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Abstract. In their 2011 paper on the AGT conjecture, Alba, Fateev, Litvinov and Tarnopolsky
(AFLT) obtained a closed-form evaluation for a Selberg integral over the product of two Jack
polynomials, thereby unifying the well-known Kadell and Hua–Kadell integrals. In this paper we
use a variety of symmetric functions and symmetric function techniques to prove generalisations
of the AFLT integral. These include (i) an An analogue of the AFLT integral, containing two
Jack polynomials in the integrand; (ii) a generalisation of (i) for γ = 1 (the Schur or GUE case),
containing a product of n + 1 Schur functions; (iii) an elliptic generalisation of the AFLT integral
in which the role of the Jack polynomials is played by a pair of elliptic interpolation functions; (iv)
an AFLT integral for Macdonald polynomials.

Keywords: AGT conjecture, (complex) Schur functions, elliptic beta integrals, elliptic interpola-
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1. Introduction

In 2010 Alday, Gaiotto and Tachikawa [3] conjectured a deep relationship between N = 2
superconformal field theory in four dimensions and Liouville conformal field theory on a punctured
Riemann surface. Their correspondence provides a dictionary between correlation functions in
Liouville field theory [36, 58] and the Nekrasov partition function in N = 2 superconformal field
theory [37, 38]. One entry of this dictionary relates the instanton part of the Nekrasov partition
function to conformal blocks in Liouville field theory. This relationship allowed Alday et al. to
derive an explicit combinatorial expansion for conformal blocks.

One particularly promising approach to the AGT conjecture was developed by Alba, Fateev,
Litvinov and Tarnopolsky [1]. Let Vir and A denote the Virasoro and Heisenberg algebras re-
spectively. Then Alba et al. considered representations L(P,Q) of central charge and conformal
dimension

(1.1) c = 1 + 6Q2 and ∆(P ) = Q2/4− P 2

of Vir⊕A , and showed that L(P,Q) has a unique orthogonal basis {|Pλ〉} indexed by bipartitions
λ, such that in this basis the matrix element between L(P,Q) and L(P ′, Q) corresponding to the
primary field indexed by α coincides with

Zbifund

(
(P ′,−P ′),λ; (P,−P ),µ;α

)
.

Here Zbifund is the key building block — corresponding to the ‘bifundamental hypermultiplet’
— of the instanton part of the Nekrasov partition function, which admits the following explicit
combinatorial expression [13, 16, 52]

2010 Mathematics Subject Classification. 05E05, 05E10, 30E20, 33D05, 33D52, 33D67, 81T40.
Work supported by the Australian Research Council Discovery Grant DP170102648.

1



2 SEAMUS P. ALBION, ERIC M. RAINS, AND S. OLE WARNAAR

(1.2) Zbifund

(
(u1, u2),λ; (v1, v2),µ;m

)
=

2∏
i,j=1

( ∏
s∈λ(i)

(
E
(
ui − vj , λ(i), µ(j), s

)
−m

)
×
∏
s∈µ(j)

(
Q−m− E

(
vj − ui, µ(j), λ(i), s

)))
,

where λ = (λ(1), λ(2)), µ = (µ(1), µ(2)) and, for s = (i, j) ∈ λ,

(1.3) E(u, λ, µ, s) = u− b(µ′j − i) + b−1(λi − j + 1)

with Q in (1.1) parametrised as Q = b + b−1. In the above µ′ is the conjugate of the partition µ,
so that µ′j − i and λi − j may be recognised as the (generalised) leg-length lµ(s) and arm-length

aλ(s) of the square s ∈ λ, see (2.1). Lifting the isomorphism [12, 59] between Verma modules for
Vir and Fock space representations of A to the level of L(P,Q), Alba et al. obtained a closed-form

expression in the spirit of [34, 50, 65] for the states |P 〉λ,0 in terms of Jack polynomials P
(−1/b2)
λ .

The more general states |P 〉λ then follow recursively from |P 〉λ,0.
For O a symmetric Laurent polynomial in k variables and α, β, γ ∈ C, define the Selberg average

of O as

〈
O
〉k
α,β;γ

:=
1

Sk(α, β; γ)

∫
[0,1]k

O(t1, . . . , tk)

k∏
i=1

tα−1i (1− ti)β−1
∏

16i<j6k

|ti − tj |2γ dt1 · · · dtk,

where the normalisation Sk(α, β; γ) is given by the classical Selberg integral [14, 15, 51, 57]

Sk(α, β; γ) :=

∫
[0,1]k

k∏
i=1

tα−1i (1− ti)β−1
∏

16i<j6k

|ti − tj |2γ dt1 · · · dtk(1.4)

=
k∏
i=1

Γ(β + (i− 1)γ)Γ(α+ (i− 1)γ)Γ(1 + iγ)

Γ(α+ β + (2k − i− 1)γ)Γ(1 + γ)
,

for Re(α) > 0, Re(β) > 0 and

Re(γ) > −min{1/k,Re(α)/(k − 1),Re(β)/(k − 1)}.

A crucial step taken by Alba et al. was to show that for P + P ′ + α+ kb = 0

(1.5) Zbifund

(
(P ′,−P ′), (λ, 0); (P,−P ), (µ, 0);α

)
= κλ(P )κµ(P ′)

〈
P

(−1/b2)
λ

(
t−1
)
P (−1/b2)
µ

[
t+ (2bα− 1− b2)/b2

]〉k
1−b(Q+2P ),1−2bα;−b2

.

In the above,

κλ(P ) :=
∏

(i,j)∈λ

((
b(i− λ′j − 1) + b−1(λi − j)

)(
2P + bi+ b−1j

))
,
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f(t−1) := f(t−11 , . . . , t−1k ) and, for f a symmetric function which expands in terms of the power
sums pλ as f =

∑
λ cλpλ, f [t+ z] is plethystic notation (see Section 2.4 for details) for

∑
λ

cλ

l(λ)∏
i=1

(
pλi(t1, . . . , tk) + z

)
.

The verification of (1.5) boils down to computing the Selberg average〈
P

(1/γ)
λ

(
t−1
)
P (1/γ)
µ

[
t+ β/γ − 1

]〉k
α,β;γ

and comparing this against the explicit form of Zbifund provided by (1.2). By the complementation
symmetry

P
(1/γ)
λ (t−1) = (t1 · · · tk)−NP

(1/γ)
(N−λk,...,N−λ1)(t),

for λ ∈Pk (the set of partitions of length at most k) and N an arbitrary integer such that N > λ1,
this is achieved by the following integral evaluation [1] (see also [35]). Let P denote the set of
partitions.

Theorem 1.1 (AFLT integral). Let k be a positive integer, λ, µ ∈P and α, β, γ ∈ C. Then∫
[0,1]k

P
(1/γ)
λ [t]P (1/γ)

µ [t+ β/γ − 1]
k∏
i=1

tα−1i (1− ti)β−1
∏

16i<j6k

|ti − tj |2γ dt1 · · · dtk(1.6)

= P
(1/γ)
λ [k]P (1/γ)

µ [k + β/γ − 1]
k∏
i=1

Γ(β + (i− 1)γ)Γ(α+ (k − i)γ + λi)Γ(1 + iγ)

Γ(α+ β + (2k −m− i− 1)γ + λi)Γ(1 + γ)

×
k∏
i=1

m∏
j=1

Γ(α+ β + (2k − i− j − 1)γ + λi + µj)

Γ(α+ β + (2k − i− j)γ + λi + µj)
,

where m is an arbitrary integer such that m > l(µ), and

Re(α) > −λk, Re(β) > 0, Re(γ) > − min
16i6k−1

{
1

k
,
Re(α) + λi
k − i

,
Re(β)

k − 1

}
.

The arguments of the Jack polynomials on the right-hand side are again expressed using plethystic

notation, see Section 2.4 for details. Alternatively, both P
(1/γ)
λ [k] and P

(1/γ)
µ [k + β/γ − 1] may be

written in fully factorised form by equation (2.20) below. When µ = 0 the AFLT integral simplifies
to Kadell’s integral [24] (see also [31]) and for β = γ it yields the Hua–Kadell integral [19, 23].
Theorem 1.1 is proved in [1] by generalising the Anderson-style recursive proof of Kadell’s integral
given in [61]. Key input in both these proofs is the Okounkov–Olshanski integral formula for Jack
polynomials [39, 41].

In the conclusion to their paper [1], Alba et al. remark that the generalisation of their construction
to WAn requires a generalisation of the An Selberg integral of [63] with two Jack polynomials
included in the integrand.1 For A2 such an AFLT-type integral was considered by Fateev and
Litvinov in [11], where they again used a recursion based on the Okounkov–Olshanski integral
to obtain a closed-form evaluation. They also claim a more general An AFLT integral, but the

1See also [7, 22] for the relation between An Selberg integrals and the AGT conjecture.



4 SEAMUS P. ALBION, ERIC M. RAINS, AND S. OLE WARNAAR

evaluation of this integral is only implicit and, unfortunately, the stated recursion relation that
needs to be solved to obtain the evaluation is incorrect for n > 3 (see also (7.4) in Section 7).

The first main result of the present paper is the evaluation of the An AFLT integral for all
n. Before stating this result we introduce some notation. For k, ` nonnegative integers and t =
(t1, . . . , tk), s = (s1, . . . , s`) we define the Vandermonde products ∆(t) and ∆(t, s) as

(1.7) ∆(t) :=
∏

16i<j6k

(ti − tj) and ∆(t, s) :=

k∏
i=1

∏̀
j=1

(ti − sj).

We also abbreviate dt1 · · · dtk as dt.
For n a positive integer, let k1, . . . , kn be integers such that 0 6 k1 6 · · · 6 kn and let t(1), . . . , t(n)

be a sets of variables (or alphabets) such that t(r) has cardinality kr. Further let α1, . . . , αn, β ∈ C
such that

Re(β) > 0, |Re(γ)| < 1

kn
, Re

(
β + (kn − 1)γ

)
> 0,(1.8a)

Re
(
αr + · · ·+ αs + (r − s+ i− 1)γ

)
> 0 for 1 6 r 6 s 6 n and 1 6 i 6 kr − kr−1,(1.8b)

where k0 := 0.2 We then define the An Selberg average of a polynomial O(t(1), . . . , t(n)), symmetric

in each of the alphabets t(r), as

(1.9)
〈
O
〉k1,...,kn
α1,...,αn,β;γ

:=
IAnk1,...,kn(O;α1, . . . , αn, β; γ)

IAnk1,...,kn(1;α1, . . . , αn, β; γ)
,

where

IAnk1,...,kn(O;α1, . . . , αn, β; γ)(1.10)

:=

∫
C
k1,...,kn
γ [0,1]

O
(
t(1), . . . , t(n)

) n∏
r=1

kr∏
i=1

(
t
(r)
i

)αr−1(1− t(r)i )βr−1
×

n∏
r=1

∣∣∆(t(r))∣∣2γ n−1∏
r=1

∣∣∆(t(r), t(r+1)
)∣∣−γ dt(1) · · · dt(n).

Here

(1.11) β1 = · · · = βn−1 := 1, βn := β

and Ck1,...,knγ [0, 1] is a real domain of integration described in Section 4.1. The normalisation

IAnk1,...,kn(1;α1, . . . , αn, β; γ) in (1.9) is the An Selberg integral of [63, Theorem 1.2] (see also [56,

Theorem 3.3] for the A2 case), which admits the evaluation

IAnk1,...,kn(1;α1, . . . , αn, β; γ)(1.12)

=
n∏
r=1

kr∏
i=1

Γ(βr + (i− kr+1 − 1)γ)Γ(iγ)

Γ(γ)

2The condition Re(γ) < 1/kn may be dropped when n = 1.
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×
∏

16r6s6n

kr−kr−1∏
i=1

Γ(αr + · · ·+ αs + (r − s+ i− 1)γ)

Γ(αr + · · ·+ αs + βs + (ks − ks+1 + r − s+ i− 2)γ)
,

where, once again, k0 = kn+1 := 0.
For n a nonnegative integer let (a)n := Γ(a + n)/Γ(a) = a(a + 1) · · · (a + n − 1) denote the

Pochhammer symbol, and let δu,v be the usual Kronecker delta. Then the An analogue of the
AFLT integral is given by the following identity for the Selberg average of the product of two Jack
polynomials.

Theorem 1.2 (An AFLT integral). For n a positive integer, let k1, . . . , kn be integers such that
0 6 k1 6 · · · 6 kn. Then for α1, . . . , αn, β, γ ∈ C such that (1.8) holds and λ, µ ∈P, we have〈

P
(1/γ)
λ

[
t(1)
]
P (1/γ)
µ

[
t(n) + β/γ − 1

]〉k1,...,kn
α1,...,αn,β;γ

(1.13)

= P
(1/γ)
λ [k1]P

(1/γ)
µ [kn + β/γ − 1]

×
n∏
r=1

∏̀
i=1

(α1 + · · ·+ αr + (k1 − r − i+ 1)γ)λi
(α1 + · · ·+ αr + βr + (k1 + kr − kr+1 − r −mδr,n − i)γ)λi

×
n∏
r=1

m∏
j=1

(αr + · · ·+ αn + β + (kn + r − n− j − 1)γ)µj
(αr + · · ·+ αn + β + (kr − kr−1 + kn + r − n− `δr,1 − j − 1)γ)µj

×
∏̀
i=1

m∏
j=1

(α1 + · · ·+ αn + β + (k1 + kn − n− i− j)γ)λi+µj
(α1 + · · ·+ αn + β + (k1 + kn − n− i− j + 1)γ)λi+µj

.

In the expression on the right, ` and m are arbitrary integers such that ` > l(λ), m > l(µ),
k0 = kn+1 := 0 and the βr are as in (1.11).

Note that both sides of (1.13) trivially vanish unless l(λ) 6 k1 so that without loss of generality
it may be assumed that λ ∈Pk1 . Then the r = 1 term in the second double product on the right
simplifies to 1 upon choosing ` = k1.

Since

(1.14) Ck1γ [0, 1] = {t ∈ Rk1 : 0 < t1 < t2 < · · · < tk1 < 1},
Theorem 1.2 for n = 1 is equivalent to Theorem 1.1. For µ = 0 the theorem corresponds to the
An analogue of Kadell’s integral [63, Theorem 6.1], and for β = γ it gives an An analogue of the
Hua–Kadell integral [19, 23]. Our proof of Theorem 1.2 is not reliant on the Okounkov–Olshanski
integral formula for Jack polynomials and instead uses An Cauchy-type identities for Macdonald
polynomials. One advantage of our approach is that it immediately implies a companion to the An

AFLT integral, stated as Theorem 4.1 in Section 4.

Setting k1 = 0 in the An Selberg integral yields the An−1 Selberg integral. The same is not true,
however, for the An AFLT integral. Setting k1 = 0 in (1.13) forces λ = 0 for nonvanishing, thus
eliminating one of the two Jack polynomials in the integrand. In their work on the AGT conjecture
for WAn, Matsuo and Zhang [66] formulated several conjectures for An Selberg integrals of AFLT
type that do have the desired reduction property, but unfortunately as stated their conjectures
appear to be false. In the γ → 1 limit of Theorem 1.2, in which case the Jack polynomials

P
(1/γ)
λ

[
t(1)
]

and P
(1/γ)
µ

[
t(n) + β/γ− 1

]
simplify to the Schur functions sλ

[
t(1)
]

and sµ
[
t(n) + β− 1

]
,
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we have managed to prove a corrected Matsuo–Zhang-type AFLT integral, containing a product of
n+ 1 Schur functions in the integrand. Because (1.8a) implies that |Re(γ)| < 1, in this integral we

must replace the real domain of integration Ck1,...,knγ [0, 1] by the complex contour

(1.15) Ck1,...,kn = Ck11 × · · · × C
kn
n , where Ckrr = Cr × · · · × Cr︸ ︷︷ ︸

kr times

defined as follows. Each Cr is a positively oriented Jordan curve which passes through the origin,
contains the interval (0, 1] in its interior, and has nonzero slope close to 0. Away from 0, the contour
Cr for r > 2 is contained in the interior of Cr−1 as shown in the figure below

0 1

Cn
C1C2

For γ = 1 we now redefine the An Selberg average as follows. In the complex t
(r)
i -plane fix the

usual principal branch of the complex logarithm, with cut along the negative real axis and argument
in (−π, π]. Then for 0 6 k1 6 · · · 6 kn and α1, . . . , αn, β ∈ C such that

(1.16) Re(αr + · · ·+ αs) > s− r for 1 6 r 6 s 6 n

we define 〈
O
〉k1,...,kn
α1,...,αn,β

:=
IAnk1,...,kn(O;α1, . . . , αn, β)

IAnk1,...,kn(1;α1, . . . , αn, β)
,

where, assuming (1.11),

IAnk1,...,kn(O;α1, . . . , αn, β)(1.17)

:=
1

(2π i)k1+···+kn

∫
Ck1,...,kn

O
(
t(1), . . . , t(n)

) n∏
r=1

kr∏
i=1

(
t
(r)
i

)αr−1(t(r)i − 1
)βr−1

×
n∏
r=1

∆2
(
t(r)
) n−1∏
r=1

∆−1
(
t(r), t(r+1)

)
dt(1) · · · dt(n).

The integral (1.17) should be understood in the sense of indefinite integrals since the integrand is

not defined at t
(r)
i = 0 ∈ Cr. Due to the change in contour, the normalisation is now given by (see

(5.9))

IAnk1,...,kn(1;α1, . . . , αn, β)(1.18)

=
n∏
r=1

(
(−1)(

kr
2 )

kr∏
i=1

i!

Γ(kr+1 − βr + 2− i)

)
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×
∏

16r6s6n

kr−kr−1∏
i=1

Γ(αr + · · ·+ αs + r − s+ i− 1)

Γ(αr + · · ·+ αs + βs + ks − ks+1 + r − s+ i− 2)
,

where k0 = kn+1 := 0.
Let t(0) := 0. Then our next main result is a closed form evaluation of

(1.19)

〈( n∏
r=1

sλ(r)
[
t(r) − t(r−1)

])
sλ(n+1)

[
t(n) + β − 1

]〉k1,...,kn
α1,...,αn,β

,

generalising the γ = 1 case of (1.13). The most concise way to state this is by using the duality
[32, p. 43]

(1.20) sµ′ [X] = (−1)|µ|sµ[−X],

and to instead give the evaluation of〈 n+1∏
r=1

sλ(r)
[
t(r) − t(r−1)

]〉k1,...,kn
α1,...,αn,β

,

where t(n+1) := 1−β.3 Before stating this evaluation we introduce the following shorthand notation.
For 1 6 r 6 n+ 1 let

(1.21a) Ar := αr + · · ·+ αn + kr − kr−1 + r

and Ar,s := Ar −As, so that Ar,s = −As,r. In particular,

(1.21b) Ar,s = αr + · · ·+ αs−1 + kr − kr−1 − ks + ks−1 + r − s

for 1 6 r 6 s 6 n+ 1.

