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What is the Selberg integral?

Our story begins with the beta integral∫ 1

0

tα−1(1− t)β−1 dt =
Γ(α)Γ(β)

Γ(α + β)
,

valid for α, β ∈ C such that Re(α),Re(β) > 0, which was first proved by
Euler in 1730.

What does a k-dimensional analogue look like? Of course there is the
trivial ∫

[0,1]k

k∏
i=1

tα−1i (1− ti )
β−1 dt1 · · · dtk =

k∏
i=1

Γ(α)Γ(β)

Γ(α + β)
,

but this is not very satisfactory.



A (more) satifactory answer comes in the form of the Selberg integral,
first proved by Selberg in 1944. We have

Sk(α, β; γ) :=

∫
[0,1]k

k∏
i=1

tα−1i (1− ti )
β−1

∏
16i<j6k

|ti − tj |2γ dt1 · · · dtk

=
k∏

i=1

Γ(α + (i − 1)γ)Γ(β + (i − 1)γ)Γ(1 + iγ)

Γ(α + β + (k + i − 2)γ)Γ(1 + γ)
,

for α, β, γ ∈ C such that Re(α),Re(β) > 0 and

Re(γ) > −min
{ 1

k
,

Re(α)

k − 1
,

Re(β)

k − 1

}
.

The Selberg integral has appeared in random matrix theory, analytic
number theory, enumerative combinatorics, conformal field theory,. . .



Three generalisations

Henceforth if t = (t1, . . . , tk) then dt := dt1 · · · dtk and

∆(t) =
∏

16i<j6k

(ti − tj).

1. The Kadell integral:∫
[0,1]k

P(1/γ)
µ (t) |∆(t)|2γ

k∏
i=1

tα−1i (1− ti )
β−1 dt

= P(1/γ)
µ (1, . . . , 1︸ ︷︷ ︸

k times

)
k∏

i=1

Γ(α + (k − i)γ + µi )Γ(β + (i − 1)γ)Γ(1 + iγ)

Γ(α + β + (2k − i − 1)γ + µi )Γ(1 + γ)
,

where P
(1/γ)
µ (t) is a Jack polynomial and Re(α) > −µk , Re(β) > 0,

Re(γ) > . . ..

This was conjectured by Macdonald and subsequently proved by Kadell in
1987.



2. The Hua–Kadell integral:∫
[0,1]k

P(1/γ)
µ (t)P(1/γ)

ν (t) |∆(t)|2γ
k∏

i=1

tα−1i (1− ti )
γ−1 dt

= P(1/γ)
µ (1, . . . , 1︸ ︷︷ ︸

k times

)P(1/γ)
ν (1, . . . , 1︸ ︷︷ ︸

k times

)

×
k∏

i=1

Γ(α + (k − i)γ + µi )Γ(γ + (i − 1)γ)Γ(1 + iγ)

Γ(α + γ + (k − i − 1)γ + µi )Γ(1 + γ)

×
k∏

i,j=1

Γ(α + γ + (2k − i − j − 1)γ + µi + νj)

Γ(α + γ + (2k − i − j)γ + µi + νj)
,

which is a generalisation of Kadell’s integral, but with the added
restriction β = γ. In the above Re(α) > −µk , Re(γ) > 0.

Proved by Hua for γ = 1 in 1979, and in general by Kadell in 1993.



3. The Alba–Fateev–Litvinov–Tarnopolskiy (AFLT) integral:∫
[0,1]k

P(1/γ)
µ (t)P(1/γ)

ν [t + β/γ − 1] |∆(t)|2γ
k∏

i=1

tα−1i (1− ti )
β−1 dt

= P(1/γ)
µ [k]P(1/γ)

ν [k + β/γ − 1]

×
k∏

i=1

Γ(α + (k − i)γ + µi )Γ(β + (i − 1)γ)Γ(1 + iγ)

Γ(α + β + (2k −m − i − 1)γ + µi )Γ(1 + γ)

×
k∏

i=1

m∏
j=1

Γ(α + β + (2k − i − j − 1)γ + µi + νj)

Γ(α + β + (2k − i − j)γ + µi + νj)
,

where m is an arbitrary integer such that m > l(ν). This is the
Hua–Kadell integral with β 6= γ.



The AGT Conjecture

Alba, Fateev, Litvinov, and Tarnopolskiy, did not set out to prove a
generalisation of the Hua–Kadell integral. Instead, they were attempting
to verify the so-called AGT conjecture for SU(2).

An ingredient in the AGT conjecture is an explicit expression for the
Nekrasov partition function in terms of conformal blocks in Liouville field
theory. In order to verify this conjecture, AFLT had to compute the
Hua–Kadell integral without the β = γ restriction.

