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Classical Littlewood identities

The first “Littlewood identity” is actually due to Schur (1918)∑
λ

sλ(x) =
∏
i>1

1

1− xi

∏
i<j

1

1− xixj
.

Littlewood wrote down two more∑
λ

λ even

sλ(x) =
∏
i>1

1

1− x2i

∏
i<j

1

1− xixj∑
λ

λ′ even

sλ(x) =
∏
i<j

1

1− xixj
,

in his 1940 text The Theory of Group Characters and Matrix
Representations of Groups.



Littlewood identities, and particular their bounded analogues, have played
important roles in the combinatorics of plane partitions and related
objects, Rogers–Ramanujan identities, branching rules, and multiple
elliptic hypergeometric series.

In particular Macdonald’s bounded analogue of the first identity is

∑
λ

λ⊆(mn)

sλ(x1, . . . , xn) =
det16i,j6n(xm+2n−j

i − x j−1i )∏n
i=1(xi − 1)

∏
16i<j6n(xi − xj)(xixj − 1)

.

He used this to deduce MacMahon’s famous conjecture for the number
of symmetric plane partitions in a box in the form

∑
λ

λ⊆(mn)

sλ(q, q3, . . . , q2n−1) =
n∏

i=1

1− qm+2i−1

1− q2i−1

∏
16i<j6n

1− q2(m+i+j−1)

1− q2(i+j−1) .



Hooks and 2-cores

Recall standard notions for partitions. In particular the Young diagram of
a partition. E.g.

is the Young diagram of (6, 4, 3, 1).

This is identified with a set of points (i , j) such that

1 6 i 6 `(λ)

1 6 j 6 λi ,

and write s or (i , j) for a square.



For a square s = (i , j) ∈ λ we have the arm and leg lengths

(1, 3)

so for s = (1, 3) we have a(s) = 3 and l(s) = 2.

The hook length for s = (i , j) is then

h(s) = a(s) + l(s) + 1 = λi + λ′j − i − j + 1.

For a partition λ, set

He
λ = {h(s) even | s ∈ λ}
Ho
λ = {h(s) odd | s ∈ λ},

and Hλ = He
λ ∪Ho

λ.



A partition has empty 2-core, written 2-core(λ) = 0, if it can be tiled by
dominoes. For example, λ = (6, 4, 3, 1)

For us it’s important to note that

2-core(λ) = 0 ⇐⇒ |Ho
λ| = |He

λ|.
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Finally, we need a statistic

b(λ) :=
∑

(i,j)∈λ

(−1)λi+λ
′
j−i−j+1(λi − i).

For our running example

− − −+ + +

− −+ +

−+ +

−

5

2

0

−3

we compute
b
(
(6, 4, 3, 1)

)
= 3.

In fact for 2-core(λ) = 0 we have b(λ) > 0 with equality if and only if λ
is even.



2-core condition

In their work on the branching problem, Lee, Rains and Warnaar were led
to conjecture a swathe of curious formulae including integral evaluations,
Littlewood identities, branching formulae, and hypergeometric
summations.

The link between all of their conjectures is the “2-core condition”. For
example, an integral vanishes unless 2-core(λ) = 0.

All of their conjectures are at the Macdonald, or (q, t), level. In the
Schur case q = t, things simplify dramatically, and some of their
conjectures can be resolved.



Recall the usual infinite q-shifted factorial

(a; q)∞ :=
∏
i>0

(1− aqi ).

Then the following conjecture of Lee, Rains and Warnaar is true.

There holds

∑
λ

2-core(λ)=0

qb(λ)

∏
h∈Ho

λ
(1− qh)∏

h∈He
λ

(1− qh)
sλ(x) =

∏
i>1

(qx2i ; q2)∞
(x2i ; q2)∞

∏
i<j

1

1− xixj
,

and

∑
λ

2-core(λ)=0

qb(λ
′)

∏
h∈Ho

λ
(1− qh)∏

h∈He
λ

(1− qh)
sλ(x) =

∏
i>1

(q2x2i ; q2)∞
(qx2i ; q2)∞

∏
i<j

1

1− xixj
.

For q = 0 these are Littlewood’s even row/even column identities
respectively.



The previous identities are in the spirit of Kawanaka’s 1999 formula

∑
λ

( ∏
h∈H

1 + qh

1− qh

)
sλ(x) =

∏
i>1

(−qxi ; q)∞
(xi ; q)∞

∏
i<j

1

1− xixj

which recovers Schur’s original identity for q = 0.