Theorem 1.3. For n a positive integer, let 0 6 k1 6 · · · 6 kn be integers, α1, . . . , αn, β ∈ C such
that (1.16) holds, and λ(1), . . . , λ(n+1) ∈P. Let t(0) := 0 and t(n+1) := 1− β. Then〈 n+1∏

r=1

sλ(r)
[
t(r) − t(r−1)

]〉k1,...,kn
α1,...,αn,β

(1.22)

=
n+1∏
r=1

∏
16i<j6`r

λ
(r)
i − λ

(r)
j + j − i
j − i

n+1∏
r,s=1

`r∏
i=1

(Ar,s − ks−1 + ks − i+ 1)
λ
(r)
i

(Ar,s + `s − i+ 1)
λ
(r)
i

×
∏

16r<s6n+1

`r∏
i=1

`s∏
j=1

λ
(r)
i − λ

(s)
j +Ar,s + j − i
Ar,s + j − i

,

where k0 := 0 and kn+1 := 1− β, and where `r (1 6 r 6 n+ 1) is an arbitrary nonnegative integer

such that `r > l(λ(r)).

The reader is warned that in order to obtain the above compact form for the right-hand side we
have used a different convention for kn+1 than in the previous two theorems. We also remark that

3For the evaluation of the average (1.19) see equation (7.1) below.
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(1.22) displays a significant amount of nontrivial cancellation. For s = r the second triple product
on the right becomes

n+1∏
r=1

`r∏
i=1

(kr − kr−1 − i+ 1)
λ
(r)
i

(`r − i+ 1)
λ
(r)
i

.

Since `r > l(λ(r)), this shows that the right-hand side vanishes unless l(λ(r)) 6 kr − kr−1 for all

1 6 r 6 n. The integrand, however, only vanishes for l(λ(1)) 6 k1 − k0 = k1. Finally we note that
(1.22) has the desired rank-reduction property. If we denote either side of (1.22) by

Ik1,...,kn
λ(1),...,λ(n+1)(α1, . . . , αn, β),

then it is readily verified that

I0,k2,...,kn
0,λ(2),...,λ(n+1)(α1, α2, . . . , αn, β) = Ik2,...,kn

λ(2),...,λ(n+1)(α2, . . . , αn, β).

Evaluating the Selberg integral (1.4) for γ = 1 is not at all hard; it follows from Heine’s integral
formula for the Hankel determinant of moments of orthogonal polynomials on the real line applied
to the case of Jacobi polynomials, see e.g., [30, 47]. We have not found a similarly elementary proof
of Theorem 1.3, and our proof hinges on a novel type of integration formula for Schur functions
indexed by sequences of complex numbers, see Theorem 5.3.

Our third main result applies to A1, and is an elliptic generalisation of the AFLT integral (1.6).
This integral, which also generalises the elliptic Selberg integral of [9, 10, 44], contains two elliptic
skew interpolation functions in the integrand. These play the role of the pair of Jack polynomials
in the AFLT integral.

For λ,ν a pair of bipartitions, let R∗λ/ν([v1, . . . , v2m]; a, b; t, p, q) denote an elliptic skew interpo-

lation function [45], for which we use the shorthand notation

(1.23) R∗λ/ν
(
[uz±1 , . . . , uz

±
n , v1, . . . , v2m]; a, b; t; p, q)

:= R∗λ/ν
(
[uz1, uz

−1
1 , . . . , uzn, uz

−1
n , v1, . . . , v2m]; a, b; t; p, q).

Further let (a1, . . . , ak; q)∞ :=
∏k
r=1

∏∞
i=0(1 − arqi) and let Γ(z; p, q) denote the elliptic gamma

function [49], for which we adopt the usual multiplicative plus-minus conventions

Γ(z±; p, q) := Γ(z; p, q)Γ(z−1; p, q),

Γ(z±w±; p, q) := Γ(zw; p, q)Γ(zw−1; p, q)Γ(z−1w; p, q)Γ(z−1w−1; p, q).

For λ = (λ(1), λ(2)) ∈ P2
n we define the following shorthand for the ratio of products of elliptic

gamma functions,

∆0
λ(a|b1, . . . , bk; t; p, q) := ∆0

λ(1)
(a|b1, . . . , bk; q, t; p)∆0

λ(2)
(a|b1, . . . , bk; p, t; q),

with

∆0
λ(a|b1, . . . , bk; q, t; p) :=

k∏
r=1

n∏
i=1

Γ(t1−iqλibr; p, q)Γ(pqt1−ia/br; p, q)

Γ(t1−ibr; p, q)Γ(pqt1−iqλia/br; p, q)
.

In particular, for µ ∈Pm,

∆0
µ

(
a|b〈λ〉n;t;p,q; q, t; p

)
=

n∏
i=1

m∏
j=1

Γ(tn−i−j+1qλ
(1)
i +µjpλ

(2)
i b; p, q)Γ(pqti−j−n+1q−λ

(1)
i p−λ

(2)
i a/b; p, q)

Γ(tn−i−j+1qλ
(1)
i pλ

(2)
i b; p, q)Γ(pqti−j−n+1q−λ

(1)
i +µjp−λ

(2)
i a/b; p, q)

,
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where

(1.24) 〈λ〉n;t;p,q :=
(
qλ

(1)
1 pλ

(2)
1 tn−1, qλ

(1)
2 pλ

(2)
2 tn−2, . . . , qλ

(1)
n−1pλ

(2)
n−1t, qλ

(1)
n pλ

(2)
n
)
,

is the spectral vector for the bipartition λ. With the above notation we may state the following
elliptic analogue of (1.6), where we note that instead of k we use n to denote the number of
integration variables.

Theorem 1.4 (Elliptic AFLT integral). Let n be a positive integer, p, q, t, t1, t2, t3, t4, t5, t6 ∈ C
such that the elliptic balancing condition

(1.25) t2n−2t1 · · · t6 = pq

holds and such that |p|, |q| < 1. Further let

κn :=
(p; p)n∞(q; q)n∞Γn(t; p, q)

2nn!(2π i)n
.

Then, for λ ∈P2
n and µ ∈P2,

κn

∫
Cλµ

R∗λ/0
(
[t1/2z±1 , . . . , t

1/2z±n ]; tn−1/2t1, t
1/2t2; t; p, q

)
(1.26)

×R∗µ/0
(
[t1/2z±1 , . . . , t

1/2z±n , t
−1/2t4, t

−1/2t5]; t
n−3/2t3t4t5, t

1/2t6; t; p, q
)

×
∏

16i<j6n

Γ(tz±i z
±
j ; p, q)

Γ(z±i z
±
j ; p, q)

n∏
i=1

∏6
r=1 Γ(trz

±
i ; p, q)

Γ(z±2i ; p, q)

dz1
z1
· · · dzn

zn

=
n∏
i=1

(
Γ(ti; p, q)

∏
16r<s66

Γ(ti−1trts; p, q)

)
×∆0

λ(tn−1t1/t2|tn, tn−1t1t3, tn−1t1t4, tn−1t1t5, tn−1t1t6; t; p, q)

×∆0
µ(tn−2t3t4t5/t6|tn−1t3t4, tn−1t3t5, tn−1t4t5; t; p, q)

×
∆0
µ(tn−2t3t4t5/t6|tn−2t1t3t4t5〈λ〉n;t;p,q)

∆0
µ(tn−2t2t3t4/t5|tn−1t1t3t4t5〈λ〉n;t;p,q)

,

where Cλµ is a deformation of Tn (with T the positively oriented unit circle) separating sequences
of poles of the integrand tending to zero from sequences of poles tending to infinity.

For µ = 0 this may be viewed as an analogue of Kadell’s integral, and also follows by setting
µ = 0 in (6.11) below, a fact that was already noted by the second author in [44, Remark 2].
Imposing the constraint t4t5 = t, the integral may be viewed as an elliptic analogue of the Hua–
Kadell integral. In this case the integral is invariant under the simultaneous substitutions λ ↔ µ
and (t1, t2)↔ (t3, t6).

By taking an appropriate p → 0 limit, Theorem 1.4 simplifies to the following AFLT integral
over a pair of Macdonald polynomials Pλ(q, t).

Corollary 1.5. For λ ∈Pn, µ ∈P, and a, b, q, t ∈ C such that |b|, |q|, |t| < 1,

1

n!(2π i)n

∫
Tn

Pλ(z; q, t)Pµ

([
z +

t− b
1− t

]
; q, t

)
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×
n∏
i=1

(a/zi, qzi/a; q)∞
(b/zi, zi; q)∞

∏
16i<j6n

(zi/zj , zj/zi; q)∞
(tzi/zj , tzj/zi; q)∞

dz1
z1
· · · dzn

zn

= b|λ|t|µ|Pλ

([1− tn

1− t

]
; q, t

)
Pµ

([1− btn−1

1− t

]
; q, t

)
×

n∏
i=1

(t, atn−m−iqλi , at1−i/b, qti−1b/a; q)∞
(q, ti, bti−1, at1−iqλi/b; q)∞

n∏
i=1

m∏
j=1

(atn−i−j+1qλi+µj ; q)∞
(atn−i−jqλi+µj ; q)∞

,

where m is an arbitrary integer such that m > l(µ).

For λ = µ = 0 the above integral may also be found in [6, Section 6] as a special case of
the biorthogonality relation for multivariable Pastro polynomials. This special case also easily
follows by combining the 1Ψ1 summation for Macdonald polynomials [27] with the orthogonality
and quadratic norm evaluation of the Macdonald polynomials with respect to the scalar product
〈·, ·〉′n, see (6.13).

The remainder of this paper is organised as follows. In the next section we review some basic
material from the theory of symmetric functions. This includes a discussion of Schur, Jack and
Macdonald polynomials as well as the heavily-used plethystic notation. In Section 3 we present
some An generalisations of the classical Cauchy identity for Macdonald polynomials. Then, in
Section 4, we show that such Cauchy identities are essentially discrete analogues of An AFLT
integrals, leading to a proof of Theorem 1.2 and its companion given in Theorem 4.1. In Section 5
we use integral formulas of Cauchy-type for complex Schur functions to prove Theorem 1.3. In
Section 6 we review some of the theory of elliptic interpolation functions and use this to prove
the elliptic AFLT integral of Theorem 1.4. Finally, in Section 7, we discuss some open problems
stemming from our work.

2. Preliminaries

2.1. Partitions. Throughout this paper N denotes the set of nonnegative integers.
A partition λ is a weakly decreasing sequence of nonnegative integers (λ1, λ2, . . . ) with only

finitely many of the λi nonzero. The positive λi are called the parts of λ, and the number of parts
is called the length, denoted by l(λ). The sum of the λi is denoted by |λ|, and if |λ| = n we say
that λ is a partition of n and write λ ` n. With the possible exception of finitely many zeros, we
usually drop the infinite string of zeros of a partition so that λ = (λ1, . . . , λn) denotes a partition of
length at most n. The set of all partitions and the set of partitions of length at most n are denoted
by P and Pn respectively. In particular, P0 = {0} where, by mild abuse of notation, the unique
partition of zero is denoted by 0.

We identify a partition with its Young diagram, which is the set of all (i, j) ∈ N2 such that
1 6 i 6 l(λ) and 1 6 j 6 λi. This may be visualised as a left-justified array of squares with λi
squares in row i. For example the Young diagram of the partition (6, 4, 3, 1, 1) is
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The conjugate of λ, which is denoted by λ′, is obtained by reflecting λ in the main diagonal. Hence
(6, 4, 3, 1, 1)′ = (5, 3, 3, 2, 1, 1). Given a square s = (i, j) ∈ N2 and a partition λ we define the
(generalised) arm-length, leg-length, arm-colength, and leg-colength of s by

aλ(s) := λi − j, lλ(s) := λ′j − i,(2.1)

a′(s) := j − 1, l′(s) := i− 1,

respectively. If s ∈ λ this reduces to the standard definition in [32, p. 337]. Note that with the
above notation the function E in (1.3) may also be written as

E(u, λ, µ, s) = u− b lµ(s) + b−1(aλ(s) + 1),

where s ∈ λ.
A frequently encountered statistic on partitions is

n(λ) :=
∑
i>1

(i− 1)λi =
∑
i>1

(
λ′i
2

)
=
∑
s∈λ

l′(s).

All of the previous notation regarding partitions is extended to bipartitions λ ∈ P2 in the
obvious way. In particular, µ ⊆ λ will be used as shorthand for µ(1) ⊆ λ(1) and µ(2) ⊆ λ(2), and
0 := (0, 0).

2.2. Generalised shifted factorials. For n a nonnegative integer and b an indeterminate or
complex number, the Pochhammer symbol (b)n is defined as

(b)n :=
n−1∏
i=0

(b+ i),

where an empty product is to be taken as 1. We generalise this to complex z by

(2.2) (b)z :=
Γ(b+ z)

Γ(b)
,

where now it is assumed that b ∈ C and neither b nor b+ z are nonpositive integers. Similarly, for
indeterminate or arbitrary complex b and q, the q-shifted factorial is defined as

(2.3) (b; q)n :=

n−1∏
i=0

(1− bqi),

where n ∈ N ∪ {∞} and where |q| < 1 in the infinite product case. When 0 < q < 1 this can again
be extended to complex z by

(b; q)z :=
(b; q)∞

(bqz; q)∞
.

This in particular implies that for n a positive integer,

(2.4)
1

(q; q)−n
= 0.

In terms of the q-gamma function

Γq(z) :=
(q; q)∞
(qz; q)∞

(1− q)1−z,
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and (for z ∈ C \ {0,−1,−2, . . . } and 0 < q < 1),

(qb; q)n = (1− q)n Γq(b+ n)

Γq(b)
.

A generalisation of (2.3) to partitions is given by

(2.5) (b; q, t)λ :=
∏
s∈λ

(
1− bqa′(s)t−l′(s)

)
=
∏
i>1

(bt1−i; q)λi .

Setting t = qγ and replacing b by qb, and then letting q tend to 1 we obtain an analogue of the
Pochhammer symbol indexed by partitions

(b; γ)λ :=
∏
i>1

(
b+ (1− i)γ

)
λi
.

Also frequently used in this paper are the generalised hook polynomials

cλ(q, t) :=
∏
s∈λ

(
1− qaλ(s)tlλ(s)+1

)
=

n∏
i=1

(tn−i+1; q)λi
∏

16i<j6n

(tj−i; q)λi−λj
(tj−i+1; q)λi−λj

,(2.6a)

c′λ(q, t) :=
∏
s∈λ

(
1− qaλ(s)+1tlλ(s)

)
=

n∏
i=1

(qtn−i; q)λi
∏

16i<j6n

(qtj−i−1; q)λi−λj
(qtj−i; q)λi−λj

,(2.6b)

bλ(q, t) :=
cλ(q, t)

c′λ(q, t)
.(2.6c)

Note that the choice of n on the right of the first two equations is irrelevant as long as n > l(λ).
Finally, at the top-level we have the elliptic shifted factorials and gamma function. To define

the former we need the modified theta function

θ(z; p) := (z; p)∞(p/z; p)∞,

where z ∈ C∗ and p ∈ C such that |p| < 1. Then the elliptic shifted factorial is given by

(b; q, p)n :=

n−1∏
i=0

θ(bqi; p),

so that (b; q, 0)n = (b; q)n. If Γ(z; p, q) denotes the elliptic gamma function [49]

Γ(z; p, q) :=
∞∏

i,j=0

1− pi+1qj+1/z

1− zpiqj
,

which satisfies the reflection formula Γ(z; p, q)Γ(pq/z; p, q) = 1, then, in analogy with (2.2),

(b; q, p)n =
Γ(bqn; p, q)

Γ(b; p, q)
.

Similarly, the elliptic generalisation of (2.5) is

(b; q, t; p)λ :=
∏
s∈λ

θ
(
bqa
′(s)t−l

′(s); p
)

=
∏
i>1

(bt1−i; q, p)λi .
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To shorten some of our expressions we also use the following shorthand for the “well-poised” ratio
of products of elliptic shifted factorials:

∆0
λ(a|b1, . . . , bn; q, t; p) :=

n∏
i=1

(bi; q, t; p)λ
(pqa/bi; q, t; p)λ

,

from which it is clear that which it is clear that

(2.7) ∆0
λ(a|b1, . . . , bn; q, t; p) =

1

∆0
λ(a|pqa/b1, . . . , pqa/bn; q, t; p)

.

Finally we need

C−λ (b; q, t; p) :=
∏
s∈λ

θ
(
bqaλ(s)tlλ(s); p

)
C+
λ (b; q, t; p) :=

∏
(i,j)∈λ

θ
(
bqλi+j−1t2−λ

′
j−i; p

)
,

so that cλ(q, t) = C−λ (t; q, t; 0) and c′λ(q, t) = C−λ (q; q, t; 0).

2.3. Symmetric functions. Let X = {x1, x2, . . . } be an alphabet of countably many variables
and Xn = {x1, . . . , xn} an alphabet of cardinality n. Then we denote the ring of symmetric
functions in X (resp. Xn) over the field F by Λ (resp. Λn), see [32]. Typically, we will work with
F = Q, or the extensions Q(γ) and Q(q, t).

Given a sequence α = (α1, α2, . . . ) of nonnegative integers such that |α| := α1 +α2 + · · · is finite,
we write α+ for the unique partition obtained by reordering the αi. Then the monomial symmetric
function indexed by the partition λ is defined as

mλ(X) :=
∑
α+=λ

Xα,

whereXα := xα1
1 xα2

2 · · · . Further definingmλ(Xn) := mλ(X)|xi=0 for i>n it follows thatmλ(Xn) = 0
if l(λ) > n. The sets {mλ(X)} and {mλ(Xn)}l(λ)6n form bases of Λ and Λn respectively.

For k a nonnegative integer the kth complete and elementary symmetric functions are defined
by

hk(X) :=
∑

16i16···6ik

xi1 · · ·xik ,

and

ek(X) :=
∑

16i1<···<ik

xi1 · · ·xik ,

respectively. For k a positive integer we set e−k = h−k = 0. The generating functions for the
complete symmetric functions is given by

σz(X) :=
∑
k>0

zkhk(X) =
∏
i>1

1

1− zxi

and

(2.8)
∑
k>0

zkek(X) =
∏
i>1

(1 + zxi) =
1

σ−z(X)
.
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We also require Newton power sums

pk(X) :=
∑
i>1

xki ,

for k a positive integer. These admit the generating function

ψz(X) :=
∑
k>1

zkpk(X)

k
= −

∑
i>1

log(1− zxi),

so that

(2.9) σz(X) = eψz(X).

The most important family of classical symmetric functions are the Schur functions, defined by
the usual ratio of alternants

(2.10) sλ(Xn) =
det16i,j6n

(
x
λj+n−j
i

)
∆(Xn)

,

for l(λ) 6 n and 0 otherwise. The Schur functions indexed by partitions of length at most n form
a basis of Λn. From (2.10) it is not hard to derive the specialisation formula [32, p. 44]

(2.11) sλ(1, . . . , 1︸ ︷︷ ︸
n times

) =

k∏
i=1

(n− i+ 1)λi
(k − i+ 1)λi

∏
16i<j6k

λi − λj + j − i
j − i

,

where k is an arbitrary integer such that k > l(λ).

2.4. Plethystic notation. We extensively use plethystic or λ-ring notation when dealing with
symmetric functions, see e.g., [18, 29, 46]. For X = {x1, x2, . . . } an alphabet and f(X) a symmetric
function in X we use the additive notation

f(x1, x2, . . . ) = f(X) = f [X] = f [x1 + x2 + · · · ].
Hence X + Y , the sum of the alphabets X and Y , is the disjoint union of these sets. The above
notation forces

(2.12) pk[X + Y ] = pk[X] + pk[Y ].

