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Abstract. We exhibit, for any positive integer parameter s, an involution on the set of
integer partitions of n. These involutions show the joint symmetry of the distributions of
the following two statistics. The first counts the number of parts of a partition divisible by s,
whereas the second counts the number of cells in the Ferrers diagram of a partition whose leg
length is zero and whose arm length has remainder s − 1 when dividing by s. In particular,
for s = 1 this involution is just conjugation. Additionally, we provide explicit expressions for
the bivariate generating functions.

Our primary motivation to construct these involutions is that we know only of two other
“natural” bijections on integer partitions of a given size, one of which is the Glaisher–Franklin
bijection sending the set of parts divisible by s, each divided by s, to the set of parts occurring
at least s times.

1. Introduction

Integer partitions are possibly one of the most important families of objects in combina-
torics. However, it seems that we do not know of very many bijections on the set of integer
partitions of a given size — although a large variety of bijections between sets of partitions
with certain properties can be found in the literature, as witnessed by Pak in his survey [10].

Apart from conjugation of the Ferrers diagram, a well-known family of bijections is due to
Glaisher and Franklin, see [10, Sec. 3.3], [7].1 For a given positive integer s, it sends the set
of parts divisible by s, each divided by s, to the set of parts occurring at least s times.

The other family of bijections we know of is due to Loehr and Warrington [9]. For each
rational number x, they describe an involution that interchanges two statistics h+x and h−x,
which count the number of cells in the Ferrers diagram of a partition satisfying certain
constraints on the ratio of arm and leg length. These involutions can be combined, for
example, to provide a bijection sending the diagonal inversion number to the length of a
partition.2

The purpose of this article is to present a family of involutions on the set of partitions of
a given integer that interchange two statistics rs and cs (to be defined in the next section),
where s is a positive integer. For s = 1 we recover the operation of conjugation.

To give an outline, in the next section we recall standard notation and give definitions
relevant for our considerations. In particular, there we introduce the announced statistics rs
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and cs. Subsequently we present our results. Theorem 1 says that there is an involution
on partitions of n that interchanges the statistics rs and cs. The theorem is actually much
finer as it leaves the sequence of the non-zero remainders after division of the parts of the
partition by s invariant. Our second main result is presented in Theorem 3. It provides an
explicit expression for the generating function ∑λ q

∣λ∣, where the sum is over all partitions
with (rs(λ), cs(λ)) = (r, c) and a fixed sequence of non-zero remainders, with ∣λ∣ denoting the
sum of parts of λ. The symmetry in r and c is evident from the expression, see Remarks 4(1).
Sections 3 and 4 are devoted to the construction of the involution of Theorem 1. It is built

up step by step. It is particularly simple if all parts of the partition are divisible by s, see
Construction 1 in Section 3.1. The next case that we consider is the case of strictly increasing
remainder sequences. The simple idea of Construction 1 is enhanced by the operation of
“removal of remainders” (see Section 3.2) and the concept of the “remainder diagram”. The
result is the more general involution in Construction 2 presented in Section 3.3. In Section 4
it is argued that the general case can be reduced to the case of strictly increasing remainder
sequences, see Construction 3. The resulting complete description of our involution, proving
Theorem 1, is finally summarized in Construction 4.

Along the way to this involution, we derive in parallel generating function results, see Lem-
mas 6, 10 and 11, and in particular Theorem 12. (In fact, several ingredients to the involution
are inspired by generating function calculations.) We complete the proof of Theorem 3 in
Section 5 by simplifying the expression from Theorem 12. We offer actually two proofs of
Theorem 3: one uses a combination of combinatorial arguments and q-series identities, the
other is purely combinatorial.

The family of involutions we present here, depending on a positive integer s, was discovered
by an automated search for equidistributed statistics on integer partitions in www.findstat.

org such that there is no accompanying bijection in the database.3

2. Definitions and Results

A partition λ of a positive integer n is a weakly decreasing sequence of positive integers
that add up to n. We write λ ⊢ n and n is also referred to as the size of λ, denoted by ∣λ∣.
The number of parts is the length of the partition, denoted by ℓ(λ). The Ferrers diagram
of λ = (λ1, . . . , λℓ) is the arrangement of left-justified unit boxes, called cells, with λi cells
in row i. In the following, we often identify the Ferrers diagram with the partition. We use
the English convention and matrix coordinates to locate cells in the Ferrers diagram. By λ′

we denote the conjugate partition of λ, which is obtained by reflecting the Ferrers diagram
about the main diagonal. The leg length leg(z) of a cell z in the partition is the number of
cells in the same column strictly below the cell, while the arm length arm(z) of a cell is the
number of cells in the same row strictly to the right of the cell. The Ferrers diagrams of
λ = (6,4,4,1) and of λ′ = (4,3,3,3,1,1) are shown in Figure 1.

The cells that contribute to the leg and arm lengths of the cell (1,2) of the Ferrers diagram
of λ are indicated in blue and red, respectively, where the cell in the i-th row and j-th column
is referred to as (i, j).

3The case s = 2 is now www.findstat.org/Mp00321.
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Figure 1. The Ferrers diagrams of λ = (6,4,4,1) and λ′ = (4,3,3,3,1,1)

Throughout, we fix a positive integer s. We define the following two statistics on partitions
that depend on s. We let4

rs(λ) =# of parts of λ divisible by s,

cs(λ) =# of cells z in λ such that leg(z) is zero and arm(z) + 1 is divisible by s.

A cell that contributes to cs(λ) is called s-cell. For example, given λ = (6,4,4,1), the 2-cells
are (1,5) and (3,3) and we have r2(λ) = 3 and c2(λ) = 2.
It is worth pointing out that the statistic cs(λ) occurred earlier in [11, p. 23, bottom],

where it is denoted by BFr,0(λ), as a special case of a more general statistic BFα,β(λ).

