A regularized Kellerer theorem in arbitrary dimension

Benjamin A. Robinson

University of Vienna

September 7, 2023 — 11th Austrian Stochastic Days, Klagenfurt

A regularized Kellerer theorem in arbitrary dimension

Benjamin A. Robinson

University of Vienna

September 7, 2023 — 11th Austrian Stochastic Days, Klagenfurt

Joint work with

Gudmund Pammer ETH Zürich

Walter Schachermayer University of Vienna

• $\mathbb{E}[M_1 \mid M_0] = M_0$ (martingale property)

- $\mathbb{E}[M_1| \ M_0] = M_0$ (martingale property) and
- Law $(M_0) = \mu$ and Law $(M_1) = \nu$ (mimicking property)?

- $\mathbb{E}[M_1|\;M_0] = M_0$ (martingale property) and
- Law $(M_0) = \mu$ and Law $(M_1) = \nu$ (mimicking property)?

Necessary condition

$$\int v \mathrm{d}\mu = \mathbb{E}[v(M_0)]$$

- $\mathbb{E}[M_1| \ M_0] = M_0$ (martingale property) and
- Law $(M_0) = \mu$ and Law $(M_1) = \nu$ (mimicking property)?

Necessary condition

$$\int v d\mu = \mathbb{E}[v(M_0)] = \mathbb{E}[v(\mathbb{E}[M_1|M_0])] \quad \text{martingale}$$

- $\mathbb{E}[M_1| \ M_0] = M_0$ (martingale property) and
- Law $(M_0) = \mu$ and Law $(M_1) = \nu$ (mimicking property)?

Necessary condition

$$\int v d\mu = \mathbb{E}[v(M_0)] = \mathbb{E}[v(\mathbb{E}[M_1|M_0])]$$
$$\leq \mathbb{E}[\mathbb{E}[v(M_1)|M_0]] \quad \text{Jensen}$$

- $\mathbb{E}[M_1|\;M_0] = M_0$ (martingale property) and
- Law $(M_0) = \mu$ and Law $(M_1) = \nu$ (mimicking property)?

Necessary condition

$$\int v d\mu = \mathbb{E}[v(M_0)] = \mathbb{E}[v(\mathbb{E}[M_1|M_0])]$$
$$\leq \mathbb{E}[\mathbb{E}[v(M_1)|M_0]]$$
$$= \mathbb{E}[v(M_1)] = \int v d\nu.$$

- $\mathbb{E}[M_1| \ M_0] = M_0$ (martingale property) and
- Law $(M_0) = \mu$ and Law $(M_1) = \nu$ (mimicking property)?

Necessary condition

$$\int v \mathrm{d}\mu \leq \int v \mathrm{d}\nu.$$

Motivating problem

Given probability measures μ,ν on \mathbb{R}^d do there exist random variables M_0,M_1 such that

- $\mathbb{E}[M_1| \ M_0] = M_0$ (martingale property) and
- Law $(M_0) = \mu$ and Law $(M_1) = \nu$ (mimicking property)?

Necessary condition: $\mu \preceq \nu$ in convex order

For any convex function $v: \mathbb{R}^d \to \mathbb{R}$,

$$\int v \mathrm{d}\mu \leq \int v \mathrm{d}\nu.$$

... also sufficient [Strassen '68]

Given a family of probability measures $(\mu_t)_{t\in I}$ on \mathbb{R}^d , does there exist a mimicking martingale M such that

 $Law(M_t) = \mu_t, \quad \forall t \in I?$

Given a family of probability measures $(\mu_t)_{t\in I}$ on \mathbb{R}^d , does there exist a mimicking martingale M such that

$$Law(M_t) = \mu_t, \quad \forall t \in I?$$

Necessary condition For any convex function $v : \mathbb{R}^d \to \mathbb{R}$,

$$\int v \mathrm{d}\mu_s \le \int v \mathrm{d}\mu_t, \quad s \le t.$$

Peacocks

Assume that μ is a peacock; i.e. for any convex function $v: \mathbb{R}^d \to \mathbb{R}$,

$$\int v \mathrm{d}\mu_s \leq \int v \mathrm{d}\mu_t, \quad s \leq t.$$

Peacocks

Assume that μ is a peacock; i.e. for any convex function $v : \mathbb{R}^d \to \mathbb{R}$, $\int v d\mu_s \leq \int v d\mu_t, \quad s \leq t.$