A symmetric function acting on the difference of two alphabets is then defined as

pk[X − Y ] := pk[X]− pk[Y ].

Observe that
pk[(X + Y )− Y ] = pk[X]

as it should. Inside plethystic brackets we denote the empty alphabet by 0. By (2.9) it follows that

(2.13) σz[X + Y ] = σz[X]σz[Y ] and σz[X − Y ] =
σz[X]

σz[Y ]
,

and hence σz[−X]σz[X] = 1. Together with (2.8) this implies

hk[−X] = (−1)kek[X],

which, by the dual Jacobi–Trudi identity [32, p. 41], extends to Schur functions as (1.20).
For the Cartesian product of two alphabets we have

pk[XY ] = pk[X]pk[Y ],
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which in particular implies that if X = x is an alphabet containing a single letter then

pk[xY ] = xkpk[Y ].

However, from (2.12) we also have

pk[nX] := pk[X + · · ·+X︸ ︷︷ ︸
n times

] = npk[X],

so that
f [n] = f [1 + · · ·+ 1︸ ︷︷ ︸

n times

] = f(1, . . . , 1︸ ︷︷ ︸
n times

).

We extend the above to any z ∈ F via

pk[zX] := zpk[X].

For X = 1 we more simply write the above left-hand side as pk[z].
4 Note that this leads to some

notational ambiguities, and whenever not clear from the context we will indicate if a symbol such
as x or z represents a letter or a binomial element.

Finally, since the Cartesian product of the alphabets {1, t, t2, . . . } = 1+ t+ t2 + · · · and 1− t is 1,
we adopt the standard convention of writing the former as 1/(1− t). An often occurring composite
alphabet is (a− b)/(1− t) for which

pk

[
a− b
1− t

]
=
ak − bk

1− tk

and

(2.14) σ1

[
a− b
1− t

]
=

(b; t)∞
(a; t)∞

.

2.5. Macdonald polynomials. In this section we work with the ring of symmetric functions Λ
over F = Q(q, t).

Let 〈·, ·〉 : Λ× Λ→ F be the q, t-Hall scalar product on Λ given by [32, p. 306]

〈pλ, pµ〉 := δλ,µzλ
∏
i>1

1− qλi
1− tλi

,

where zλ :=
∏
i>1 i

mimi!. The Macdonald polynomials Pλ = Pλ(q, t) = Pλ(X; q, t) are the unique
symmetric functions such that

〈Pλ, Pµ〉 = 0 if λ 6= µ

and
Pλ = mλ +

∑
µ<λ

uλµmµ, uλµ ∈ F,

with respect to the usual dominance order on partitions. Like the Schur functions, {Pλ(X)} and
{Pλ(Xn)}l(λ)6n are bases for Λ and Λn respectively, and Pλ(Xn; q, t) = 0 if l(λ) > n.

We also require the skew Macdonald polynomials defined by

(2.15) Pλ([X + Y ]; q, t) =
∑
µ

Pλ/µ(X; q, t)Pµ(Y ; q, t),

4In [29, p. 32] Lascoux refers to a single letter alphabet x as a rank-1 element of a λ-ring and z ∈ F as a binomial

element, since for the latter ek[z] =
(
z
k

)
and hk[z] =

(
z+k−1
k

)
.



16 SEAMUS P. ALBION, ERIC M. RAINS, AND S. OLE WARNAAR

where it should be noted that Pλ/0 = Pλ. We also note that Pλ/µ is homogeneous of degree |λ/µ|
and vanishes unless µ ⊆ λ (cf. [32, p. 344]).

For q = t the Macdonald polynomials reduce to the Schur functions (2.10). More generally, if
we set t = qγ and let q tend to 1 we obtain the Jack polynomials [55]

P
(1/γ)
λ (X) = lim

q→1
Pλ(X; q, qγ).

Setting Qλ/µ(q, t) := bλ(q, t)Pλ/µ(q, t)/bµ(q, t), the Macdonald polynomials satisfy the (skew)
Cauchy identity [32, p. 345]∑

λ

Pλ(X; q, t)Qλ/µ(Y ; q, t) = Pµ(X; q, t)
∏
i,j>1

(txiyj ; q)∞
(xiyj ; q)∞

(2.16)

= Pµ(X; q, t)σ1

[
1− t
1− q

XY

]
,

where the second equality follows from (2.13) and (2.14).
Let

2φ1

[
a, b

c
; q, z

]
:=

∞∑
k=0

(a; q)k(b; q)k
(c; q)k(q; q)k

zk

denote the usual q-analogue of the 2F1 Gauss hypergeometric function [17].

Lemma 2.1. Let x and y be single-letter alphabets. Then

(2.17) P(r)([x− y]; q, t) = xr 2φ1

[
t−1, q−r

q1−rt−1
; q,

yq

x

]
.

Proof. If we set µ = 0 in (2.16) and then replace (X,Y ) 7→ (x− y, 1) this yields∑
r>0

(t; q)r
(t; t)r

P(r)([x− y]; q, t) = σ1

[
1− t
1− q

(x− y)

]
=

(tx; q)∞(y; q)∞
(x; q)∞(ty; q)∞

.

Using the q-binomial theorem [17, Equation (II.3)] to expand the right-hand side as a power series
in x and y leads to ∑

r>0

(t; q)r
(t; t)r

P(r)([x− y]; q, t) =
∑
k,`>0

(t; q)`(t
−1; q)k

(q; q)`(q; q)k
x`(ty)k.

Equating terms of homogeneous degree r in x, y gives

(t; q)r
(t; t)r

P(r)([x− y]; q, t) =
r∑

k=0

(t; q)r−k(t
−1; q)k

(q; q)r−k(q; q)k
xr−k(ty)k,

which is equivalent to (2.17). �

For λ ∈Pn define the spectral vector

〈λ〉n = 〈λ〉n;q,t := (qλ1tn−1, qλ2tn−2, . . . , qλn−1t, qλnt0),

which, depending on the context, we will also interpret plethystically as

〈λ〉n = qλ1tn−1 + qλ2tn−2 + · · ·+ qλn−1t+ qλnt0.
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Then the principal specialisation formula for Macdonald polynomials [32, p. 337] can be written as

(2.18) Pλ[〈0〉n] = Pλ

[
1− tn

1− t

]
=
tn(λ)(tn; q, t)λ

cλ(q, t)
,

where from hereon we mostly suppress the dependence of the Macdonald polynomials on q and t.
By a polynomial argument (2.18) is equivalent to [32, p. 338]

(2.19) Pλ

[
1− a
1− t

]
=
tn(λ)(a; q, t)λ
cλ(q, t)

.

Replacing (a, t) 7→ (qzγ , qγ) and letting q tend to one in (2.19) yields the following expression for
the Jack polynomial evaluated at a binomial element z:

(2.20) P
(1/γ)
λ [z] =

(zγ; γ)λ
(kγ; γ)λ

∏
16i<j6k

((j − i+ 1)γ)λi−λj
((j − i)γ)λi−λj

,

where k is an arbitrary integer such that k > l(λ). For γ = 1 and z = n, with n a nonnegative
integer this reduces to (2.11).

The evaluation symmetry of the Macdonald polynomials [32, p. 332] may expressed in terms of
spectral vectors as

(2.21) Pµ[〈0〉n]Pλ[〈µ〉n] = Pλ[〈0〉n]Pµ[〈λ〉n],

where λ, µ ∈ Pn. We require a more general form of this symmetry, which is a nonsymmetric
version of [64, Proposition 2.1].

Lemma 2.2. For λ ∈Pn and µ ∈Pm,

(2.22) Pµ

[
1− a
1− t

]
Pλ

[
at−m〈µ〉m +

1− at−m

1− t

]
= Pλ

[
1− a
1− t

]
Pµ

[
at−n〈λ〉n +

1− at−n

1− t

]
.

Proof. For m = n and a 7→ atn this is [64, Proposition 2.1]

(2.23) Pµ

[
1− atn

1− t

]
Pλ

[
a〈µ〉n +

1− a
1− t

]
= Pλ

[
1− atn

1− t

]
Pµ

[
a〈λ〉n +

1− a
1− t

]
.

Fixing an integer m such that l(µ) 6 m 6 n we have

a〈µ〉n = atn−m〈µ〉m +
a− atn−m

1− t
.

Therefore (2.23) becomes

Pµ

[
1− atn

1− t

]
Pλ

[
atn−m〈µ〉m +

1− atn−m

1− t

]
= Pλ

[
1− atn

1− t

]
Pµ

[
a〈λ〉n +

1− a
1− t

]
.

Scaling a 7→ at−n results in (2.22). Since this is symmetric in m and n the restriction m 6 n may
be dropped. �
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3. Cauchy-type identities

An important special case of the Cauchy identity (2.16) — obtained by taking µ = 0, making
the plethystic substitution Y 7→ (1−a)/(1− t) and using the specialisation formula (2.19) — is the
Kaneko–Macdonald q-binomial theorem [26, 33]∑

λ

tn(λ)(a; q, t)λ
c′λ(q, t)

Pλ(X; q, t) =
∏
i>1

(axi; q)∞
(xi; q)∞

.

An An analogue of this formula is given in [63, Theorem 3.2] and then applied to prove the ν = 0
case of Theorem 1.2. In order to prove Theorem 1.2 in full we require an An Cauchy-type identity
which simultaneously generalises (2.16) and [63, Theorem 3.2]. This is the content of Theorem 3.4
below.

3.1. Identities for skew Macdonald polynomials. For partitions λ, µ and k ∈ N, ` ∈ N∪{∞}
such that k > l(λ) and ` > l(µ), define [64]5

fk,`λ,µ(a; q, t) := t−k|µ|
k∏
i=1

∏̀
j=1

(aqtj−i−1; q)λi−µj
(aqtj−i; q)λi−µj

.

By (a; q)−n/(b; q)−n = (b/a)n(q/b; q)n/(q/a; q)n it follows that

fk,`λ,µ(a; q, t) = f `,kµ,λ(t/aq; q, t)

provided ` is finite. For infinite `, let t` := 0. Our proof of Theorem 3.4, given in Section 3.3,
hinges on the following summation formula for skew Macdonald polynomials [64, Theorem 3.4].

Proposition 3.1. For partitions λ and µ, we have

(3.1)
∑
ν

t−|ν|Pµ/ν

[
1− 1/a

1− t

]
Qλ/ν

[
1− aq/t

1− t

]
= Pµ

[
1− tk/a

1− t

]
Qλ

[
1− aqt`−1

1− t

]
fk,`λ,µ(a; q, t),

where k ∈ N and ` ∈ N ∪ {∞} may be chosen arbitrarily, provided that k > l(λ) and ` > l(µ).

In [64] the right-hand side of (3.1) is stated with ` = k. Of course, since the left-hand side does
not depend on k and `, the above form of the identity is not actually more general. Indeed,

fk,`λ,µ(a; q, t)

= t−(k−l(λ))|µ|f
l(λ),l(µ)
λ,µ (a; q, t)

l(λ)∏
i=1

∏̀
j=l(µ)+1

(aqtj−i−1; q)λi
(aqtj−i; q)λi

k∏
i=l(λ)+1

l(µ)∏
j=1

(aqtj−i−1; q)−µj
(aqtj−i; q)−µj

= f
l(λ),l(µ)
λ,µ (a; q, t)

(aqtl(µ)−1; q, t)λ
(aqt`−1; q, t)λ

(tl(λ)/a; q, t)µ
(tk/a; q, t)µ

.

Substituting this in the right-hand side of (3.1) and using (2.19) yields the identity with k and `
replaced by l(λ) and l(µ). For later use we note that from the above and (2.19) it follows that

(3.2) fk,∞λ,µ (a; q, t)Qλ

[
1

1− t

]
= fk,`λ,µ(a; q, t)Qλ

[
1− aqt`−1

1− t

]
,

where ` is an arbitrary integer such that ` > l(µ).

5For the relationship between fk,`λ,µ(a; q, t) and Nekrasov-type functions, see [20, Equation (B.4)].



SELBERG INTEGRALS 19

For our next result we would like to specialise a = tk−` (for k 6 ` and ` finite) in (3.1). Potentially
this could lead to problems with the double product on the right, and the following lemma serves
to show that such a specialisation is in fact permitted provided the resulting double product is
interpreted correctly.

Lemma 3.2. Let λ and µ be partitions and k, ` ∈ N such that k 6 ` and such that k > l(λ) and
` > l(µ). Then

(3.3) lim
b→1

fk,`λ,µ(btk−`; q, t)

is well-defined. Furthermore a necessary and sufficient condition for the nonvanishing of this limit
is

(3.4) λi > µi−k+` for 1 6 i 6 k.

The inequalities (3.4) may conveniently be visualised as:

(3.5)

λ1 > λ2 > · · · > λk > λk+1 > · · · > 0

> > >

µ1 > · · · > µ`−k+1 > µ`−k+2 > · · · > µ` > µ`+1 > · · · > 0.

Remark. It is assumed in Lemma 3.2 that q and t are generic. For the Schur case q = t the
equation (3.4) has to be replaced by

λi = µji + i− ji + `− k for 1 6 i 6 k,

where 1 6 j1 < j2 < · · · < jk 6 `.

Proof. To see that the limit is well-defined, note that for fixed i the powers of t in (3.3) are zero
when j = i−k+`+1 in the numerator and j = i−k+` in the denominator. Since j 6 ` this yields
k− ` 6 i 6 k− 1 for the numerator and k− `+ 1 6 i 6 k for the denominator, with both the lower
bounds automatically satisfied since k 6 `. Therefore, taking the product of the t-independent
q-shifted factorials in (3.3) and making a shift in the indices yields

(3.6)

∏k−1
i=1 (bq; q)λi−µi−k+`+1∏k
i=1(bq; q)λi−µi−k+`

=
1

(bq; q)λk−µ`

`−1∏
i=`−k+1

(bq1+λi+`−k−µi ; q)µi−µi+1 .

Since µ is a partition, µi > µi+1, and hence the limit b→ 1 exists.
The vanishing of the limit (3.3) is completely determined by the vanishing of the right-hand side

of (3.6) when b → 1. Clearly the term 1/(q; q)λk−µ` will vanish unless λk > µ` by (2.4). In order
for (3.6) to be nonvanishing, one of

λi+k−` > µi,(3.7a)

λi+k−` < µi = µi+1,(3.7b)

must hold for each i such that `− k + 1 6 i 6 `− 1. Now assume that λk > µ` and one of (3.7a)
and (3.7b) holds. Consider the largest i for which (3.7b) holds but (3.7a) does not. We cannot
have i = `− 1 as this would imply

λk < µ`−1 = µ`

contradicting λk > µ`. Similarly, no such maximal i exists with i 6 `− 1 as we then would get

λi+k−` < µi = µi+1.
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However, as (3.7a) must now hold with i 7→ i+ 1, this would give λi+k−` < λi+k−`+1, contradicting
that λ is a partition. Therefore we conclude that (3.7a) must hold for all ` − k + 1 6 i 6 ` − 1.
This is equivalent to the desired conditions by a shift of indices, and hence we are done. �

By abuse of notation, we will write fk,`λ,µ(tk−`; q, t) instead of limb→1 f
k,`
λ,µ(btk−`; q, t) in the follow-

ing.

Corollary 3.3. Let k, ` ∈ N such that k 6 `. Then, for partitions λ, µ such that l(λ) 6 k,∑
ν

t−|ν|Pµ/ν

[
1− t`−k

1− t

]
Qλ/ν

[
1− qtk−`−1

1− t

]
= Pµ

[
1− t`

1− t

]
Qλ

[
1− qtk−1

1− t

]
fk,`λ,µ(tk−`; q, t).

The above corollary is essentially [62, Theorem 4.1, u = 0]. It should be noted that the condition
l(µ) 6 ` has been dropped in comparison with Proposition 3.1 and [62, Theorem 4.1], since both
sides identically vanish when l(µ) > `. To see this, note that the summand vanishes unless ν ⊆ λ,
ν ⊆ µ and µi−k+` 6 νi for all i > 1. This in particular implies that the summand vanishes unless
µi−k+` 6 λi for all i > 1, in accordance with (3.4). When i = k + 1 this yields µ`+1 6 λk+1. Now,
since l(λ) 6 k, λk+1 = 0 so that µ`+1 = 0, i.e., l(µ) 6 `. Clearly, the right-hand side has this same
vanishing property.

3.2. An Cauchy-type identities. As we will see below, the Cauchy identity for Macdonald poly-
nomials may be viewed as a discrete analogue of the AFLT integral. For the purpose of generalisa-
tion it is convenient to think of the Cauchy identity (2.16) as an identity for the root system A1 in
which the two alphabets X and Y are attached to the single vertex of the corresponding Dynkin
diagram:

X

Y

Extending this to An, we consider sums of the form

(3.8)
∑

λ(1),...,λ(n)

n∏
r=1

Pλ(r)
[
X(r)

]
Qλ(r)

[
Y (r)

] n−1∏
r=1

f
kr,kr+1

λ(r),λ(r+1)(ar; q, t),

where the functions f
kr,kr+1

λ(r),λ(r+1) represent the edges of the An Dynkin diagram:

X(1) X(2) X(r−1) X(n−1) X(n)

Y (1) Y (2) Y (r−1) Y (n−1) Y (n)

In (3.8) we choose k1 6 k2 6 · · · 6 kn−1 to be nonnegative integers and kn ∈ N∪{∞}. Also, ar for
1 6 r 6 n − 2 will be fixed as ar = tkr−kr+1 , whereas an−1 is an indeterminate. In the sum (3.8)

we also specialise the alphabets X(2), . . . , X(n) and Y (1), . . . , Y (n−1) as

(3.9) X(r+1) =
1− tkr/ar

1− t
, Y (r) = zr

t− arqtkr+1

1− t
for 1 6 r 6 n− 1,

and fix the cardinalities of X(1) and Y (n) to be

|X(1)| = k1, |Y (n)| = kn.
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It should be noted that since ar = tkr−kr+1 for r 6= n− 1 we have

(3.10) X(r) =
1− tkr
1− t

for 2 6 r 6 n− 1

so that |X(r)| = kr for all 1 6 r 6 n− 1.
Recall the convention that tk := 0 if k = ∞. Our first An Cauchy-type formula may then be

stated as follows.

Theorem 3.4 (An Cauchy-type formula I). Let k1 6 k2 6 · · · 6 kn−1 be nonnegative integers

and kn ∈ N ∪ {∞}. Then for an−1 an indeterminate, ar := tkr−kr+1 for 1 6 r 6 n − 2, X(1) =

x1 + · · ·+ xk1, Y (n) = y1 + · · ·+ ykn and X(2), . . . , X(n), Y (1), . . . , Y (n−1) as in (3.9), and

W := z1 · · · zn−1X(1) +
n−1∑
r=1

zr+1 · · · zn−1
1− 1/ar

1− t
,

we have ∑
λ(1),...,λ(n)

n∏
r=1

Pλ(r)
([
X(r)

]
; q, t

)
Qλ(r)/µ(r)

([
Y (r)

]
; q, t

) n−1∏
r=1

f
kr,kr+1

λ(r),λ(r+1)(ar; q, t)(3.11)

= Pµ(n)
(
[W ]; q, t

) n−1∏
r=1

( k1∏
i=1

(arqz1 · · · zrxi; q)∞
(tz1 · · · zrxi; q)∞

kn∏
j=1

(zr+1 · · · zn−1yj/ar; q)∞
(zr+1 · · · zn−1yj ; q)∞

)

×
k1∏
i=1

kn∏
j=1

(tz1 · · · zn−1xiyj ; q)∞
(z1 · · · zn−1xiyj ; q)∞

∏
16r<s6n−1

kr+1−kr∏
i=1

(asqt
i−1zr+1 · · · zs; q)∞

(tizr+1 · · · zs; q)∞
,

where µ(1), . . . , µ(n−1) := 0 and µ(n) is an arbitrary partition.