Our main goal is to show that the polynomial

∑

λ⊢n
Rrs(λ)Ccs(λ)

is symmetric in R and C by constructing an involution on partitions of n that interchanges
the statistics rs and cs.
We will actually show a vast refinement of this statement. The remainder sequence of

a partition λ modulo s is the sequence ρs(λ) = (ρ1, . . . , ρm) of non-zero remainders of the
parts of λ when dividing by s and reading λ from left to right. For example, given λ =
(12,9,5,4,4,3,2), we have ρ4(λ) = (1,1,3,2). Our involution will fix the remainder sequence
of the partition. As a consequence, we obtain our first main theorem.

Theorem 1. Let s and n be positive integers, and let ρ be a vector of integers between 1
and s−1. Furthermore, let r and c be non-negative integers. Then the number of partitions λ
of n with ρs(λ) = ρ and (rs(λ), cs(λ)) = (r, c) is equal to the number of partitions λ of n with
ρs(λ) = ρ and (rs(λ), cs(λ)) = (c, r).

Example 2. We choose s = 3. There are exactly 5 partitions λ of 37 with remainder se-
quence (2,1,1,2,1) and r3(λ) = 2 and c3(λ) = 3, namely (15,6,5,4,4,2,1), (15,8,4,4,3,2,1),
(14,10,4,3,3,2,1), (17,6,4,4,3,2,1), (14,7,7,3,3,2,1). Their Ferrers diagrams are shown
in Figure 2. There, the 3-cells are the black cells. Furthermore, blocks of three cells are either
white or shaded in order to facilitate the identification of the row lengths that are divisible
by s = 3.

4We use the letter “r” in rs and the letter “c” in cs since, clearly, the first statistics is associated with the
rows of the Ferrers diagram of the partition, and since we think of the latter statistics to be associated with
the columns of the Ferrers diagram.
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Figure 2. The partitions λ of 37 with remainder sequence (2,1,1,2,1),
r3(λ) = 2 and c3(λ) = 3

On the other hand, there are exactly 5 partitions λ of 37 with remainder sequence
(2,1,1,2,1) and r3(λ) = 3 and c3(λ) = 2, namely (11,10,4,3,3,3,2,1), (12,8,4,4,3,3,2,1),
(12,6,5,4,4,3,2,1), (11,7,7,3,3,3,2,1), (14,6,4,4,3,3,2,1). Their Ferrers diagrams are
shown in Figure 3. The shadings in the figure have the same meaning as in Figure 2.

Figure 3. The partitions λ of 37 with remainder sequence (2,1,1,2,1),
r3(λ) = 3 and c3(λ) = 2

Apart from a bijective proof we also present a proof by computation. Both proofs imply
the following result. In order to state it, recall that the q-binomial coefficient is defined as

[
n
k
]

q

=

[n]q!

[k]q! [n − k]q!

with

[n]q! =
n

∏

i=1
(1 + q + ⋅ ⋅ ⋅ + qi−1) =

n

∏

i=1

1 − qi

1 − q
.

We extend the notion of size to finite sequences so that for ρ = (ρ1, . . . , ρm) we have ∣ρ∣ =
ρ1 + ⋅ ⋅ ⋅ + ρm. We say that ρ has a weak descent at position j if ρj ≥ ρj+1. Finally, the weak
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major index of ρ is the sum of the positions of its weak descents, that is

wmaj(ρ) = ∑

j∶ρj≥ρj+1
j.

This is a special case of the so called “graphical major indices” introduced by Foata and
Zeilberger [6] and further investigated by Clarke and Foata [1, 3, 4, 2] as well as Foata and
one of the authors [5]. Using the language of the articles by Clarke and Foata, the “weak
major index” is the major index defined solely on “large” letters.

Our announced generating function result is the following.

Theorem 3. Let s be a positive integer, ρ be a vector of integers between 1 and s − 1 of
length m, and r, c be non-negative integers. The generating function with respect to the
weight q∣λ∣ of partitions λ with ρs(λ) = ρ and (rs(λ), cs(λ)) = (r, c) is

q∣ρ∣Q−wmaj(ρ)+(m
2
)+r+c
([

r +m − 1
m − 1

]

Q

[
r + c +m − 2

c
]

Q

+Qm−1
[
r +m
m
]

Q

[
r + c +m − 2

c − 1
]

Q

),

where Q = qs.

Remarks 4. (1) An alternative way to write the above expression is as

q∣ρ∣Q−wmaj(ρ)+(m
2
)+r+c
(

[r + c +m − 1]Q!

[r]Q! [c]Q! [m − 1]Q!
+Qm−1 [r + c +m − 2]Q!

[r − 1]Q! [c − 1]Q! [m]Q!
),

from which the symmetry in r and c expressed in Theorem 1 is obvious.

(2) A surprising feature of the formula is that the dependence on the remainder sequence ρ
is only in the exponent of q in front of the expression. This “almost-independence” from ρ
is explained by the bijection of Construction 3.

Example 5. If we choose s = 3, m = 5, ρ = (2,1,1,2,1), and (r, c) = (2,3) (respectively
(r, c) = (3,2)) in the formula of Theorem 3, then we obtain

q7q3⋅(−7+10+2+3)([
6
4
]

q3

[
8
3
]

q3

+ q3⋅4 [
7
5
]

q3

[
8
2
]

q3

)

= q31 (1 + 2q3 + 5q6 + 9q9 + 17q12 + ⋅ ⋅ ⋅ + 16q66 + 9q69 + 5q72 + 2q75 + q78) .

In particular, the coefficient of q37 in this polynomial equals 5, corresponding to the five
partitions for each of (r, c) = (2,3) and (r, c) = (3,2) in Example 2.

