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1. The Selberg integral

The Selberg integral needs almost no introduction. It was published by Selberg in
1944, and has since played an important role in many different areas of
mathematics. For α, β, γ ∈ C such that Re(α),Re(β) > 0 and Re(γ) sufficiently
large, Selberg’s integral is

Sk(α, β; γ) :=

∫
[0,1]k

k∏
i=1

xα−1
i (1− xi)

β−1
∏

1⩽i<j⩽k

|xi − xj|2γ dx

=
k∏
i=1

Γ(β + (i − 1)γ)Γ(α + (i − 1)γ)Γ(1 + iγ)

Γ(α + β + (k + i − 2)γ)Γ(1 + γ)
,

where x := (x1, . . . , xk).

3. Selberg integrals and the AGT conjecture

In their verification of the AGT conjecture for SU(2), Alba, Fateev, Litvinov and
Tarnopolsky (AFLT) needed to evaluate the Selberg integral with a pair of Jack
polynomials inserted into the integrand. These are symmetric functions which are
a limiting case of the Macdonald polynomials.

Let ⟨f [x]⟩kα,β;γ be the result of integrating the symmetric function f against the
Selberg density and normalising by Sk(α, β; γ) (the Selberg average). Then the
AFLT integral is〈

P̃
(1/γ)
λ [x]P̃ (1/γ)

µ [x + β/γ − 1]
〉k

α,β;γ

=
k∏
i=1

(α + (k − i)γ)λi
(α + β + (k − i − 1)γ)λi

k∏
i ,j=1

(α + β + (2k − i − j − 1)γ)λi+µj

(α + β + (2k − i − j)γ)λi+µj

,

where P̃
(1/γ)
λ is a normalised Jack polynomial (the normalisation is the polynomial

evaluated at xi = 1 for all 1 ⩽ i ⩽ k) and (a)n := Γ(a + n)/Γ(a) is the ordinary
Pochhammer symbol.

Note: The second Jack polynomial is modified by a certain plethystic
substitution.

5. An elliptic AFLT integral

In recent joint work with Rains and Warnaar we gave an elliptic analogue of the
above AFLT integral in which the role of the Jack polynomials is played by the
elliptic interpolation functions defined to the right.

The integral is most easily stated in terms of the elliptic symbol
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Also, in analogy with the above, let ⟨·⟩kt1,...,t6;t;p,q be the elliptic Selberg average.

Then again with the balancing condition t2k−2t1 · · · t6 = pq we have that〈
R∗
λ(z; t1, t2; t; p, q)R

∗
µ(z; t4/t, t5/t; t3t4t5/t, t6; t; p, q)
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=
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∆0
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×
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µ(t
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2. The elliptic Selberg integral

Both the integrand and the evaluation of the elliptic Selberg integral involve the
elliptic gamma function, which for |p|, |q| < 1 is defined as

Γp,q(z) :=
∞∏

i ,j=0

1− pi+1qj+1/z

1− zpiqj
.

In addition with |t|, |t1|, . . . , |t6| < 1 such that the balancing condition
t2k−2t1 · · · t6 = pq holds the elliptic Selberg integral is

Sk(t1, . . . , t6; t; p, q) := κk
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,

where κk := (p; p)k∞(q; q)k∞/2kk!(2πi)k. For k = 1 this reduces to Spiridonov’s
elliptic beta integral

κ1

∫
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=

∏
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Γp,q(trts).

Also, taking a careful limit of Sk(t1, . . . , t6; t; p, q) produces the non-elliptic
Selberg integral. Note that the integral is symmetric in p and q.

4. Elliptic interpolation functions

It is natural to ask for a lift of the AFLT integral to the elliptic level. In this
setting the Jack polynomials are replaced by a pair of elliptic interpolation
functions.

Let µ be a bipartition, that is, a pair of partitions (µ(1), µ(2)) both with at most k
parts. Define the associated spectral vector by

⟨µ⟩k ;t;p,q :=
(
pµ

(1)
1 qµ

(2)
1 tk−1, . . . , pµ

(1)
1 qµ

(2)
1 t0

)
.

The elliptic interpolation function

R∗
µ(z1, . . . , zk; a, b; t; p, q)

indexed by µ is a BCk-symmetric function with the important property that for
any λ with µ ̸⊆ λ (read: µ(1) ̸⊆ λ(1) and µ(2) ̸⊆ λ(2))

R∗
µ(⟨λ⟩k ;t;p,q; a, b; t; p, q) = 0.

These functions are an elliptic lift of Okounkov’s BCk interpolation Macdonald
polynomials.

To make sense of the plethystic substitution in the AFLT integral we actually
need the “hybrid” functions

R∗
µ(z1, . . . , zk; v1, . . . , v2ℓ; a, b; t; p, q),

which are additionally S2ℓ-symmetric in the vi . These are a scaled instance of
certain skew interpolation functions.

6. Vandermonde products

Below we will use the “vertex” and “edge” Vandermonde products

∆(v)(x1, . . . , xk) :=
∏

1⩽i<j⩽k

(xi − xj),

∆(e)(x1, . . . , xk; y1, . . . , yℓ) :=
k∏
i=1

ℓ∏
j=1

(xi − yj).

7. From A1 to An

Together with Rains and Warnaar we have shown that all of the
integrals above admit generalisations in the form of An Selberg
integrals. For the ordinary Selberg integral this was already
done in 2009 by Warnaar and earlier for A2 by Tarasov and
Varchenko.

The recipe for the integrand of the An Selberg integral:

• pick a sequence of integers 0 ⩽ k1 ⩽ · · · ⩽ kn,

• each vertex r gets a set of variables x(r) with |x(r)| = kr , a
complex parameter αr and a “vertex” Vandermonde
product (exponent 2γ).

• each edge gets an “edge” Vandermonde pairing x(s) and
x(s+1) (exponent −γ),

• vertex n gets βn (on the right set βr := 1 if 1 ⩽ r < n).

See Ole’s talk for the elliptic version!
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