Unlike Kawanaka’s identity, the 2-core identities make sense for q → 1
and produce the following corollary.

∑
λ

2-core(λ)=0

∏
h∈Ho

λ
(h)∏

h∈He
λ

(h)
sλ(x) =

∏
i>1

1

(1− x2i )1/2

∏
i<j

1

1− xixj

The proof of the previous theorem relies on some basic Koornwinder
polynomial theory together with vanishing integrals.



Vanishing integrals
Fix the measure

dT (x) =
1

2nn!(2πi)n
dx1
x1
· · · dxn

xn
.

For a function f (x) we define

f
(
x±
)

= f (x)f (1/x)

f
(
x±y±

)
= f (xy)f (x/y)f (y/x)f (1/xy)

Lee, Rains and Warnaar prove the following.

For a, b, q ∈ C such that |a|, |b|, |q| < 1, the integral

I
(n)
λ (a, b; q)

:=

∫
Tn

sλ
(
x±
) n∏
i=1

(x±2i ; q)∞

(ax±2i ; q2)∞(bx±2i ; q2)∞

∏
16i<j6n

(
1− x±i x±j

)
dT (x)

vanishes unless 2-core(λ) = 0.



For 2-core(λ) = 0, they also give integral evaluations in terms of
Pfaffians in two important special cases. These Pfaffians may be
evaluated, and yield the following pair of evaluations.

For 2-core(λ) = 0,

I
(n)
λ (q, q; q) = qb(λ

′)C
e
λ(q2n; q)Ho

λ(q)

C o
λ(q2n; q)He

λ(q)

and

I
(n)
λ (1, q2; q) = qb(λ)

1 + qn+2(b(λ′)−b(λ))

1 + qn
C e
λ(q2n; q)Ho

λ(q)

C o
λ(q2n; q)He

λ(q)
.

Here

H
e/o
λ (q) :=

∏
s∈λ

h(s) even/odd

(
1− qh(s)

)
,

C
e/o
λ (z ; q) :=

∏
(i,j)∈λ

i + j even/odd

(
1− zqj−i

)
.



The key identity is the following due to Rains and Warnaar (stated in a
special case).

For nonnegative integers n,m,

(x1 · · · xn)mK(mn)(x ; q, q;±a,±b) =
∑
λ

(−1)|λ|I
(m)
λ′ (a, b; q)sλ(x).

Any closed form evaluation of the integral I
(m)
λ′ (a, b; q) thus gives a

bounded Littlewood-type identity.

For example with (a, b) = (q, q) we obtain

(x1 · · · xn)mK(mn)(x ; q, q;±q,±q)

=
∑
λ

2-core(λ)=0

qb(λ
′)C

e
λ(q−2m; q)Ho

λ(q)

C o
λ(q−2m; q)He

λ(q)
sλ(x),

and a similar result for (a, b) = (1, q2). Sending m→∞ gives the
unbounded identity from before.



The same proof technique works at the Macdonald level. Known integral
evaluations there are so-called virtual Koornwinder integrals for
Macdonald polynomials due to Rains and Rains and Vazirani.

The q, t-analogues of the vanishing integrals and (bounded) Littlewood
identities are still open. However, in the Hall–Littlewood case, the 2-core
condition drops out and the two identities are known. For example∑

λ

to(λ)/2
( ∏

s∈λ
a(s)=0
l(s) even

(
1− t l(s)+1

))
Pλ(x ; t) =

∏
i>1

1− tx2i
1− x2i

∏
i<j

1− txixj
1− xixj

,

where the sum is over all partitions such that odd parts have even
multiplicity and o(λ) is the sum of these multiplicities. This is due to
Kawanaka.



One final curious conjecture of Lee, Rains and Warnaar is a Cn analogue
of Andrews’ q-analogue of Watson’s 3F2 summation

φ4 3

[
a1/2,−a1/2, bqN−1, q−N

a, b1/2,−b−1/2
; q, q

]
=


aN/2(q, b/a; q2)N/2

(aq, b; q2)N/2
if N is even,

0 otherwise.

Suppressing the details, it may be stated as

∑
µ⊆λ

fλ,µ(a; q, t) =

{
Fλ(a; q, t) if 2-core(λ) = 0,

0 otherwise.

For λ = (N) this is Andrews’ formula.

The end