For n = 1 the theorem reduces to (2.16) with (X,Y, µ) 7→ (X(1), Y (1), µ(n)), and for n = 2, k2
finite and µ(n) = 0 it coincides with [64, Theorem 1.2]. When n > 2 there is some mild redundancy

in (3.11) since the substitution X(1) 7→ z−11 X(1) eliminates any reference to z1. We further remark
that we do not know how to evaluate the left-hand side of (3.11) in closed-form if one (or more)

of the ar for 1 6 r 6 n− 2 is an indeterminate. Since |X(r)| = kr for 1 6 r 6 n− 1 the summand

vanishes unless l(λ(r)) 6 kr for this same range of r. If ar for some r 6 n− 2 is an indeterminate,

then λ(r+1) can have an arbitrarily large length, which prevents us from applying Proposition 3.1
in our proof. Requiring ar = tkr−kr+1 for 1 6 r 6 n − 1 allows us to use Corollary 3.3 in place
of the proposition. We are, however, allowed to keep an−1 an indeterminate since Y (n) is either a
finite alphabet of cardinality kn, or countably infinite, permitting us to apply Proposition 3.1. For
more details we refer to the proof of the theorem contained in the next section.

There is a second, closely related, Cauchy-type identity, in which kn is finite and no longer
corresponds to the cardinality of Y (n).

Corollary 3.5 (An Cauchy-type formula II). Let k1 6 k2 6 · · · 6 kn be nonnegative integers.

Then for ar := tkr−kr+1 for 1 6 r 6 n − 1, X(1) = x1 + · · · + xk1, Y (n) = y1 + y2 + · · · and

X(2), . . . , X(n), Y (1), . . . , Y (n−1) as in (3.9), and

W := z1 · · · zn−1X(1) +

n−1∑
r=1

zr+1 · · · zn−1
1− tkr−kr+1

1− t
,
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we have ∑
λ(1),...,λ(n)

n∏
r=1

Pλ(r)
([
X(r)

]
; q, t

)
Qλ(r)/µ(r)

([
Y (r)

]
; q, t

) n−1∏
r=1

f
kr,kr+1

λ(r),λ(r+1)(ar; q, t)(3.12)

= Pµ(n)
(
[W ]; q, t

) n−1∏
r=1

( k1∏
i=1

(qtkr−kr+1z1 · · · zrxi; q)∞
(tz1 · · · zrxi; q)∞

∏
j>1

(tkr+1−krzr+1 · · · zn−1yj ; q)∞
(zr+1 · · · zn−1yj ; q)∞

)

×
k1∏
i=1

∏
j>1

(tz1 · · · zn−1xiyj ; q)∞
(z1 · · · zn−1xiyj ; q)∞

∏
16r<s6n−1

kr+1−kr∏
i=1

(qti+ks−ks+1−1zr+1 · · · zs; q)∞
(tizr+1 · · · zs; q)∞

,

where µ(1), . . . , µ(n−1) := 0 and µ(n) is an arbitrary partition.

We note that in the above corollary the range for which (3.10) holds includes r = n. In par-

ticular |X(r)| = kr for all 1 6 r 6 n. The corollary simplifies to the An q-binomial theorem [63,

Theorem 3.2] if we replace Y (n) 7→ znt
kn−1(1− a)/(1− t) and zr 7→ zrt

kr−1−1 for all 1 6 r 6 n− 1
where k0 := 0.

Proof of Corollary 3.5. We take Theorem 3.4 with kn =∞. Then Y (n) = y1+y2+· · · in accordance
with the corollary. Moreover, by (3.2) and the fact that µ(n−1) = 0,

Qλ(n−1)/µ(n−1)

[
Y (n−1)]fkn−1,kn

λ(n−1),λ(n)
(an−1; q, t)

= Qλ(n−1)

[
znt

1− t

]
f
kn−1,∞
λ(n−1),λ(n)

(an−1; q, t)

= Qλ(n−1)

[
zn
t− an−1qtk̂n

1− t

]
f
kn−1,k̂n
λ(n−1),λ(n)

(an−1; q, t)

= Qλ(n−1)/µ(n−1) [Ŷ (n−1)]f
kn−1,k̂n
λ(n−1),λ(n)

(an−1; q, t).

Here k̂n is an arbitrary integer such that k̂n > l(λ(n)) and Ŷ (n−1) := zn(t − an−1qtk̂n)/(1 − t), so

that Ŷ (n−1) corresponds to Y (n−1) in (3.9) except that kn has been replaced by k̂n. Of course,

since we are summing over all partitions λ(n) there exists no integer k̂n such that k̂n > l(λ(n)) for

all λ(n). To get around this problem we specialise an−1 = qkn−1−k̂n . Then X(n) = (1− tk̂n)/(1− t)
of cardinality |k̂n| so that without loss of generality we may assume that l(λ(n)) 6 k̂n. Finally

replacing k̂n by kn completes the proof. �

The proof of Theorem 1.2 actually requires a plethystically substituted version of the µ(n) = 0
instance of (3.12) obtained by replacing Y (n) 7→ Y (n) + (c− d)/(1− t). This substitution can easily
be carried out noting that the right-hand side of (3.12) without Pµ(n) [W ] is expressible in terms of
σ1 as

σ1

[
n−1∑
r=1

(
tz1 · · · zr

1− qtkr−kr+1−1

1− q
X(1) + zr+1 · · · zn−1

1− tkr+1−kr

1− q
Y (n)

)
+

z1 · · · zn−1
1− t
1− q

X(1)Y (n) +
∑

16r<s6n−1
tzr+1 · · · zs

(1− qtks−ks+1−1)(1− tkr+1−kr)

(1− q)(1− t)

]
.



SELBERG INTEGRALS 23

Corollary 3.6. With the same conditions as in Corollary 3.5,∑
λ(1),...,λ(n)

Pλ(n)
([
X(n)

]
; q, t)Qλ(n)

([
Y (n) +

c− d
1− t

]
; q, t

)

×
n−1∏
r=1

(
Pλ(r)

([
X(r)

]
; q, t

)
Qλ(r)

([
Y (r)

]
; q, t

)
f
kr,kr+1

λ(r),λ(r+1)(ar; q, t)
)

=
n−1∏
r=1

( k1∏
i=1

(qtkr−kr+1z1 · · · zrxi; q)∞
(tz1 · · · zrxi; q)∞

∏
j>1

(tkr+1−krzr+1 · · · zn−1yj ; q)∞
(zr+1 · · · zn−1yj ; q)∞

)

×
k1∏
i=1

∏
j>1

(tz1 · · · zn−1xiyj ; q)∞
(z1 · · · zn−1xiyj ; q)∞

k1∏
i=1

(dz1 · · · zn−1xi; q)∞
(cz1 · · · zn−1xi; q)∞

×
n−1∏
r=1

kr+1−kr∏
i=1

(dzr+1 · · · zn−1ti−1; q)∞
(czr+1 · · · zn−1ti−1; q)∞

∏
16r<s6n−1

kr+1−kr∏
i=1

(qti+ks−ks+1−1zr+1 · · · zs; q)∞
(tizr+1 · · · zs; q)∞

.

3.3. Proof of Theorem 3.4. We define two families of auxiliary alphabets {X(r,m)}06m<r6n and

{Z(r)}nr=1 as

X(r,m) :=


z1 · · · zmX(1) +

m∑
u=1

zu+1 · · · zm
1− 1/au

1− t
if r = m+ 1,

1− 1/ar−1
1− t

otherwise,

and

Z(r) :=


Y (n) if r = n,

zr
t− arq
1− t

otherwise.

The first family satisfies the simple recursion

(3.13) zm+1X
(m+1,m) +X(m+2,m) = X(m+2,m+1).

Lemma 3.7. For n,m integers such that 0 6 m 6 n− 1, and ν(n) a partition, define

gm :=

m∏
r=1

k1∏
i=1

(arqz1 · · · zrxi; q)∞
(tz1 · · · zrxi; q)∞

∏
16r<s6m

kr+1−kr∏
i=1

(asqt
i−1zr+1 · · · zs; q)∞

(tizr+1 · · · zs; q)∞
(3.14)

×
∑

ν(m+1),...,ν(n−1)

n∏
r=m+1

(
z|ν

(r)|
r

∑
λ(r)

Pλ(r)/ν(r−1)

([
X(r,m)

]
; q, t

)
Qλ(r)/ν(r)

([
Z(r)

]
; q, t

))
,

where ν(m) := 0. Then gm = gm+1 for 0 6 m 6 n− 2.

Proof. Since ν(m) := 0, the sum over λ(m+1) in (3.14) is of the form (2.16) with

(X,Y, λ, µ) 7→
(
X(m+1,m), Z(m+1), λ(m+1), ν(m+1)

)
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and hence equates to

Pν(m+1)

[
X(m+1,m)

]
σ1

[
1− t
1− q

X(m+1,m)Z(m+1)

]
.

Since 0 6 m 6 n− 2, it follows that

σ1

[
1− t
1− q

X(m+1,m)Z(m+1)

]
= σ1

[
z1 · · · zm+1

t− am+1q

1− q
X(1) +

m∑
r=1

zr+1 · · · zm+1
(1− tkr+1−kr)(t− am+1q)

(1− t)(1− q)

]

=

k1∏
i=1

σz1···zm+1

[
t− am+1q

1− q
xi

] m∏
r=1

kr+1−kr∏
i=1

σzr+1···zm+1

[
ti−1(t− am+1q)

1− q

]

=

k1∏
i=1

(am+1qz1 · · · zm+1xi; q)∞
(tz1 · · · zm+1xi; q)∞

m∏
r=1

kr+1−kr∏
i=1

(am+1qt
i−1zr+1 · · · zm+1; q)∞

(tizr+1 · · · zm+1; q)∞
,

where the second equality follows from (2.13) and the last equality from (2.14). As a result,

gm =

m+1∏
r=1

k1∏
i=1

(arqz1 · · · zrxi; q)∞
(tz1 · · · zrxi; q)∞

∏
16r<s6m+1

kr+1−kr∏
i=1

(asqt
i−1zr+1 · · · zs; q)∞

(tizr+1 · · · zs; q)∞

×
∑

ν(m+1),...,ν(n−1)

{
Pν(m+1)

[
zm+1X

(m+1,m)
]

×
n∏

r=m+2

(
z|ν

(r)|
r

∑
λ(r)

Pλ(r)/ν(r−1)

[
X(r,m)

]
Qλ(r)/ν(r)

[
Z(r)

])}
.

After interchanging the order of the sum over ν(m+1) with those over the λ(r), the former can be
summed using (2.15) with

(X,Y, λ, µ) 7→
(
X(m+2,m), zm+1X

(m+1,m), λ(m+2), ν(m+1)
)
.

Thanks to the recursion (3.13) this yields Pλ(m+2) [X(m+2,m+1)], resulting in gm = gm+1. �

We are now ready to prove Theorem 3.4. As a first step we eliminate f
kr,kr+1

λ(r),λ(r+1)(ar; q, t) from

the summand in (3.11) by applying Corollary 3.3 with

(λ, µ, ν, k, `) 7→ (λ(r), λ(r+1), ν(r), kr, kr+1) for 1 6 r 6 n− 2

and Proposition 3.1 with

(a, λ, µ, ν, k, `) 7→ (an−1, λ
(n−1), λ(n), ν(n−1), kn−1, kn) for r = n− 1.

Then ∑
λ(1),...,λ(n)

n∏
r=1

Pλ(r)
[
X(r)

]
Qλ(r)/µ(r)

[
Y (r)

] n−1∏
r=1

f
kr,kr+1

λ(r),λ(r+1)(ar; q, t)

=
∑

λ(1),...,λ(n)

∑
ν(1),...,ν(n−1)

Pλ(1)
[
X(1)

]
Qλ(n)/µ(n)

[
Y (n)

]
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×
n−1∏
r=1

z|λ
(r)|

r Qλ(r)/ν(r)

[
t− arq
1− t

]
Pλ(r+1)/ν(r)

[
1− 1/ar

1− t

]

=
∑

ν(1),...,ν(r−1)

n∏
r=1

(
z|ν

(r)|
r

∑
λ(r)

Pλ(r)/ν(r−1) [X(r,0)]Qλ(r)/ν(r)
[
Z(r)

])∣∣∣∣
zn=1, ν(n)=µ(n)

= g0
∣∣
zn=1, ν(n)=µ(n)

,

where in the fourth line ν(0) := 0, and where g0 is defined in (3.14). Using Lemma 3.7 we may
replace g0 by gn−1, leading to∑

λ(1),...,λ(n)

n∏
r=1

Pλ(r)
[
X(r)

]
Qλ(r)/µ(r)

[
Y (r)

] n−1∏
r=1

f
kr,kr+1

λ(r),λ(r+1)(ar; q, t)

=
n−1∏
r=1

k1∏
i=1

(arqz1 · · · zrxi; q)∞
(tz1 · · · zrxi; q)∞

∏
16r<s6n−1

kr+1−kr∏
i=1

(asqt
i−1zr+1 · · · zs; q)∞

(tizr+1 · · · zs; q)∞

×
∑
λ(n)

Pλ(n)
[
X(n,n−1)]Qλ(n)/µ(n)[Y (n)

]
.

The final sum on the right can be carried out by (2.16) with

(X,Y, λ, µ) 7→
(
X(n,n−1), Y (n), λ(n), µ(n)

)
.

Since W = X(n,n−1) and

σ1

[
1− t
1− q

X(n,n−1)Y (n)

]
= σ1

[
z1 · · · zn−1

1− t
1− q

X(1)Y (n) +
n−1∑
r=1

zr+1 · · · zn−1
1− 1/ar

1− q
Y (n)

]

=

k1∏
i=1

kn∏
j=1

(tz1 · · · zn−1xiyj ; q)∞
(z1 · · · zn−1xiyj ; q)∞

n−1∏
r=1

kn∏
j=1

(zr+1 · · · zn−1yj/ar; q)∞
(zr+1 · · · zn−1yj ; q)∞

,

the right-hand side of the theorem results.

4. The An AFLT integral

In this section we first give a description of the domain on integration of the An AFLT integral
(1.13) and then apply the An Cauchy identity of Corollary 3.6 to prove this integral. At the end
of the section we give a companion to the AFLT integral based on Theorem 3.4

4.1. The domain Ck1,...,knγ [0, 1]. The domain of integration Ck1,...,knγ [0, 1] of the integral (1.10)
takes the form of a chain in the usual sense of algebraic topology. Since this chain is the same as
that of the An Selberg integral of [63, Theorem 1.2] (see also [56] where this chain first appeared
in the case of A2), we refer to [63] for the details of exactly how it arises in the course of the proof
presented in Section 4.2.

For n = 1 the domain Ck1γ [0, 1] is the k1-simplex given in (1.14). In order to describe Ck1,...,knγ [0, 1]

for n > 2, we first consider Dk1,...,kn [0, 1] ⊆ [0, 1]k1+···+kn as the set of points(
t(1), t(2), . . . , t(n)

)
=
(
t
(1)
1 , . . . , t

(1)
k1
, t

(2)
1 , . . . , t

(2)
k2
, . . . , t

(n)
1 , . . . , t

(n)
kn

)
∈ [0, 1]k1+···+kn
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subject to

0 < t
(r)
1 < · · · < t

(r)
kr
< 1 for 1 6 r 6 n,

and

t
(r)
i < t

(r+1)
i−kr+kr+1

for 1 6 i 6 kr, 1 6 r 6 n− 1.

Following (3.5) this may be visualised as

0 < t
(r)
1 < t

(r)
2 < · · · < t

(r)
kr

< 1

< < <

0 < t
(r+1)
1 < · · · < t

(r+1)
kr+1−kr+1 < t

(r+1)
kr+1−kr+2 < · · · < t

(r+1)
kr+1

< 1.

We need to consider all possible total orderings between the integration variables t(r) and t(r+1)

consistent with the above partial order. Each such total ordering may be described by a map

Mr : {1, . . . , kr} −→ {1, . . . , kr+1}

such that Mr(i) 6Mr(i+ 1) and 1 6Mr(i) 6 i+ kr+1 − kr, so that

(4.1) t
(r+1)
Mr(i)−1 < t

(r)
i < t

(r+1)
Mr(i)

,

where t
(r+1)
0 := 0. In view of this we define the sets

Dk1,...,kn
M1,...,Mn−1

⊆ Dk1,...,kn [0, 1]

by requiring that (4.1) holds for fixed admissible maps M1, . . . ,Mn−1. Then Dk1,...,kn can be written
as the chain

Dk1,...,kn [0, 1] =
∑

M1,...,Mn−1

Dk1,...,kn
M1,...,Mn−1

[0, 1],

where the sum is over all admissible maps M1, . . . ,Mn−1. Analytically continuing the weight
function

(4.2) F k1,...,knM1,...,Mn−1
(γ) :=

n−1∏
r=1

kr∏
i=1

sin(π(i+ kr+1 − kr −Mr(i) + 1)γ)

sin(π(i+ kr+1 − kr)γ)
for γ ∈ C \ Z,

to include γ = 0, the chain Ck1,...,knγ [0, 1] is defined as

(4.3) Ck1,...,knγ [0, 1] :=
∑

M1,...,Mn−1

F k1,...,knM1,...,Mn−1
(γ)Dk1,...,kn

M1,...,Mn−1
[0, 1].

Note that it follows from the above that

C0,k2,...,kn
γ [0, 1] = Ck2,...,knγ [0, 1].

