‖p,w,Ω.

If Ωi is a finite or countable family of open sets whose union is Ω then (cf. [7] Lemma 3.1)

‖f‖p,w,Ω ≤
∑
i

‖f‖p,w,Ωi , ∀f ∈ Lpw(Ω).(2.3)

If p > 1 then there exists a norm equivalent to ‖ ‖p,w,Ω which makes Lpw(Ω) into a Banach
space.

Analogously we may consider Lpw(K) for compact sets K ⊂ Rn. We shall also use W k,p
loc ,

ACloc, as well as Lp(Ω,Cm) = [Lp(Ω)]m, W k,p(Ω,Cm) = [W k,p(Ω)]m, etc., with the obvious
meaning.
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2.2. Extension lemma. The following lemma is a generalization of Lemma 3.2 of [7] with
essentially the same proof.

Lemma 2.1. Let Ω ⊂ R be open and bounded, let f : Ω → C be continuous, and set
Ω0 := {t ∈ Ω; f(t) 6= 0}. Assume that f |Ω0 ∈ ACloc(Ω0) and that f |′Ω0

∈ Lpw(Ω0) for some
p > 1 (note that f is differentiable a.e. in Ω0). Then the distributional derivative of f in Ω
is a measurable function f ′ ∈ Lpw(Ω) and

(2.4) ‖f ′‖p,w,Ω = ‖f |′Ω0
‖p,w,Ω0 .

Proof. The function ψ : Ω→ C defined by

ψ(t) :=

{
f ′(t) if t ∈ Ω0

0 if t ∈ Ω \ Ω0

clearly belongs to Lpw(Ω). We show that ψ is the distributional derivative of f in Ω. Let
φ ∈ C∞c (Ω) be a test function with compact support in Ω and let C denote the (at most
countable) set of connected components of Ω0. Then, using integration by parts for the
Lebesgue integral (see e.g. [15] Corollary 3.37)∫

Ω

fφ′ dt =

∫
Ω0

fφ′ dt =
∑
J∈C

∫
J

fφ′ dt = −
∑
J∈C

∫
J

f ′φ dt = −
∫

Ω0

f ′φ dt = −
∫

Ω

ψφdt.

(If J = (a, b) then
∫ b
a
fφ′ dt = limε→0+

∫ b−ε
a+ε

fφ′ dt = − limε→0+
∫ b−ε
a+ε

f ′φ dt = −
∫ b
a
f ′φ dt,

by the Dominated Convergence Theorem, continuity of f , and (2.1).) Moreover, we have
‖f ′‖p,w,Ω = ‖ψ‖p,w,Ω = ‖ψ‖p,w,Ω0 = ‖f |′Ω0

‖p,w,Ω0 . �

3. Absolute continuity of roots

3.1. Optimal regularity of radicals of differentiable functions. We need the following
variant of Theorem 2.2 of [7].

Proposition 3.1. Let I ⊂ R be a bounded interval and let k ∈ N>0. For each f ∈ Ck(I,C)
we have

(3.1) |f ′(t)| ≤ Λk(t)|f(t)|1−
1
k a.e. in I

for some Λk = Λk,f ∈ Lpw(I,R≥0), where 1
p

+ 1
k

= 1, and such that

(3.2) ‖Λk‖p,w,I ≤ C(k) max
{
‖f (k)‖

1
k

L∞(I)|I|
1
p , ‖f ′‖

1
k

L∞(I)

}
.

Proof. If the real and imaginary part of f satisfy (3.1), then so does f . Hence it suffices to
consider the case that f is real-valued.

Set h = |f | 1k . Then Theorem 2.2 of [7] implies that h′ ∈ Lpw(I,R) and

‖h′‖p,w,I ≤ C(k) max
{
‖f (k)‖

1
k

L∞(I)|I|
1
p , ‖f ′‖

1
k

L∞(I)

}
.

In particular, h ∈ W 1,q(I,R) for each q ∈ [1, p). By differentiating hk = |f | we find

|f ′(t)| = k|h′(t)||f(t)|1−
1
k for all t ∈ I with f(t) 6= 0.
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The derivative f ′ vanishes at the accumulation points of f−1(0), and the isolated points of
f−1(0) form an at most countable set. So we conclude that (3.1) holds with Λk := k|h′|. �

Remark 3.2. Proposition 3.1 is optimal in the following sense. Λk cannot, in general, be
chosen in Lp. Indeed, for f : (−1, 1)→ R, f(t) = t, we have( |f ′|

|f |1− 1
k

)p
=
(
|t|

1
k
−1
)p

= |t|−1,

which is not integrable near 0. See [7] Example 4.3.

Remark 3.3. In Proposition 3.1 it is actually enough to require that f ∈ Ck−1,1(I,C); cf. [7]
Theorem 2.2.

3.2. Set-valued functions and curves of polynomials. In the following we shall be
dealing with multi-valued functions arising from complex radicals, their composition with
single-valued functions, and their addition and multiplication.

The (usual) composition G ◦ F : X ; Z of two set-valued functions F : X ; Y and
G : Y ; Z is given by (G ◦ F )(x) = ∪y∈F (x)G(y). The addition F + G and multiplication
FG of F : X ; C and G : X ; C are then well-defined.

A selection of a set-valued function F : X ; Y is a single-valued function f : X → Y
satisfying f(x) ∈ F (x) for all x ∈ X. A parameterization of a set-valued function F :
X ; Y is a pair (f, Z), where f : X × Z → Y is a single-valued function so that F (x) =
{f(x, z); z ∈ Z} for every x ∈ X. We shall only be concerned with multi-valued functions F
so that the cardinality |F (x)| is finite and bounded, i.e., maxx∈X |F (x)| =: N <∞. Then a
parameterization of F is an N -tuple of single-valued functions (with multiplicities at points
x where |F (x)| < N).

If the coefficients of the polynomial Pa in (1.1) are complex-valued continuous functions
aj ∈ C0(I) defined in an interval I ⊂ R, we say that Pa(t) = Pa(t), t ∈ I, is a curve of
polynomials. The roots of a curve of polynomials form a multi-valued function λ : I ; C
which admits a continuous parameterization; see [12] Chapter II Theorem 5.2. (This is no
longer true if the parameter space is higher-dimensional due to monodromy.) Moreover,
any continuous selection of λ : I ; C can be completed to a continuous parameterization
λ1, . . . , λn such that Pa(t)(Z) =

∏
i(Z − λi(t)); see [24] Lemma 6.17.

Lemma 3.4. Let α ∈ Q>0, q, s ∈ N>0, and suppose that k ≥ dmax
{
s
α
, q
}
e, p = k

k−1
.

Let I ⊂ R be a bounded interval and let U ⊂ Cn be open and bounded. Let ψ ∈ C1(U),
h, Pj ∈ Ck(I), and let Ω ⊂ I be an open subset of I so that y1/q(Ω) ⊂ U , where we put

y = (y1, . . . , yn) = (P1/h
s, . . . , Pn/h

s) and y1/q = (y
1/q
1 , . . . , y

1/q
n ). Consider the multi-valued

function

ϕ = hαψ
(
y

1
q

)
= hαψ

(
y

1
q

1 , . . . , y
1
q
n

)
.

Then ϕ admits a continuous parameterization on Ω and for any such parameterization φ the
distributional derivative of φ in Ω is a measurable function φ′ ∈ Lpw(Ω) and

‖φ′‖p,w,Ω ≤ C1(α, s, q,U)‖ψ‖C1(U)Nα,k,s,I(h) max
j

{
Hk,I(h), Hk,I(Pj)

}
(3.3)
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for a positive constant C1(α, s, q,U), where for any function g ∈ Ck(I) we set

Nα,k,s,I(g) := max
{
‖g‖α−

s
k

L∞(I), ‖g‖
α− 1

k

L∞(I)

}
, Hk,I(g) := max

{
‖g(k)‖

1
k

L∞(I)|I|
1
p , ‖g′‖

1
k

L∞(I)

}
.