3. Some special cases

The purpose of this section is to define the involution of Theorem 1 in two simpler cases:
first for the case where all parts of the partitions are divisible by s (see Construction 1),
and then for the more general case where the non-zero remainders that the parts leave after
division by s are in increasing order (see Construction 2). Moreover, we provide the necessary
auxiliary results that imply that the constructed mappings are indeed involutions and have
the desired properties in relation to the statistics rs and cs. Finally, working towards the
proof of Theorem 3, we also provide corresponding generating function results, the upshot
being Lemma 10.
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3.1. Bijective proof for the case of the empty remainder sequences. In the special
case where the remainder sequence of λ = (λ1, . . . , λℓ) modulo s is empty, each row of the
Ferrers diagram can be partitioned into segments of length s. We shrink each of these
segments to one cell, i.e., we consider the partition (λ1

s ,
λ2

s , . . . ,
λl

s ). Then rs(λ) is the number
of rows and cs(λ) is the number of columns of the shrunk partition. In this case, conjugation
of the shrunk diagram and subsequent expansion of each cell again into a row segment of
length s give the involution.
This involution is also the basis for the general case. To describe it formally, we introduce

some notation. On the one hand, let

λ↓s = (⌊λ1/s⌋, . . . , ⌊λℓ/s⌋) .

We call λ↓s the s-reduction of λ. On the other hand, let

λ↑s = (s ⋅ λ1, . . . , s ⋅ λℓ)

and call λ↑s the s-blow-up of λ.
We have λ↑s ↓s= λ for every partition λ. We also have λ↓s ↑s= λ if and only if λ has empty

remainder sequence modulo s. The involution on partitions with empty remainder sequence
can now be stated as follows.

Construction 1 (Empty remainder sequence). Let λ be a partition with empty remain-
der sequence. We define the mapping

λ↦ [λ↓s]
′
↑s .

Our reasoning above demonstrates that Construction 1 is an involution on partitions with
empty remainder sequence modulo s that interchanges the statistics rs and cs.
The discovery of the general involution, proving Theorem 1, was inspired by generating

function considerations that led to a proof of Theorem 3, as indicated throughout the pre-
sentation. The preceding construction thus corresponds to the statement of the following
lemma. We use the standard notation for Q-shifted factorials,

(a;Q)n ∶=
n−1
∏

i=0
(1 − aQi

).

Lemma 6. The generating function with respect to the weight Rrs(λ)Ccs(λ)q∣λ∣ of partitions λ
with empty remainder sequence is given by

1 +∑
k≥1

Rk CQk

(CQ;Q)k
,

where Q = qs.

Proof. By shrinking row segments of length s as above, it suffices to compute the generating
function of all partitions λ with respect to the weight

R# of rows of λC# of columns of λq∣λ∣

and then replace q by Q = qs, which takes care of expanding the cells into row segments
again.

Now, the “1” in the claimed expression takes care of the empty partition, while

Rk Cqk

∏
k
i=1(1 −Cqi)
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is the generating function of partitions of length k as is easily seen by considering the conju-
gate partition λ′ of λ and applying elementary combinatorial reasoning. □

3.2. A crucial operation: removal of the final non-zero remainder. In the following,
we also need to keep track of the positions of parts with a non-zero remainder modulo s in a
partition λ. We define the row position sequence γs(λ) = (γ1, . . . , γm) to be the sequence of
indices 1 ≤ γ1 < ⋅ ⋅ ⋅ < γm such that λγj has non-zero remainder after division by s. Let ∆sλ be
the partition we obtain by deleting the last ρm cells in the γm-th row of the Ferrers diagram
of λ.

Lemma 7. Let λ be a partition with remainder sequence ρs(λ) = (ρ1, . . . , ρm) and row position
sequence γs(λ) = (γ1, . . . , γm), m ≥ 1. Then

cs(∆sλ) = {
cs(λ), if m = 1 and γ1 = 1, or γm−1 = γm − 1 and ρm−1 ≥ ρm,

cs(λ) + 1, otherwise.

Proof. First note that the case where m = γ1 = 1 is obvious. From now on we tacitly assume
that we are not in this case.

Next we observe that the deletion only has an effect on the s-cells in rows γm − 1 and γm.
However, since the lengths of the rows below row γm are all divisible by s, the number of
s-cells in row γm does not change. If γm−1 < γm −1 then there is one more s-cell in row γm −1
of ∆sλ than in the same row of λ. This is still true if γm−1 = γm − 1 and ρm−1 < ρm. However,
if γm−1 = γm − 1 and ρm−1 ≥ ρm the number of s-cells does not change. □

Setting s = 3, we have cs(∆sλ) = cs(λ) + 1 for the partition on the left in Figure 4, and
cs(∆sλ) = cs(λ) for the partition on the right. The non-zero remainders are indicated in
green.

G

G G

G G

G

Figure 4. Example partitions for Lemma 7

3.3. Bijective proof for the case of strictly increasing remainder sequences. After
having understood empty remainder sequences, the next easiest task is to accommodate
strictly increasing remainder sequences. The reason is that, in this case, the statistic cs
increases by 1 when successively removing the final non-zero remainders, i.e. cs(∆i

sλ) =
cs(∆i−1

s λ) + 1 for i = 1, . . . ,m, except for the case when there is just one non-zero remainder
left and it is the remainder of the first part of the partition.

Let γs(λ) = (γ1, . . . , γm) be the row position sequence of λ. The column position sequence
γ′s(λ) = (γ

′
1, . . . , γ

′
m) is the sequence (⌈λγ1/s⌉, . . . , ⌈λγm/s⌉). Informally, these are the column

indices corresponding to the removed remainders in λ↓s. To give an example, let s = 4 and
let λ be the partition (4s+ 1,4s,3s+ 2,3s,2s, s+ 3). Its Ferrers diagram is shown in Figure 5
on the left, while its s-reduction is shown on the right (the bullets should be ignored at this
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G

G G

G G G

●

●

●

●

●

Figure 5. A partition of 74 and its 4-reduction

point). In this example, we have γs(λ) = (1,3,6) and γ′s(λ) = (5,4,2), and the remainder
sequence is ρs(λ) = (1,2,3) (corresponding to the green cells in Figure 5).
Given a partition λ with strictly increasing remainder sequence, the green cells greens(λ)

are defined as the cells (γ1, γ′1), . . . , (γm, γ
′
m). In our running example of Figure 5, these are

(1,5), (3,4), and (6,2).
Recall that an outer corner of a Ferrers diagram λ is a cell z not contained in the diagram

such that the union λ∪ z is a Ferrers diagram. For example, the outer corners of the Ferrers
diagram on the right of Figure 5 are indicated by black dots. Next we show that all green
cells are outer corners of the s-reduction.