Processus Croissant pour l'Ordre Convexe

[Hirsch, Profetta, Roynette, Yor '11]

 $Law(M_t) = \mu_t, \quad \forall t \in I?$

$$Law(M_t) = \mu_t, \quad \forall t \in I?$$

Yes - [Strassen '65, Doob '68, Hirsch-Roynette '13]

$$Law(M_t) = \mu_t, \quad \forall t \in I?$$

Desirable properties

$$Law(M_t) = \mu_t, \quad \forall t \in I?$$

Desirable properties

• Markovianity

$$Law(M_t) = \mu_t, \quad \forall t \in I?$$

Desirable properties

• strong Markovianity

$$Law(M_t) = \mu_t, \quad \forall t \in I?$$

Desirable properties

- strong Markovianity
- continuity of paths

$$Law(M_t) = \mu_t, \quad \forall t \in I?$$

Desirable properties

- strong Markovianity
- continuity of paths
- uniqueness

[Strassen '65]

Given a discrete-time peacock $(\mu_n)_{n \in N}$ on \mathbb{R}^d ,

[Strassen '65]

Given a discrete-time peacock $(\mu_n)_{n \in N}$ on \mathbb{R}^d , there exists a mimicking Markov martingale M.

Given a continuous-time peacock $(\mu_t)_{t \in [0,1]}$ on \mathbb{R} ,

Given a continuous-time peacock $(\mu_t)_{t\in[0,1]}$ on \mathbb{R} , there exists a mimicking Markov martingale M.

Given a continuous-time peacock $(\mu_t)_{t\in[0,1]}$ on \mathbb{R} , there exists a mimicking Markov martingale M.

Subsequent contributions (incomplete!)

Albin, Baker, Beiglböck, Brückerhoff, Boubel, Donati-Martin, Hamza, Hirsch, Huesmann, Juillet, Källblad, Klebaner, Lowther, Profetta, Roynette, Stebegg, Tan, Touzi, Yor, ...

Given a continuous-time peacock $(\mu_t)_{t\in[0,1]}$ on \mathbb{R} , there exists a mimicking Markov martingale M.

Given a continuous-time peacock $(\mu_t)_{t\in[0,1]}$ on \mathbb{R} , there exists a mimicking Markov martingale M.

[Lowther '08 - '10]

Suppose $t \mapsto \mu_t$ is weakly continuous with convex support.

Given a continuous-time peacock $(\mu_t)_{t\in[0,1]}$ on \mathbb{R} , there exists a mimicking Markov martingale M.

[Lowther '08 - '10]

Suppose $t \mapsto \mu_t$ is weakly continuous with convex support. Then

• *M* has the strong Markov property;

Given a continuous-time peacock $(\mu_t)_{t\in[0,1]}$ on \mathbb{R} , there exists a mimicking Markov martingale M.

[Lowther '08 - '10]

Suppose $t \mapsto \mu_t$ is weakly continuous with convex support. Then

- *M* has the strong Markov property;
- *M* is the unique strong Markov mimicking martingale;

Given a continuous-time peacock $(\mu_t)_{t\in[0,1]}$ on \mathbb{R} , there exists a mimicking Markov martingale M.

[Lowther '08 - '10]

Suppose $t \mapsto \mu_t$ is weakly continuous with convex support. Then

- *M* has the strong Markov property;
- *M* is the unique strong Markov mimicking martingale;
- $t \mapsto M_t$ is continuous.

Given a continuous-time peacock $(\mu_t)_{t \in [0,1]}$ on \mathbb{R} , there exists a mimicking Markov martingale M.

[Lowther '08 - '10]

Suppose $t \mapsto \mu_t$ is weakly continuous with convex support. Then

- M has the strong Markov property;
- M is the unique strong Markov mimicking martingale;
- $t \mapsto M_t$ is continuous.

Existing literature ...