Proof. First we show that ϕ admits a continuous parameterization on Ω. Consider the open
subsets Ω1 ⊂ Ω0 ⊂ Ω ⊂ I given by

Ω0 = {t ∈ Ω;h(t) 6= 0} and Ω1 = {t ∈ Ω0;∀j Pj 6= 0}.

Each multi-valued function y
1/q
j = (Pj/h

s)1/q has a continuous parameterization on Ω0 and

thus so does ψ(y1/q). The multi-valued function hα has a continuous parameterization on I,
which vanishes on the zero set of h. Since ψ(y1/q) is bounded on Ω, we may conclude that
ϕ admits a continuous parameterization on Ω.

Let φ be any continuous parameterization of ϕ on Ω. Abusing notation we denote by φ
also any single component in the parameterization φ. Then φ is C1 on Ω1 and its derivative
satisfies

|φ′| ≤ α
∣∣∣ψ(y 1

q

)∣∣∣ |h′||h|1−α
+

1

q

n∑
j=1

∣∣∣∂jψ(y 1
q

)∣∣∣( |P ′j|

|Pj|1−
1
q

|h|α−
s
q + s

∣∣∣Pj
hs

∣∣∣ 1q |h′||h|1−α

)
≤ α

∣∣∣ψ(y 1
q

)∣∣∣ |h′|
|h|1− 1

k

|h|α−
1
k

+
1

q

n∑
j=1

∣∣∣∂jψ(y 1
q

)∣∣∣( |P ′j|
|Pj|1−

1
k

∣∣∣Pj
hs

∣∣∣ 1q− 1
k |hs|

α
s
− 1
k + s

∣∣∣Pj
hs

∣∣∣ 1q |h′|
|h|1− 1

k

|h|α−
1
k

)(3.4)

Next we claim that φ is locally absolutely continuous on Ω0. Indeed, every continuous

parameterization of hα, respectively P
1/q
j , is AC on I by Proposition 3.1, and consequently

every continuous parameterization of y
1/q
j = (Pj/h

s)1/q is ACloc on Ω0; note that on each

compact subinterval of Ω0 any continuous parameterization of 1/hs/q is C1. Since ψ is C1,
we may infer from Lemma 2.1 of [17] that each continuous parameterization of ψ(y1/q), and
thus of hαψ(y1/q), is locally absolutely continuous on Ω0. This shows the claim.

In particular, φ is differentiable almost everywhere in Ω0. We argue that (3.4) holds almost
everywhere in Ω0, if we define

|P ′j|
|Pj|1−

1
k

:= 0 on accumulation points of P−1
j (0).

Indeed, by Lemma 2.1 of [17] the chain rule holds almost everywhere and the derivative

of any continuous, and hence absolutely continuous, parameterization of P
1/q
j exists almost

everywhere and vanishes on accumulation points of P−1
j (0). The isolated points of P−1

j (0)
form an at most countable set.

Applying Proposition 3.1 we may conclude that

(3.5) |φ′| ≤ ΛkΨ a.e. in Ω0 for some Ψ ∈ L∞(Ω,R) and Λk ∈ Lpw(I,R).

Here we set Λk = max{Λk,h,Λk,Pj}.
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Extending Ψ by 1 on I \ Ω and using Lpw · L∞ ⊂ Lpw we obtain

|φ′| ≤ Λ̃k a.e. in Ω0 for some Λ̃k ∈ Lpw(I,R).

Using Lemma 2.1 we may conclude that the distributional derivative of φ in Ω is a measurable
function φ′ ∈ Lpw(Ω).

The estimate (3.3) follows from (3.5), (3.2), and (2.4). �

3.3. Main Theorem.

Theorem 3.5. For every n ∈ N>0 there is k = k(n) ∈ N>0 and p = p(n) > 1 such that the
following holds. Let I ⊂ R be a compact interval and let

Pa(t)(Z) = Zn +
n∑
j=1

aj(t)Z
n−j ∈ Ck(I)[Z]

be a monic polynomial with coefficients aj ∈ Ck(I), j = 1, . . . , n.

(1) Let λj ∈ C0(I), j = 1, . . . , n, be a continuous parameterization of the roots of Pa
on I. Then the distributional derivative of each λj in I is a measurable function
λ′j ∈ Lq(I) for every q ∈ [1, p). In particular, each λj ∈ W 1,q(I) for every q ∈ [1, p).

(2) This regularity of the roots is uniform. Let {Paν ; ν ∈ N},

Paν(t)(Z) = Zn +
n∑
j=1

aν,j(t)Z
n−j ∈ Ck(I)[Z], ν ∈ N ,

be a family of curves of polynomials, indexed by ν in some set N , so that the set of
coefficients {aν,j; ν ∈ N , j = 1, . . . , n} is bounded in Ck(I). Then the set

{λν ∈ C0(I);Paν (λν) = 0 on I, ν ∈ N}
is bounded in W 1,q(I) for every q ∈ [1, p).

The rest of this section will be devoted to the proof of Theorem 3.5.

3.4. Definition of k(n) and p(n). Let E = (pm, fm, hm, Pm,i, sm, rm,Um) be an extended
chain. By (1.3), we may express ϕm of (1.6) as follows

ϕm = hα̃mm ψ̃m(y
1/q̃m
m,1 , . . . , y1/q̃m

m,rm , ym,rm+1, . . . , ym,n),(3.6)

where α̃k ∈ 1
q̃m

N>0 and q̃m is a positive integer possibly much bigger than qm. Then we

define

kE := max
m
dmax

{ sm
α̃m

, q̃m

}
e,

We fix an open bounded neighborhood B of the origin in Cn and a finite family of extended
chains

CV = {Ej} = {(pj,m, fj,m, hj,m, Pj,m,i, sj,m, rj,m,Uj,m)}(3.7)

such that

σ−1
n (B) ⊂

⋃
j

Uj,n.
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Then we set

k = k(n) := max
j
kEj , and p = p(n) :=

k

k − 1
∈ Q>1 ∪ {∞}.

3.5. Real analytic case. We begin the proof of Theorem 3.5 with the following special case.
We suppose that a(t) is real analytic and that a(t) ∈ B for all t ∈ I. We suppose moreover
that the discriminant of Pa(t) is not identically equal to zero. Under these assumptions we
show that

‖λ′j‖p,w,I ≤ C(CV)
∑
j,m

Nα̃j,m,k,sj,m,I(hj,m(t)) max
i

{
Hk,I(hj,m(t)), Hk,I(Pj,m,i(t))

}
,(3.8)

where the constant C(CV) depends only on the family CV .
Recall that â denotes the lift of a|Ωn over σn, cf. Subsection 1.5. We remark that actually

a has a unique real analytic lift to Mn on the whole interval I, by the universal property of
blowing-ups, see [10] Proposition 7.14; but we will not use this fact.

All the roots of Pa(t) on Ωn are distinct and hence, by the Implicit Function Theorem,
depend analytically on t. Thus Lemmas 3.4 and 1.9 give (3.8) with I replaced by â−1(Un)∩Ωn.
We set Ii := â−1(Ui,n) and Ωi,n := Ii ∩ Ωn. Then, by (2.3),

‖λ′j‖p,w,Ωn ≤
∑
i

‖λ′j‖p,w,Ωi,n .

