Adapted Wasserstein distance between the laws of SDEs

Benjamin A. Robinson

University of Vienna

March 9, 2023 — GPSD23, Essen

Joint work with Julio Backhoff-Veraguas (University of Vienna) and Sigrid Källblad (KTH Stockholm)

Adapted Wasserstein distance between the laws of SDEs

Benjamin A. Robinson

University of Vienna

March 9, 2023 — GPSD23, Essen

Joint work with Julio Backhoff-Veraguas (University of Vienna) and Sigrid Källblad (KTH Stockholm)

Adapted Wasserstein distance between the laws of SDEs

Benjamin A. Robinson

University of Vienna

March 9, 2023 — GPSD23, Essen

Joint work with Julio Backhoff-Veraguas (University of Vienna) and Sigrid Källblad (KTH Stockholm)

http://arxiv.org/abs/2209.03243

 $(X_t)_{t \in [0,1]}$, $(Y_t)_{t \in [0,1]}$ continuous-time real-valued processes $\rightsquigarrow \mu, \nu$ probability measures on $\Omega := C([0,1],\mathbb{R})$ $(X_t)_{t \in [0,1]}, (Y_t)_{t \in [0,1]}$ continuous-time real-valued processes $\rightsquigarrow \mu, \nu$ probability measures on $\Omega := C([0,1], \mathbb{R})$ How to choose a "good" distance $d(\mu, \nu)$? $(X_t)_{t \in [0,1]}$, $(Y_t)_{t \in [0,1]}$ continuous-time real-valued processes $\rightsquigarrow \mu, \nu$ probability measures on $\Omega := C([0,1], \mathbb{R})$ How to choose a "good" distance $d(\mu, \nu)$?

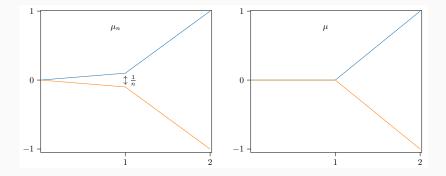
E.g. Wasserstein distance \mathcal{W}_p — from optimal transport

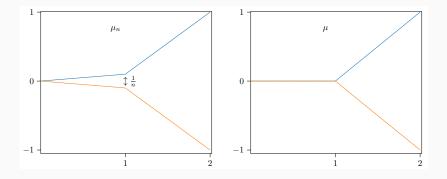
 $(X_t)_{t\in[0,1]}$, $(Y_t)_{t\in[0,1]}$ continuous-time real-valued processes $\rightsquigarrow \mu, \nu$ probability measures on $\Omega := C([0,1],\mathbb{R})$ How to choose a "good" distance $d(\mu, \nu)$?

E.g. Wasserstein distance \mathcal{W}_p :

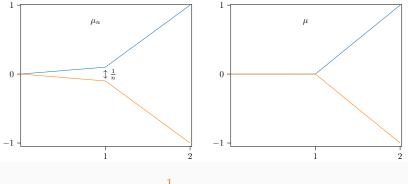
$$\mathcal{W}_p^p(\mu, \nu) := \inf_{\pi \in \operatorname{Cpl}(\mu, \nu)} \mathbb{E}^{\pi} \left[\int_0^1 |\omega_t - \bar{\omega}_t|^p \, \mathrm{d}t \right]$$

 $\operatorname{Cpl}(\mu,\nu) := \{\pi \in \mathcal{P}(\Omega \times \Omega) \colon \pi \text{ has marginals } \mu,\nu\}$