4.2. Proof of Theorem 1.2. We begin with the identity of Corollary 3.6, where we note that the
alphabets X(1) and Y (n) contain k1 variables and countably many variables respectively. We now

fix a nonnegative integer m and set Y
(n)
i = 0 for i > m. Next we fix a pair of partitions λ ∈ Pk1

and µ ∈Pm, and carry out the specialisation(
X(1), Y (n), c, d

)
7→
(
〈λ〉k1 , bznt1−m〈µ〉m, znt, bznt1−m

)
.
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Also replacing λ(1), . . . , λ(n) by ν(1), . . . , ν(n), this leads to the identity∑
ν(1),...,ν(n)

Pν(1) [〈λ〉k1 ]Qν(n)

[
bt−m〈µ〉m +

1− bt−m

1− t

]

×
n∏
r=1

(tzr)
|ν(r)|

n−1∏
r=1

(
Pν(r+1)

[
1− tkr+1

1− t

]
Qν(r)

[
1− qtkr−1

1− t

]
f
kr,kr+1

ν(r),ν(r+1)(t
kr−kr+1 ; q, t)

)

=

n−1∏
r=1

( k1∏
i=1

(z1 · · · zrqλi+1tk1+kr−kr+1−i; q)∞
(z1 · · · zrqλitk1−i+1; q)∞

m∏
j=1

(bzr+1 · · · znqµj tkr+1−kr−j ; q)∞
(bzr+1 · · · znqµj t−j ; q)∞

)

×
k1∏
i=1

m∏
j=1

(bz1 · · · znqλi+µj tk1+1−i−j ; q)∞
(bz1 · · · znqλi+µj tk1−i−j ; q)∞

k1∏
i=1

(bz1 · · · zn−1qλitk1−m−i; q)∞
(z1 · · · zn−1qλitk1−i; q)∞

×
n−1∏
r=1

kr+1−kr∏
i=1

(bzr+1 · · · zn−1ti−m−1; q)∞
(zr+1 · · · zn−1ti−1; q)∞

∏
16r<s6n−1

kr+1−kr∏
i=1

(qtks−ks+1+i−1zr+1 · · · zs; q)∞
(tizr+1 · · · zs; q)∞

,

where we have dropped ar in favour of tkr−kr+1 in comparison with Corollary 3.6. By virtue of the
evaluation symmetry (2.21) and the generalised evaluation symmetry of Lemma 2.2, we have

Pν(1)
[
〈λ〉k1

]
=
Pν(1)

[
1−tk1
1−t

]
Pλ
[
1−tk1
1−t

] Pλ[〈ν(1)〉k1]
and

Qν(n)

[
bt−m〈µ〉m +

1− bt−m

1− t

]
=
Qν(n)

[
1−b
1−t
]

Pµ
[
1−b
1−t
] Pµ

[
bt−kn〈ν(n)〉kn +

1− bt−kn
1− t

]
,

effectively allowing us to interchange the roles of ν(1), ν(n) and λ, µ in the summand. Carrying this
out and multiplying both sides by

(4.4) Pλ

[
1− tk1
1− t

]
Pµ

[
1− b
1− t

]
,

the left-hand side of the above identity becomes

∑
ν(1),...,ν(n)

Pλ
[
〈ν(1)〉k1 ]Pµ

[
bt−kn〈ν(n)〉kn +

1− bt−kn
1− t

]
(b; q, t)ν(n)

×
n∏
r=1

(tzr)
|ν(r)|t2n(ν

(r))(tkr ; q, t)ν(r)

cν(r)(q, t)c
′
ν(r)

(q, t)

n−1∏
r=1

(qtkr−1; q, t)ν(r)f
kr,kr+1

ν(r),ν(r+1)(t
kr−kr+1 ; q, t),

where we have also used the specialisation formulas (2.18) and (2.19). The corresponding right-
hand side is as before, except for the additional factor (4.4). Next we use (2.5) and (2.6) in the
summand, make the further substitutions

b 7→ qβ+(kn−1)γ , t 7→ qγ and zr 7→ qαr−γ for 1 6 r 6 n,
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and introduce auxiliary variables (t(1), . . . , t(n)) as t
(r)
i := qν

(r)
i +(kr−i)γ . To more simply express

the resulting identity we introduce some additional notation, and for alphabets t = (t1, . . . , tk),
s = (s1, . . . , s`) define

∆γ(t; q) :=
∏

16i<j6k

t2γj
(
1− ti/tj

)(
q1−γti/tj ; q

)
2γ−1

and

∆γ(t, s; q) :=

k∏
i=1

∏̀
j=1

s−γj
(
qti/sj ; q

)
−γ .

After multiplying through by (1− q)k1+···+kn , this yields

(1− q)k1+···+kn
∑

ν(1),...,ν(n)

Pλ
(
t(1); q, qγ

)
Pµ

([
qβ−γt(n) +

1− qβ−γ

1− qγ

]
; q, qγ

)

×
n∏
r=1

(
∆γ

(
t(r); q

) kr∏
i=1

(
t
(r)
i

)αr(qt(r)i ; q
)
βr−1

) n−1∏
r=1

∆γ

(
t(r), t(r+1); q

)
= qγ

∑n
r=1

(
αr(kr2 )+2γ(kr3 )

)
−γ2

∑n−1
r=1 kr(

kr+1
2 )

× Pλ
([

1− qk1γ

1− qγ

]
; q, qγ

)
Pµ

([
1− qβ+(kn−1)γ

1− qγ

]
; q, qγ

)

×
n−1∏
r=1

kr∏
i=1

Γq(1 + (i− kr+1 − 1)γ)Γq(iγ)

Γq(γ)

kn∏
i=1

Γq(β + (i− 1)γ)Γq(iγ)

Γq(γ)

×
∏

16r<s6n−1

kr+1−kr∏
i=1

Γq(αr+1 + · · ·+ αs + (r − s+ i)γ)

Γq(1 + αr+1 + · · ·+ αs + (ks − ks+1 + i+ r − s− 1)γ)

×
n−1∏
r=1

( kr+1−kr∏
i=1

Γq(αr+1 + · · ·+ αn + (r − n+ i)γ)

Γq(αr+1 + · · ·+ αn + β + (kn −m+ r − n+ i− 1)γ)

×
k1∏
i=1

Γq(α1 + · · ·+ αr + (k1 − r − i+ 1)γ + λi)

Γq(1 + α1 + · · ·+ αr + (k1 + kr − kr+1 − r − i)γ + λi)

×
m∏
j=1

Γq(αr+1 + · · ·+ αn + β + (kn + r − n− j)γ + µj)

Γq(αr+1 + · · ·+ αn + β + (kr+1 − kr + kn + r − n− j)γ + µj)

)

×
k1∏
i=1

Γq(α1 + · · ·+ αn + (k1 − n− i+ 1)γ + λi)

Γq(α1 + · · ·+ αn + β + (k1 + kn −m− n− i)γ + λi)

×
k1∏
i=1

m∏
j=1

Γq(α1 + · · ·+ αn + β + (k1 + kn − n− i− j)γ + λi + µj)

Γq(α1 + · · ·+ αn + β + (k1 + kn − n− i− j + 1)γ + λi + µj)
,

where β1 = · · · = βn−1 := 1 and βn := β. The above is a restricted q-integral over the domain
Dk1,...,kn [0, 1]. To complete the proof we divide the above identity by its λ = µ = 0 case and then
take the q → 1− limit. In this limit (1 − qz)/(1 − qγ) becomes the binomial element z/γ and the
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domain of integration becomes Ck1,...,knγ [0, 1], exactly as in the proof of the An Selberg integral
(cf. [63, §5]). The resulting An Selberg average is the ` = k1 case of Theorem 1.2. It is a trivial
exercise to verify that the right-hand side of (1.13) is independent of the choice of `, as long as
` > l(λ).

4.3. A companion to the An AFLT integral. In [64] the n = 2 case of Theorem 3.4 with

µ(2) = 0 is employed to prove an A2 Selberg integral with two Jack polynomials in the integrand,
but in a different form to that of the A2 AFLT integral (Theorem 1.2 for n = 2). The two integrals
differ in that the argument of the second Jack polynomial in [64, Theorem 3.1] is simply the alphabet

t(2) with cardinality k2 and there is an additional parameter β1 subject to β1 + β2 = γ+ 1 (here β2
is the β of the A2 AFLT integral). By the rank-n case of Theorem 3.4 we obtain an An analogue
of [64, Theorem 3.1] described below.

For α1, . . . , αn, βn−1, βn, γ ∈ C such that

(4.5a) βn−1 + βn = γ + 1,

(4.5b) βn−1 + (i− kn − 1)γ 6∈ Z for 1 6 i 6 min{kn−1, kn},

and

Re(γ) > − 1

max{kn−1, kn}
, Re

(
βr + (i− kr+1 − 1)γ

)
> 0 for 1 6 r 6 n and 1 6 i 6 kr,(4.5c)

Re
(
αr + · · ·+ αs + (r − s+ i− 1)γ

)
> 0(4.5d)

for


1 6 r 6 s 6 n− 1 and 1 6 i 6 kr − kr−1,
1 6 r 6 n− 1, s = n and 1 6 i 6 min{kn, kr − kr−1},
r = s = n and 1 6 i 6 kn,

where kn+1 := 0 and β1 = · · · = βn−2 := 1, we modify the An Selberg average (1.9) to

(4.6)
〈
O
〉k1,...,kn
α1,...,αn,βn−1,βn;γ

:=
IAnk1,...,kn(O;α1, . . . , αn, βn−1, βn; γ)

IAnk1,...,kn(1;α1, . . . , αn, βn−1, βn; γ)
.

Here

IAnk1,...,kn(O;α1, . . . , αn, βn−1, βn; γ)

:=

∫
C
k1,...,kn
βn−1,γ

[0,1]

O
(
t(1), . . . , t(n)

) n∏
r=1

kr∏
i=1

(
t
(r)
i

)αr−1(1− t(r)i )βr−1

×
n∏
r=1

∣∣∆(t(r))∣∣2γ n−1∏
r=1

∣∣∆(t(r), t(r+1)
)∣∣−γ dt(1) · · · dt(n)

and Ck1,...,knβ;γ [0, 1] is the following β-deformation of the chain defined in Section 4.1. Let

Ek1,...,kn [0, 1] ⊆ [0, 1]k1+···+kn

be the set of points (
t(1), . . . , t(n)

)
∈ [0, 1]k1+···+kn
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such that

0 < t
(r)
1 < · · · < t

(r)
kr
< 1 for 1 6 r 6 n

and

t
(r)
i < t

(r+1)
i−kr+kr+1

for 1 6 i 6 kr, 1 6 r 6 n− 2.

Ek1,...,kn [0, 1] differs from the set Dk1,...,kn [0, 1] only in that the relative ordering between the vari-

ables t(n−1) and t(n) has been removed. Accordingly we replace the sum over the maps Mn−1 by a
sum over maps

M ′n−1 : {1, . . . , kn} −→ {1, . . . , kn+1 + 1}
subject to M ′n−1(i) 6M

′
n−1(i+ 1) for 1 6 i 6 kn−1 such that

(4.7) t
(n)
M ′n−1(i)−1

< t
(n−1)
i < t

(n)
M ′n−1(i)

,

where t
(n)
0 := 0 and t

(n)
kn+1 := 1. We then define Ek1,...,kn

M1,...,Mn−2;M ′n−1
[0, 1] ⊆ Ek1,...,kn [0, 1] by requiring

that (4.1) holds for M1, . . . ,Mn−2 and (4.7) holds for Mn−1. Hence

Ek1,...,kn [0, 1] =
∑

M1,...,Mn−2,M ′n−1

Ek1,...,kn
M1,...,Mn−2;M ′n−1

[0, 1].

We also replace the weight function (4.2) by

Gk1,...,kn
M1,...,Mn−2,M ′n−1

(γ) := F
k1,...,kn−1

M1,...,Mn−2
(γ)

kn−1∏
i=1

sin(π(β − (i+ kn − kn−1 −M ′n−1(i) + 1)γ))

sin(π(β − (i+ kn − kn−1)γ))
.

Note that the condition (4.5b) is necessary for this weight function to be free of poles. The new
chain is then defined as

Ck1,...,knβ;γ [0, 1] :=
∑

M1,...,Mn−2,M ′n−1

Gk1,...,kn
M1,...,Mn−2,M ′n−1

(γ)Dk1,...,kn
M1,...,Mn−1

[0, 1].

We are now ready to state the counterpart to Theorem 1.2.

Theorem 4.1. For n > 2, let k1, . . . , kn be nonnegative integers such that k1 6 · · · 6 kn−1. Then
for α1, . . . , αn, βn−1, βn, γ ∈ C such that (4.5) holds and λ, µ ∈P, we have〈

P
(1/γ)
λ

(
t(1)
)
P (1/γ)
µ

(
t(n)
)〉k1,...,kn

α1,...,αn,βn−1,βn;γ
(4.8)

= P
(1/γ)
λ [k1]P

(1/γ)
µ [kn]

n−1∏
r=1

(α1 + · · ·+ αr + (k1 − r)γ; γ)λ
(α1 + · · ·+ αr + βr + (k1 + kr − kr+1 − r − 1)γ; γ)λ

×
n∏
r=2

(αr + · · ·+ αn + (kn + r − n− 1)γ; γ)µ
(1 + αr + · · ·+ αn − βr−1 + (kr − kr−1 + kn + r − n− 1)γ; γ)µ

×
k1∏
i=1

kn∏
j=1

(α1 + · · ·+ αn + (k1 + kn − n− i− j + 1)γ)λi+µj
(α1 + · · ·+ αn + (k1 + kn − n− i− j + 2)γ)λi+µj

and

IAnk1,...,kn(1;α1, . . . , αn, βn−1, βn; γ)(4.9)
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=
n∏
r=1

kr∏
i=1

Γ(βr + (i− kr+1 − 1)γ)Γ(iγ)

Γ(γ)

×
∏

16r6s6n−1

kr−kr−1∏
i=1

Γ(αr + · · ·+ αs + (r − s+ i− 1)γ)

Γ(αr + · · ·+ αs + βs + (ks − ks+1 + r − s+ i− 2)γ)

×
n∏
r=1

kn∏
i=1

Γ(αr + · · ·+ αn + (r − n+ i− 1)γ)

Γ(1 + αr + · · ·+ αn − βr−1 + (kr − kr−1 + r − n+ i− 1)γ)
,

where k0 = kn+1 := 0 and β0 = · · · = βn−2 := 1.

It should be noted that the final product in (4.9) may alternatively be expressed as

n−1∏
r=1

kr−kr−1∏
i=1

Γ(αr + · · ·+ αn + (r − n+ i− 1)γ)

Γ(αr + · · ·+ αn + (kn + r − n+ i− 1)γ)

kn∏
i=1

Γ(αn + (i− 1)γ)

Γ(αn + βn + (kn − kn−1 + i− 2)γ)
.

When β = γ in (1.13) and (βn−1, βn) = (1, γ) in (4.8) both integral evaluations coincide. For kn = 0
equation (4.8) simplifies to the An−1 analogue of Kadell’s integral [63, Theorem 6.1].

Proof. We start with (3.11) with kn finite and, for λ, µ ∈ P with l(λ) 6 k1 and l(µ) 6 kn, make
the substitutions(

X(1), Y (n), an−1, t, µ
(n)
)
7→
(
〈λ〉k1 , qαn〈µ〉kn , qβn−1+(kn−1−kn)γ , qγ , 0

)
and

zr 7→ qαr−γ for 1 6 r 6 n− 1.

Then the resulting sum may be turned into an integral following the steps outlined in Section 4.2.
For λ = µ = 0 this yields (4.9) and for general λ and µ it gives〈

P
(1/γ)
λ

(
t(1)
)
P (1/γ)
µ

(
t(n)
)〉k1,...,kn

α1,...,αn,βn−1,βn;γ
× IAnk1,...,kn(1;α1, . . . , αn, βn−1, βn; γ). �

5. Complex Schur functions and Selberg integrals

In this section we introduce a complex analogue of the Schur function and show how complex
Schur functions may be utilised to prove An Selberg-type integrals, such as Theorem 1.3. We
should remark that Kadell already observed in [25] that for γ = 1 the evaluations of the Kadell and
Hua–Kadell integrals remain valid if one replaces the Schur functions in the integrand by Schur
functions indexed by sequences of complex numbers. His paper does not, however, provide the
necessary tools to attack integrals such as (1.22), and we will not use any of his results for complex
Schur functions, such as Pieri and branching rules.

5.1. Complex Schur functions. In the following we fix the principal branch of the complex
logarithm with cut along the negative real axis and argument in (−π, π]. Accordingly we denote
the cut or slit complex plane |Im(log(x))| < π by Ω.

For x = (x1, . . . , xn) ∈ Ωn and z = (z1, . . . , zn) ∈ Cn, we define the complex Schur function6

S(n)(x; z) :=
det16i,j6n

(
x
zj
i

)
∆(x)

,

6Our definition differs slightly from that of Kadell [25].
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where ∆(x) is the Vandermonde product (1.7). Clearly, for λ ∈Pn,

(5.1) sλ(x1, . . . , xn) = S(n)(x1, . . . , xn;λ1 + n− 1, λ2 + n− 2, . . . , λn).

By removing the singularities at xi = xj we extend S(n) to a holomorphic function on Ωn. Since
the complex Schur function is symmetric in x, we may employ the usual plethystic notation and
we will sometimes write S(n)([x]; z) instead of S(n)(x; z), where of course x should always be an
alphabet of cardinality n.

It follows immediately from the determinantal structure of S(n) that the following expansion
holds.

Lemma 5.1. For any 0 6 m 6 n, we have

S(n)(x1, . . . , xn; z1, . . . , zn)

=
∑

I⊆{1,...,n}
|I|=m

S(m)
([∑

i∈I xi
]
; z1, . . . , zm

)
S(n−m)

([∑
i/∈I xi

]
; zm+1, . . . , zn

)∏
i∈I
∏
j /∈I(xi − xj)

.

Like the ordinary Schur function, the complex Schur function satisfies a simple specialisation
formula.

Lemma 5.2. We have

(5.2) S(n)(1, . . . , 1︸ ︷︷ ︸
n times

; z1, . . . , zn) = S(n)
(
[n]; z1, . . . , zn

)
=

∏
16i<j6n

zi − zj
j − i

.

Proof. Since S(n)([n]; z1, . . . , zn) is a polynomial in z, the claim follows from the specialisation
formula (2.11) and the fact that for arbitrary λ ∈Pn,

S(n)
(
[n];λ1 + n− 1, λ2 + n− 2, . . . , λn

)
= sλ[n]. �

For 0 < θ < π and r > 0, let Cθ,r denote the contour in C going counterclockwise around the
border of the angular sector |x| 6 r, |Im(log(x))| 6 θ as shown below.

θ
r

Then the complex Schur function satisfies the following integral identity.

Theorem 5.3. For ` a nonnegative integer, let y = (y1, . . . , y`) ∈ Ω`, and let 0 < θ < π, r > 0
such that yi ∈ int(Cθ,r) for all 1 6 i 6 `. For k a nonnegative integer, let z = (z1, . . . , zk) ∈ Ωk

such that Re(zi) > −1 for all 1 6 i 6 k. Then, for λ ∈P,

1

k!(2π i)k

∫
Ckθ,r

S(k)(x; z)sλ[y − x]
∏

16i<j6k

(xi − xj)2
k∏
i=1

∏̀
j=1

(xi − yj)−1 dx1 · · · dxk(5.3)
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=

(−1)(
k
2)S(`)

(
y; (z, λ1 + `− k − 1, . . . , λ`−k−1 + 1, λ`−k)

)
if l(λ) 6 `− k,

0 otherwise,

where Ckθ,r denotes the k-fold product Cθ,r × · · · × Cθ,r.

We repeat our remark from the introduction that the above integral should be understood in the
sense of indefinite integrals since the integrand is not defined at (0, . . . , 0) ∈ Ck.

Proof. The integral in (5.3) is continuous in y, so that it suffices to prove the claim on the dense
subset of int(Ckθ,r) for which the yi are all distinct. In particular, the first three factors of the

integrand are holomorphic on Ωk, so that the integrand has only simple poles along the divisors
xi = yj .

To compute the integral we proceed recursively. For m an integer such that 0 6 m 6 k, define

I (k,`)
m (y) :=

(−1)(
m
2 )m!

k!