The AGT conjecture was quickly generalised to SU(n + 1). In this case
the analogue of the AFLT integral is an An Selberg integral with n + 1
Jack polynomials inserted in the integrand.



For t = (t1, . . . , tk) and s = (s1, . . . s`) define

∆(t, s) :=
k∏

i=1

∏̀
j=1

(ti − sj).

Then the “AGT integral” for A2 is

I k,`µ,ω,ν(α1, α2, β; γ)

:=

∫
C k,`
γ [0,1]

P(1/γ)
µ [t]P(1/γ)

ω [s − t]P(1/γ)
ν [s + β/γ − 1]|∆(t, s)|−γ

× |∆(t)|2γ |∆(s)|2γ
k∏

i=1

tα1−1
i

∏̀
j=1

sα2−1
j (1− sj)

β−1 dt ds

We can evaluate this integral when either ω = 0 or γ = 1.



Two techniques

The technique of Alba et al. of the AFLT integral mimics a proof of
Kadell’s integral by Warnaar which uses the Okounkov–Olshanski formula
for Jack polynomials, but in this case it only works for α = Nγ, β = Mγ.

1. The proof of the ω = 0 case uses Macdonald polynomial theory, in
particular higher rank analogues of the Cauchy identity∑

λ

Pλ(X ; q, t)Qλ(Y ; q, t) =
∏
x∈X

∏
y∈Y

(txy ; q)∞
(xy ; q)∞

,

where (x ; q)∞ = (1− x)(1− xq)(1− xq2) · · ·

2. For the γ = 1 case we use the inverse Pieri rule for Schur functions
to set up a recursion for the AGT integral. With the ω = 0 case as
an initial condition this has a unique solution.



The case γ = 1

For γ = 1, the Jack polynomials reduce to Schur functions

P
(1)
λ (X ) = sλ(X ) :=

det16i,j6k(xλi+k−i
j )

∆(x)

where X is an alphabet of cardinality k .

The Schur functions form a basis for the algebra of symmetric functions,
denoted Λ.

Some examples for X = {x1, x2, x3} are:

s(1,1,1)(X ) = x1x2x3

s(2,1)(X ) = x21 x2 + x21 x3 + x1x
2
2 + x22 x3 + x1x

2
3 + x2x

2
3 + 2x1x2x3

s(3)(X ) = x31 + x32 + x23 + x21 x2 + x21 x3 + x1x
2
2 + x22 x3

+ x1x
2
3 + x2x

2
3 + x1x2x3



An algebraic basis for Λ is given by the complete symmetric functions

hr (X ) :=
∑

16i16···6ir

xi1 · · · xir .

More examples with X = (x1, x2, x3):

h0(X ) := 1

h1(X ) = x1 + x2 + x3

h2(X ) = x21 + x22 + x23 + x1x2 + x1x3 + x2x3

We have another definiton of sλ in terms of the Jacobi–Trudi formula

sλ = det
16i,j6l(λ)

(hλi+j−i ),

from which it is clear that
s(r) = hr .



Plethystic business

Another algebraic basis for Λ is given by the Newton power sums:

pr (X ) := x r1 + x r2 + x r3 + · · · =
∑
x∈X

x r .

Let X and Y be two alphabets and define the sum X + Y to be their
disjoint union. It follows that

pr [X + Y ] = pr [X ] + pr [Y ].

We can also subtract alphabets. Define X − Y by demading

pr [X − Y ] := pr [X ]− pr [Y ]

so that
pr [X + Y − Y ] = pr [X ] + pr [Y ]− pr [Y ] = pr [X ]

as it should!



Products of alphabets are also possible. Define XY to be the Cartesian
product of X and Y , then

pr [XY ] = pr [X ]pr [Y ].

This leads us to an ambiguity. Clearly by our summation convention

pr [X + · · ·+ X︸ ︷︷ ︸
k times

] = k pr [X ],

which we extend to any z ∈ C by

pr [zX ] = z pr [X ].

But for a single-letter alphabet y we have

pr [yX ] = y rpr [X ].



What is going on?

Single-letter alphabets are called rank-one elements of Λ, and are those
that satisfy

pr [yX ] = y rpr [X ].

Elements z ∈ C such that

pr [zX ] = z pr [X ]

are called binomial elements, because

hr [z ] =

(
z + r − 1

r

)
.

In our Selberg integrals we always treat β/γ − 1 as a binomial element.



Define the Selberg average

〈
sµ[t]sω[s − t]sν [s + β − 1]

〉k,`
α1,α2,β

:= lim
γ→1

I k,`µ,ω,ν(α1, α2, β; 1)

I k,`0,0,0(α1, α2, β; 1)
.