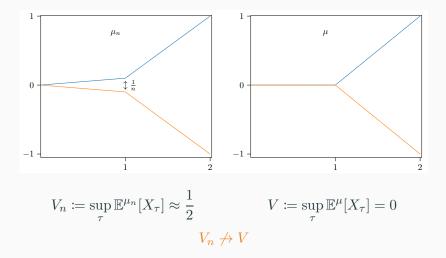


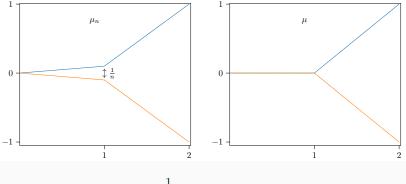
 $V_n \coloneqq \sup_{\tau} \mathbb{E}^{\mu_n}[X_{\tau}] \qquad \qquad V \coloneqq \sup_{\tau} \mathbb{E}^{\mu}[X_{\tau}]$



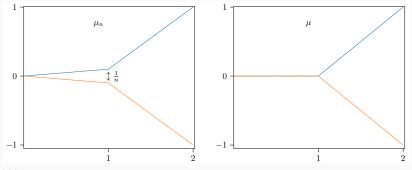
$$V_n \coloneqq \sup_{\tau} \mathbb{E}^{\mu_n}[X_{\tau}] \approx \frac{1}{2}$$

$$V \coloneqq \sup_{\tau} \mathbb{E}^{\mu}[X_{\tau}] = 0$$



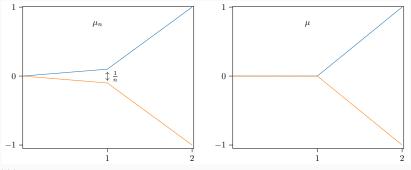


$$V_n \coloneqq \sup_{ au} \mathbb{E}^{\mu_n}[X_{ au}] pprox rac{1}{2}$$
 $V \coloneqq \sup_{ au} \mathbb{E}^{\mu}[X_{ au}] = 0$
 $V_n
eq V$ but $\mathcal{W}_p(\mu_n, \mu) \to 0$



Want

 $d(\mu_n,\mu) \not\to 0$

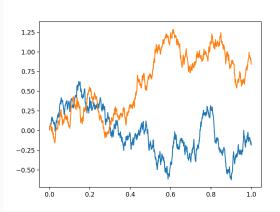


Want

 $d(\mu_n,\mu) \not\to 0$

E.g. Acciaio, Aldous, Backhoff-Veraguas, Bartl, Beiglböck, Bion-Nadal, Eder, Hellwig, Lassalle, Pammer, Pflug, Pichler, Talay, among others ...

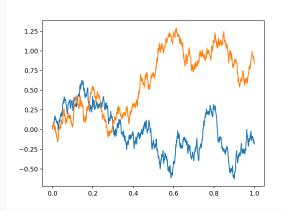
$$dX_t = b(X_t)dt + \sigma(X_t)dW_t \qquad \rightsquigarrow \qquad \mu$$
$$d\bar{X}_t = \bar{b}(\bar{X}_t)dt + \bar{\sigma}(\bar{X}_t)d\bar{W}_t \qquad \rightsquigarrow \qquad \nu.$$



Coupling SDEs

Usual couplings

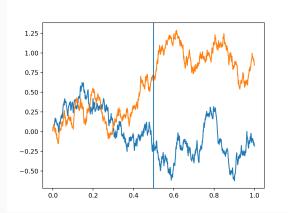
 $\operatorname{Cpl}(\mu,\nu) := \{ \pi \in \mathcal{P}(\Omega \times \Omega) \colon \ \pi \text{ has marginals } \mu,\nu \}.$



Coupling SDEs

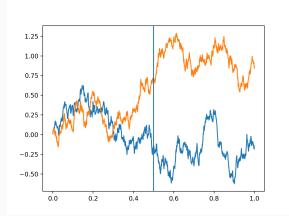
Usual couplings

 $\operatorname{Cpl}(\mu,\nu) := \{ \pi \in \mathcal{P}(\Omega \times \Omega) \colon \pi \text{ has marginals } \mu,\nu \}.$



Introduce

 $\operatorname{Cpl}_{\operatorname{bc}}(\mu,\nu) := \{\pi \in \operatorname{Cpl}(\mu,\nu) \colon \pi \text{ is bi-causal}\}$



