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Motivating problem

Given probability measures µ, ν on Rd do there exist random

variables M0,M1 such that

• E[M1| M0] = M0 (martingale property) and

• Law(M0) = µ and Law(M1) = ν (mimicking property)?

Necessary condition: µ ≼ ν in convex order

For any convex function v : Rd → R,


vdµ ≤


vdν.

... also sufficient [Strassen ’68]
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Necessary condition
For any convex function v : Rd → R,
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vdµt, s ≤ t.

Processus Croissant pour l’Ordre Convexe

[Hirsch, Profetta, Roynette, Yor ’11]
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Given a peacock (µt)t∈I on Rd, does there exist a mimicking
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Yes – [Strassen ’65, Doob ’68, Hirsch–Roynette ’13]
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Problem statement

Given a peacock (µt)t∈I on Rd, does there exist a mimicking

martingale M such that

Law(Mt) = µt, ∀t ∈ I?

Desirable properties

• strong Markovianity

• continuity of paths

• uniqueness
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Subsequent contributions (incomplete!)

Albin, Baker, Beiglböck, Brückerhoff, Boubel, Donati-Martin,

Hamza, Hirsch, Huesmann, Juillet, Källblad, Klebaner, Lowther,

Profetta, Roynette, Stebegg, Tan, Touzi, Yor, ...
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Continuous time, d ≥ 2

Given a continuous-time peacock (µt)t∈[0,1] on Rd, d ≥ 2, does

there exist a mimicking Markov martingale?

Existing literature ...

... with the Markov property

no known results



Continuous time, d ≥ 2

Given a continuous-time peacock (µt)t∈[0,1] on Rd, d ≥ 2, does

there exist a mimicking Markov martingale?

Theorem 1 [Pammer, R., Schachermayer ’22]

There exists a strong Markov martingale diffusion mimicking

a regularized continuous-time peacock on Rd, d ∈ N.
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• The result does not hold without regularization.
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Theorem 1 [Pammer, R., Schachermayer ’22]

There exists a strong Markov martingale diffusion mimicking the

regularized peacock.

Proof idea
• Discretise and take Bass martingales from µtk to µtk+1

to get

a diffusion process

[Backhoff, Beiglböck, Huesmann, Källblad ’19]

[Backhoff, Beiglböck, Schachermayer, Tschiderer ’23]
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There exists a strong Markov martingale diffusion mimicking the

regularized peacock.

Proof idea
• Regularize with a Gaussian and make a Markovian projection

[Krylov ’85], [Gyöngy ’85], [Brunick, Shreve ’13]

dXt = σtdWt

dX̂t = σ̂t(X̂t)dWt, Law(Xt) = Law(X̂t), t ∈ [0, 1]

Law(X̂tk) = µr
tk

and σ̂ “nice”
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Theorem 1 [Pammer, R., Schachermayer ’22]

There exists a strong Markov martingale diffusion mimicking the

regularized peacock.

Proof idea
• Use stability of diffusions to pass to a limit

Theorem 2 [Pammer, R., Schachermayer ’22]

For dXk
t = σk

t (X
k
t )dBt for “nice” σk, suppose for each (t, x)

 t

0
σk
s (x)

2ds →
 t

0
σs(x)

2ds.

Then Xk → X in f.d.d., dXt = σt(Xt)dBt and σ “nice”.
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Faking Brownian motion

Do there exist stochastic processes with Brownian marginals that

are not Brownian motion?

[Hamza, Klebaner ’07]

There exists some fake Brownian motion.

[Beiglböck, Lowther, Pammer, Schachermayer ’21]

There exists a Markov process with continuous paths that mimics

Brownian marginals in dimension d = 1.
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Non-uniqueness

Theorem 3 [Pammer, R., Schachermayer ’22]

There exists a R2-valued strong Markov martingale diffusion with

Brownian marginals, which is not a Brownian motion.

Circular Brownian Motion
[Émery, Schachermayer ’99]

[Fernholz, Karatzas, Ruf ’18]

[Larsson, Ruf ’20]

Theorem [Cox, R. ’22]
There is a unique weak solution

but no strong solution of

dXt =
1

|Xt|


−X2

t

X1
t


dWt, X0 = 0.

[Cox, R. ’22]



Non-uniqueness

Theorem 3 [Pammer, R., Schachermayer ’22]

There exists a R2-valued strong Markov martingale diffusion with

Brownian marginals, which is not a Brownian motion.

Theorem [Cox, R. ’22]
Let X be a weak solution of

dXt =
1

|Xt|
(Xt+X⊥

t )dWt, X0 ∼ η.

Then X is a continuous strong

Markov fake Brownian motion.

[Pammer, R., Schachermayer ’22]
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Counterexamples

Theorem 4 [Pammer, R., Schachermayer ’22]

There exists a weakly continuous square-integrable peacock

(µt)t∈[0,1] on R4 such that, for the peacock (µt ∗ γt)t∈[0,1], there
exists no mimicking Markov martingale.

1. No continuous Markov

martingale mimicking µ;

2. No Markov martingale

mimicking µ;

3. No Markov martingale

mimicking (µ ∗ γt)t∈[0,1].
[Cox, R. ’22]
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Summary

• We prove the first known Kellerer-type result in arbitrary

dimension;

• In dimension d ≥ 2, uniqueness fails;

• In general, the result can fail without some regularization.
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