Proposition 8. Let λ be a partition with strictly increasing remainder sequence modulo s.
Then the cells in greens(λ) are outer corners of λ↓s.

Proof. We have ⌈λi/s⌉ = ⌊λi/s⌋+1 if and only if λi is not divisible by s, so the cells in greens(λ)
are indeed just outside of λ↓s. Since the remainder sequence is strictly increasing, the cells
in greens(λ) have distinct column indices. □

The remainder diagram ν+s (λ) is obtained from the Ferrers diagram of λ↓s by adding the
green cells, as coloured cells.5 We call λ↓s the interior of ν+s (λ). Figure 6 displays the
remainder diagram ν+s (λ) of the partition λ from Figure 5. There, the green cells are marked
in green, while the remaining — non-coloured — cells form the interior of ν+s (λ).

G

G

G

Figure 6. The remainder diagram of the partition of Figure 5

Next we show that the statistics rs and cs are determined by the remainder diagram.

5The concept of the “remainder diagram” has some similarities with parts of the Littlewood-like decom-
position of partitions in [11, p. 12], although there does not seem to be a direct overlap.
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Lemma 9. Let λ be a partition with strictly increasing remainder sequence modulo s and
remainder diagram ν+s (λ). Then

rs(λ) =# of rows of ν+s (λ) − ∣greens(λ)∣,

cs(λ) =# of columns of ν+s (λ) − ∣greens(λ)∣.

Proof. The first equation holds because the green cells correspond to the parts of λ which
are not divisible by s.
For a partition λ with empty remainder sequence, we have ∣greens(λ)∣ = 0 and ν+s (λ) = λ↓s,

and cs(λ) equals the number of columns of λ↓s. If m = 1 and γ1 = 1, then cs(λ) also equals
the number of columns of λ↓s. However, ν+s (λ) has precisely one more column than λ↓s.
Otherwise, by Lemma 7, each green cell of ν+s (λ) reduces the number of cells counted by
cs(λ) by one. □

The conjugate of a remainder diagram is obtained in the same way as the conjugate of a
Ferrers diagram, by reflecting about the main diagonal. Thus, the green cells are at positions
(γ′1, γ1), . . . , (γ

′
m, γm) of the conjugate remainder diagram.

Conjugating ν+s (λ), then expanding the cells of the interior again into row segments of s
cells and putting the remainders back into the green cells, in increasing order from top to
bottom, we obtain the involution that swaps the two statistics in this special case.

To write down the bijection formally we need one further definition. Let ν+ be a partition
with m coloured cells that are at the end of their respective rows, and let ρ = (ρ1, . . . , ρm)
be a vector of integers between 1 and s− 1. Then we define ν+ ←s ρ to be obtained from the
s-blow-up of the interior of ν+ (that is, of the uncoloured cells) by adding ρi cells to the rows
corresponding to the coloured cells, in order.

Construction 2 (Strictly increasing remainder sequence). Let λ be a partition
with strictly increasing remainder sequence ρ = ρs(λ). We define the mapping

λ↦ ([ν+s (λ)]
′
←s ρ) .

Our reasoning above demonstrates that Construction 2 is an involution on partitions with
strictly increasing remainder sequence modulo s that interchanges rs and cs.

We now extend Lemma 6 to the case of strictly increasing remainder sequences.

Lemma 10. Let ρ = (ρ1, . . . , ρm) be a vector of integers between 1 and s − 1 with strictly
increasing coordinates. The generating function of partitions λ with ρs(λ) = ρ with respect
to the weight Rrs(λ)Ccs(λ)q∣λ∣ is given by

q∣ρ∣ ∑

1≤γ1<γ2<⋅⋅⋅<γm
Q∣γ∣−m (Rγm−m

+ ∑

k≥1

CQk

(CQ;Q)k
Rmax(γm−m,k−m)

) ,

where, as before, Q = qs.

Proof. Let λ be a partition with ρs(λ) = ρ and γs(λ) = γ. We modify λ as follows: we delete
the last ρm cells in row γm, i.e., we apply ∆s to λ, and then delete s cells in each row strictly
above row γm. By Lemma 7, this does not change the statistic cs. These deletions are taken
into account by the terms qρm and Qγm−1 in the generating function. We continue in this
manner: we delete the last cells ρj in row γj and delete s cells in each row strictly above row
γj for j =m− 1,m− 2, . . . ,1. This does not change the statistic cs and, in total, the deletions
are taken into account by the terms q∣ρ∣ and Q∣γ∣−m.
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We are left with a partition with empty remainder sequence. Suppose k is the length of
this partition. The case k = 0 is taken care of by the term Rγm−m. In the case k ≥ 1, as can be
seen in the proof of Lemma 6, the generating function of such partitions with respect to the

weight Ccs(λ)q∣λ∣ is CQk

∏k
i=1(1−CQi) . The number of parts divisible by s in the original partition is

k −m if γm ≤ k and γm −m if γm > k. The assertion follows. □

4. The general case

In this section we provide an algorithm, presented in Construction 3, that affords a re-
duction of the general case to the case of strictly increasing remainder sequences, the case
that we had just discussed in Section 3.3. This leads in particular to the completion of the
proof of Theorem 1, with the involution summarized in Construction 4. As already in the
previous section, also here we derive in parallel the corresponding generating function re-
sults, culminating in Theorem 12, which constitutes the basis for the proof of Theorem 3 in
Section 5.