Introduce

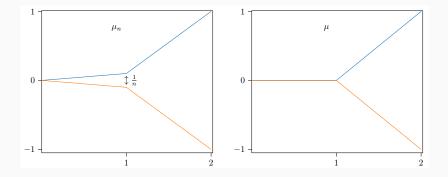
$$\operatorname{Cpl}_{\operatorname{bc}}(\mu,\nu) := \{\pi \in \operatorname{Cpl}(\mu,\nu) \colon \pi \text{ is bi-causal}\}$$

The problem:

Find adapted Wasserstein distance:

$$\mathcal{AW}_p^p(\mu,\nu) := \inf_{\pi \in \operatorname{Cpl}_{\operatorname{bc}}(\mu,\nu)} \mathbb{E}^{\pi} \left[\int_0^1 |\omega_t - \bar{\omega}_t|^p \, \mathrm{d}t \right].$$

Adapted Wasserstein distance



 $\mathcal{AW}_p(\mu_n,\mu) \not\to 0$

Adapted Wasserstein distance

$$dX_t = b(X_t)dt + \sigma(X_t)dW_t \quad \rightsquigarrow \quad \mu$$

$$\mathrm{d}X_t = b(X_t)\mathrm{d}t + \bar{\sigma}(X_t)\mathrm{d}W_t \qquad \rightsquigarrow \qquad \nu.$$

The problem:

Find

$$\mathcal{AW}_p^p(\mu,\nu) := \inf_{\pi \in \operatorname{Cpl}_{\operatorname{bc}}(\mu,\nu)} \mathbb{E}^{\pi} \left[\int_0^1 |\omega_t - \bar{\omega}_t|^p \, \mathrm{d}t \right].$$

Adapted Wasserstein distance

$$\mathrm{d}X_t = b(X_t)\mathrm{d}t + \sigma(X_t)\mathrm{d}W_t \qquad \rightsquigarrow \qquad \mu$$

$$\mathrm{d}X_t = b(X_t)\mathrm{d}t + \bar{\sigma}(X_t)\mathrm{d}W_t \qquad \rightsquigarrow \qquad \nu.$$

The problem:

Find

$$\mathcal{AW}_p^p(\mu,\nu) := \inf_{\pi \in \operatorname{Cpl}_{\operatorname{bc}}(\mu,\nu)} \mathbb{E}^{\pi} \left[\int_0^1 |\omega_t - \bar{\omega}_t|^p \, \mathrm{d}t \right].$$

Theorem 1 [Backhoff-Veraguas, Källblad, R. '22]

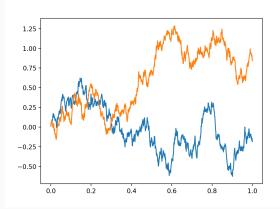
Optimising over bi-causal couplings

 \Leftrightarrow

Optimising over correlations between W, \overline{W} .

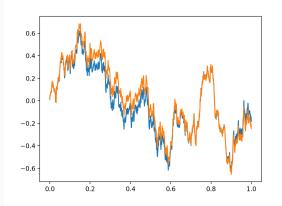
Example

Product coupling — W, \overline{W} independent



Synchronous coupling

Choose the same driving Brownian motion $W = \overline{W}$.



$$\mathrm{d}X_t = b(X_t)\mathrm{d}t + \sigma(X_t)\mathrm{d}W_t \qquad \rightsquigarrow \qquad \mu$$

$$\mathrm{d}\bar{X}_t = \bar{b}(\bar{X}_t)\mathrm{d}t + \bar{\sigma}(\bar{X}_t)\mathrm{d}\bar{W}_t \qquad \rightsquigarrow \qquad \nu.$$

Suppose that the coefficients are continuous with linear growth and that pathwise uniqueness holds.

