A regularized Kellerer theorem in arbitrary dimension

Benjamin A. Robinson

University of Vienna

May 30, 2023 — Conference in honor of David Nualart, Donostia

A regularized Kellerer theorem in arbitrary dimension

Benjamin A. Robinson

University of Vienna

May 30, 2023 - Conference in honor of David Nualart, Donostia

Joint work with

Gudmund Pammer ETH Zürich

Walter Schachermayer University of Vienna

Given a family of probability measures $(\mu_t)_{t\in I}$ on \mathbb{R}^d , does there exist a mimicking martingale M such that

 $Law(M_t) = \mu_t, \quad \forall t \in I?$

Given a family of probability measures $(\mu_t)_{t\in I}$ on \mathbb{R}^d , does there exist a mimicking martingale M such that

$$Law(M_t) = \mu_t, \quad \forall t \in I?$$

Necessary condition For any convex function $f : \mathbb{R}^d \to \mathbb{R}$,

$$\int f \mathrm{d}\mu_s \le \int f \mathrm{d}\mu_t, \quad s \le t.$$

Fact

Knowledge of call prices $\mathbb{E}(X_t - K)_+$ for all $K \in \mathbb{R}, t \in I$, \Leftrightarrow Knowledge of marginals $\mu_t, t \in I$

[Hirsch, Roynette '12]

Fact

Knowledge of call prices $\mathbb{E}(X_t-K)_+$ for all $K\in\mathbb{R},t\in I,$ \Leftrightarrow Knowledge of marginals $\mu_t,t\in I$

[Hirsch, Roynette '12]

Seek a "nice" martingale model consistent with observed data.

Peacocks

Assume that μ is a peacock; i.e. for any convex function $f: \mathbb{R}^d \to \mathbb{R}$, $\int f d\mu_s \leq \int f d\mu_t, \quad s \leq t.$

Processus Croissant pour l'Ordre Convexe

[Hirsch, Profetta, Roynette, Yor '11]

 $Law(M_t) = \mu_t, \quad \forall t \in I?$

$$Law(M_t) = \mu_t, \quad \forall t \in I?$$

Yes - [Strassen '65, Doob '68]

$$Law(M_t) = \mu_t, \quad \forall t \in I?$$

"Desirable" properties

$$Law(M_t) = \mu_t, \quad \forall t \in I?$$

"Desirable" properties

• Markovianity

$$Law(M_t) = \mu_t, \quad \forall t \in I?$$

"Desirable" properties

• strong Markovianity

$$Law(M_t) = \mu_t, \quad \forall t \in I?$$

"Desirable" properties

- strong Markovianity
- continuity of paths

$$Law(M_t) = \mu_t, \quad \forall t \in I?$$

"Desirable" properties

- strong Markovianity
- continuity of paths
- uniqueness

[Strassen '65]

Given a discrete-time peacock $(\mu_n)_{n \in N}$ on \mathbb{R}^d ,

[Strassen '65]

Given a discrete-time peacock $(\mu_n)_{n \in N}$ on \mathbb{R}^d , there exists a mimicking Markov martingale M.

[Strassen '65]

Given a discrete-time peacock $(\mu_n)_{n\in N}$ on \mathbb{R}^d , there exists a mimicking Markov martingale M.

Volker Strassen The Existence of Probability Measures with Given Marginals, Ann. Math. Stat. 1965

Given a continuous-time peacock $(\mu_t)_{t\in[0,1]}$ on \mathbb{R} ,

Given a continuous-time peacock $(\mu_t)_{t \in [0,1]}$ on \mathbb{R} , there exists a mimicking Markov martingale M.

Given a continuous-time peacock $(\mu_t)_{t\in[0,1]}$ on \mathbb{R} , there exists a mimicking Markov martingale M.

Hans G. Kellerer Markov-Komposition und eine Anwendung auf Martingale, Math. Ann. 1972

Given a continuous-time peacock $(\mu_t)_{t\in[0,1]}$ on \mathbb{R} , there exists a mimicking Markov martingale M.

Hans G. Kellerer Markov-Komposition und eine Anwendung auf Martingale, Math. Ann. 1972

Subsequent contributions (incomplete!)

Albin, Baker, Beiglböck, Brückerhoff, Boubel, Donati-Martin, Hamza, Hirsch, Huesmann, Juillet, Källblad, Klebaner, Lowther, Profetta, Roynette, Stebegg, Tan, Touzi, Yor, ...

Given a continuous-time peacock $(\mu_t)_{t\in[0,1]}$ on \mathbb{R} , there exists a mimicking Markov martingale M.