Existing literature ...

... without the Markov property

Doob '68 (compact support)

Existing literature ...

... without the Markov property

Doob '68 (compact support), Hirsch–Roynette '13 (\mathbb{R}^d)

Given a continuous-time peacock $(\mu_t)_{t \in [0,1]}$ on \mathbb{R}^d , $d \ge 2$, does there exist a mimicking Markov martingale?

Existing literature ...

... with the Markov property

Given a continuous-time peacock $(\mu_t)_{t \in [0,1]}$ on \mathbb{R}^d , $d \ge 2$, does there exist a mimicking Markov martingale?

Existing literature ...

... with the Markov property

no known results

Given a continuous-time peacock $(\mu_t)_{t \in [0,1]}$ on \mathbb{R}^d , $d \ge 2$, does there exist a mimicking Markov martingale?

Theorem 1 [Pammer, R., Schachermayer '22]

There exists a strong Markov martingale diffusion mimicking a *regularized* continuous-time peacock on \mathbb{R}^d , $d \in \mathbb{N}$.

Theorem 1 [Pammer, R., Schachermayer '22]

There exists a measurable $(t, x) \mapsto \sigma_t^r(x)$ that is locally Lipschitz in x and non-degenerate, uniformly in $t \in [0, 1]$, and a Brownian motion B such that $\text{Law}(M_t^r) = \mu_t^r$, for all $t \in [0, 1]$, where

 $\mathrm{d}M_t^{\mathrm{r}} = \sigma_t^{\mathrm{r}}(M_t^{\mathrm{r}})\mathrm{d}B_t.$

Theorem 1 [Pammer, R., Schachermayer '22]

There exists a measurable $(t, x) \mapsto \sigma_t^r(x)$ that is locally Lipschitz in x and non-degenerate, uniformly in $t \in [0, 1]$, and a Brownian motion B such that $\text{Law}(M_t^r) = \mu_t^r$, for all $t \in [0, 1]$, where

$$\mathrm{d}M_t^{\mathrm{r}} = \sigma_t^{\mathrm{r}}(M_t^{\mathrm{r}})\mathrm{d}B_t.$$

Moreover:

• *M*^r is a strong Markov martingale with continuous paths;

Theorem 1 [Pammer, R., Schachermayer '22]

There exists a measurable $(t, x) \mapsto \sigma_t^r(x)$ that is locally Lipschitz in x and non-degenerate, uniformly in $t \in [0, 1]$, and a Brownian motion B such that $Law(M_t^r) = \mu_t^r$, for all $t \in [0, 1]$, where

$$\mathrm{d}M_t^{\mathrm{r}} = \sigma_t^{\mathrm{r}}(M_t^{\mathrm{r}})\mathrm{d}B_t.$$

Moreover:

- *M*^r is a strong Markov martingale with continuous paths;
- There is no uniqueness for $d \ge 2$;

Theorem 1 [Pammer, R., Schachermayer '22]

There exists a measurable $(t, x) \mapsto \sigma_t^r(x)$ that is locally Lipschitz in x and non-degenerate, uniformly in $t \in [0, 1]$, and a Brownian motion B such that $\text{Law}(M_t^r) = \mu_t^r$, for all $t \in [0, 1]$, where

$$\mathrm{d}M_t^{\mathrm{r}} = \sigma_t^{\mathrm{r}}(M_t^{\mathrm{r}})\mathrm{d}B_t.$$

Moreover:

- M^r is a strong Markov martingale with continuous paths;
- There is no uniqueness for $d \ge 2$;
- The result does not hold without regularization.

There exists a strong Markov martingale diffusion mimicking the regularized peacock.

There exists a strong Markov martingale diffusion mimicking the regularized peacock.

Proof idea

• Discretise and take Bass martingales from μ_{t_k} to $\mu_{t_{k+1}}$ to get a diffusion process [Backhoff, Beiglböck, Huesmann, Källblad '19] [Backhoff, Beiglböck, Schachermayer, Tschiderer '23]

There exists a strong Markov martingale diffusion mimicking the regularized peacock.