Since a(t) is real analytic, a−1(Σn) = I\Ωn is finite, and hence the derivative λ′j of λj exists al-

most everywhere in I and belongs to L1(I) by (2.1). It coincides with the distributional deriv-
ative of λj in I, and ‖λ′j‖p,w,I = ‖λ′j‖p,w,Ωn . (If φ ∈ C∞c (I) and (a, b) is a connected component

of Ωn, then
∫ b
a
λjφ

′ dt = limε→0+
∫ b−ε
a+ε

λjφ
′ dt = λj(b)φ(b)− λj(a)φ(a)− limε→0+

∫ b−ε
a+ε

λ′jφ dt =

λj(b)φ(b)− λj(a)φ(a)−
∫ b
a
λ′jφ dt, by the Dominated Convergence Theorem. Since I \ Ωn is

finite, all boundary terms cancel and thus
∫
I
λjφ

′ dt = −
∫
I
λ′jφ dt.) This implies (3.8).

3.6. Weighted homogeneity. Let a(t) be real analytic and suppose that the discriminant
of Pa(t) is not identically equal to zero. We do not assume any longer that a(t) ∈ B for all
t ∈ I. We extend the bound of the previous subsection to such curves using the weighted
homogeneity.

For η > 0 and a ∈ Cn we define η ∗ a ∈ Cn by (η ∗ a)i = ηiai. Then λ is a root of Pa if
and only if ηλ is a root of Pη∗a.

Fix ρ ≥ max{1, supt∈I ‖a(t)‖}. Then ‖ρ−1 ∗ a‖ ≤ 1. For a polynomial g ∈ C[a], set
g̃(t) := g(ρ−1 ∗ a(t)). Then by (3.8)

‖λ′j‖p,w,I ≤ ρC(CV)
∑
j,m

Nα̃j,m,k,sj,m,I(h̃j,m) max
i

{
Hk,I(h̃j,m), Hk,I(P̃j,m,i)

}
,(3.9)

3.7. General Case. Let a ∈ Ck(I,Cn). By the classical Weierstrass Theorem there is a
sequence of polynomial curves (aν) ⊂ Cω(I,Cn), such that

aν −→ a in Ck(I,Cn) (ν →∞).

By replacing aν by aν+(0, . . . , 0, εν), with εν > 0 sufficiently small, we may suppose moreover
that the discriminant of each Paν is not identically zero.
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For each ν choose a continuous parameterization λν = (λν,1, . . . , λν,n) ∈ C0(I,Cn) of the
roots of Paν (t), t ∈ I. Since (aν) is bounded in Ck(I,Cn), we may infer from (3.8) that the
set of distributional derivatives {λ′ν ; ν} is bounded in Lq(I,Cn) for every q ∈ [1, p).

Fix q ∈ (1, p). By the Arzelá–Ascoli Theorem, as (λν) is equi-Hölder, or alternatively by
the Rellich–Kondrachov Compactness Theorem, there is a subsequence (λν(`)) that converges
in C0(I,Cn) to some λ.

Since Lq(I) is reflexive, we also have (after possibly passing to a subsequence again) that
(λ′ν(`)) converges to some λ′ weakly in Lq(I,Cn). Then λ′ is the distributional derivative of

λ and thus λ ∈ W 1,q(I,Cn). It is clear that λ forms a parameterization of the roots of Pa
on I.

Lemma 3.6. Let λ = (λ1, . . . , λn) and µ = (µ1, . . . , µn) be two parameterizations of the
roots of Pa(t)(Z) ∈ Ck(I)[Z]. If λ ∈ W 1,q(I,Cn), q ∈ [1, p), and µ ∈ C0(I,Cn), then also
µ ∈ W 1,q(I,Cn) and

(3.10)
n∑
i=1

‖µ′i‖
q
Lq(I) =

n∑
i=1

‖λ′i‖
q
Lq(I).

Proof. For each j we have

length(µj) ≤
n∑
i=1

length(λi) <∞

and so µj is of bounded variation. Moreover, for any subset E ⊂ I

µj(E) ⊂
n⋃
i=1

λi(E)

and hence µj has the Luzin (N) property. We may conclude that each µj is absolutely
continuous on I and hence the derivative µ′j of µj exists almost everywhere in I and coincides
with the distributional derivative of µj in I.

At points t, where each µj and each λi is differentiable, the sets {µ′j(t)} and {λ′i(t)}
coincide together with the multiplicities of its elements. These points form a subset of I of
full measure and therefore µ′j ∈ Lq(I) and satisfies (3.10). �

Uniformity can be seen by repeating the proof with an additional parameter ν. The weak
limits in the reasoning above are weakly bounded and thus bounded in Lq(I).
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4. Multiparameter families of polynomials

Theorem 4.1. Let k = k(n) ∈ N>0 and p = p(n) > 1 be as in Subsection 3.4. Let U ⊂ Rm

be open and let

Pa(x)(Z) = Zn +
n∑
j=1

aj(x)Zn−j ∈ Ck(U)[Z]

be a monic polynomial with coefficients aj ∈ Ck(U), j = 1, . . . , n.

(1) Let λ ∈ C0(V ) represent a root of Pa, i.e., Pa(λ) = 0, on a relatively compact open
subset V b U . Then the distributional gradient of λ in V is a measurable function
∇λ ∈ [Lq(V )]m for every q ∈ [1, p). In particular, λ ∈ W 1,q(V ) for every q ∈ [1, p).

(2) The regularity of the roots is uniform. Let {Paν ; ν ∈ N},

Paν(x)(Z) = Zn +
n∑
j=1

aν,j(x)Zn−j ∈ Ck(U)[Z], ν ∈ N ,

be a family of polynomials, indexed by ν in some set N , so that the set of coefficients
{aν,j; ν ∈ N , j = 1, . . . , n} is bounded in Ck(U). Let V b U . Then the set

{λν ∈ C0(V );Paν (λν) = 0 on V , ν ∈ N}

is bounded in W 1,q(V ) for every q ∈ [1, p).

Remark 4.2. The roots of a polynomial depending on at least two parameters do in general
not admit a continuous parameterization due to monodromy. For instance, the radical
C 3 (x+ iy) 7→ (x+ iy)1/n does not admit continuous parameterizations on C.

Proof of Theorem 4.1. By Theorem 3.5, λ is absolutely continuous along each affine line
parallel to the coordinate axes. So λ possesses the partial derivatives ∂iλ, i = 1, . . . ,m,
which are defined almost everywhere and are measurable. It clearly suffices to show that all
partial derivatives ∂jλ belong to Lq(V ), for every q ∈ [1, p).

Set x = (t, y), where t = x1, y = (x2, . . . , xm), and let V1 be the orthogonal projection of
V on the hyperplane {x1 = 0}. For each y ∈ V1 we denote by V y := {t ∈ R; (t, y) ∈ V } the
corresponding section of V ; note that V y is open in R. Then by Fubini’s Theorem,

(4.1)

∫
V

|∂1λ(x)|q dx =

∫
V1

∫
V y
|∂1λ(t, y)|q dt dy.

We may cover V by finitely many open boxes K = I1 × · · · × Im contained in U . Let K
be fixed and set L = I2 × · · · × Im. Fix y ∈ V1 ∩ L and let λyj , j = 1, . . . , n, be a continuous
parameterization of the roots of Pa( , y) on Ωy := V y ∩ I1 such that λ( , y) = λy1; it exists
since λ( , y) can be completed to a continuous parameterization of the roots of Pa( , y) on
each connected component of Ωy by Lemma 6.17 of [24]. Our goal is to bound

‖∂tλ( , y)‖Lq(Ωy) = ‖(λy1)′‖Lq(Ωy)

uniformly with respect to y ∈ V1 ∩ L.
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To this end let Cy denote the set of connected components J of the open set Ωy. For each
J ∈ Cy extend the parameterization λyj |J , j = 1, . . . , n, continuously to I1, i.e., choose

λy,Jj ∈ C0(I1), j = 1, . . . , n, so that

∀j λy,Jj |J = λyj |J and Pa(t, y)(Z) =
n∏
j=1

(Z − λy,Jj (t)), t ∈ I1.