Then the synchronous coupling is optimal for $\mathcal{AW}_p(\mu, \nu)$.

$$\mathrm{d}X_t = b(X_t)\mathrm{d}t + \sigma(X_t)\mathrm{d}W_t \qquad \rightsquigarrow \qquad \mu$$

$$\mathrm{d}\bar{X}_t = \bar{b}(\bar{X}_t)\mathrm{d}t + \bar{\sigma}(\bar{X}_t)\mathrm{d}\bar{W}_t \qquad \rightsquigarrow \qquad \nu.$$

Suppose that the coefficients are continuous with linear growth and that pathwise uniqueness holds.

Then the synchronous coupling is optimal for $\mathcal{AW}_p(\mu,\nu)$.

[Bion-Nadal, Talay '19]

For smooth coefficients using PDE methods

$$\mathrm{d}X_t = b(X_t)\mathrm{d}t + \sigma(X_t)\mathrm{d}W_t \qquad \rightsquigarrow \qquad \mu$$

$$\mathrm{d}\bar{X}_t = \bar{b}(\bar{X}_t)\mathrm{d}t + \bar{\sigma}(\bar{X}_t)\mathrm{d}\bar{W}_t \qquad \rightsquigarrow \qquad \nu.$$

Suppose that the coefficients are continuous with linear growth and that pathwise uniqueness holds.

Then the synchronous coupling is optimal for $\mathcal{AW}_p(\mu, \nu)$.

Example

If all coefficients are Lipschitz, the synchronous coupling is optimal.

$$\mu_n, \nu_n \in \mathcal{P}(\mathbb{R}^n) \quad \rightsquigarrow \quad \inf_{\pi \in \operatorname{Cpl}_{\operatorname{bc}}(\mu_n, \nu_n)} \mathbb{E}^{\pi} \left[\sum_{k=1}^n |x_k - y_k|^p \right].$$

$$\mu_n, \nu_n \in \mathcal{P}(\mathbb{R}^n) \quad \rightsquigarrow \quad \inf_{\pi \in \operatorname{Cpl}_{\mathrm{bc}}(\mu_n, \nu_n)} \mathbb{E}^{\pi} \left[\sum_{k=1}^n |x_k - y_k|^p \right].$$

Knothe–Rosenblatt rearrangement

$$\mu_n, \nu_n \in \mathcal{P}(\mathbb{R}^n) \quad \rightsquigarrow \quad \inf_{\pi \in \operatorname{Cpl}_{\mathrm{bc}}(\mu_n, \nu_n)} \mathbb{E}^{\pi} \left[\sum_{k=1}^n |x_k - y_k|^p \right].$$

Knothe–Rosenblatt rearrangement

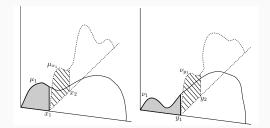
- generalisation of monotone rearrangement



$$\mu_n, \nu_n \in \mathcal{P}(\mathbb{R}^n) \quad \rightsquigarrow \quad \inf_{\pi \in \operatorname{Cpl}_{\mathrm{bc}}(\mu_n, \nu_n)} \mathbb{E}^{\pi} \left[\sum_{k=1}^n |x_k - y_k|^p \right].$$

Knothe-Rosenblatt rearrangement

$$U_k \stackrel{iid}{\sim} \text{Unif}(0,1), \quad X_k = F_{\mu_{X_1,\dots,X_{k-1}}}^{-1}(U_k), \quad Y_k = F_{\nu_{Y_1,\dots,Y_{k-1}}}^{-1}(U_k),$$
$$\pi^{\text{KR}}(\mu_n,\nu_n) \coloneqq \text{Law}(X,Y).$$



$$\mu_n, \nu_n \in \mathcal{P}(\mathbb{R}^n) \quad \rightsquigarrow \quad \inf_{\pi \in \operatorname{Cpl}_{\mathrm{bc}}(\mu_n, \nu_n)} \mathbb{E}^{\pi} \left[\sum_{k=1}^n |x_k - y_k|^p \right].$$