[Lowther '08 - '10]

Suppose $t \mapsto \mu_t$ is weakly continuous with convex support.

Given a continuous-time peacock $(\mu_t)_{t\in[0,1]}$ on \mathbb{R} , there exists a mimicking Markov martingale M.

[Lowther '08 - '10]

Suppose $t \mapsto \mu_t$ is weakly continuous with convex support. Then

• *M* has the strong Markov property;

Given a continuous-time peacock $(\mu_t)_{t\in[0,1]}$ on \mathbb{R} , there exists a mimicking Markov martingale M.

[Lowther '08 - '10]

Suppose $t \mapsto \mu_t$ is weakly continuous with convex support. Then

- *M* has the strong Markov property;
- *M* is the unique strong Markov mimicking martingale;

Given a continuous-time peacock $(\mu_t)_{t\in[0,1]}$ on \mathbb{R} , there exists a mimicking Markov martingale M.

[Lowther '08 - '10]

Suppose $t \mapsto \mu_t$ is weakly continuous with convex support. Then

- M has the strong Markov property;
- M is the unique strong Markov mimicking martingale;
- $t \mapsto M_t$ is continuous.

Do there exist stochastic processes with Brownian marginals that are not Brownian motion?

[Hamza, Klebaner '07]

There exists some fake Brownian motion.

Do there exist stochastic processes with Brownian marginals that are not Brownian motion?

[Hamza, Klebaner '07]

There exists some fake Brownian motion.

[Beiglböck, Lowther, Pammer, Schachermayer '21]

There exists a "very fake" Brownian motion in dimension d = 1.

Do there exist stochastic processes with Brownian marginals that are not Brownian motion?

[Hamza, Klebaner '07]

There exists some fake Brownian motion.

[Beiglböck, Lowther, Pammer, Schachermayer '21]

There exists a Markov process with continuous paths that mimics Brownian marginals in dimension d = 1.

Given a continuous-time peacock $(\mu_t)_{t\in[0,1]}$ on \mathbb{R} , there exists a mimicking Markov martingale M.

[Lowther '08 - '10]

- *M* has the strong Markov property;
- M is the unique strong Markov mimicking martingale;
- $t \mapsto M_t$ is continuous under additional conditions.

... without the Markov property

Doob '68 (existence)

... without the Markov property

Doob '68 (existence), Hirsch-Roynette '13 (right-continuity)

... without the Markov property

Doob '68 (existence), Hirsch-Roynette '13 (right-continuity)

... with the Markov property

no known results in dimension $d \geq 2$.

Theorem 1 [Pammer, R., Schachermayer '22]

There exists a measurable $(t, x) \mapsto \sigma_t^{\mathbf{r}}(x)$ that is locally Lipschitz in x and non-degenerate, uniformly in $t \in [0, 1]$, and a Brownian motion B such that $\operatorname{Law}(M_t^{\mathbf{r}}) = \mu_t^{\mathbf{r}}$, for all $t \in [0, 1]$, where

 $\mathrm{d}M_t^{\mathrm{r}} = \sigma_t^{\mathrm{r}}(M_t^{\mathrm{r}})\mathrm{d}B_t.$

Theorem 1 [Pammer, R., Schachermayer '22]

There exists a measurable $(t, x) \mapsto \sigma_t^r(x)$ that is locally Lipschitz in x and non-degenerate, uniformly in $t \in [0, 1]$, and a Brownian motion B such that $\text{Law}(M_t^r) = \mu_t^r$, for all $t \in [0, 1]$, where

$$\mathrm{d}M_t^{\mathrm{r}} = \sigma_t^{\mathrm{r}}(M_t^{\mathrm{r}})\mathrm{d}B_t.$$

Moreover:

• *M*^r is a strong Markov martingale with continuous paths;

Theorem 1 [Pammer, R., Schachermayer '22]

There exists a measurable $(t, x) \mapsto \sigma_t^r(x)$ that is locally Lipschitz in x and non-degenerate, uniformly in $t \in [0, 1]$, and a Brownian motion B such that $\text{Law}(M_t^r) = \mu_t^r$, for all $t \in [0, 1]$, where

$$\mathrm{d}M_t^{\mathrm{r}} = \sigma_t^{\mathrm{r}}(M_t^{\mathrm{r}})\mathrm{d}B_t.$$

Moreover:

- *M*^r is a strong Markov martingale with continuous paths;
- There is no uniqueness for $d \ge 2$;

Theorem 1 [Pammer, R., Schachermayer '22]

There exists a measurable $(t, x) \mapsto \sigma_t^r(x)$ that is locally Lipschitz in x and non-degenerate, uniformly in $t \in [0, 1]$, and a Brownian motion B such that $\text{Law}(M_t^r) = \mu_t^r$, for all $t \in [0, 1]$, where

$$\mathrm{d}M_t^{\mathrm{r}} = \sigma_t^{\mathrm{r}}(M_t^{\mathrm{r}})\mathrm{d}B_t.$$

Moreover:

- M^r is a strong Markov martingale with continuous paths;
- There is no uniqueness for $d \ge 2$;
- The result does not hold without regularization.

