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For α, β ∈ C such that Re(α),Re(β) > 0, Euler (1738) proved the beta
integral evaluation ∫ 1

0

tα−1(1− t)β−1 dt =
Γ(α)Γ(β)

Γ(α + β)
,

where for z ∈ C \ {0,−1,−2, . . .},

Γ(z) := lim
n→∞

n! nz−1

z(z + 1) . . . (z + n − 1)
z 6∈ {0,−1,−2, . . .}

=

∫ ∞
0

tz−1e−t dt Re(z) > 0,

is the gamma function.



In 1941/1944 Atle Selberg discovered a multidimensional analogue of
Euler’s beta integral

∫
[0,1]k

k∏
i=1

tα−1i (1− ti )
β−1

∏
16i<j6k

|ti − tj |2γ dt1 · · · dtk

=
k∏

i=1

Γ(α + (i − 1)γ)Γ(β + (i − 1)γ)Γ(1 + iγ)

Γ(α + β + (k + i − 2)γ)Γ(1 + γ)
,

where α, β, γ ∈ C such that Re(α),Re(β) > 0 and

Re(γ) > −min
{ 1

k
,

Re(α)

k − 1
,

Re(β)

k − 1

}
.



Three generalisations

Henceforth if t = (t1, . . . , tk) then dt := dt1 · · · dtk and

∆(t) =
∏

16i<j6k

(ti − tj).

1. The Kadell integral: Let P
(1/γ)
λ (t) be a Jack polynomial, then

∫
[0,1]k

P
(1/γ)
λ (t)|∆(t)|2γ

k∏
i=1

tα−1i (1− ti )
β−1 dt

= P
(1/γ)
λ (1, . . . , 1︸ ︷︷ ︸

k times

)
k∏

i=1

Γ(α + (k − i)γ + λi )Γ(β + (i − 1)γ)Γ(1 + iγ)

Γ(α + β + (2k − i − 1)γ + λi )Γ(1 + γ)
,

where Re(α) > −λk , Re(β) > 0, Re(γ) > . . ..

This was conjectured by Macdonald and subsequently proved by Kadell in
1987.
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2. The Hua–Kadell integral:∫
[0,1]k

P
(1/γ)
λ (t)P(1/γ)

µ (t) |∆(t)|2γ
k∏

i=1

tα−1i (1− ti )
γ−1 dt

= P
(1/γ)
λ (1, . . . , 1︸ ︷︷ ︸

k times

)P(1/γ)
µ (1, . . . , 1︸ ︷︷ ︸

k times

)

×
k∏

i=1

Γ(α + (k − i)γ + λi )Γ(γ + (i − 1)γ)Γ(1 + iγ)

Γ(α + γ + (k − i − 1)γ + λi )Γ(1 + γ)

×
k∏

i,j=1

Γ(α + γ + (2k − i − j − 1)γ + λi + µj)

Γ(α + γ + (2k − i − j)γ + λi + µj)
,

which is a generalisation of Kadell’s integral, but with the added
restriction β = γ. In the above Re(α) > −λk , Re(γ) > 0.

Proved by Hua for γ = 1 (Schur case) in 1979, and in general by Kadell
in 1993.
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3. The Alba–Fateev–Litvinov–Tarnopolskiy (AFLT) integral:∫
[0,1]k

P
(1/γ)
λ (t)P(1/γ)

µ [t + β/γ − 1] |∆(t)|2γ
k∏

i=1

tα−1i (1− ti )
β−1 dt

= P
(1/γ)
λ [k]P(1/γ)

µ [k + β/γ − 1]

×
k∏

i=1

Γ(α + (k − i)γ + λi )Γ(β + (i − 1)γ)Γ(1 + iγ)

Γ(α + β + (2k − `− i − 1)γ + λi )Γ(1 + γ)

×
k∏

i=1

∏̀
j=1

Γ(α + β + (2k − i − j − 1)γ + λi + µj)

Γ(α + β + (2k − i − j)γ + λi + µj)
,

where ` is an arbitrary integer such that ` > l(µ). This is the Hua–Kadell
integral which removes the restriction β = γ.

Discovered by AFLT in 2010, and proved for α = Nγ, β = Mγ where
N,M ∈ N and Re(γ) > 0.



The AGT Conjecture

The motivation of Alba, Fateev, Litvinov and Tarnopolskiy was the
verification of the so-called AGT conjecture for SU(2).

An ingredient in the AGT conjecture is an explicit expression for the
Nekrasov partition function in terms of conformal blocks in Liouville field
theory.

In order to verify this expression, AFLT looked for an orthogonal basis for
the space of representations of Vir⊕A , where Vir is the Virasoro algebra
and A is the Heisenberg algebra.

This boils down to computing the AFLT integral!
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Higher rank integrals

The construction used by AFLT was quickly generalised to SU(n). The
integrals involved now become An Selberg integrals in the sense of
Tarasov–Varchenko and Warnaar.