Proof idea

• Regularize with a Gaussian and make a Markovian projection [Krylov '85], [Gyöngy '85], [Brunick, Shreve '13]

There exists a strong Markov martingale diffusion mimicking the regularized peacock.

Proof idea

• Regularize with a Gaussian and make a Markovian projection [Krylov '85], [Gyöngy '85], [Brunick, Shreve '13]

$$\mathrm{d}X_t = \sigma_t \mathrm{d}W_t$$

 $\mathrm{d}\hat{X}_t = \hat{\sigma}_t(\hat{X}_t)\mathrm{d}W_t, \quad \mathrm{Law}(X_t) = \mathrm{Law}(\hat{X}_t), \ t \in [0,1]$

There exists a strong Markov martingale diffusion mimicking the regularized peacock.

Proof idea

• Regularize with a Gaussian and make a Markovian projection [Krylov '85], [Gyöngy '85], [Brunick, Shreve '13]

$$\mathrm{d}X_t = \sigma_t \mathrm{d}W_t$$

$$\begin{split} \mathrm{d}\hat{X}_t &= \hat{\sigma}_t(\hat{X}_t) \mathrm{d}W_t, \quad \mathrm{Law}(X_t) = \mathrm{Law}(\hat{X}_t), \ t \in [0, 1]\\ \mathrm{Law}(\hat{X}_{t_k}) &= \mu_{t_k}^{\mathrm{r}} \quad \text{and} \quad \hat{\sigma} \text{ "nice"} \end{split}$$

There exists a strong Markov martingale diffusion mimicking the regularized peacock.

Proof idea

• Use stability of diffusions to pass to a limit Theorem 2 [Pammer, R., Schachermayer '22]

There exists a strong Markov martingale diffusion mimicking the regularized peacock.

Proof idea

• Use stability of diffusions to pass to a limit **Theorem 2 [Pammer, R., Schachermayer '22]** For $dX_t^k = \sigma_t^k(X_t^k) dB_t$ for "nice" σ^k , suppose for each (t, x)

$$\int_0^t \sigma_s^k(x)^2 \mathrm{d}s \to \int_0^t \sigma_s(x)^2 \mathrm{d}s.$$

There exists a strong Markov martingale diffusion mimicking the regularized peacock.

Proof idea

• Use stability of diffusions to pass to a limit Theorem 2 [Pammer, R., Schachermayer '22] For $dX_t^k = \sigma_t^k(X_t^k) dB_t$ for "nice" σ^k , suppose for each (t, x)

$$\int_0^t \sigma_s^k(x)^2 \mathrm{d}s \to \int_0^t \sigma_s(x)^2 \mathrm{d}s.$$

Then $X^k \to X$ in f.d.d., $dX_t = \sigma_t(X_t) dB_t$ and σ "nice".

Theorem 1 [Pammer, R., Schachermayer '22]

There exists a measurable $(t, x) \mapsto \sigma_t^r(x)$ that is locally Lipschitz in x and non-degenerate, uniformly in $t \in [0, 1]$, and a Brownian motion B such that $\text{Law}(M_t^r) = \mu_t^r$, for all $t \in [0, 1]$, where

$$\mathrm{d}M_t^{\mathrm{r}} = \sigma_t^{\mathrm{r}}(M_t^{\mathrm{r}})\mathrm{d}B_t.$$

Moreover:

- $M^{\rm r}$ is a strong Markov martingale with continuous paths;
- There is no uniqueness for $d \ge 2$;
- The result does not hold without regularization.

Do there exist stochastic processes with Brownian marginals that are not Brownian motion?

[Hamza, Klebaner '07]

There exists some fake Brownian motion.

Do there exist stochastic processes with Brownian marginals that are not Brownian motion?

[Hamza, Klebaner '07]

There exists some fake Brownian motion.

[Beiglböck, Lowther, Pammer, Schachermayer '21]

There exists a "very fake" Brownian motion in dimension d = 1.

Do there exist stochastic processes with Brownian marginals that are not Brownian motion?

[Hamza, Klebaner '07]

There exists some fake Brownian motion.

[Beiglböck, Lowther, Pammer, Schachermayer '21]

There exists a Markov process with continuous paths that mimics Brownian marginals in dimension d = 1.

