Adapted Wasserstein distance between the laws of SDEs Julio Backhoff-Veraguas (Universität Wien), Sigrid Källblad (KTH Stockholm), Benjamin A. Robinson (Universität Wien)

Theorem. to optimising over correlations between W, \overline{W} .

Synchronous coupling: $W = \overline{W}$

Product coupling: *W*, *W* independent

Suppose that the coefficients are continuous with Theorem. linear growth and that pathwise uniqueness holds. Then the synchronous coupling attains $\mathcal{AW}_{p}(\mu, \nu)$.

Knothe-Rosenblatt

> For μ , ν on \mathbb{R}^{t}

$$X_{k}^{n}, U_{1}, \dots, U_{n} \stackrel{iid}{\sim} \mathcal{U}[0, 1], X_{1} = F_{\mu_{1}}^{-1}(U_{1}), Y_{1} = F_{\nu_{1}}^{-1}(U_{1}),$$
$$X_{k} = F_{\mu_{X_{1},\dots,X_{k-1}}}^{-1}(U_{k}), \quad Y_{k} = F_{\nu_{Y_{1},\dots,Y_{k-1}}}^{-1}(U_{k})$$

> The Knothe-Rosenblatt rearrangement between μ, ν is

Knothe–Rosenblatt rearrangemnt for n = 2

ben.robinson@univie.ac.at

Discretisation

Monotone Euler–Maruyama scheme: $n \in \mathbb{N}, h = 1/n$

 $X_{\rm O}^h = X_{\rm O},$

stopped when hitting some barrier

```
\mathbb{E}\left[\sup_{t\in[0,1]}|X_t^h-X_t|^2\right]\leq Ch.
```

 $\mathcal{AW}_p(\mu_n,\nu_n).$

- stochastically increasing
- > Therefore

 $\mathcal{AW}_{D}(\mu^{h},\nu^{h})
ightarrow \mathcal{AW}_{D}(\mu,
u)$

Reference

[1] J. Backhoff-Veraguas, S. Källblad, and B. A. Robinson. Adapted Wasserstein distance between the laws of SDEs. *arXiv:2209.03243* [*math*], Sep. 2022.

Supported by Austrian Science Fund (FWF) projects Y782-N25 and P35519.

 $X_{t}^{h} = X_{kh}^{h} + b(X_{kh}^{h})(t - kh) + \sigma(X_{kh}^{h})(W_{t}^{h} - W_{kh}^{h}), \quad t \in (kh, (k + 1)h]$

> The process W^h is a martingale with Brownian increments

Theorem. Convergence in L^p holds for all $p \ge 1$ and, for $h \ll 1$,

Theorem (Rüschendorf '85). For μ_n, ν_n on \mathbb{R}^n stochastically co-monotone, the Knothe-Rosenblatt rearrangement attains

> If b, σ are Lipschitz and $h \ll 1$, then $\mu^h = \text{Law}((X_{kh}^h)_{k=1,\dots,n})$ is

> The Knothe–Rosenblatt rearrangement attains the LHS for each *h* and the synchronous coupling attains the *RHS* > By a stability argument, we arrive at the main theorem