This is possible since λyj |J has a continuous extension to the endpoints of the (bounded)
interval J , by Lemma 4.3 of [14], and can then be extended on the left and on the right of J
by a continuous parameterization of the roots of Pa( , y) on I1 after suitable permutations.

By Theorem 3.5, for each y ∈ V1∩L, each J ∈ Cy, and each j = 1, . . . , n, λy,Jj is absolutely

continuous on I1 and (λy,Jj )′ ∈ Lq(I1) with

(4.2) sup
y,J,j
‖(λy,Jj )′‖Lq(I1) <∞.

Let J, J0 ∈ Cy be arbitrary. By Lemma 3.6, (λyj )
′ as well as (λy,J0j )′ belong to Lq(J) and we

have

n∑
j=1

‖(λyj )′‖
q
Lq(J) =

n∑
j=1

‖(λy,Jj )′‖qLq(J) =
n∑
j=1

‖(λy,J0j )′‖qLq(J).

Thus, for arbitrary fixed J0 ∈ Cy,

n∑
j=1

‖(λyj )′‖
q
Lq(Ωy) =

∑
J∈Cy

n∑
j=1

‖(λyj )′‖
q
Lq(J)

=
∑
J∈Cy

n∑
j=1

‖(λy,J0j )′‖qLq(J)

=
n∑
j=1

‖(λy,J0j )′‖qLq(Ωy)

≤
n∑
j=1

‖(λy,J0j )′‖qLq(I1)

In view of (4.2) we may conclude that supy∈V1∩L ‖(λ
y
1)′‖Lq(Ωy) < ∞. By (4.1) and since the

number of boxes K is finite, this implies that ∂1λ ∈ Lq(V ). The other partial derivatives
can be treated analogously. This shows (1).

In order to see (2) it suffices to repeat the proof of (1) paying attention to the additional
dependence on ν. �
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Part 2. Formulas for the roots. Proof of Theorem 1.6

5. Strategy of the proof

The main ideas of the proof of Theorem 1.6 are the following. Let x = (x1, . . . , xr) be
local coordinates at 0 ∈ Cr. Suppose that ai ∈ C{x} and let

Pa(Z) = Zn +
n∑
j=1

ajZ
n−j.

Thus we may consider Dm, defined in Section 1, as an ideal of C{x}. If a1 = 0 and D2 is
principal and generated by a monomial, then we may split Pa, that is factor it Pa = PbPc;
see Step 2 of the proof, Section 9. This requires introducing fractional powers. If we can
continue this process by splitting Pb, Pc, and then their factors, etc., then we eventually
arrive at linear factors (i.e. of degree 1) whose coefficients are the roots. As we show in
the next three sections this can be guaranteed by the principalization of the higher order
discriminant ideals Dm.

A subtle point of Theorem 1.6 and hence of its proof is to obtain the exponent αm in (1.6)
strictly positive. This forces us to blow-up the ideals Dm one by one. Then we put each
factor in Tschirnhausen form, which amounts to subtracting a fraction of its first coefficient
from the roots. The remaining part of the roots vanishes on V (Dm+1) and hence we may
continue.

This consecutive splitting process can be compared to the proof of the Abhyankar-Jung
Theorem of [19], that gives a formula for the roots in one shot by making the discriminant
normal crossing, but without the property αm > 0 which is crucial for us. In the splitting
process of [19], at each stage, the coefficients of the factors, say defined on Mm+1, are
expressed in terms of their product, which is well-defined on Mm. The complexity of our
proof comes from the fact that, in the formula (1.6), we need each fm to be the pull-back
of a polynomial in the coefficients ai, that is, of a polynomial defined on Cn. Similarly, each
ym,i has to be the pull-back of a rational function on Cn.

6. A characterization of principality

Let x = (x1, . . . , xr) be local coordinates at 0 ∈ Cr. Suppose that ai ∈ C{x}, for i =
1, . . . , n. We denote by ξ(x) = {ξ1(x), . . . , ξn(x)} the unordered set of roots of Pa. Let

Sm(x) = max
|I|=m

∏
i 6=j∈I

|ξi(x)− ξj(x)|.

By definition Sm is the germ at the origin of a non-negative real-valued function of x ∈ Cr.

Proposition 6.1.

(1) There is a finite family g1, . . . , gp ∈ Dm such that SN !/m(m−1)
m ∼ maxj |gj|. Moreover,

we may take as g1, . . . , gp any system of generators of Dm.

(2) g ∈ Dm generates Dm if and only if SN !/m(m−1)
m ∼ |g|.
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Proof. (1) We can choose as g1, . . . , gp the powers σ
N !/im(m−1)
i of the elementary symmetric

functions σi, i = 1, . . . ,
(
n
m

)
, in λI =

∏
i 6=j∈I(ξi(x)− ξj(x)), I ⊂ {1, . . . , n}, |I| = m. Indeed∣∣∣σs(λI ; |I| = m)

∣∣∣ N !
sm(m−1) ≤

((n
m

)
s

) N !
sm(m−1)

max
I
|λI |

N !
m(m−1) =

((n
m

)
s

) N !
sm(m−1)

Sm(x)
N !

m(m−1) .

The converse estimate follows from Lemma 6.2 below.
(2) By (1) if g generates Dm then |g| ∼ SN !/m(m−1)

m . Suppose now that |g| ∼ SN !/m(m−1)
m .

Then for any f ∈ Dm the quotient f/g is bounded and hence holomorphic. �

Lemma 6.2 ([16] p. 56, or [21] Theorem 1.1.4.). If a1, . . . , an, z ∈ C satisfy the equation
zn +

∑n
j=1 ajz

n−j = 0, then |z| ≤ 2 maxj |aj|1/j.

Corollary 6.3. If Dm is principal then Dl ⊂ Dm for l ≥ m.

Corollary 6.4. The zero set of Dm equals {x; |{ξ1(x), . . . , ξn(x)}| < m}.

Corollary 6.5. Suppose that a1 = 0. Then D2 is principal if and only if so is (a
N !/2
2 , . . . , a

N !/n
n ),

and then both ideals coincide.
Thus, if D2 = (g) then g divides each a

N !/i
i and there is i0 such that |g| ∼ |aN !/i0

i0
|.

Proof. Shortly speaking, this corollary follows from the fact that, by Proposition 1.2, the

ideals D2 and (a
N !/2
2 , . . . , a

N !/n
n ) have the same integral closure.

More precisely, in the Tschirnhausen case a1 = 0,

max
j
|ξj| = max

j
| 1
n

∑
k

(ξj − ξk)| ≤ max
j

1

n

∑
k

|ξj − ξk| ≤ max
k 6=j
|ξj − ξk|,

max
k 6=j
|ξj − ξk| ≤ max

k 6=j
(|ξj|+ |ξk|) ≤ 2 max

j
|ξj|,

and hence, by Lemma 6.2,

S2 ∼ max
i
|ξi|2 ∼ max

j
|aj|2/j.(6.1)

Thus if a
N !/i
i generates (a

N !/2
2 , . . . , a

N !/n
n ) then for any f ∈ D2, f/a

N !/i
i is bounded and

hence holomorphic. Therefore a
N !/i
i generates D2.

Conversely, if g generates D2 then by (6.1) one of the a
N !/i
i /g does not vanish at the origin

and hence g ∈ (a
N !/2
2 , . . . , a

N !/n
n ). �

7. Convexity

For a power series in one variable t, λ ∈ C{t}, we define its order ord0 λ as the leading
exponent λ(t) = a0t

ord0 λ + · · · and set ord0 0 := ∞. Given power series λi ∈ C{t}, i =
1, . . . , n, we define for 2 ≤ m ≤ n

α(m) := min
|I|=m

ord0

∏
i 6=j∈I

(λi − λj).