Since it provides the inspiration for the constructions to follow, we start from the generating
function side. We show next how the observation from Section 3.2 can be used to generalize
Lemma 10 in a straightforward manner to the general case. In order to express the generating
function, it is useful to define a 01-sequence d(ρ,γ) = (d1, . . . , dm) of lengthm, which depends
on a vector ρ of length m of integers between 1 and s − 1 and a strictly increasing sequence
of positive integers γ = (γ1, . . . , γm) as follows; later on, γj will again be the row of the
remainder ρj: we set dj = 1 unless j > 1, ρj−1 ≥ ρj and γj = γj−1 + 1, in which case we set
dj = 0. The motivation for this definition comes from the operation provided in Section 3.2.
Note that d1 = 1.

Lemma 11. Let ρ be a vector of integers between 1 and s − 1 of length m. The generating
function with respect to the weight Rrs(λ)Ccs(λ)q∣λ∣ of partitions λ with remainder sequence ρ
is given by

q∣ρ∣ ∑

1≤γ1<γ2<⋅⋅⋅<γm
Qd(ρ,γ)⋅(γ−1)

(Rγm−m
+∑

k≥1

CQk

(CQ;Q)k
Rmax(γm−m,k−m)

) ,

where Q = qs and d(ρ,γ)⋅(γ − 1) denotes the standard inner product of d(ρ,γ) and (γ−1) =
(γ1 − 1, . . . , γm − 1).

Proof. The proof follows essentially the steps from the proof of Lemma 10, except for the
following detail: when we delete the last ρj cells in row γj then we delete s cells in each row
strictly above row γj if and only if dj = 1. If dj = 0, we do not delete cells above row γj.
This is because the observation in Lemma 7 on removing non-zero remainders says that the
statistic cs does not change when deleting the last ρj cells in row γj if and only if dj = 0. □

It turns out that the generating function in Lemma 11 can be simplified.

Theorem 12. Let ρ be a vector of integers between 1 and s− 1 of length m. The generating
function with respect to the weight Rrs(λ)Ccs(λ)q∣λ∣ of partitions λ with remainder sequence ρ
is

q∣ρ∣Q−wmaj(ρ)
∑

i≥m
Q(

m
2
)+i−m

[
i − 1
m − 1

]

Q

(Ri−m
+ ∑

k≥1

CQk

(CQ;Q)k
Rmax(i−m,k−m)

)

where Q = qs.
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The theorem follows from Lemma 11, the observation that, for fixed γm, we have

∑

1≤γ1<γ2<⋅⋅⋅<γm
Q∣γ∣−m = Q(

m
2
)+γm−m

[
γm − 1
m − 1

]

Q

, (4.1)

and from Lemma 13 below. Equation (4.1) holds since [ n+mm ]q is the generating function

∑λ q
∣λ∣ of partitions λ of length at most m and parts no greater than n, and since

∑

1≤γ1<γ2<⋅⋅⋅<γm
Q∣γ∣−m = Qγm−m+1+2+⋅⋅⋅+m−1

∑

0≤γ−1 ≤γ−2 ≤⋅⋅⋅≤γ−m−1≤γm−m
Qγ−1+⋅⋅⋅+γ−m−1 ,

by the transformation γ−k = γk − k.

Lemma 13. Let ρ be a vector of integers between 1 and s − 1 of length m. Then, for fixed
γm, we have

∑

1≤γ1<γ2<⋅⋅⋅<γm
Qd(ρ,γ)⋅(γ−1)

= Q−wmaj(ρ)
∑

1≤γ1<γ2<⋅⋅⋅<γm
Q∣γ∣−m,

where γ = (γ1, . . . , γm).

Proof. We need the following generalization of the weak major index: for k with 1 ≤ k < m,
we define

wmajk(ρ) = ∑

j∶ρj≥ρj+1
j≤k

j.

This simply is the weak major index of the tuple ρ cut off after the (k + 1)-st entry. Note
that wmajm−1 = wmaj for sequences of length m.

The proof is by induction on m. For the start of the induction we note that for m = 1 the
statement is obvious.

By the induction hypothesis, we may assume

∑

1≤γ1<γ2<⋅⋅⋅<γm
Qd(ρ,γ)⋅(γ−1)

= Q−wmajm−2(ρ)
∑

1≤γ1<γ2<⋅⋅⋅<γm
Q∑

m−1
j=1 (γj−1)+dm(γm−1).

If ρm−1 < ρm, then dm = 1 and wmaj(ρ) = wmajm−2(ρ), and the assertion follows in this case.
If, on the other hand, we have ρm−1 ≥ ρm, then wmaj(ρ) = wmajm−2(ρ) +m − 1, and, by the
definition of dm, we have

∑

1≤γ1<γ2<⋅⋅⋅<γm−1<γm
Q∑

m−1
j=1 (γj−1)+dm(γm−1)

= ∑

1≤γ1<γ2<⋅⋅⋅<γm−1<γm−1
Q∣γ∣−m + ∑

1≤γ1<γ2<⋅⋅⋅<γm−2<γm−1
Q∑

m−2
j=1 (γj−1)+γm−2. (4.2)

We need to show that this is equal to

Q−m+1 ∑

1≤γ1<γ2<⋅⋅⋅<γm
Q∣γ∣−m.

We provide a combinatorial proof. First note that the first term in the second line of (4.2)
can be transformed as follows:

∑

1≤γ1<γ2<⋅⋅⋅<γm−1<γm−1
Q∣γ∣−m = Q−m+1 ∑

2≤γ1<γ2<⋅⋅⋅<γm−1<γm
Q∣γ∣−m.
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Here we have used the transformation γi → γi −1 for i ∈ {1,2, . . . ,m−1}. The second term in
the second line of (4.2) is

∑

1≤γ1<γ2<⋅⋅⋅<γm−2<γm−1
Q∑

m−2
j=1 (γj−1)+γm−2 = Q−m+1 ∑

1=γ1<γ2<⋅⋅⋅<γm−1<γm
Q∣γ∣−m,

where we have used the transformation γi → γi+1 − 1 for i ∈ {1,2, . . . ,m − 2} and have set
γ1 = 1. This completes the proof. □

We will now use the combinatorial proof of the previous lemma to provide the missing piece
of our bijection. More concretely, the combinatorial argument allows us to reduce everything
to the essence of Construction 2.