Here, the ordinary Selberg integral is associated to the Lie algebra A1,
with a single set of k integration variables:

t

This gives the factor

|∆(t)|2γ
k∏

i=1

tα−1i (1− ti )
β−1



Higher rank integrals

The construction used by AFLT was quickly generalised to SU(n). The
integrals involved now become An Selberg integrals in the sense of
Tarasov–Varchenko and Warnaar.

Here, the ordinary Selberg integral is associated to the Lie algebra A1,
with a single set of k integration variables:

t

This gives the factor

|∆(t)|2γ
k∏

i=1

tα−1i (1− ti )
β−1



For A2 the picture is:

t u

Given a pair of integers k 6 ` the corresponding integrand is

Ik,`(t, u; γ) := |∆(t)|2γ |∆(u)|2γ |∆(t, u)|−γ
k∏

i=1

tα1−1
i

∏̀
i=1

uα2−1
i (1−ui )β−1,

where the adjacent vertices are paired by the factor

∆(t, u) :=
k∏

i=1

∏̀
j=1

(uj − ti ).

The exponents of the Vandermonde-type products come from the Cartan
matrix (

2 −1
−1 2

)
.
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The A2 AFLT integral is therefore∫
C k,`[0,1]

P
(1/γ)
λ (t)P(1/γ)

µ [u + β/γ − 1] Ik,`(t, u; γ) dt du.

Or thinking about this again in terms of the Dynkin diagram:

t

λ

u

µ

In general, we can evaluate the An AFLT integral of the above form. The
proof uses Macdonald polynomial theory, in particular generalisations of

∑
λ

Pλ(X ; q, t)Qλ(Y ; q, t) =
∞∏
i=1

∞∏
j=1

(txiyj ; q)∞
(xiyj ; q)∞

where (a; q)∞ := (1− a)(1− aq)(1− aq2) · · · .



Further An integrals

Also in 2010, Matsuo and Zhang were inspired by the AGT conjecture to
consider AFLT-type Selberg integrals of the form∫

C

sλ(t)sν [u − t]sµ[u + β − 1] Ik,`(t, u; 1) dt du.

Note that this is an analogue of the AFLT integral but with γ = 1, so
that the Jack polynomials reduce to Schur functions:

P
(1)
λ (t) = sλ(t) =

det16i,j6k(t
λj+k−j
i )

∆(t)
.

We can dress up the Dynkin diagram futher:

t

λ ν

u

µ



The function sν [u − t] can be explained using plethystic notation. The
power sum symmetric functions

pr (X ) = x r1 + x r2 + x r3 + · · ·

form an algebraic basis for the algebra of symmetric functions on any
alphabet X .

Given two alphabets we define the sum to be the disjoint union, so that

pr [X + Y ] = pr [X ] + pr [Y ].

The difference is then defined by

pr [X − Y ] := pr [X ]− pr [Y ],

so that
pr [X + Y − Y ] = pr [X ] + pr [Y ]− pr [Y ] = pr [X ]

as it should! As these are defined in terms of an algebraic basis, we can
extend to any symmetric function.
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We are able to evaluate the integral〈
sλ(t)sν [u − t]sµ[u + β − 1]

〉
=

∫
C

sλ(t)sν [u − t]sµ[u + β − 1] Ik,`(t, u; 1) dt du,

in two different ways.

1. The first method the Pieri rule for Schur functions to set up a
recursion. Using the AFLT integral as initial condition, this has a
unique solution.

2. The second method is based on a new integral formula for complex
Schur functions, which allows for a proof for general n by induction
on the rank.

Caveat: method (1) works for n = 2 only.
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Partitions

We identify a partition with its Young diagram:

which represents (6, 4, 2, 1, 1). We write µ ⊆ λ if the diagram of µ is
contained in that of λ. For example

so (4, 3, 1) ⊆ (6, 4, 2, 1, 1). On the right is the resulting skew shape
(6, 4, 2, 1, 1)/(4, 3, 1).



We say λ/µ is a vertical strip if it contains at most one box in each row,
and a horizontal strip if it has at most one box in each column:

We write µ ≺ λ for λ/µ a horizontal strip and µ′ ≺ λ′ for a vertical strip.

Finally, we define the complete symmetric functions by

hr (X ) :=
∑

16i16···6ir

xi1 · · · xir = s(r)(X ),

the sum over all monomials of degree r on the alphabet X .
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The inverse Pieri rule may be stated as

s(ν,d)[u − t] =
∑
ω′�ν′

l(ω)=l(ν)

(−1)|ω/ν|sω[u − t]hd−|ω/ν|[u − t].

At the level of diagrams:

= · − · − · +

This, together with some plethystic magic, leads to a recursion of the
form〈

sλ(t)s(ν,d)[u − t]sµ[u + β − 1]
〉

=
∑
η′�λ′

π′�µ′

∑
ω′�ν′

l(ν)=l(ω)

〈
sη(t)sω[u − t]sπ[u + β − 1]

〉
.
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Other AFLT-type integrals

I The Selberg integral admits elliptic and q-analogues, and we have
also been able to produce such analogues for the AFLT integral

I We can write down a γ-deformation for the evaluation of〈
sλ(t)sν [u − t]sµ[u + β − 1]

〉
,

but it is unclear how to lift the integral to the γ level.

The End
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