∑
I⊆{1,...,`}
|I|=m

( ∏
i∈I

∏
j /∈I

(yi − yj)−1

× 1

(2π i)k−m

∫
Ck−mθ,r

S(k)

([ ∑
i∈I

yi +
k∑

i=m+1

xi

]
; z

)
sλ

([ ∑
i/∈I

yi −
k∑

i=m+1

xi

])

×
∏

m+16i<j6k

(xi − xj)2
k∏

i=m+1

∏
j∈I(xi − yj)∏
j /∈I(xi − yj)

dxm+1 · · · dxk

)
,

where we have suppressed the dependence on z and λ. Observe that I
(k,`)
0 (y) coincides with the

left-hand side of (5.3) and that I
(k,`)
m (y) = 0 if m > `.

Now consider I
(k,`)
m (y) for some fixed 0 6 m 6 k− 1. For a given term in the summand indexed

by I, we compute the integral over xm+1 by shrinking the radius r of the corresponding contour Cθ,r
to r0. Here r0 is sufficiently small so that yj ∈ ext(Cθ,r0) for all j /∈ I. As a result, the integral over
xm+1 is expressed as a sum over the residues in xm+1 at the ` −m (distinct) poles xm+1 = yj for
j /∈ I, plus a remainder xm+1-integral over Cθ,r0 . Since the integrand grows slower than 1/|xm+1|
as xm+1 approaches 0 in the angular sector, this remainder converges to 0 as r0 → 0, and hence
(since it is independent of r0) is identically 0. Thus

I (k,`)
m (y) =

(−1)(
m+1

2 )m!

k!

∑
I⊆{1,...,`}
|I|=m

∑
r/∈I

( ∏
i∈I∪{r}

∏
j /∈I∪{r}

(yi − yj)−1

× 1

(2π i)k−m−1

∫
Ck−m−1
θ,r

S(k)

([ ∑
i∈I∪{r}

yi +

k∑
i=m+2

xi

]
; z

)
sλ

([ ∑
i/∈I∪{r}

yi −
k∑

i=m+2

xi

])

×
∏

m+26i<j6k

(xi − xj)2
k∏

i=m+2

∏
j∈I∪{r}(xi − yj)∏
j /∈I\{r}(xi − yj)

dxm+2 · · · dxk

)
,
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which of course vanishes for m > `. Vanishing or not, defining J := I ∪ {r} and noting that there
are exactly m + 1 ways an (m + 1)-set J can be decomposed into an m-set and a singleton, we

obtain I
(k,`)
m (y) = I

(k,`)
m+1 (y). By iteration this yields I

(k,`)
0 (y) = I

(k,`)
k (y), so that

I
(k,`)
0 (y) = (−1)(

k
2)

∑
I⊆{1,...,`}
|I|=k

S(k)
([∑

i∈I yi
]
; z
)
sλ
([∑

i/∈I yi
])∏

i∈I
∏
j /∈I(yi − yj)

.

If l(λ) > `− k this vanishes and if l(λ) 6 `− k it follows from (5.1) and Lemma 5.1 that

I
(k,`)
0 (y) = (−1)(

k
2) S(`)

(
y; (z, λ1 + `− k − 1, . . . , λ`−k−1 + 1, λ`−k)

)
. �

To prove Theorem 1.3 we not only need Theorem 5.3 but also a generalisation of the y =
(1, . . . , 1) ∈ C` (or, plethystically, y = `) case of this theorem. For this we require a variant of the
classical beta integral.

Lemma 5.4. Let α, β ∈ C such that Re(α) > 0. Then, for r > 1 and 0 < θ < π,

1

2π i

∫
Cθ,r

xα−1(x− 1)β−1 dx =
Γ(α)

Γ(1− β)Γ(α+ β)
.

Proof. By holomorphicity, we may assume without loss of generality that Re(β) > 0 in the following.
Recall that r > 1, so that the branch point x = 1 is contained in the interior of Cθ,r. Deforming

this contour to Cθ,r given by

1

we get, by slight abuse of notation,∫
Cθ,r

xα−1(x− 1)β−1 dx =

( ∫
Cθ,r

− lim
r0→0

∫
Cr0

)
xα−1(x− 1)β−1 dx

−
(

eπ i (β−1)
∫ 1

0
+ e−π i (β−1)

∫ 1

0

)
xα−1|x− 1|β−1dx,

where Cr0 is the positively oriented semicircle 1+r0e
iφ, φ ∈ (−π/2, π/2) of radius r0 around 1. The

integral over the deformed contour Cθ,r trivially vanishes. Since Re(β) > 0, so does the integral
over Cr0 in the r0 → 0 limit. By the standard Euler beta integral [4, p. 5]∫ 1

0
xα−1(1− x)β−1 dx =

Γ(α)Γ(β)

Γ(α+ β)
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for Re(α),Re(β) > 0, we thus find

1

2π i

∫
Cθ,r

xα−1(x− 1)β−1 dx =
sin(πβ)

π

Γ(α)Γ(β)

Γ(α+ β)
.

The claim now follows by the reflection formula for the gamma function. �

Theorem 5.5. Let β ∈ C and z = (z1, . . . , zk) ∈ Ck such that Re(zi) > −1 for all i. Then, for
r > 1, 0 < θ < π and λ ∈P,

1

(2π i)k

∫
Ckθ,r

S(k)(x; z)sλ[1− β − x]
∏

16i<j6k

(xi − xj)2
k∏
i=1

(xi − 1)β−1 dx1 · · · dxk(5.4)

= (−1)(
k
2)S(k)([k]; z)sλ[1− β − k]

×
k∏
i=1

(
i! Γ(zi + 1)

Γ(2− i− β)Γ(zi + β + k)

∏
j>1

zi − λj + β + k + j − 1

zi + β + k + j − 1

)
.

Proof. First assume that β = 1− ` with ` an integer. Then (5.4) simplifies to

1

(2π i)k

∫
Ckθ,r

S(k)(x; z)sλ[`− x]
∏

16i<j6k

(xi − xj)2
k∏
i=1

(xi − 1)−` dx1 · · · dxk(5.5)

= (−1)(
k
2)S(k)([k]; z)sλ[`− k]

×
k∏
i=1

(
i! Γ(zi + 1)

Γ(`− i+ 1)Γ(zi − `+ k + 1)

∏
j>1

zi − λj − `+ k + j

zi − `+ k + j

)

= k!(−1)(
k
2)S(k)([k]; z)sλ[`− k]

k∏
i=1

`−k∏
j=1

zi − λj − `+ k + j

k + j − i
.

By the principal specialisation formulas (2.11) and (5.2) it follows that

(5.6) S(k)([k]; z)sλ[`− k]
k∏
i=1

`−k∏
j=1

zi − λj − `+ k + j

k + j − i

=

S
(`)
(
[`]; (z, λ1 + `− k − 1, . . . , λ`−k−1 + 1, λ`−k)

)
if l(λ) 6 `− k,

0 otherwise,

so that (5.5) is precisely (5.3) for y = 1 + · · ·+ 1 = `.
One possible approach to showing the general complex β case would be to appeal to Carlson’s

theorem. To avoid having to show the required bounded growth at infinity of the left-hand side of
(5.4), we will more simply show that after appropriate normalisation both sides of (5.4) become
rational functions. As a first step towards proving this we make the substitution λ 7→ λ′ using
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(1.20) and ∏
j>1

w − λ′j + j − 1

w + j − 1
=
∏
j>1

w − j
w + λj − j

to obtain the equivalent identity

1

(2π i)k

∫
Ckθ,r

S(k)(x; z)sλ[x+ β − 1]
∏

16i<j6k

(xi − xj)2
k∏
i=1

(xi − 1)β−1 dx1 · · · dxk(5.7)

= (−1)(
k
2)S(k)([k]; z)sλ[β + k − 1]

×
k∏
i=1

i! Γ(zi + 1)

Γ(2− i− β)Γ(zi + β + k)

k∏
i=1

∏
j>1

zi + β + k − j
zi + λj + β + k − j

.

By [32, p. 72]

sλ[X + Y ] =
∑
µ

sλ/µ[X]sµ[Y ]

and the determinantal nature of both types of Schur functions in the integrand, the left hand side
of (5.7) may also be written as

k!
∑
µ

sλ/µ[β − 1]
1

(2π i)k

∫
Ckθ,r

det
16i,j6k

(
x
µj+k−j
i

) k∏
i=1

xzii (xi − 1)β−1 dx1 · · · dxk

= k!
∑
µ

sλ/µ[β − 1] det
16i,j6k

(
1

2π i

∫
Cθ,r

xzi+µj+k−j(x− 1)β−1 dx

)

= k!
∑
µ

sλ/µ[β − 1] det
16i,j6k

(
Γ(zi + µj + k − j + 1)

Γ(1− β)Γ(zi + µj + β + k − j + 1)

)

= k!
∑
µ

sλ/µ[β − 1]

k∏
i=1

Γ(zi + 1)

Γ(1− β)Γ(zi + β + 1)
det

16i,j6k

(
(zi + 1)µj+k−j

(zi + β + 1)µj+k−j

)
,

where the penultimate line follows from Lemma 5.4. This shows that the left-hand side of (5.7)
divided by the right-hand side is given by the following rational function:

(−1)(
k
2)

S(k)([k]; z)

∑
µ

sλ/µ[β − 1]

sλ[β + k − 1]

k∏
i=1

(
(zi + β + 1)k−1

(i− 1)!(2− i− β)i−1

∏
j>1

zi + λj + β + k − j
zi + β + k − j

)

× det
16i,j6k

(
(zi + 1)µj+k−j

(zi + β + 1)µj+k−j

)
,

completing the proof. We remark that for λ = 0 the above collapses into

(−1)(
k
2)

S(k)([k]; z)

k∏
i=1

(zi + β + 1)k−1
(i− 1)!(2− i− β)i−1

det
16i,j6k

(
(zi + 1)k−j

(zi + β + 1)k−j

)
.
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In this instance the determinant follows as a special case of a well-known determinant evaluation
due to Krattenthaler, see e.g., [28, Lemma 3] with (n,Xi, Ai, Bi) 7→ (k, zi, k − i+ 1, β + k − i+ 1).
For general λ it does not seem so easy to show by direct means that the above rational function is
in fact equal to 1. �

5.2. Proof of Theorem 1.3. Recall definitions (1.21) of Ar and Ar,s, (1.17) of the integral

IAnk1,...,kn(O;α1, . . . , αn, β)

and (1.15) of the integration contour Ck1,...,kn . In our next theorem, which may be viewed as a
complex analogue of Theorem 1.3, we will slightly extend the definition of the above integral to
allow for functions O(t(1), . . . , t(n)) that are not polynomial in t(1).

Theorem 5.6. For n a positive integer, let k1, . . . , kn be nonnegative integers, α1, . . . , αn, β ∈ C,
z ∈ Ck1 and λ(2), . . . , λ(n+1) ∈P, such that

Re(zi + α1 + · · ·+ αs) > s− 1 for 1 6 s 6 n and 1 6 i 6 k1,

Re
(
λ
(r)
kr−kr−1

+ αr + · · ·+ αs
)
> s− r for 2 6 r 6 s 6 n.

Further let t(1), . . . , t(n) be alphabets of cardinality k1, . . . , kn, and set λ
(1)
i := zi−k1+i for 1 6 i 6 k1

and t(n+1) := 1− β. Then,

IAnk1,...,kn

(
S(k1)

(
t(1); z

) n+1∏
r=2

sλ(r)
[
t(r) − t(r−1)

]
;α1, . . . , αn, β

)
(5.8)

= S(k1)([k1]; z)

n∏
r=1

(
(−1)(

kr
2 )sλ(r+1) [kr+1 − kr]

kr∏
i=1

i!

Γ(kr+1 − i+ 1)

)

×
∏

16r<s6n

kr−kr−1∏
i=1

ks−ks−1∏
j=1

(
λ
(r)
i − λ

(s)
j +Ar,s + j − i

)
×

n∏
r=1

kr−kr−1∏
i=1

(
Γ(λ

(r)
i +Ar − i− n)

Γ(λ
(r)
i +Ar,n+1 − i+ 1)

∏
j>1

λ
(r)
i − λ

(n+1)
j +Ar,n+1 + j − i

λ
(r)
i +Ar,n+1 + j − i

)
,

where β1 = · · · = βn−1 := 1, βn := β, k0 := 0 and kn+1 := 1− β.

We note that
n∏
r=1

kr∏
i=1

1

Γ(kr+1 − i+ 1)

vanishes unless kr+1 − kr > 0 for 1 6 r 6 n − 1, i.e., unless k1 6 k2 6 · · · 6 kn. Assuming this
holds it then follows from

n∏
r=1

sλ(r+1) [kr+1 − kr]

that the right-hand side vanishes unless l(λ(r)) 6 kr − kr−1 for all 2 6 r 6 n.

If we take λ(2) = λ(n+1) = 0 in Theorem 5.6 and also choose zi = k1 − i for all 1 6 i 6 k1 (so

that on the right λ(1) = 0), we obtain

(5.9) IAnk1,...,kn(1;α1, . . . , αn, β)
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=
n∏
r=1

(
(−1)(

kr
2 )

kr∏
i=1

i!

Γ(kr+1 − i+ 1)

) ∏
16r<s6n+1

kr−kr−1∏
i=1

Γ(Ar,s + ks − ks−1 − i+ 1)

Γ(Ar,s − i+ 1)
,

where the αr must satisfy (1.16). This is equivalent to (1.18) where it should be noted that in the
above kn+1 is defined as 1− β whereas kn+1 := 0 in (1.18).

Let λ(1) ∈Pk1 . If we take (5.8) for arbitrary partitions λ(2), . . . , λ(n+1), specialise zi = λ
(1)
i +k1−i

for 1 6 i 6 k1 and divide the resulting identity by (5.9), then Theorem 1.3 follows with `r given by

kr − kr−1 for all 1 6 r 6 n and `n+1 any integer such that `n+1 > l(λ(n+1)). Since the right-hand

side of (1.22) is independent of the choice of `r provided that `r > l(λ(r)), this completes the proof
of Theorem 1.3.

Proof of Theorem 5.6. We may deform the contour Ck1,...,kn to

Ck1θ1,r1 × · · · × C
kn
θn,rn

,

for arbitrary real r1, . . . , rn and θ1, . . . , θn such that r1 > · · · > rn > 1 and π > θ1 > · · · > θn > 0,
and in the following we assume this new deformed contour.

We now proceed by induction on n. The base case, n = 1, corresponds to Theorem 5.5 with
(k, λ, β) 7→ (k1, λ

(2), β1 = β) and zi 7→ zi + α1 − 1 for all 1 6 i 6 k1.
To carry out the inductive step we denote the left-hand side of (5.8) by

L k1,...,kn
λ(2),...,λ(n+1)(z;α1, . . . , αn, β).

Assuming n > 2, we integrate over t(1) using Theorem 5.3 with (k, `, x, y, λ) 7→ (k1, k2, t
(1), t(2), λ(2))

and zi 7→ zi + α1 − 1 for all 1 6 i 6 k1. This yields

L k1,...,kn
λ(2),...,λ(n+1)(z;α1, . . . , αn, β) =

k1!(−1)(
k1
2 )L k2,...,kn

λ(3),...,λ(n+1)(z
′;α2, . . . , αn, β) if l

(
λ(2)

)
6 k2 − k1,

0 otherwise,

where

z′ :=
(
z1 + α1 − 1, . . . , zk1 + α1 − 1, λ

(2)
1 + k2 − k1 − 1, . . . , λ

(2)
k2−k1−1 + 1, λ

(2)
k2−k1

)
.

By induction on n this gives (in the l
(
λ(2)

)
6 k2 − k1 case)

L k1,...,kn
λ(2),...,λ(n+1)(z;α1, . . . , αn, β)

= S(k2)
(
[k2]; z

′)k1!(−1)(
k1
2 )

n∏
r=2

(
kr!(−1)(

kr
2 )sλ(r+1) [kr+1 − kr]

kr∏
i=1

i!

Γ(kr+1 − i+ 1)

)

×
n∏
s=3

k2∏
i=1

ks−ks−1∏
j=1

(
z′i − λ

(s)
j + α2 + · · ·+ αs−1 + ks−1 − ks − s+ j + 2

)
×

∏
36r<s6n

kr−kr−1∏
i=1

ks−ks−1∏
j=1

(
λ
(r)
i − λ

(s)
j +Ar,s + j − i

)
×

k2∏
i=1

(
Γ(z′i + α2 + · · ·+ αn − n+ 2)

Γ(z′i + α2 + · · ·+ αn + kn − kn+1 − n+ 2)



SELBERG INTEGRALS 39

×
∏
j>1

z′i − λ
(n+1)
j + α2 + · · ·+ αn + kn − kn+1 + j − n+ 1

z′i + α2 + · · ·+ αn + kn − kn+1 + j − n+ 1

)

×
n∏
r=3

kr−kr−1∏
i=1

(
Γ(λ

(r)
i +Ar − i− n)

Γ(λ
(r)
i +Ar,n+1 − i+ 1)

∏
j>1

λ
(r)
i − λ

(n+1)
j +Ar,n+1 + j − i

λ
(r)
i +Ar,n+1 + j − i

)
.

By the definition of z′ and by (5.6) with (`, k, z, λ) 7→ (k2, k1, z + α1 − 1, λ(2)), this finally yields

L k1,...,kn
λ(2),...,λ(n+1)(z;α1, . . . , αn, β)

= S(k1)
(
[k1]; z

) n∏
r=1

(
(−1)(

kr
2 )sλ(r+1) [kr+1 − kr]

kr∏
i=1

i!

Γ(kr+1 − i+ 1)

)

×
∏

16r<s6n

kr−kr−1∏
i=1

ks−ks−1∏
j=1

(
λ
(r)
i − λ

(s)
j +Ar,s + j − i

)
×

n∏
r=1

kr−kr−1∏
i=1

(
Γ(λ

(r)
i +Ar + r − i− n)

Γ(λ
(r)
i +Ar,n+1 + r − i+ 1)

∏
j>1

λ
(r)
i − λ

(n+1)
j +Ar,n+1 + j − i

λ
(r)
i +Ar,n+1 + j − i

)
.

As noted previously, the right-hand side vanishes if k2 − k1 < 0, and assuming k2 − k1 > 0 it then
vanishes unless l(λ(2)) 6 k2 − k1. Hence the above holds regardless of the ordering of k1 and k2 or

the length of λ(2). �

6. An elliptic AFLT integral

In this section we prove the elliptic AFLT integral of Theorem 1.4. Throughout it is assumed
that p, q ∈ C such that |p|, |q| < 1.

6.1. The elliptic Selberg integral. We begin with a brief review of the elliptic Selberg integral
and its relation to the ordinary Selberg integral (1.4).

The elliptic Selberg integral7 was first conjectured by van Diejen and Spiridonov [9, 10] and then
proved by the second author in [44]. (See also [21, 54] for alternative proofs). It corresponds to the
λ = µ = 0 case of Theorem 1.4, viz.