Proposition 7.1. For 3 ≤ m ≤ n− 1

2α(m) + α(2) ≤ α(m− 1) + α(m+ 1).(7.1)
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Example 7.2. If all λi − λj have the same order, say equal to 1, then α(m) = 2
(
m
2

)
and we

have equality.

For the proof we first make some reduction. By shifting all λi by 1
n

∑
i λi we may assume

that
∑

i λi = 0. Then α(2) = 2 mini ord0 λi. Indeed,

α(2)/2 = min
i 6=j

ord0(λi − λj) ≥ min
i 6=j

min{ord0 λi, ord0 λj} = min
i

ord0 λi

= min
i

ord0
1

n

∑
k

(λi − λk) ≥ min
i

min
i 6=k

ord0(λi − λk) = α(2)/2.

Thus, by dividing all λi by tα(2)/2, we may suppose that α(2) = 0. Then (7.1) becomes a
genuine convexity relation.

Let us divide the set of λi into the union of two disjoint non-empty subsets {λi; i ∈ I}
and {λj; i ∈ J}, |I| = n1 < n, |J | = n2 < n, n1 + n2 = n, so that for each i ∈ I, j ∈ J ,
ord0(λi − λj) = 0. We shall call such a partition a splitting.

The corresponding orders for these two families we denote by β(m), 2 ≤ m ≤ n1, and
γ(m), 2 ≤ m ≤ n2. Then for each 2 ≤ m ≤ n there is 0 ≤ m1 ≤ n1 such that

α(m) = β(m1) + γ(m−m1).(7.2)

It is possible that m1 or m−m1 is equal to 0 or 1. In this case we put β(0) = β(1) = γ(0) =
γ(1) = 0.

For a couple of integers a ≤ b we denote by [a .. b] := {c ∈ Z; a ≤ c ≤ b} the set of all
integers between a and b and call it an interval.

Proposition 7.3. For each m the set of m1 such that (7.2) holds is an interval. If we denote
this interval by [K1(m) .. K1(m)] then, for 2 ≤ m ≤ n−1, K1(m) ≤ K1(m+1) ≤ K1(m)+1
and K1(m) ≤ K1(m+ 1) ≤ K1(m) + 1.

Proof of Propositions 7.1 and 7.3. First we show Proposition 7.3 assuming Proposition 7.1
for β and γ. Let

ϕm(m1) := β(m1) + γ(m−m1).

The set of m1 such that (7.2) holds is the set of m1 at which ϕm(m1) is minimal. It is an
interval since, by assumption, ϕm(m1) is convex. Moreover, by convexity, ϕm is decreasing
on [2 .. K1(m)] and increasing on [K1(m) .. n1].

We show that it is not possible that ϕm(m1) ≤ ϕm(m1+1) and ϕm+1(m1+1) ≥ ϕm+1(m1+
2) with one of these inequalities strict. Indeed, if this were the case then

ϕm(m1) + ϕm+1(m1 + 2) = β(m1) + γ(m−m1) + β(m1 + 2) + γ(m−m1 − 1)

< ϕm(m1 + 1) + ϕm+1(m1 + 1) = 2β(m1 + 1) + γ(m−m1 − 1) + γ(m−m1)

which contradicts the convexity of β. This implies that K1(m + 1) ≤ K1(m) + 1 and
K1(m+ 1) ≤ K1(m) + 1. By interchanging I, β and J, γ we obtain K2(m+ 1) ≤ K2(m) + 1
and K2(m+1) ≤ K2(m)+1 which are the desired inequalities in view of K2(m) = m−K1(m)
and K2(m) = m−K1(m), where K2, K2 play the roles of K1, K1 for γ.

Now we show how Proposition 7.3 implies Proposition 7.1 for α. Fix m such that 3 ≤ m ≤
n− 1. By Proposition 7.3 we may assume [K1(m− 1) .. K1(m− 1)]∩ [K1(m) .. K1(m)] 6= ∅.
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(If this is not the case then K1(m) = K1(m) = K1(m − 1) + 1 = K1(m − 1) + 1 and thus
K2(m− 1) = K2(m− 1) = K2(m) = K2(m).)

Fix m1 ∈ [K1(m− 1) .. K1(m− 1)]∩ [K1(m) .. K1(m)]. Then, by Proposition 7.3, either
m1 or m1 + 1 belongs to [K1(m+ 1) .. K1(m+ 1)]. In the former case

α(m− 1) + α(m+ 1) = β(m1) + γ(m−m1 − 1) + β(m1) + γ(m−m1 + 1)

≥ 2(β(m1) + γ(m−m1)) = 2α(m).

In the latter case

α(m− 1) + α(m+ 1) = β(m1) + γ(m−m1 − 1) + β(m1 + 1) + γ(m−m1)

≥ 2(β(m1) + γ(m−m1)) = 2α(m),

since β(m1 + 1) + γ(m−m1 − 1) ≥ β(m1) + γ(m−m1) as m1 ∈ [K1(m) .. K1(m)]. �

8. Splitting

We suppose that ai ∈ C{x}, x = (x1, . . . , xr), and that Pa factors

Pa(Z) = Pb(Z)Pc(Z),

where Pb(Z) = Zn1 + b1Z
n1−1 + · · ·+ bn1 , Pc(Z) = Zn2 + c1Z

n2−1 + · · ·+ cn2 , bi, cj ∈ C{x},
n = n1 + n2, n1, n2 > 0.

Assumption. We shall assume that the resultant of Pb and Pc does not vanish at 0, that is
Pb(0) and Pc(0) do not have common roots.

In order to distinguish the ideals Dm for polynomials Pa, Pb, and Pc we shall denote them
by Da,m, Db,m, and Dc,m respectively; likewise for the size functions Sa,m, Sb,m, Sc,m.

Proposition 8.1.

(1) Suppose that Da,m is a principal ideal. Then there are m1 ≥ 0, m2 ≥ 0, m1+m2 = m,
such that

Sa,m ∼ Sb,m1 Sc,m2 ,(8.1)

and for any such m1,m2, Db,m1 and Dc,m2 are principal. (We put S0 = S1 = 1.)
Moreover, the set of those m1 for which (8.1) holds, with m2 = m − m1, is an
interval. We denote this interval by [K1(m) .. K1(m)].

(2) If the ideals Da,m and Da,m+1 are principal then K1(m) ≤ K1(m + 1) ≤ K1(m) + 1
and K1(m) ≤ K1(m+ 1) ≤ K1(m) + 1.

(3) Suppose that the ideals Da,i are principal for 2 ≤ i ≤ m and that (8.1) holds. Then
Db,i and Dc,j are principal for all i ≤ m1 and j ≤ m2.

Proof. For fixed x we may order the roots of Pa(x). Given I ⊂ {1, . . . , n}, |I| = m, we divide
I = I ′ ∪ I ′′, so that I ′, |I ′| = m1, labels the roots of Pb(x) and I ′′, |I ′′| = m2, the roots of
Pc(x). Then∏

i,j∈I,i 6=j

(ξi(x)− ξj(x)) =
∏
i 6=j∈I′

(ξi(x)− ξj(x)) ·
∏

i 6=j∈I′′
(ξi(x)− ξj(x)) · ϕ(x),
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and ϕ(x) =
∏

i∈I′,j∈I′′(ξi(x)− ξj(x)) is non-zero and close to
∏

i∈I′,j∈I′′(ξi(0)− ξj(0)). There-
fore, as functions of x,

Sa,m ∼ max
m1+m2=m

Sb,m1 Sc,m2 .(8.2)

Suppose that Da,m is generated by f . By (8.2) there exist m1 + m2 = m and h ∈ Db,m1 ,
g ∈ Dc,m2 such that (gh/f)(0) 6= 0. Then (8.1) holds and, by Proposition 6.1, g generates
Db,m1 and h generates Dc,m2 .