We extend the notion of the remainder diagram to the case of arbitrary remainder sequences
as follows. To explain it, consider the example for s = 3 in Figure 7.

G

Y

G G

G

G G

Y

Figure 7. Green and yellow remainders in a partition

Consider the i-th remainder from the bottom (!), i ≥ 1. This remainder is marked green if
cs(∆i

sλ) = cs(∆
i−1
s λ) + 1, and it is marked yellow if cs(∆i

sλ) = cs(∆
i−1
s λ) (cf. Lemma 7). The

only exception from this rule is a non-zero remainder in the top row, which is always marked
green; see Figure 7.

For a partition λ let, as before, greens(λ) be the set of green cells that correspond to the
green remainders, and let yellows(λ) be the set of yellow cells that correspond to the yellow
remainders. Yellow cells are also located outside of the s-reduction; in their row, they are
adjacent to the final cell of the s-reduction, however, they need not be outer corners of the
s-reduction. In the following, we sometimes refer to the green and the yellow cells as the
coloured cells.

The Ferrers diagram of ν = λ↓s together with the yellow and green cells is the (extended)
remainder diagram ν+s (λ) for λ. For the example above, the remainder diagram is shown in
Figure 8.

More generally, an (extended) remainder diagram ν+ is a partition ν together with a col-
lection of green cells green(ν+) and a collection of yellow cells yellow(ν+), none of them in ν,
provided the following three conditions are met:

● Green cells are outer corners of ν.
● Yellow cells are located at the end of a (possibly empty) row of ν.
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G

Y

G

G

G

Y

Figure 8. The (extended) remainder diagram for the partition in Figure 7

● The cell at the end of the row preceding a row with a yellow cell is always a coloured
cell of ν (cf. the first case in Lemma 7). In particular, a coloured cell in the top row
must be green.

A remainder diagram with coloured cells in rows γ is compatible with a vector ρ of integers
between 1 and s − 1 provided that for any weak descent ρk−1 ≥ ρk of ρ the coloured cell in
row γk is yellow if and only if γk−1 = γk − 1.

We can now express the statistics rs and cs in terms of the (extended) remainder diagram,
thus generalizing Lemma 9.

Lemma 14. Let λ be a partition with remainder diagram ν+s (λ). Then

rs(λ) =# of rows of ν+s (λ) − ∣greens(λ)∣ − ∣yellows(λ)∣,

cs(λ) =# of columns of ν+s (λ) − ∣greens(λ)∣.

Proof. The proof of Lemma 9 carries over verbatim. □

Next we describe a bijection between remainder diagrams compatible with a given remain-
der sequence and remainder diagrams without yellow cells. To state it precisely, inspired by
Lemma 14 we define for any remainder diagram ν+ the two statistics

r(ν+) =# of rows of ν+ − ∣green(ν+)∣ − ∣yellow(ν+)∣ and

c(ν+) =# of columns of ν+ − ∣green(ν+)∣.

The following construction is a translation of the combinatorial proof of Lemma 13.

Construction 3 (Reduction to remainder diagrams without yellow cells). Let
λ be a partition with remainder sequence ρ = ρs(λ) and remainder diagram ν+s (λ).

(1) Initialization: We let k ∶= 1, ν+ ∶= ν+s (λ), and ν ∶= λ↓s.
(2) If k equals the length of ρ then go to (4). If not and if there is a weak descent of ρ

at k, i.e., if ρk ≥ ρk+1, then go to (3). Otherwise increase k by 1 and repeat (2) with
this new value of k.

(3) By construction, all coloured cells strictly above row γk+1 in the diagram ν+ are already
green and thus outer corners of ν.
(3A) If the coloured cell in row γk+1 is green, then the next green cell above is not in

row γk+1 − 1, i.e., γk < γk+1 − 1 (cf. the definition of the (extended) remainder
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diagram and Lemma 7). We add the outer corners of ν in rows γ1, . . . , γk to ν
and add for each of them a green cell to ν+ in the row below.

(3B) If the coloured cell in row γk+1 is yellow, then we delete this coloured cell from ν+.
In this case, the next coloured cell above is in row γk+1 −1, i.e., γk = γk+1 −1, and
all coloured cells above row γk+1 are outer corners. We add the (coloured) outer
corners in rows γ1, . . . , γk to ν and add for each of them a green cell to ν+ in the
row below6. Finally, we add a green cell to ν+ in the first row.

Increase k by 1 and go to (2).
(4) The output of the algorithm is the remainder diagram ν+ with interior ν.

We illustrate this construction with the help of the example in Figure 7 with remainder
diagram in Figure 8. In this case, the row position sequence is (1,2,3,5,6,7) and the re-
mainder sequence is (1,1,2,1,2,1). Hence we have weak descents of the remainder sequence
at k = 1, 3, and 5. The sequence of pairs (ν+, ν) we obtain when applying the algorithm
of Construction 3 is shown in Figure 9. There, the white and shaded cells form the par-
titions ν, while the complete diagrams — including the green and yellow cells — form the
partitions ν+. Note that the final remainder diagram is not compatible with the original
remainder sequence.

G
Y

G

G
G
Y

↦ G
G

G

G
G
Y

↦
G

G
G

G
G
Y

↦ G

G
G

G
G

G

Figure 9. Application of Construction 3

The following lemma confirms that Construction 3 has all the required properties such that
it indeed achieves the desired reduction to the case of remainder diagrams without yellow
cells.

Lemma 15. Given a partition λ with remainder sequence ρ = ρs(λ) and remainder dia-
gram ν+(λ), the algorithm of Construction 3 constructs a remainder diagram ν+ without
yellow cells, whose interior is by wmaj(ρ) cells larger than λ↓s and such that r(ν+) = rs(λ)
and c(ν+) = cs(λ).