Sn(t1, . . . , t6; t; p, q)(6.1)

:= κn

∫
Tn

∏
16i<j6n

Γ(tz±i z
±
j ; p, q)

Γ(z±i z
±
j ; p, q)

n∏
i=1

∏6
r=1 Γ(trz

±
i ; p, q)

Γ(z±2i ; p, q)

dz1
z1
· · · dzn

zn

=

n∏
i=1

(
Γ(ti; p, q)

∏
16r<s66

Γ(ti−1trts; p, q)

)
,

where t, t1, . . . , t6 ∈ C are such that |t|, |t1|, . . . , |t6| < 1 and the balancing condition (1.25) holds.
For n = 1 the elliptic Selberg integral corresponds to Spiridonov’s elliptic analogue of the Euler

7An elliptic Selberg integral of a very different type, which arises as a solution of the Knizhnik–Zamolodchikov–
Bernard heat equation, may be found in [57] and references therein.
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beta integral [53] and for general n it was shown in [43] that by taking an appropriate limit the full
Selberg integral (1.4) (with k 7→ n) arises. Specifically, setting q = exp(2π iτ) for τ ∈ H

lim
p→0

lim
τ→0

n∏
i=1

Γ(qα+β+(2n−i−1)γ ; p, q)

Γ(qiγ ; p, q)Γ(qα+(i−1)γ ; p, q)Γ(qβ+(i−1)γ ; p, q)Γ4(−q(α+β)/2+(i−1)γ ; p, q)

× Sn
(
qα/2, qα/2,−qβ/2,−qβ/2, p1/2q1/2−ζ/2, p1/2q1/2−ζ/2; qγ ; p, q

)
=

n∏
i=1

Γ(α+ β + (2n− i− 1)γ)Γ(1 + γ)

Γ(α+ (i− 1)γ)Γ(β + (i− 1)γ)Γ(1 + iγ)

×
∫

[0,1]n

n∏
i=1

tα−1i (1− ti)β−1
∏

16i<j6n

|ti − tj |2γ dt1 · · · dtn,

where Re(α),Re(β),Re(γ) > 0, 2(n − 1)γ + α + β − ζ = 0, see [43, Theorem 7.4]. This same
limit, taken on the right-hand side of (6.1) yields 1, so that the Selberg integral follows, albeit for
a slightly more restricted range of the parameter γ than strictly necessary.

6.2. Elliptic interpolation functions. To lift the elliptic Selberg integral (6.1) to the elliptic
AFLT integral of Theorem 1.4 we require a number of results from the theory of elliptic interpolation
functions on root systems. For a detailed discussion of these functions we refer the reader to
[8, 42, 44, 45, 48], and below we only state some of the key results needed in the proof of Theorem 1.4.

In order to describe the elliptic skew interpolation functions we need the BCn-symmetric elliptic
interpolation functions (or well-poised Macdonald functions)

R∗µ(x1, . . . , xn; a, b; q, t; p),

where µ ∈Pn. For λ ∈Pn such that µ 6⊆ λ these functions satisfy the vanishing property

R∗µ
(
a〈λ〉n;q,t; a, b; q, t; p

)
= 0.

The elliptic interpolation function R∗µ(a, b; q, t; p) generalises Okounkov’s BCn-symmetric Macdon-
ald interpolation polynomial P ∗µ(q, t, s) [40] which has the same vanishing property and has the
ordinary Macdonald polynomial Pµ(q, t) as top-homogeneous degree component. When tnab = pq,
the elliptic interpolation functions are referred to as being of Cauchy-type and factorise as

(6.2) R∗µ(x1, . . . , xn; a, b; q, t; p) = ∆0
µ(tn−1a/b|tn−1ax±1 , . . . , t

n−1ax±n ; q, t; p),

where ∆0
µ(a| . . . , x±i , . . . ; q, t; p) := ∆0

µ(a| . . . , xi, x−1i , . . . ; q, t; p). They also factor under principal
specialisation:

(6.3) R∗µ(v〈0〉n;q,t; a, b; q, t; p) = ∆0
µ(tn−1a/b|tn−1av, a/v; q, t; p),

and satisfy the evaluation symmetry

(6.4)
R∗µ(v〈λ〉n;q,t/a; a, b/a; q, t; p)

R∗µ(v〈0〉n;q,t/a; a, b/a; q, t; p)
=
R∗λ(v〈µ〉n;q,t/a′; a′, b/a′; q, t; p)
R∗λ(v〈0〉n;q,t/a′; a′, b/a′; q, t; p)

,

where λ, µ ∈Pn and aa′ = v
√
tn−1b.

Using the elliptic interpolation functions one can define elliptic binomial coefficients as(
λ

µ

)
[a,b];q,t;p

:=
(pqa; q, t; p)2λ2

C−λ (pq; q, t; p)C−λ (t; q, t; p)C+
λ (a; q, t; p)C+

λ (pqa/t; q, t; p)
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×∆0
µ(a/b|tn, 1/b; q, t; p)R∗µ

(
t1−na1/2〈λ〉n;q,t; t1−na1/2, ba−1/2; q, t; p

)
,

where 2λ2 is shorthand for the partition (2λ1, 2λ1, 2λ2, 2λ2, . . . ) and n is an integer such that

n > l(λ), l(µ). This definition is independent of the choice of a1/2 and n. The elliptic binomial
coefficients vanish unless µ ⊆ λ and trivialise to 1 when µ = 0 (but not when µ = λ). It will be
convenient to also use the normalised elliptic binomial coefficients

(6.5)

〈
λ

µ

〉
[a,b](v1,...,vk);q,t;p

:=
∆0
λ(a|b, v1, . . . , vk; q, t; p)

∆0
µ(a/b|1/b, v1, . . . , vk; q, t; p)

(
λ

µ

)
[a,b];q,t;p

.

In terms of these, the elliptic Cn analogue of Jackson’s summation [42, Theorem 4.1] (or [8, Equa-
tion (3.7)]) is given by

(6.6)
∑
µ

∆0
µ(a/b|d, e; q, t; p)

〈
λ

µ

〉
[a,b];q,t;p

〈
µ

ν

〉
[a/b,c/b];q,t;p

=

〈
λ

ν

〉
[a,c](bd,be);q,t;p

,

where bcde = apq.
We can now define the elliptic skew interpolation functions as

R∗λ/ν([v1, . . . , v2n]; a, b; q, t; p) :=
∑
µ

∆0
µ(pq/b2|pq/bv1, . . . , pq/bv2n; q, t; p)

×
〈
λ

µ

〉
[a/b,ab/pq];q,t;p

〈
µ

ν

〉
[pq/b2,pqV/ab];q,t;p

,

where V := v1 · · · v2n. Note that unlike the BCn-symmetric interpolation functions the skew inter-
polation functions are S2n-symmetric. The rationale for using plethystic brackets around the vi is
that in the p→ 0 limit they relate to the variables xi of the BCn-symmetric interpolation functions
via the plethystic substitution

xi + x−1i 7→
t1/2(v−12i−1 + v−12i − v2i−1 − v2i)

1− t
for all 1 6 i 6 n. In particular, for real α, β such that 0 < α < β < 1 and α+ β < 1,

(6.7) lim
p→0

pα|λ|R∗λ/0

([
t1/2(p−αx1)

±, . . . , t1/2(p−αxn)±, p−αt−1/2c, pαt1/2/d
]
; a, pβb; q, t; p

)
=
(
−at−1/2

)|λ|
qn(λ

′)t−2n(λ)cλ(q, t)Pλ

([
X +

d− c
1− t

]
; q, t

)
,

where X := x1 + · · ·+ xn.
By (6.6) it immediately follows that

(6.8) R∗λ/ν([v1, v2]; a, b; q, t; p) =

〈
λ

ν

〉
[a/b,v1v2](a/v1,a/v2);q,t;p

.

The skew interpolation functions further satisfy the branching rule

R∗λ/ν
(
[v1, . . . , v2n, w1, . . . , w2m]; a, b; q, t; p

)
(6.9)

=
∑
µ

R∗λ/µ
(
[v1, . . . , v2n]; a, b; q, t; p

)
R∗µ/ν

(
[w1, . . . , w2m]; a/V, b; q, t; p

)
,

and for ν = 0 generalise the BCn-symmetric interpolation functions

R∗λ/0([t
1/2x±1 , . . . , t

1/2x±n ]; tn−1/2a, t1/2b; q, t; p)(6.10)
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=

∆0
λ(tn−1a/b|tn; q, t; p)R∗λ(x1, . . . , xn; a, b; q, t; p) for λ ∈Pn,

0 otherwise,

where we recall the convention (1.23).
The elliptic Selberg integral (6.1) is p, q-symmetric. In order to maintain this symmetry in the

AFLT case, we need to generalise all of the above elliptic functions. Let λ = (λ(1), λ(2)) and

µ = (µ(1), µ(2)) be bipartitions. Then

R∗µ(a, b; t; p, q) := R∗
µ(1)

(a, b; q, t; p)R∗
µ(2)

(a, b; p, t; q)

R∗λ/µ(a, b; t; p, q) := R∗
λ(1)/µ(1)

(a, b; q, t; p)R∗
λ(2)/µ(2)

(a, b; p, t; q).

In much the same way we define ∆0
λ(a|b1, . . . , bk; t; p, q) and

〈
λ
µ

〉
[a,b](v1,...,vk);t;p,q

. Finally, we recall

the definition of 〈λ〉n;t;p,q, the spectral vector indexed by a bipartition, from (1.24).
For the proof of the elliptic AFLT integral we require two key identities for the interpolation func-

tions. The first of these is the following generalised elliptic Selberg integral, see [44, Theorem 9.2].
For λ,µ ∈P2

n and t, t1, t2, t3, t4, t5, t6 ∈ C such that (1.25) holds

κn

∫
Cλµ

R∗λ(z1, . . . , zn; t1, t2; t; p, q)R
∗
µ(z1, . . . , zn; t3, t6; t; p, q)(6.11)

×
∏

16i<j6n

Γ(tz±i z
±
j ; p, q)

Γ(z±i z
±
j ; p, q)

n∏
i=1

∏6
r=1 Γ(trz

±
i ; p, q)

Γ(z±2i ; p, q)

dz1
z1
· · · dzn

zn

=
n∏
i=1

(
Γ(ti; p, q)

∏
16r<s66

Γ(ti−1trts; p, q)

)
×∆0

λ(tn−1t1/t2|tn−1t1t4, tn−1t1t5; t; p, q)∆0
µ(tn−1t3/t6|tn−1t3t4, tn−1t3t5; t; p, q)

×R∗λ(t3〈0〉n;t;p,q/ζ ′; t1ζ ′, t2ζ ′; t; p, q)R∗µ(t1〈λ〉n;t;p,q/ζ; t3ζ, t6ζ; t; p, q),

where ζ :=
√
tn−1t1t2 and ζ ′ :=

√
tn−1t3t6, and where Cλµ is a deformation of Tn separating

sequences of poles of the integrand tending to zero from sequences of poles tending to infinity. Note
that by the evaluation symmetry (6.4) this result is invariant under the simultaneous substitution
(λ,µ, t1, t2, t3, t6) 7→ (µ,λ, t3, t6, t1, t2). We also note that for µ = 0 the above integral may be
viewed as an elliptic analogue of Kadell’s integral.

The second key result we need is the connection coefficient identity [42, Corollary 4.14]

(6.12) R∗λ(x1, . . . , xn; a, b; t; p, q) =
∑
µ

〈
λ

µ

〉
[tn−1a/b,a/a′](tn−1aa′);t;p,q

R∗µ(x1, . . . , xn; a′, b; t; p, q),

where λ ∈P2
n.

6.3. Proof of Theorem 1.4. Denote the elliptic AFLT integral by Iλµ. As a first step towards
proving the theorem we apply the branching rule (6.9) to expand R∗µ/0 as

R∗µ/0
(
[t1/2z±1 , . . . , t

1/2z±n , t
−1/2t4, t

−1/2t5]; t
n−3/2t3t4t5, t

1/2t6; t; p, q
)
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=
∑
ν⊆µ

R∗µ/ν
(
[t−1/2t4, t

−1/2t5]; t
n−3/2t3t4t5, t

1/2t6; t; p, q
)

×R∗ν/0
(
[t1/2z±1 , . . . , t

1/2z±n ]; tn−1/2t3, t
1/2t6; t; p, q

)
.

By (6.8) and (6.10) this may be further rewritten as

R∗µ/0
(
[t1/2z±1 , . . . , t

1/2z±n , t
−1/2t4, t

−1/2t5]; t
n−3/2t3t4t5, t

1/2t6; t; p, q
)

=
∑
ν∈P2

n

∆0
ν(tn−1t3/t6|tn; t; p, q)

〈
µ

ν

〉
[tn−2t3t4t5/t6,t4t5/t](tn−1t3t4,tn−1t3t5);t;p,q

×R∗ν(z1, . . . , zn; t3, t6; t; p, q).

If we substitute this into the elliptic AFLT integral, rewrite R∗λ/0 in terms of R∗λ using (6.10) and

then interchange the order of the sum and integral, we obtain exactly the integral (6.11) (with
µ 7→ ν) in the summand. Hence

Iλµ = Sn(t1, t2, t3, t4, t5, t6; t; p, q)

×∆0
λ(tn−1t1/t2|tn, tn−1t1t4, tn−1t1t5; t; p, q)R∗λ(t3〈0〉n;t;p,q/ζ ′; t1ζ ′, t2ζ ′; t; p, q)

×
∑
ν∈P2

n

∆0
ν(tn−1t3/t6|tn, tn−1t3t4, tn−1t3t5; t; p, q)

×
〈
µ

ν

〉
[tn−2t3t4t5/t6,t4t5/t](tn−1t3t4,tn−1t3t5);t;p,q

R∗ν(t1〈λ〉n;t;p,q/ζ; t3ζ, t6ζ; t; p, q),

where, as before, ζ :=
√
tn−1t1t2 and ζ ′ :=

√
tn−1t3t6. By (1.25), (2.7) and (6.5)

∆0
ν(tn−1t3/t6|tn, tn−1t3t4, tn−1t3t5; t; p, q)

〈
µ

ν

〉
[tn−2t3t4t5/t6,t4t5/t](tn−1t3t4,tn−1t3t5);t;p,q

= ∆0
µ(tn−2t3t4t5/t6|tn−1t3t4, tn−1t3t5, tn−1t4t5; t; p, q)

〈
µ

ν

〉
[tn−2t3t4t5/t6,t4t5/t](pqt3/tt6);t;p,q

.

As a result,

Iλµ = Sn(t1, t2, t3, t4, t5, t6; t; p, q)

×∆0
λ(tn−1t1/t2|tn, tn−1t1t4, tn−1t1t5; t; p, q)R∗λ(t3〈0〉n;t;p,q/ζ ′; t1ζ ′, t2ζ ′; t; p, q)

×∆0
µ(tn−2t3t4t5/t6|tn−1t3t4, tn−1t3t5, tn−1t4t5; t; p, q)

×
∑
ν∈P2

n

〈
µ

ν

〉
[tn−2t3t4t5/t6,t4t5/t](pqt3/tt6);t;p,q

R∗ν(t1〈λ〉n;t;p,q/ζ; t3ζ, t6ζ; t; p, q).

The sum over ν can be carried out by (6.12) with (a, a′, b) 7→ (t3t4t5ζ/t, t3ζ, t6ζ), so that

Iλµ = Sn(t1, t2, t3, t4, t5, t6; t; p, q)

×∆0
λ(tn−1t1/t2|tn, tn−1t1t4, tn−1t1t5; t; p, q)R∗λ(t3〈0〉n;t;p,q/ζ ′; t1ζ ′, t2ζ ′; t; p, q)
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×∆0
µ(tn−2t3t4t5/t6|tn−1t3t4, tn−1t3t5, tn−1t4t5; t; p, q)

×R∗µ(t1〈λ〉n;t;p,q/ζ; t3t4t5ζ/t, t6ζ; t; p, q).

We finally observe that

tn(t3t4t5ζ/t)(t6ζ) = t2n−2t1t2t3t4t5t6 = pq

so that the interpolation function in the last line is of Cauchy type and hence factors by (6.2).
Thus

Iλµ = Sn(t1, t2, t3, t4, t5, t6; t; p, q)

×∆0
λ(tn−1t1/t2|tn, tn−1t1t4, tn−1t1t5; t; p, q)R∗λ(t3〈0〉n;t;p,q/ζ ′; t1ζ ′, t2ζ ′; t; p, q)

×∆0
µ(tn−2t3t4t5/t6|tn−1t3t4, tn−1t3t5, tn−1t4t5; t; p, q)

×
∆0
µ(tn−2t3t4t5/t6|tn−2t1t3t4t5〈λ〉n;t;p,q)

∆0
µ(tn−2t3t4t5/t6|tn−1t1t3t4t5〈λ〉n;t;p,q)

,

where we have again used (1.25) and (2.7). Using the principal specialisation formula (6.3) com-
pletes the proof.

6.4. Proof of Corollary 1.5. Throughout the proof we used condensed notation for theta and
elliptic gamma functions:

θ(z1, . . . , zk; p) = θ(z1; p) · · · θ(zk; p)
Γ(z1, . . . , zk; p, q) = Γ(z1; p, q) · · ·Γ(zk; p, q).

Denote the integral identity obtained from (1.26) by restricting λ and µ to λ = (λ, 0) and
µ = (µ, 0) as

Lλ,µ(t1, . . . , t6; q, t; p) = Rλ,µ(t1, . . . , t6; q, t; p),

where t2n−2t1t2t3t4t5t6 = pq. In order to take the p → 0 limit we adopt the symmetry breaking
procedure of [43] and multiply the integrand of Lλ,µ by [42, Corollary 1.2]

1 =
∑

σ∈{±1}n

n∏
i=1

θ(t1z
σi
i , t3z

σi
i , t4z

σi
i , t

n−1t1t3t4z
−σi
i ; q)

θ(z2σii , ti−1t1t3, ti−1t1t4, ti−1t3t4; q)

∏
16i<j6n

θ(tzσii z
σj
j ; q)

θ(zσii z
σj
j ; q)

.