Thus if Da,m is principal then the set of m1 for which (8.1) holds, which we denote byM,
is non-empty. By the curve selection lemma, see for instance [18], (8.1) holds if and only if
it holds on every real analytic curve x(t) : (R, 0)→ (Cr, 0). Therefore, by (8.1) and Propo-
sition 7.3, M, as an intersection of intervals, is an interval. Denote it by [K1(m) .. K1(m)].
Moreover, if Da,m and Da,m+1 are principal then K1(m), K1(m) satisfy the inequalities of
Proposition 7.3. Indeed, suppose for instance that K1(m) ≤ K1(m + 1) fails. Then there
exists a real analytic curve on which Sa,m+1 ∼ Sb,m1 Sc,m+1−m1 with m1 = K1(m) fails but
is satisfied for some m1 < K1(m). But this contradicts Proposition 7.3 since (8.1) holds on
this curve. This shows (1) and (2).

Finally (3) follows from (1) and (2). �

Proposition 8.2. Suppose that Da,i are principal for all 2 ≤ i ≤ n. Let m1(m), m2(m) =
m−m1(m) be two non-decreasing integer-valued functions defined for 0 ≤ m ≤ n, such that
0 ≤ m1(m) ≤ n1, 0 ≤ m2(m) ≤ n2, for every 0 ≤ m ≤ n, and such that (8.1) holds for each
triple (m,m1(m),m2(m)), 0 ≤ m ≤ n. Let Da,m = (fm), Db,m1 = (gm1), Dc,m2 = (hm2).

Then, for every 1 ≤ m ≤ n exactly one of the following two cases happens

(1) m1(m) = m1(m− 1) + 1, m2(m) = m2(m− 1).
(2) m2(m) = m2(m− 1) + 1, m1(m) = m1(m− 1).

Moreover, if (1) holds then gm1 |fm|gmm1
, and symmetrically, if (2) holds then hm2|fm|hmm2

.

Proof. Two non-decreasing non-negative functions m1,m2 such that m1(m) + m2(m) = m
must satisfy either (1) or (2). Thus it suffices to show that if (1) is satisfied then gm1 |fm|gmm1

.
The first condition gm1|fm follows easily from the proof of Proposition 8.1. If (8.1) holds
then gm1hm2 generates Da,m and we may suppose that

fm = gm1hm2 .(8.3)

By Corollary 6.3, 1 = f1|f2| · · · |fn, and similarly 1 = g1|g2| · · · |gn1 and 1 = h1|h2| · · · |hn2 .
Let r be given by m1(m) = m1(m − 1) + 1 = m1(m − 2) + 1 = · · · = m1(m − r) + 1 =

m1(m − r − 1) + 2; we have Case (1) for m and m − r and Case (2) in between. We write
m1 = m1(m),m2 = m2(m) for short. Then

fm−1 = gm1−1hm2|gm1hm2−1

· · ·
fm−r+1 = gm1−1hm2−r+2|gm1hm2−r+1

fm−r = gm1−1hm2−r+1.

Hence
hm2|(gm1/gm1−1)hm2−1| · · · |(gm1/gm1−1)r−1hm2−r+1.
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Consequently

fm = gm1hm2|(gm1/gm1−1)rgm1−1hm2−r+1 = (gm1/gm1−1)rfm−r.

Since m1(m − r) + 1 = m1(m − r − 1) + 2, by induction on m1, fm−r|gm−rm1−1 (we may start
the induction by formally putting f1 = g1 = h1 = 1), which shows fm|gmm1

as gm1−1|gm1 . �

Remark 8.3. By Proposition 8.1, both m1(m) = K1(m) and m1(m) = K1(m) satisfy the
assumptions of Proposition 8.2 if we complete them by putting K1(1) = 0, K1(1) = 1. In
particular, there exists a function m1(m) satisfying the assumptions of Proposition 8.2, such
that m1(2) = m2(2) = 1. This follows from the assumption that Pb(0) and Pc(0) do not have
common roots; in particular, not all roots of Pa(0) coincide and thus Sa,2 ∼ 1.

Fix such a function m1(m). For 2 ≤ m1 ≤ n1 define mb(m1) as the smallest m such
that m1 = m1(m), i.e. mb(m1) as a function is the lowest inverse of m1(m). Similarly we
define mc(m2) for 2 ≤ m2 ≤ n2. The functions mb and mc are strictly increasing and each
3 ≤ m ≤ n is in the image of precisely one of them. See the example in Figure 1.

•◦ •
◦ •◦ •

◦
•

◦
•
◦ •◦

•
◦
•◦ •
◦
•

◦
•
◦
•

◦
•
◦ •◦

•
◦

•

◦

•
◦

1
2

4

6

8

10

2 4 6 8 10 12 14 16 18

Figure 1. An example for the functions m1(m), bullets •, and m2(m), cir-
cles ◦. In this example (mb(2),mb(3), . . .) = (4, 7, 8, 9, 13, 15, 16, 17, 18) and
(mc(2),mc(3), . . .) = (3, 5, 6, 10, 11, 12, 14, 19); these are the points where the
respective sequence increases by 1. The two sets form a partition of the integers
between 3 and 19.

9. Proof of Theorem 1.6

Proof. We first put Pa into Tschirnhausen form (1.2), then split it into two factors after
blowing up D2. These factors are defined locally on the blow-up space M2. Then we put
each of these factors into Tschirnhausen form and continue the process by splitting the
subsequent factors on M3, M4 and so on, putting first every new factor into Tschirnhausen
form. At each stage the Tschirnhausen transformation shifts the roots exactly by the term
Amϕm of (1.5).
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In order to simplify the notation we use the same letters for the functions and their pull-
backs to the blow-up spaces, for instance we write ak for ak ◦ σm.

Step 1. First we perform the Tschirnhausen transformation by replacing Z by Z − a1/n
and hence shifting the roots by a1/n. Thus we put

ϕ1 := a1 A1 :=
1

n
.

(Recall that the Tschirnhausen transformation does not change the ideals Dm.) After this
transformation we may assume that Pa(Z) is in the Tschirnhausen form (1.2).

Step 2. Fix p2 ∈ M2 and a privileged system of coordinates y2,1, . . . , y2,n at p2. We shall
split Pa at p2

Pa = PbPc,(9.1)

where Pb(Z) = Zn1 +
∑n1

i=1 biZ
n1−i, Pc(Z) = Zn2 +

∑n2

j=1 cjZ
n2−j, with n1 > 0, n2 > 0,

bi, cj ∈ C{y1/q2
2,1 , . . . , y

1/q2
2,n }, q2 = N !, as follows. Let f2 generate D2 at p2. By Corollary 6.5,

f2 divides each a
N !/i
i and there is i0 such that f2 equals a

N !/i0
i0

times a unit. Consider an
auxiliary polynomial

Qā(Z̃) := f
−n/q2
2 Pa(f

1/q2
2 Z̃) = Z̃n + ā2Z̃

n−2 + · · ·+ ān,(9.2)

where āi = f
−i/q2
2 ai, āi0(p2) 6= 0. Because f2 is a normal crossing in y2,i, cf. (1.3),

f
1/q2
2 ∈ C{(y1/q2

2,1 , . . . , y
1/q2
2,r2

, y2,r2+1, . . . , y2,n)}.

We first split Qā(Z̃) = Qb̄(Z̃)Qc̄(Z̃) using the following lemma, see e.g. [1] or [2].

Lemma 9.1. Let Qa′ = Qb′Qc′, a
′ = (a′1, . . . , a

′
n) ∈ Cn, b′ = (b′1, · · · , b′n1

) ∈ Cn1, c′ =
(c′1, · · · , c′n2

) ∈ Cn2, be monic complex polynomials. Suppose that Qb′ and Qc′ have no com-
mon root. Then there are complex analytic mappings b(a), c(a), defined in a neighborhood
of a′ in Cn, such that

Qa = Qb(a)Qc(a),

and b′ = b(a′), c′ = c(a′).