There exists a \mathbb{R}^2 -valued strong Markov martingale diffusion with Brownian marginals, which is not a Brownian motion.

There exists a \mathbb{R}^2 -valued strong Markov martingale diffusion with Brownian marginals, which is not a Brownian motion.

Circular Brownian Motion [Émery, Schachermayer '99] [Fernholz, Karatzas, Ruf '18] [Larsson, Ruf '20]

There exists a \mathbb{R}^2 -valued strong Markov martingale diffusion with Brownian marginals, which is not a Brownian motion.

Circular Brownian Motion

[Émery, Schachermayer '99] [Fernholz, Karatzas, Ruf '18] [Larsson, Ruf '20]

Theorem [Cox, R. '22] There is a unique weak solution but no strong solution of

$$\mathrm{d}X_t = \frac{1}{|X_t|} \begin{bmatrix} -X_t^2 \\ X_t^1 \end{bmatrix} \mathrm{d}W_t, \quad X_0 = 0.$$

[Cox, R. '22]

There exists a \mathbb{R}^2 -valued strong Markov martingale diffusion with Brownian marginals, which is not a Brownian motion.

Theorem [Cox, R. '22] Let X be a weak solution of $dX_t = \frac{1}{|X_t|} (X_t + X_t^{\perp}) dW_t, \ X_0 \sim \eta.$

Then X is a continuous strong Markov fake Brownian motion.

[Pammer, R., Schachermayer '22]

There exists a weakly continuous square-integrable peacock $(\mu_t)_{t\in[0,1]}$ on \mathbb{R}^4 such that, for the peacock $(\mu_t * \gamma^t)_{t\in[0,1]}$, there exists no mimicking Markov martingale.

There exists a weakly continuous square-integrable peacock $(\mu_t)_{t\in[0,1]}$ on \mathbb{R}^4 such that, for the peacock $(\mu_t * \gamma^t)_{t\in[0,1]}$, there exists no mimicking Markov martingale.

Counterexamples

Theorem 4 [Pammer, R., Schachermayer '22]

There exists a weakly continuous square-integrable peacock $(\mu_t)_{t\in[0,1]}$ on \mathbb{R}^4 such that, for the peacock $(\mu_t * \gamma^t)_{t\in[0,1]}$, there exists no mimicking Markov martingale.

 No continuous Markov martingale mimicking μ;

Counterexamples

Theorem 4 [Pammer, R., Schachermayer '22]

There exists a weakly continuous square-integrable peacock $(\mu_t)_{t\in[0,1]}$ on \mathbb{R}^4 such that, for the peacock $(\mu_t * \gamma^t)_{t\in[0,1]}$, there exists no mimicking Markov martingale.

- No continuous Markov martingale mimicking μ;
- No Markov martingale mimicking μ;

Counterexamples

Theorem 4 [Pammer, R., Schachermayer '22]

There exists a weakly continuous square-integrable peacock $(\mu_t)_{t\in[0,1]}$ on \mathbb{R}^4 such that, for the peacock $(\mu_t * \gamma^t)_{t\in[0,1]}$, there exists no mimicking Markov martingale.

- No continuous Markov martingale mimicking μ;
- No Markov martingale mimicking μ;
- 3. No Markov martingale mimicking $(\mu * \gamma^t)_{t \in [0,1]}$.

- Alexander M. G. Cox and Benjamin A. Robinson, Optimal control of martingales in a radially symmetric environment, Stoch. Proc. Appl. 159 (2023), 149–198.
- Alexander M. G. Cox and Benjamin A. Robinson, SDEs with no strong solution arising from a problem of stochastic control, Electron. J. Probab. 28 (2023), 1–24.
- Gudmund Pammer, Benjamin A. Robinson, and Walter Schachermayer, *A regularized Kellerer theorem in arbitrary dimension*, arXiv:2210.13847 [math] (2022).

- We prove the first known Kellerer-type result in arbitrary dimension;
- In dimension $d \ge 2$, uniqueness fails;
- In general, the result can fail without some regularization.

arXiv:2210.13847