Taking a plethystic minus sign in a Schur function gives the
transformation

sλ[−X ] = (−1)|λ|sλ′ [X ].

Hence we consider the equivalent integral〈
sµ[t]sω[s − t]sν [1− β − s]

〉k,`
α1,α2,β

,

with corresponding (conjectural) evaluation. We prove this by induction
on the length of ω.

Of course this requires one to guess an appropriate evaluation. . .



Take a partition ω and form the partition (ω, d) := (ω1, . . . , ωn, d) where
d is an integer such that 1 6 d 6 ωn. Then the inverse Pieri rule states
that

s(ω,d)[s − t] =
∑
λ

l(λ)6n

(−1)|λ/ω|sλ[s − t]hd−|λ/ω|[s − t],

where the skew shape λ/ω is a vertical strip. At the level of diagrams:

= · − · − · +

So we have equality between〈
sµ[t]s(ω,d)[s − t]sν [1− β − s]

〉k,`
α1,α2,β

and∑
λ

l(λ)6n

(−1)|λ/ω|−d
〈
sµ[t]sλ[s − t]hd−|λ/ω|[s − t]sν [1− β − s]

〉k,`
α1,α2,β

.



The next step is to use the generalised convolution formula

hd−|λ/ω|[s − t] =
∑

i+j=d−|λ/ω|

(
β − 1

d − |λ/ω| − i − j

)
ei [t]ej [1− β − s]

where the elementary symmetric functions are given by

er [X ] := (−1)rhr [−X ].

Then absorb the elementary symmetric functions into sµ[t] and
sν [1− β − s] using the e-Pieri rule

sµer =
∑
λ�µ
|λ/µ|=r

sλ.

· = + + +



In the end we obtain an identity of the form

〈
sµ[t]s(ω,d)[s − t]sν [1− β − s]

〉k,`
α1,α2,β

=
∑

i,j,η,λ,π

const×
〈
sη[t]sλ[s − t]sπ[1− β − s]

〉k,`
α1,α2,β

,

where the partition λ has length at most n.

If we can show that the conjectural evaluation of the A2 AGT integral
also satisfies this recursion, then the two expressions must be equal.

In the case of γ = 1 this boils down to the verification of a rational
function identity.



The rational function identity obtained is a limiting case of Milne’s An

q-Pfaff–Saalschütz summation:

∑
k1,...,kn>0
|k|6d

(q−d ; q)|k|q
|k|

(a1 · · · anbq1−d/c ; q)|k|

∏
16r<s6n

xrq
kr − xsq

ks

xr − xs

×
n∏

r ,s=1

(asxr/xs ; q)kr
(qxr/xs ; q)kr

n∏
r=1

(bxr ; q)kr
(cxr ; q)ki

=
(c/b; q)d

(c/a1 · · · anb; q)d

n∏
r=1

(cxr/ar ; q)d
(cxr ; q)d

where

(a; q)k =
k∏

i=1

(1− aqi−1).



For arbitrary γ define the γ-shifted factorial

(a; γ)λ :=

l(λ)∏
i=1

(a + (1− i)γ)λi .

Conjecture (SA,Warnaar, 2019)

〈 n+1∏
r=1

sν(r)

[
t(r) − t(r−1)

]〉k1,...,kn

α1,...,αn,β;1

=
n+1∏
r ,s=1

(Ar ,s + ks − ks−1; 1)ν(r)

(Ar ,s + `s ; 1)ν(r)

n+1∏
r=1

∏
16i<j6`r

ν
(r)
i − ν

(r)
j + j − i

j − i

×
∏

16r<s6n+1

`r∏
i=1

`s∏
j=1

Ar ,s + ν
(r)
i − ν

(s)
j + j − i

Ar ,s + j − i

where for any 1 6 r , s 6 n + 1 we define

Ar := αr + · · ·+ αn + kr−1 − kr + r

Ar ,s := Ar − As



Conclusions
Unfortunately the inductive argument does not provide a proof of the
conjecture for general n. Indeed one would need to know the value of〈 n+1∏

r=1
r 6=m

sν(r)

[
t(r) − t(r−1)

]〉k1,...,kn

α1,...,αn,β;1

for every 2 6 m 6 n − 1:

ν(1) ν(2) ν(m) ν(n) ν(n+1)

t(1) t(2) t(m−1) t(m) t(n−1) t(n)

The technique using the Pieri rule does not lift to the case of general γ.
The issue is not the Pieri rule for Jack polynomials, but rather that there
is no γ-analogue of

hr [s − t] =
∑
i+j=r

(
β − 1

r − i − j

)
ei [t]ej [1− β − s].



The End