Proof. If we write Qa = QbQc and compute a as a function of b and c, denoted by a(b, c),
then the Jacobian determinant of a(b, c) equals the resultant of Qb and Qc which is nonzero
by assumption. Thus the lemma follows from the Inverse Function Theorem. �

Since āi0(p2) 6= 0 and Qã(Z̃) is in Tschirnhausen form, Qā(p2)(Z̃) = Z̃n + ā2(p2)Z̃d−2 +
· · ·+ ān(p2) has at least two distinct complex roots and thus can be written as the product
of two factors with no common roots. Then Lemma 9.1 allows us to extend this splitting to
a neighborhood of p2

Qā(Z̃) = Qb̄(Z̃)Qc̄(Z̃).(9.3)

This splitting induces a splitting (9.1) of Pa by setting Pb(Z) := f
n1/q2
2 Qb̄(f

−1/q2
2 Z), n1 =

degQb̄, that is

(9.4) bi := f
i/q2
2 ηi

(
y

1/q2
2,1 , . . . , y

1/q2
2,r2

, y2,r2+1, . . . , y2,n

)
, i = 1, . . . , n1 = degPb,
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where ηi is a convergent power series. Similar formulas hold for Pc. The next step involves
putting both Pb and Pc in Tschirnhausen form. Thus if we put

ϕ2 := b1 = −c1

then by the Tschirnhausen transformation the roots of Pb are shifted by −ϕ2

n1
and those of

Pc by ϕ2

n2
.

Step 3. Let C = (pm, fm, hm, Pm,i, sm, rm) be a chain for pn ∈ Mn with neighborhoods Um
of pm. From C we extract the chains for Pb and Pc as follows. Choose the functions m1(m),
m2(m), mb(m1),mc(m2) as in Remark 8.3 and split the chain

U1 U2
oo U3

oo U4
oo U5

oo U6
oo U7

oo · · ·oo Pa

Umb(2)

uu

Umb(3)
oo

zz

Umb(4)
oo · · ·oo Pb

U2

Umc(2)

ll
dd

Umc(3)
oo

dd

· · ·oo Pc

We claim that by Propositions 8.1 and 8.2

U2 ←− Umb(2) ←− · · · ←− Umb(n1),(9.5)

defines a chain for pn associated with Pb. Indeed, the pull-back of Db,m1 on (Um, pm), m =
mb(m1), is invertible and generated by a (fractional) normal crossing in ym,1, . . . , ym,rm ,
this generator is denoted gm1 in Proposition 8.2. The rest of the data defining the chain
(hm, Pm,i, sm, rm) is the same.

Then, if m = mb(m1) ≥ 2, we set ϕm := ϕb,m1 . By Proposition 8.2

ϕm = g
αb,m1
m1 ψb,m1 = f

αb,m1
/m

m ψm,

(this equation defines ψm). By the inductive assumption every root of Pb is a combination
of the ϕb,i. Since each root of Pa is either a root of Pb or of Pc, the proof is complete. �

9.1. Proof of Lemma 1.9. We prove Lemma 1.9 following closely the steps of the proof of
Theorem 1.6.

Step 1. Clearly ϕ1(t) = a1(t). Thus after a shift of λ(t) by 1
n
ϕ1(t) we may assume that

Pa(t) is in Tschirnhausen form.

Step 2. The crucial observation is that for all m ≥ 2, fm(a(t)), ym,1(âm(t)), . . . , ym,rm(âm(t))
do not vanish on J . Hence we may choose their qm-th radicals continuously, and even of the
same regularity (Ck, real analytic, etc.) as the coefficients ai(t).

Thus a root λ(t) of Pa(t) induces a root f−α2
2 (t)λ(t) of Qā(t), whose coefficients are now

well-defined as functions of t ∈ J . Since the roots of Qb̄(t), Qc̄(t), are distinct, f−α2
2 (t)λ(t) is

a root of precisely one of them. Thus we may consider λ(t) as a root of Pb(t) for instance.

Step 3. Then, on Mm, m = mb(2), perform the Tschirnhausen transformation of Pb(t),

split it and by choosing the radical g
αb,m1
m1 (t) identify λ(t) (shifted by the Tschirnhausen

transformation) with a root of one of these factors. We continue these procedure until the
last factor is of degree 1.
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We note that on J we have n everywhere distinct continuous roots of Pa(t). They separate in
the above process; any two of them, shifted first by common Tschirnhausen transformations,
are roots of different factors at some stage.

Part 3. Example. Roots of cubic polynomials.

10. Statement of result.

We give a detailed presentation of the degree 3 case as an example. In this case the
resolution is explicit and the result can be made more precise.

Theorem 10.1. Let I ⊂ R be a bounded open interval. Consider a monic polynomial

P (t)(Z) = Z3 + a1(t)Z2 + a2(t)Z + a3(t), t ∈ I,(10.1)

with coefficients aj ∈ C6(I), j = 1, 2, 3. Then:

(1) If λj : I → C, j = 1, 2, 3, denotes a continuous parameterization of the roots of P ,

then each λ′j ∈ L
6/5
w (I), in particular, each λj ∈ W 1,q(I), for q ∈ [1, 6/5).

(2) Let {Pν ; ν ∈ N} be a family of curves of polynomials (10.1) so that the set of co-
efficients {aν,j; ν ∈ N , j = 1, 2, 3} is bounded in C6(I). Then the set {λ′ν ;λν ∈
C0(I) with Pν(λν) = 0 on I, ν ∈ N} is bounded in L

6/5
w (I).

Remark 10.2. In Theorem 10.1 it is actually enough to require that f ∈ C5,1(I,C); cf. [7].

We sketch below the proof of Theorem 10.1. Thus consider P after Tschirnhausen trans-
formation

P (Z) = Z3 + pZ + q.(10.2)

The discriminant of P equals
∆ = −27q2 − 4p3.

We assume that p, q : I → C belong to C6(I). By Proposition 3.1, for each δ ∈ [1/6, 1),

|p′(t)| ≤ Λδ−1(t)|p(t)|1−δ

|q′(t)| ≤ Λδ−1(t)|q(t)|1−δ

|∆′(t)| ≤ Λδ−1(t)|∆(t)|1−δ
a.e. in I for some Λδ−1 ∈ Lpw(I,R), where p =

1

1− δ
.(10.3)

Here we set Λδ−1 := max{Λδ−1,p,Λδ−1,q,Λδ−1,∆}. Note that each formula of (10.3) holds for
every t outside the zero set of p, q, or ∆, respectively.

11. Resolution of the discriminant

Consider the embedded resolution of the discriminant given by a sequence of three point
blowing-ups. We denote it by σ : M → C2. Note that σ resolves also the ideal I = (p3, q2),
that is, makes it locally principal and generated by a monomial. Thus in the notation of
Section 1, σ is a smooth principalization of D2 and D3 at the same time. Moreover, in this
case, the formulas are explicit and we do not have to use the ideal K of Subsection 1.3.

We describe the pull-back of P by σ in the affine charts and in each chart we give a formula
for the roots of P . These formulas give the bounds on the derivative of the roots with respect
to t.
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11.1. Chart 1. p = XY, q = Y . This is one of two standard charts of the blowing-up of the
origin. Then σ∗I = (Y 2) and

σ∗P (Z) = Y (Z̃3 +XY 1/3Z̃ + 1) = Y P̃ (Z̃),

where Z = Y 1/3Z̃. The polynomial P̃ has distinct roots near the exceptional divisor Y = 0.
Therefore by the Implicit Function Theorem (IFT) near the exceptional divisor the roots are
of the form

Z = Y 1/3Φ(XY 1/3) = q1/3Φ(p/q2/3),(11.1)

where Φ is an analytic function (given locally by a convergent power series). Hence by (10.3)

|Z ′(t)| ≤ |q′|
|q|2/3

|Φ|+ |p′|
|q|1/3

|Φ′|+ |pq
′|

|q|4/3
|Φ′| ≤ Λ3(t)(|Φ|+ C|Φ′|)(11.2)

taking into account that p/q = X is bounded.