There exists a strong Markov martingale diffusion mimicking the regularized peacock.

There exists a strong Markov martingale diffusion mimicking the regularized peacock.

Key ingredients

 Stretched Brownian motion or Bass martingale in ℝ^d [Backhoff, Beiglböck, Huesmann, Källblad '19], [Backhoff, Beiglböck, Schachermayer, Tschiderer '23+]

There exists a strong Markov martingale diffusion mimicking the regularized peacock.

Key ingredients

Stretched Brownian motion or Bass martingale in R^d
[Backhoff, Beiglböck, Huesmann, Källblad '19],
[Backhoff, Beiglböck, Schachermayer, Tschiderer '23+]

$$\inf_{\pi \in \operatorname{MT}(\mu_0,\mu_1)} \mathbb{E}^{\pi}[c(X,Y)] = \inf_{M \in \mathcal{M}(\mu_0,\mu_1)} \mathbb{E}[F(M)] \quad (\mathsf{MOT})$$

There exists a strong Markov martingale diffusion mimicking the regularized peacock.

Key ingredients

Stretched Brownian motion or Bass martingale in R^d
[Backhoff, Beiglböck, Huesmann, Källblad '19],
[Backhoff, Beiglböck, Schachermayer, Tschiderer '23+]

$$\inf_{\pi \in \mathrm{MT}(\mu_0,\mu_1)} \mathbb{E}^{\pi}[c(X,Y)] = \inf_{M \in \mathcal{M}(\mu_0,\mu_1)} \mathbb{E}[F(M)] \quad (\mathsf{MOT})$$
$$M_t^* = \mathbb{E}[v(B_1)|\mathcal{F}_t^B]$$

There exists a strong Markov martingale diffusion mimicking the regularized peacock.

Key ingredients

• Markovian projection

[Krylov '85], [Gyöngy '85], [Brunick, Shreve '13]

There exists a strong Markov martingale diffusion mimicking the regularized peacock.

Key ingredients

• Markovian projection

[Krylov '85], [Gyöngy '85], [Brunick, Shreve '13]

 $\mathrm{d}X_t = b_t \mathrm{d}t + \sigma_t \mathrm{d}W_t$

There exists a strong Markov martingale diffusion mimicking the regularized peacock.

Key ingredients

Markovian projection

[Krylov '85], [Gyöngy '85], [Brunick, Shreve '13]

$$\mathrm{d}X_t = b_t \mathrm{d}t + \sigma_t \mathrm{d}W_t$$

 $d\hat{X}_t = \hat{b}_t(\hat{X}_t)dt + \hat{\sigma}_t(\hat{X}_t)dW_t, \quad Law(X_t) = Law(\hat{X}_t), \ t \in [0, 1]$

There exists a strong Markov martingale diffusion mimicking the regularized peacock.

Key ingredients

• Stability of diffusions

Theorem 2 [Pammer, R., Schachermayer '22]

There exists a strong Markov martingale diffusion mimicking the regularized peacock.

Key ingredients

• Stability of diffusions

Theorem 2 [Pammer, R., Schachermayer '22] For $dX_t^k = \sigma_t^k(X_t^k) dB_t$ for "nice" σ^k , suppose for each (t, x)

$$\int_0^t \sigma_s^k(x)^2 \mathrm{d}s \to \int_0^t \sigma_s(x)^2 \mathrm{d}s.$$

There exists a strong Markov martingale diffusion mimicking the regularized peacock.

Key ingredients

• Stability of diffusions

Theorem 2 [Pammer, R., Schachermayer '22] For $dX_t^k = \sigma_t^k(X_t^k) dB_t$ for "nice" σ^k , suppose for each (t, x)

$$\int_0^t \sigma_s^k(x)^2 \mathrm{d}s \to \int_0^t \sigma_s(x)^2 \mathrm{d}s.$$

Then $X^k \to X$ in f.d.d., $dX_t = \sigma_t(X_t) dB_t$ and σ "nice".