Proof. To see that the interior of ν has increased by wmaj(ρ), note that in both (3A) and (3B)
we add k cells to the interior of the remainder diagram, which is precisely the contribution
of the weak descent at position k to the weak major index of ρ.
To see that r(ν+) = rs(λ) and c(ν+) = cs(λ), note that the total number of cells which

are either green or yellow and also the number of rows do not change. In a step (3A), the
number of columns does not change either. In a step (3B), the number of columns increases
by one, whereas the number of yellow cells decreases by one.

Each step of the construction is invertible, since we can determine from the image in which
of steps (3A) or (3B) we were: there is a green cell in the first row of the image if and only
if the coloured cell in row γk+1 in the preimage is yellow. □

6Note that this has the effect that the former yellow cell in row γk+1 is replaced by a green cell.
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In the example in Figure 9, applying the inverse of Construction 3 to the conjugate of the
last diagram with respect to the remainder sequence (1,1,2,1,2,1), we obtain the sequence
of diagrams in Figure 10.

G
G

G

G
G

G

↦ G
G

G

G
G

G

↦ G
G

G
Y

G

G

↦ G
Y

G
Y

G

G

Figure 10. Application of the inverse of Construction 3

We can now put together the preceding constructions to obtain a bijection for the general
case.

Construction 4. Let λ be a partition and ρ = ρs(λ) its remainder sequence.

● We apply Construction 3 to ν+s (λ) with respect to ρ to obtain a remainder diagram
µ+ without yellow cells.
● We apply the inverse of Construction 3 to [µ+]′ with respect to ρ to obtain a remainder
diagram κ+.
● We transform κ+ into a partition by applying the s-blow-up to the interior of the
diagram and replacing the coloured cells by the remainders of the original partition to
obtain κ+ ←s ρ (compare with Construction 2).

Note that the resulting partition is again compatible with ρ by construction.

Example 16. We apply Construction 4 to the partition in Figure 7. Its remainder diagram
is displayed in Figure 8. The application of Construction 3 to the remainder diagram is
performed in Figure 9. Let µ+ denote the resulting remainder diagram. The application of
the inverse of Construction 3 to [µ+]′ is performed in Figure 10. After applying the s-blow-up
to the interior of the diagram and putting the remainders back, we obtain the partition in
Figure 11.

Remark 17. The partitions of 37 in Example 2 appear in the order as “dictated” by the
involution in Construction 4. To be precise, if one applies Construction 4 to the partitions
in Figure 2 then the output partitions are the ones in Figure 3, in the given order.

5. Proof of Theorem 3

By Theorem 1, the generating functions in Lemmas 6, 10 and 11 and Theorem 12 are
all symmetric in R and C, however this is not visible from the formulas. We transform
the formula in Theorem 12 and extract the coefficient of RrCc to obtain a form where the
symmetry in R and C is obvious. The result is stated in Theorem 3 (with the symmetric
rewriting of the formula given in Remarks 4(1)), and the content of this section is its proof.
We start with a proof by computation and provide a combinatorial proof afterwards.
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G

Y

G G

Y

G G

G

Figure 11. Partition obtained after applying the bijection summarized in
Construction 4 to the partition in Figure 7

First proof. First note that we can extend the sum over i in the formula in Theorem 12 over
all i ≥ 0 since [ i−1

m−1 ]Q = 0 if 0 ≤ i < m. We neglect the prefactor q∣ρ∣Q−wmaj(ρ)+(m
2
) in the

formula since it is independent of R and C, and we start by decomposing the sum over k in
the formula in Theorem 12 to get rid of the maximum as

∑

i≥0
Qi−m

[
i − 1
m − 1

]

Q

(Ri−m
+∑

k≥1

CQk

(CQ;Q)k
Rmax(i−m,k−m)

)

= ∑

i≥0
(RQ)i−m [

i − 1
m − 1

]

Q

+∑

k≥1

CQk

(CQ;Q)k
∑

i>k
(RQ)i−m [

i − 1
m − 1

]

Q

+∑

k≥1

CQkRk−m

(CQ;Q)k

k

∑

i=0
Qi−m

[
i − 1
m − 1

]

Q

. (5.1)

We rewrite the first term as

∑

i≥m
(RQ)i−m [

i − 1
m − 1

]

Q

= ∑

i≥m
(RQ)i−m

(Qm;Q)i−m
(Q;Q)i−m

= ∑

i≥0
(RQ)i

(Qm;Q)i
(Q;Q)i

.

By the Q-binomial theorem (cf. [8, Eq. (1.3.2); Appendix (II.3)]) the last sum evaluates to

(RQm+1;Q)∞
(RQ;Q)∞

=

1

(RQ;Q)m
.

Thus, we arrive at the expression

1

(RQ;Q)m
+∑

k≥1

CQk

∏
k
i=1(1 −CQi

)

∑

i>k
(RQ)i−m [

i − 1
m − 1

]

Q

+∑

k≥1

CQkRk−m

∏
k
i=1(1 −CQi

)

k

∑

i=0
Qi−m

[
i − 1
m − 1

]

Q

. (5.2)
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Next we extract the coefficient of RrCc. In order to do so, we will make use of the simple
expansion

1

(z;Q)k
= ∑

l≥0
[
l + k − 1

l
]

Q

zl.

We start with the case c = 0. Making use of the expansion above, we see that the coefficient
of Rr in (5.2) is

Qr
[
r +m − 1

r
]

Q

. (5.3)

If we let c ≥ 1, making again use of the expansion above, we see that the coefficient of RrCc

in (5.2) equals

Qr
[
r +m − 1
m − 1

]

Q

r+m−1
∑

k=1
Qk+c−1

[
c + k − 2
c − 1

]

Q

+Qr+m+c−1
[
r + c +m − 2

c − 1
]

Q

r+m
∑

i=m
Qi−m

[
i − 1
m − 1

]

Q

. (5.4)

Using the simple summation

N

∑

k=1
Qk−1

[
M + k − 1

M
]

Q

= [
M +N
M + 1

]

Q

,

the first expression in (5.4) can be evaluated to

Qr
[
r +m − 1
m − 1

]

Q

r+m−1
∑

k=1
Qk+c−1

[
c + k − 2
c − 1

]

Q

= Qr+c
[
r +m − 1
m − 1

]

Q

[
r + c +m − 2

c
]

Q

.