11.2. Chart 2. We take the other standard chart of the blowing-up of the origin p = x, q =
xy. The pull-back of the discriminant is not normal crossing in this chart and we have to
blow up the origin again.

11.3. Chart 2a. p = X, q = X2Y . This is one of the standard charts of the blowing-up of
the origin of Chart 2: x = X, y = XY . Then σ∗I = (X3) and

σ∗P (Z) = X3/2(Z̃3 + Z̃ +X1/2Y ) = X3/2P̃ (Z̃),

where Z = X1/2Z̃. The discriminant of P̃ equals −(4 + 27XY 2) and is non-zero near the
exceptional divisor. Therefore by the IFT the roots of P̃ are convergent powers series in
X1/2Y and hence the roots of P are of the form

Z = X1/2Φ(X1/2Y ) = p1/2Φ(q/p3/2).(11.3)

Hence by (10.3)

|Z ′(t)| ≤ |p′|
2|p|1/2

|Φ|+ |q
′|
|p|
|Φ′|+ |qp

′|
|p|2
|Φ′| ≤ 1

2
Λ2(t)(|Φ|+ C|Φ′|)(11.4)

taking into account that q/p2 = Y is bounded.

11.4. Chart 2b. p = XY, q = XY 2. The Chart 2b is the other standard affine chart
obtained by blowing up the origin in Chart 2: x = x′y′, y = y′. Again the discriminant is
not normal crossing in this chart so we have to blow-up again.

11.5. Chart 2b(i). p = X2Y, q = X3Y 2. This is one of the standard charts of blowing
up the origin on Chart 2b, the other one is 2b(ii). On Chart 2b(i), σ∗I = (X6Y 3) and
∆ ◦ σ = X6Y 3(−4− 27Y ). Then

σ∗P (Z) = X3Y 3/2(Z̃3 + Z̃ + Y 1/2) = X3Y 3/2P̃ (Z̃),

where Z = XY 1/2Z̃. On the set where the discriminant of P̃ = −(4 + 27Y ) is non-zero we
may again use the IFT. Then the roots of P are of the form

Z = XY 1/2Φ(Y 1/2) = p1/2Φ(q/p3/2),
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where Φ is a convergent power series, as on Chart 2a. Now

|Z ′(t)| ≤ 1

2

|p′|
|p|1/2

|Φ|+ |q
2/3|
|p|

|q′|
|q2/3|

|Φ′|+ 3

2

|q|
|p3/2|

|p′|
|p|1/2

|Φ′|

≤ 1

2
Λ2(t)|Φ|+ C(Λ3(t) +

3

2
Λ2(t))|Φ′|.

(11.5)

Near Y = − 4
27

we introduce a new system of coordinates X̃ = X, Ỹ = Y + 4
27

= q2

p3
+ 4

27
=

27q2+4p3

27p3
. Then Y 1/2 is a convergent power series in Ỹ . At X̃ = Ỹ = 0 the polynomial P̃ has

one single and one double root. Therefore, by Lemma 9.1 we can factorize locally

P̃ (Z̃) = (Z̃2 + b1(Ỹ )Z̃ + b2(Ỹ ))(Z̃ + c(Ỹ )),(11.6)

where b1, b2 and c = −b1 are convergent power series in Ỹ . Thus one root of P equals
−XY 1/2c(Ỹ ) and hence it can be written in the form

Z = XΦ(Ỹ ) =
p2

q
Φ
(q2

p3

)
= p1/2p

3/2

q
Φ
(q2

p3

)
= q1/3 p

2

q4/3
Φ
(q2

p3

)
,(11.7)

where Φ is a convergent power series. Then, taking into account that p3 ∼ q2 near X̃ = Ỹ = 0

|Z ′(t)| ≤ 2|pp′|
|q|
|Φ|+ |p

2q′|
|q2|
|Φ|+ 3

|q|
|p3/2|

|p′|
|p1/2|

|Φ′|+ 2
|q2/3|
|p|

|q′|
|q2/3|

|Φ′|

≤ C(Λ2(t) + Λ3(t))|Φ|+ C(3Λ2(t) + 2Λ3(t))|Φ′|
(11.8)

Denote the factors of (11.6) by Pb and Pc. The discriminant of Pb is the product of the
discriminant of P̃ that is −27Ỹ , and an invertible convergent power series in Ỹ . Indeed,
this follows from the fact that the discriminant of P̃ equals the discriminant of Pb times the
square of the resultant of Pb and Pc which is invertible.

Let P̃b = Z2 + b̃2 be the Tschirnhausen transformation of Pb. The roots of P̃b equal, up to
a constant, the square root of the discriminant of Pb. This gives the following form for the
remaining two roots of P

Z = Z0 ± Z1,(11.9)

where Z0 = −1
2
XΦ(Ỹ ) is coming from (11.7), and Z1 is of the form

Z1 = XỸ 1/2Φ1(Ỹ ) =
p1/2∆1/2

q
Φ1

(q2

p3

)
(11.10)

It remains to give a bound for Z ′1(t),

|Z ′1(t)| ≤
( |p′|
|p1/2|

|∆1/2|
|q|

+
|p1/2|
|q1/3|

|∆1/3|
|q2/3|

|∆′|
|∆5/6|

+
|q′|
|q2/3|

|p1/2|
|q1/3|

|∆1/2|
|q|

)
|Φ1|

+
|∆1/2|
|q|

(
2
|q2/3|
|p|

|q′|
|q2/3|

+ 3
|q2|
|p3|

|p′|
|p1/2|

)
|Φ′1|

≤ C(Λ2(t) + Λ6(t) + Λ3(t))|Φ1|+ C(2Λ3(t) + 3Λ2(t))|Φ′1|.

(11.11)

We have used that p3 ∼ q2 and that ∆/q2 is bounded near X̃ = Ỹ = 0.
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11.6. Chart 2b(ii). p = XY 2, q = XY 3. Then σ∗I = (X2Y 6) and ∆ ◦ σ = X2Y 6(−4X −
27). We only consider the points near the origin. The other points on this chart, including
the strict transform of the discriminant, are also on Chart 2b(i) and were considered before.
On Chart 2b(ii)

σ∗P (Z) = XY 3(Z̃3 +X1/3Z̃ + 1) = XY 3P̃ (Z̃),

where Z = X1/3Y Z̃. Since P̃ has distinct roots near X = Y = 0, by the IFT, the roots are
of the form

Z = X1/3Y Φ(X1/3) = q1/3Φ(p/q2/3),

as on Chart 1. Then

|Z ′(t)| ≤ |q′|
|q|2/3

|Φ|+ |p′|
|q|1/3

|Φ′|+ |pq
′|

|q|4/3
|Φ′| ≤ Λ3(t)(|Φ|+ C|Φ′|)(11.12)

taking into account that p/q2/3 = X is bounded.

Chart 2 Chart 2b Chart 2b(i)

Figure 2. Bold curves represent the discriminant set and its strict transforms,
thin (continuous) lines the exceptional divisors.

11.7. Proof of Theorem 10.1. The proof follows the reasoning of Subsection 3.5.
Let p(t), q(t) ∈ C6(I), let λ(t) be a continuous root of (10.2), and let Ω = {t ∈ I; (p(t), q(t)) 6=

(0, 0)}. Then (p(t), q(t))|Ω lifts to M and Subsection 3.5 gives a bound on ‖λ′‖6/5,w,Ω. Since
λ ≡ 0 on I \ Ω, Theorem 10.1 follows from Lemma 2.1.
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