By BCn symmetry, all 2n integrals that arise are identical. Using Γ(pz; p, q) = θ(z; q)Γ(z; p, q) this
yields

Lλ,µ(t1, . . . , t6; q, t; p)

= 2nκn

∫
R∗λ/0

(
[t1/2z±]; tn−1/2t1, t

1/2t2; q, t; p
)

×R∗µ/0
(
[t1/2z±, t−1/2t4, t

−1/2t5]; t
n−3/2t3t4t5, t

1/2t6; q, t; p
)

×
∏

16i<j6n

Γ(ptzizj , t/zizj , t(zi/zj)
±1; p, q)

Γ(pzizj , 1/zizj , (zi/zj)±1; p, q)

×
n∏
i=1

θ(tn−1t1t3t4/zi; q)
∏
r∈I Γ(ptrzi, tr/zi; p, q)

∏
r∈J Γ(trz

±
i ; p, q)

θ(ti−1t1t3, ti−1t1t4, ti−1t3t4; q)Γ(pz2i , z
−2
i ; p, q)

dz

z
,
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where I := {1, 3, 4}, J := {2, 5, 6}, z = (z1, . . . , zn) and dz/z := (dz1/z1) · · · (dzn/zn). We now
scale the parameters as

(t1, t2, t3, t4, t5, t6) 7→ (t1, p
1/2t2, t3, p

−1/4t4, p
1/4t5, p

1/2t6),

resulting in the p-independent balancing condition t2n−2t1t2t3t4t5t6 = q. We can now also scale
the integration contour by a factor of p−1/4 without passing over any poles. After also replacing
zi 7→ p−1/4zi, all elliptic gamma functions in the resulting integral have arguments scaling as pγ

for γ ∈ [0, 1]. Then taking the p → 0 limit using (6.7) (with α = 1/4 and β = 1/2) and finally
replacing z 7→ z/t5, we obtain

lim
p→0

(
p(|λ|+|µ|)/4Lλ,µ(t1, p

1/2t2, t3, p
−1/4t4, p

1/4t5, p
1/2t6)

n∏
i=1

θ(p−1/4ti−1t1t4, p
−1/4ti−1t3t4; q)

)
= (−tn−1t1/t5)|λ|(−tn−2t3t4)|µ|qn(λ

′)+n(µ′)t−2n(λ)−2n(µ)

× cλ(q, t)cµ(q, t)
(q; q)n∞
(t; q)n∞

n∏
i=1

1

θ(ti−1t1t3; q)

× 1

n!(2π i)n

∫
Pλ(z; q, t)Pµ

([
z +

t− t4t5
1− t

]
; q, t

)
×

n∏
i=1

θ(tn−1t1t3t4t5/zi; q)

(t4t5/zi, zi; q)∞

∏
16i<j6n

(zi/zj , zj/zi; q)∞
(tzi/zj , tzj/zi; q)∞

dz

z
,

where the contour can be chosen as Tn provided |t4t5| < 1. Since the limit of the right-hand side
of (1.26) is given by

lim
p→0

(
p(|λ|+|µ|)/4Rλ,µ(t1, p

1/2t2, t3, p
−1/4t4, p

1/4t5, p
1/2t6)

n∏
i=1

θ(p−1/4ti−1t1t4, p
−1/4ti−1t3t4; q)

)
= (−tn−1t1t4)|λ|(−tn−1t3t4)|µ|qn(λ

′)+n(µ′)t−n(λ)−n(µ)

× (tn, tn−1t1t3; q, t)λ(tn−1t4t5; q, t)µ
(t2n−m−2t1t3t4t5; q, t)λ

n∏
i=1

(t2n−i−1t1t3t4t5; q)∞
(ti, ti−1t1t3, ti−1t4t5; q)∞

×
n∏
i=1

m∏
j=1

(t2n−i−j−1t1t3t4t5; q)λi+µj
(t2n−i−jt1t3t4t5; q)λi+µj

,

the claim follows with (a, b) = (tn−1t1t3t4t5, t4t5).

6.5. An equivalent form of Corollary 1.5. For functions f, g : Cn → C, symmetric in the n
variables, define the scalar product [32, p. 372]

(6.13) 〈f, g〉′n :=
1

n!(2π i)n

∫
Tn

f(z)g(z−1)
∏

16i<j6n

(zi/zj , zj/zi; q)∞
(tzi/zj , tzj/zi; q)∞

dz1
z1
· · · dzn

zn
.

Then, for λ ∈Pn, [32, pp. 369&370]

(6.14)
〈
Pλ(q, t), Qµ(q, t)

〉′
n

= δλ,µ
(tn; q, t)λ

(qtn−1; q, t)λ

n∏
i=1

(t, qti−1; q)∞
(q, ti; q)∞

.

In terms of 〈·, ·〉′n Corollary 1.5 may be rewritten as follows.



46 SEAMUS P. ALBION, ERIC M. RAINS, AND S. OLE WARNAAR

Corollary 6.1. For λ, µ ∈P and a, b, q, t ∈ C such that |b|, |q|, |t| < 1,〈
Pλ(z; q, t)

n∏
i=1

(azi; q)∞
(bzi; q)∞

, Qµ

([
z +

t− b
1− t

]
; q, t

) n∏
i=1

(qzi/a; q)∞
(zi; q)∞

〉′
n

= t(1−n)|µ|Pλ

([
1− tn

1− t

]
; q, t

)
Qµ

([
1− btn−1

1− t

]
; q, t

)

× (qtm/a; q, t)λ
(bqtn−1/a; q, t)λ

n∏
i=1

(t, ati−1, qti−1b/a; q)∞
(q, ti, bti−1; q)∞

n∏
i=1

m∏
j=1

(qtj−i/a; q)λi−µj
(qtj−i+1/a; q)λi−µj

.

where m is an arbitrary integer such that m > l(µ).

For b = t this is equivalent to [60, Theorem 1.7], which, as shown on page 261 of that paper, is
a generalisation of (6.14).

Proof. Given a partition λ ⊆ (Nn), we denote the complement of λ with respect to (Nn) by λ̂, i.e.,

λ̂ = (N − λn, . . . , N − λ1).
In Corollary 1.5 we replace λ by its complement with respect to (Nn), where N is an arbitrary

integer such that λ1 6 N , and also scale a 7→ aq−N . Using [5, Equation (4.3)]

Pλ̂(x; q, t) = (x1 · · ·xn)NPλ(x−1; q, t)

and

(aq−N , qN+1/a; q)∞ = (−a)Nq−(N+1
2 )(a, q/a; q)∞

this yields

1

n!(2π i)n

∫
Tn

Pλ
(
z−1; q, t

)
Pµ

([
z +

t− b
1− t

]
; q, t

)

×
n∏
i=1

(a/zi, qzi/a; q)∞
(b/zi, zi; q)∞

∏
16i<j6n

(zi/zj , zj/zi; q)∞
(tzi/zj , tzj/zi; q)∞

dz1
z1
· · · dzn

zn

= b−|λ|t|µ|−(n−1)|λ|Pλ

([
1− tn

1− t

]
; q, t

)
Pµ

([
1− btn−1

1− t

]
; q, t

)

×
n∏
i=1

(t, ati−m−1q−λi , ati−n/b, qti−1b/a; q)∞
(q, ti, bti−1, ati−nq−λi/b; q)∞

n∏
i=1

m∏
j=1

(ati−jq−λi+µj ; q)∞
(ati−j−1q−λi+µj ; q)∞

,

which is independent of N . By

n∏
i=1

(ati−m−1q−λi ; q)∞
(ati−nq−λi/b; q)∞

n∏
i=1

m∏
j=1

(ati−jq−λi+µj ; q)∞
(ati−j−1q−λi+µj ; q)∞

= (btn−1)|λ|t−n|µ|
(qtm/a; q, t)λ

(bqtn−1/a; q, t)λ

n∏
i=1

(ati−1; q)∞
(ati−n/b; q)∞

n∏
i=1

m∏
j=1

(qtj−i/a; q)λi−µj
(qtj−i+1/a; q)λi−µj

and the substitution z 7→ z−1 in the integral, the claim follows. �
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7. Open problems

To conclude the paper we will discuss a number of open problems.

7.1. Generalising Theorem 1.3 to γ 6= 1. The main open problem is to generalise Theorem 1.3
to the case of Jack polynomials. Using (1.20) this theorem can be rewritten as〈( n∏

r=1

sλ(r)
[
t(r) − t(r−1)

])
sλ(n+1)

[
t(n) + β − 1

]〉k1,...,kn
α1,...,αn,β

(7.1)

=

( n∏
r=1

sλ(r) [kr − kr−1]
)
sλ(n+1) [kn + β − 1]

n+1∏
r,s=1
r 6=s

`r∏
i=1

(
εr(Ar,s − ks−1 + ks)− i+ 1

)
λ
(r)
i(

εr(Ar,s + εs`s)− i+ 1
)
λ
(r)
i

×
∏

16r<s6n+1

`r∏
i=1

`s∏
j=1

(Ar,s − i+ εsj + 1)
λ
(r)
i −εsλ

(s)
j

(Ar,s − i+ εs(j − 1) + 1)
λ
(r)
i −εsλ

(s)
j

,

where `1, . . . , `n+1 are arbitrary integers such that `r > l(λ(r)) for 1 6 r 6 n+ 1, ε1 = · · · = εn = 1,
εn+1 = −1, k0 := 0 and kn+1 := 1− β. It is not difficult to define a function, say

Rk1,...,kn
λ(1),...,λ(n+1)(α1, . . . , αn, β; γ),

such that for γ = 1 it gives the right-hand side of (7.1) and such that for λ(1) = λ, λ(2) = · · · =

λ(n) = 0 and λ(n+1) = µ it yields the right-hand side of (1.13). To describe this function, we
generalise our earlier definition (1.21) of Ar and Ar,s to include γ:

Ar := αr + · · ·+ αn + (kr − kr−1 + r)γ and Ar,s := Ar −As,

for 1 6 r, s 6 n+ 1. Hence Ar,s = −Ar,s and

(7.2) Ar,s = αr + · · ·+ αs−1 + (kr − kr−1 − ks + ks−1 + r − s)γ

for 1 6 r 6 s 6 n+ 1.

Lemma 7.1. Let Ar,s be as in (7.2), where 0 = k0 6 k1 6 k2 6 · · · 6 kn are integers and
kn+1 := 1− β/γ. Set ε1 = · · · = εn = 1 and εn+1 = −1, and define

Rk1,...,kn
λ(1),...,λ(n+1)(α1, . . . , αn, β; γ)(7.3)

:=

( n∏
r=1

P
(1/γ)

λ(r)
[kr − kr−1]

)
P

(1/γ)

λ(n+1) [kn + β/γ − 1]

×
∏

16r<s6n+1

(−εsAr,s − εs(kr−1 − kr)γ; γ)λ(s)

(−εsAr,s + εs`rγ; γ)λ(s)

×
∏

16r<s6n

(
(Ar,s − (ks−1 − ks)γ; γ)λ(r)

(1 +Ar,s + (εs`s − 1)γ; γ)λ(r)

`r∏
i=1

`s∏
j=1

(1 +Ar,s + (j − i)γ)
λ
(r)
i −λ

(s)
j

(1 +Ar,s + (j − i− 1)γ)
λ
(r)
i −λ

(s)
j

)

×
n∏
r=1

(
(Ar,n+1 − (kn − kn+1)γ; γ)λ(r)

(Ar,n+1 − `n+1γ; γ)λ(r)

`r∏
i=1

`n+1∏
j=1

(Ar,n+1 − (i+ j − 1)γ)
λ
(r)
i +λ

(n+1)
j

(Ar,n+1 − (i+ j − 2)γ)
λ
(r)
i +λ

(n+1)
j

)
,
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where `1, . . . , `n+1 are arbitrary integers such that `r > l(λ(r)) and `1 6 k1. Then

Rk1,...,kn
λ(1),...,λ(n+1)(α1, . . . , αn, β; γ)

is well-defined (i.e., independent of the choice of the `r),

R0,k2,...,kn
λ(1),...,λ(n+1)(α1, . . . , αn, β; γ) =

R
k2,...,kn
λ(2),...,λ(n+1)(α2, . . . , αn, β; γ) if λ(1) = 0,

0 otherwise

and
Rk1,...,knλ,0,...,0︸︷︷︸

n−1 times

,µ(α1, . . . , αn, β; γ) and Rk1,...,kn
λ(1),...,λ(n+1)(α1, . . . , αn, β; 1)

agree with the right-hand side of the An AFLT integral (1.13) and the right-hand side of (7.1)

respectively. Moreover, when l(λ(1)) < k1 and k1, . . . , kn > 1,

Rk1,...,kn
λ(1),...,λ(n+1)(α1, α2, . . . , αn, β; γ)(7.4)

= Rk1−1,...,kn−1
λ(1),...,λ(n+1)(α1 + γ, α2, . . . , αn, β + γ, γ)

n+1∏
s=1

(−εsA1,s + εsk1γ; γ)λ(s)

(−εsA1,s + εs(k1 − 1)γ; γ)λ(s)
.

We note that the assumption that l(λ(1)) < k1 is not actually a restriction since

Rk1,...,kn
λ(1),...,λ(n+1)(α1, . . . , αn, β; γ)

depends on λ(1) + α1 only, where, for m a scalar, λ + m := (λ1 + m,λ2 + m, . . . ). For n = 2 and

λ(2) = 0 the recursion (7.4) agrees with [11, Equation (A.15)] (provided [k2γ]/[(k2 − 1)γ] in the

latter is corrected to [k2γ]λ/[(k2 − 1)γ]λ). For n > 2 and λ(2) = · · · = λ(n) = 0, however, (7.4) and
the recursion at the bottom of page 36 of [11] are inconsistent.

Proof of Lemma 7.1. To see that the right-hand side of (7.3) is independent of the `r, fix a t such

that 1 6 t 6 n + 1. Then, assuming that λ
(t)
`t

= 0, it follows from elementary manipulations and
the use of

(a)−n
(b)−n

=
(1− b)n
(1− a)n

that the right-hand side of (7.3) reduces to the same expression with `t 7→ `t − 1.
For (7.4), write

kn+1 = kn+1(β; γ) and Ar,s = Ak1,...,knr,s (α1, . . . , αn, β; γ).

It is then readily checked that

kn+1(β + γ; γ) = kn+1(β; γ)− 1

Ak1−1,...,kn−1r,s (α1 + γ, α2, . . . , αn, β + γ; γ) = Ak1,...,knr,s (α1, . . . , αn, β; γ).

Hence, for l(λ(1)) 6 k1 − 1,

Rk1,...,kn
λ(1),...,λ(n+1)(α1, α2, . . . , αn, β; γ)

Rk1−1,...,kn−1
λ(1),...,λ(n+1)(α1 + γ, α2, . . . , αn, β + γ, γ)

=
P

(1/γ)

λ(1)
[k1]

P
(1/γ)

λ(1)
[k1 − 1]

n+1∏
s=2

(−εsA1,s + εsk1γ; γ)λ(s)

(−εsA1,s + εs(k1 − 1)γ; γ)λ(s)
.

By the specialisation formula (2.20) the recursion (7.4) follows.
The remaining claims of the lemma are immediate and left to the reader. �
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An obvious guess would be that〈( n∏
r=1

P
(1/γ)

λ(r)

[
t(r) − t(r−1)

])
P

(1/γ)

λ(n+1)

[
t(n) + β/γ − 1

]〉k1,...,kn
α1,...,αn,β;γ

(7.5)

= Rk1,...,kn
λ(1),...,λ(n+1)(α1, . . . , αn, β; γ),

but this is easily shown to be false unless λ(2) = · · · = λ(n) = 0. For example, by a direct
computation using Theorem 1.2 and the Jack polynomial limit of (2.17) given by

P
(1/γ)
(r) [x− y] = xr 2F1

(
−γ,−r

1− γ − r
;
y

x

)
,

it follows that for k1 = · · · = kn = 1 and(
λ(1), . . . , λ(n), λ(n+1)

)
=
(
(u1), . . . , (un), µ

)
the left-hand side of (7.5) evaluates as a product of n− 1 terminating 3F2 series. Specifically,〈( n∏

r=1

P
(1/γ)
(ur)

[
tr − tr−1

])
P (1/γ)
µ

[
tn + β/γ − 1

]〉1,...,1

α1−u1,...,αn−un,β;γ

= P (1/γ)
µ [β/γ]

(α1 + · · ·+ αn + β − nγ; γ)µ
(α1 + · · ·+ αn + β − (n− 1)γ; γ)µ

×
n∏
r=1

(1− α1 − · · · − αr + (r − 1)γ)u1+···+ur
(1− α1 − · · · − αr − βr + (r − δr,n)γ)u1+···+ur

×
n−1∏
r=1

3F2

(
−γ, α1 + · · ·+ αr − (r − 1)γ,−ur+1

1− γ − ur+1, 1 + α1 + · · ·+ αr − rγ
; 1

)
,

where t0 := 0 and β1 = · · · = βn−1 := 1. For γ = 1 the rth 3F2 series simplifies to δur+1,0 in
accordance with the k1 = · · · = kn case of (7.1). We do not know how to modify the product of
Jack polynomials on the left of (7.5) so that equality holds.

7.2. Generalising Theorem 4.1 for γ = 1. Another open problem is to generalise the γ = 1
case of (4.8) to include a product of n Schur functions. For βn−1 + βn = 2, denote by〈

O
〉k1,...,kn
α1,...,αn,βn−1,βn

the γ = 1 case of the An Selberg average (4.6) (this again requires a complex integration contour).
Then the problem is to extend the method of Section 5 to prove that〈( n−1∏

r=1

sλ(r)
[
t(r) − t(r−1)

])
sλ(n)

[
t(n)
]〉k1,...,kn

α1,...,αn,βn−1,βn

?
=

n∏
r=1

∏
16i<j6`r

λ
(r)
i − λ

(r)
j + j − i
j − i

∏
16r<s6n−1

`r∏
i=1

`s∏
j=1

λ
(r)
i − λ

(s)
j +Ar,s + j − i
Ar,s + j − i

×
n−1∏
r=1

`r∏
i=1

kn∏
j=1

Ar,n+1 − i− j + 1

λ
(r)
i + λ

(n)
j +Ar,n+1 − i− j + 1
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×
n−1∏
r,s=1

`r∏
i=1

(Ar,s − ks−1 + ks − i+ 1)
λ
(r)
i

(Ar,s + `s − i+ 1)
λ
(r)
i

n−1∏
r=1

`r∏
i=1

(Ar,n − kn−1 + kn − i+ 1)
λ
(r)
i

(Ar,n + βn−1 − i)λ(r)i

×
n−1∏
r=2

kn∏
i=1

(Ar,n+1 + kr−1 − kr − i+ 1)
λ
(n)
i

(Ar,n+1 − `r − i+ 1)
λ
(n)
i

kn∏
i=1

(An,n+1 + kn−1 − kn − i+ 1)
λ
(n)
i

(An,n+1 + βn − i)λ(n)i

,

where t(0) := 0, k0 = kn+1 := 0, `1 = k1, `n = kn, `r for 2 6 r 6 n − 1 are arbitrary nonnegative
integers such that `r > l(λ(r)), and the Ar,s are defined as in (1.21). The more general average〈( n∏

r=1

sλ(r)
[
t(r) − t(r−1)

])
sλ(n)

[
t(n)
]〉k1,...,kn

α1,...,αn,βn−1,βn

appears not to have a similarly simple evaluation. For example, for n = 2 and β1 + β2 = γ + 1 it
follows that 〈

P
(1/γ)
(u1)

[
t1
]
P

(1/γ)
(u2)

[
t2 − t1

]
P

(1/γ)
(u3)

[
t2
]〉1,1

α1,α2,β1,β2;γ

=
(α1)u1(α2)u2+u3(α1 + α2 − γ)u1+u2+u3

(α1 + β1 − γ)u1(α2 + β2 − γ)u2+u3(α1 + α2)u1+u2+u3

× 4F3

(
−γ, α1 + u1,−α2 + β1 − u2 − u3,−u2

1− γ − u2, α1 + β1 − γ + u1, 1− α2 − u2 − u3
; 1

)
.

For γ = 1 this does not vanish when u2 = 0, but instead yields the non-uniform expression〈
s(u1)

[
t1
]
s(u2)

[
t2 − t1

]
s(u3)

[
t2
]〉1,1

α1,α2,β1,β2

=


(α1)u1(α2)u3(α1 + α2 − 1)

(α1 + β1 − 1)u1(α2 + β2 − 1)(α1 + α2 − 1 + u1 + u3)
if u2 = 0,

(α1)u1(α2)u2+u3−1(α1 + α2 − 1)(β1 − 1)

(α1 + β1 − 1)u1+1(α2 + β2 − 1)u2+u3
if u2 > 1.

7.3. An elliptic Selberg and AFLT integral for An. Theorem 1.4 gives an elliptic generalisa-
tion of the AFLT integral (1.6). This integral includes the elliptic Selberg integral as special case.
Two obvious open problems are to generalise the An Selberg integral (1.12) to the elliptic level and
to then further extend this to an elliptic analogue of the An AFLT integral (1.13). We intend to
address these problems in a future paper [2].
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