In the second expression in (5.4) we reverse the order of summation in the sum over i and
then rewrite the resulting sum in basic hypergeometric notation (cf. [8]). In this manner we
obtain

r+m
∑

i=m
Qi−m

[
i − 1
m − 1

]

Q

=

1

(Q;Q)m−1

r

∑

j=0
Qj
(Qj+1;Q)m−1 =

1

(Q;Q)m−1

r

∑

j=0
Qr−j
(Qr−j+1;Q)m−1

=

Qr
(Qr+1;Q)m−1
(Q;Q)m−1

2ϕ1[
Q,Q−r

Q1−m−r;Q,Q−m] .

This 2ϕ1-series can be evaluated by means of the Q-Chu–Vandermonde summation (cf. [8,
Eq. (1.5.2); Appendix (II.7)]), which reads

2ϕ1[
a,Q−n

c
;Q,

cQn

a
] =

(c/a;Q)n
(c;Q)n

,

provided n is a non-negative integer. After some simplification, we obtain

Qr
(Qr+1;Q)m−1
(Q;Q)m−1

2ϕ1[
Q,Q−r

Q1−m−r;Q,Q−m] = [
r +m
m
]

Q

.

Putting everything back together, we see that (5.4) equals

Qr+c
[
r +m − 1
m − 1

]

Q

[
r + c +m − 2

c
]

Q

+Qr+c+m−1
[
r + c +m − 2

c − 1
]

Q

[
r +m
m
]

Q

,

which, aside from the neglected prefactor q∣ρ∣Q−wmaj(ρ)+(m
2
), is exactly the expression in The-

orem 3. □
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Second proof. By Construction 3, it suffices to consider the case wmaj(ρ) = 0. We need
to show that the generating function of partitions λ with strictly increasing remainder se-
quence ρ modulo s of length m and (rs(λ), cs(λ)) = (r, c) is

q∣ρ∣(Q0+1+⋅⋅⋅+m−2Qr+c+m−1
[
r +m − 1
m − 1

]

Q

[
r + c +m − 2

c
]

Q

+Q0+1+⋅⋅⋅+m−1Qr+m+c−1
[
r + c +m − 2

c − 1
]

Q

[
r +m
m
]

Q

). (5.5)

It is useful to think in terms of remainder diagrams. We need to show that the generating
function with respect to the weight Q# of interior cells of remainder diagrams without yellow
cells, where the number of rows is r +m and the number of columns is c+m (including rows
and columns of green cells), is equal to the previous expression when neglecting q∣ρ∣.
We distinguish between two cases.

Case 1: the bottom row of the remainder diagram contains an interior cell.
We claim that this case is covered by the second summand in (5.5). To see this, consider λ↓s,
and let us decompose it as follows. First we cut out the columns of the green cells in λ↓s.
This gives us m columns of distinct lengths where the largest column has at most r +m − 1
boxes, the smallest one being allowed to be empty, since λ↓s has r +m rows and no green
cell is below the last row of λ↓s.
We illustrate this with the example in Figure 5, with the remainder diagram given in

Figure 6. Note that we have m = 3, c = 2, r = 3 in this case. In Figure 12, the m columns
of distinct lengths appear as the first shape on the right-hand side. The corresponding
generating function is Q0+1+⋅⋅⋅+m−1

[
r+m
m ]Q, where here and in the following the colours of the

expressions hint at the corresponding parts of the Ferrers diagrams in the figures.
Next we cut off the outer frame of the remaining partition, that is, all boxes of the first

row and first column. This gives us r +m − 1 + c boxes; compare with the second shape on
the right-hand side of Figure 12. These boxes are taken into account by Qr+c+m−1. What
remains is a partition with at most c − 1 columns of size at most r +m − 1, as in the final
shape in Figure 12. The corresponding generating function is given by the remaining factor
[
r+c+m−2

c−1 ]Q.

↦ , ,

Figure 12. The decomposition of the interior of the remainder diagram of
Figure 5 described in Case 1 of the second proof of Theorem 3

Case 2: the bottom row of the remainder diagram consists only of a green
cell. There are m−1 green cells that are in the last row of the s-reduced diagram or above.
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We claim that this case is covered by the first summand in (5.5). The argument is analogous
to the one above. Again we consider the s-reduced diagram and decompose it as follows. We
start by cutting out the m−1 columns of the green cells different from the bottommost green
cell in λ↓s. This gives us m − 1 columns of different lengths, where the largest has length at
most r +m− 2, since λ has r +m− 1 rows and we only consider the green cells different from
the bottommost green cell.

We illustrate this with the example in Figure 13, with the remainder diagram given in
Figure 14. Note that we have m = 2, c = 3, r = 5 in this case. In Figure 15, these m − 1
columns of different lengths appear as the first shape on the right-hand side. Here the
generating function is Q0+1+⋅⋅⋅+m−2

[
r+m−1
m−1 ]Q. From the remaining partition we cut off the

outer frame of r+m−2+(c+1) boxes; compare with the second shape on the right-hand side
of Figure 15. These boxes are taken into account by the factor Qr+c+m−1. What remains is a
partition with at most c columns of length at most r+m−2, as in the final shape in Figure 15.
The corresponding generating function is given by the remaining factor of [ r+c+m−2c ]Q.

G G

G G G

Figure 13. The example used to illustrate Case 2 of the second proof of Theorem 3

G

G

Figure 14. The remainder diagram of the partition in Figure 13 (right) and
its interior (left)

This completes the proof of the theorem. □

Acknowledgement

Four of the authors wish to express their gratitude to Deutsche Bahn for delaying one of
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↦ , ,

Figure 15. The composition of the interior of the remainder diagram of Fig-
ure 13 described in Case 2 of the second proof of Theorem 3
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