Theorem 1 [Pammer, R., Schachermayer '22]

There exists a measurable $(t, x) \mapsto \sigma_t^r(x)$ that is locally Lipschitz in x and non-degenerate, uniformly in $t \in [0, 1]$, and a Brownian motion B such that $\text{Law}(M_t^r) = \mu_t^r$, for all $t \in [0, 1]$, where

$$\mathrm{d}M_t^{\mathrm{r}} = \sigma_t^{\mathrm{r}}(M_t^{\mathrm{r}})\mathrm{d}B_t.$$

Moreover:

- $M^{\rm r}$ is a strong Markov martingale with continuous paths;
- There is no uniqueness for $d \ge 2$;
- The result does not hold without regularization.

There exists a \mathbb{R}^2 -valued strong Markov martingale diffusion with Brownian marginals, which is not a Brownian motion.

There exists a \mathbb{R}^2 -valued strong Markov martingale diffusion with Brownian marginals, which is not a Brownian motion.

Circular Brownian Motion [Émery, Schachermayer '99] [Fernholz, Karatzas, Ruf '18] [Larsson, Ruf '20]

There exists a \mathbb{R}^2 -valued strong Markov martingale diffusion with Brownian marginals, which is not a Brownian motion.

Circular Brownian Motion

[Émery, Schachermayer '99] [Fernholz, Karatzas, Ruf '18] [Larsson, Ruf '20]

Theorem [Cox, R. '22] There is a unique weak solution but no strong solution of

$$\mathrm{d}X_t = \frac{1}{|X_t|} \begin{bmatrix} -X_t^2 \\ X_t^1 \end{bmatrix} \mathrm{d}W_t, \quad X_0 = 0.$$

[Cox, R. '22]

There exists a \mathbb{R}^2 -valued strong Markov martingale diffusion with Brownian marginals, which is not a Brownian motion.

Theorem [Cox, R. '22] Let X be a weak solution of $dX_t = \frac{1}{|X_t|} (X_t + X_t^{\perp}) dW_t, \ X_0 \sim \eta.$

Then X is a continuous strong Markov fake Brownian motion.

[Pammer, R., Schachermayer '22]

There exists a weakly continuous square-integrable peacock $(\mu_t)_{t\in[0,1]}$ on \mathbb{R}^4 such that, for the peacock $(\mu_t * \gamma^t)_{t\in[0,1]}$, there exists no mimicking Markov martingale.

There exists a weakly continuous square-integrable peacock $(\mu_t)_{t\in[0,1]}$ on \mathbb{R}^4 such that, for the peacock $(\mu_t * \gamma^t)_{t\in[0,1]}$, there exists no mimicking Markov martingale.

Counterexamples

Theorem 4 [Pammer, R., Schachermayer '22]

There exists a weakly continuous square-integrable peacock $(\mu_t)_{t\in[0,1]}$ on \mathbb{R}^4 such that, for the peacock $(\mu_t * \gamma^t)_{t\in[0,1]}$, there exists no mimicking Markov martingale.

 No continuous Markov martingale mimicking μ;

Counterexamples

Theorem 4 [Pammer, R., Schachermayer '22]

There exists a weakly continuous square-integrable peacock $(\mu_t)_{t\in[0,1]}$ on \mathbb{R}^4 such that, for the peacock $(\mu_t * \gamma^t)_{t\in[0,1]}$, there exists no mimicking Markov martingale.

- No continuous Markov martingale mimicking μ;
- No Markov martingale mimicking μ;

Counterexamples

Theorem 4 [Pammer, R., Schachermayer '22]

There exists a weakly continuous square-integrable peacock $(\mu_t)_{t\in[0,1]}$ on \mathbb{R}^4 such that, for the peacock $(\mu_t * \gamma^t)_{t\in[0,1]}$, there exists no mimicking Markov martingale.

- No continuous Markov martingale mimicking μ;
- No Markov martingale mimicking μ;
- 3. No Markov martingale mimicking $(\mu * \gamma^t)_{t \in [0,1]}$.

- We prove the first known Kellerer-type result in arbitrary dimension;
- In dimension $d \ge 2$, uniqueness fails;
- In general, the result can fail without some regularization.

arXiv:2210.13847

- We prove the first known Kellerer-type result in arbitrary dimension;
- In dimension $d \ge 2$, uniqueness fails;
- In general, the result can fail without some regularization.

arXiv:2210.13847

David, congratulations on your career, and thank you for your contributions!