Knothe–Rosenblatt rearrangement

$$U_k \stackrel{iid}{\sim} \text{Unif}(0,1), \quad X_k = F_{\mu_{X_1,\dots,X_{k-1}}}^{-1}(U_k), \quad Y_k = F_{\nu_{Y_1,\dots,Y_{k-1}}}^{-1}(U_k),$$
$$\pi^{\text{KR}}(\mu_n,\nu_n) \coloneqq \text{Law}(X,Y).$$

Theorem [Rüschendorf '85]

If μ_n and ν_n are both stochastically increasing, then the unique optimiser is the Knothe–Rosenblatt coupling $\pi^{\text{KR}}(\mu_n, \nu_n)$.

$$dX_t = b(X_t)dt + \sigma(X_t)dW_t \qquad \rightsquigarrow \qquad \mu$$

$$\mathrm{d}\bar{X}_t = \bar{b}(\bar{X}_t)\mathrm{d}t + \bar{\sigma}(\bar{X}_t)\mathrm{d}\bar{W}_t \qquad \rightsquigarrow \qquad \nu.$$

Suppose that the coefficients are continuous with linear growth and that pathwise uniqueness holds. Then the synchronous coupling is optimal for $\mathcal{AW}_p(\mu, \nu)$.

Under additional conditions, $\mathcal{AW}_p(\mu_n, \nu_n) \to \mathcal{AW}_p(\mu, \nu)$.

$$dX_t = b(X_t)dt + \sigma(X_t)dW_t \qquad \rightsquigarrow \qquad \mu$$

$$\mathrm{d}\bar{X}_t = \bar{b}(\bar{X}_t)\mathrm{d}t + \bar{\sigma}(\bar{X}_t)\mathrm{d}\bar{W}_t \qquad \rightsquigarrow \qquad \nu.$$

Suppose that the coefficients are continuous with linear growth and that pathwise uniqueness holds. Then the synchronous coupling is optimal for $\mathcal{AW}_p(\mu, \nu)$.

Under additional conditions, $\mathcal{AW}_p(\mu_n, \nu_n) \to \mathcal{AW}_p(\mu, \nu)$.

"Synchronous is continuous-time limit of Knothe-Rosenblatt"

 $\mathrm{d}X_t = b(X_t)\mathrm{d}t$

Euler scheme

$$X_0^h = X_0,$$

$$X_t^h = X_{kh}^h + b(X_{kh})(t - kh), \quad t \in (kh, (k+1)h].$$

$$\mathrm{d}X_t = b(X_t)\mathrm{d}t + \mathrm{d}W_t$$

Euler-Maruyama scheme

$$X_0^h = X_0,$$

$$X_t^h = X_{kh}^h + b(X_{kh})(t - kh) + W_t - W_{kh}, \quad t \in (kh, (k+1)h].$$

$$\mathrm{d}X_t = b(X_t)\mathrm{d}t + \mathrm{d}W_t$$

Euler-Maruyama scheme

$$X_0^h = X_0,$$

$$X_t^h = X_{kh}^h + b(X_{kh})(t - kh) + W_t - W_{kh}, \quad t \in (kh, (k+1)h].$$

 $\text{Write} \quad X^h_k := X^h_{kh} \quad \text{and} \quad \mu^h = \mathrm{Law}((X^h_k)_k).$

$$\mathrm{d}X_t = b(X_t)\mathrm{d}t + \mathrm{d}W_t$$

Euler-Maruyama scheme

$$\begin{split} X_0^h &= X_0, \\ X_t^h &= X_{kh}^h + b(X_{kh})(t-kh) + W_t - W_{kh}, \quad t \in (kh, (k+1)h]. \end{split}$$
 Write $X_k^h &:= X_{kh}^h$ and $\mu^h = \text{Law}((X_k^h)_k).$

Remark

 $X^h_k\mapsto X^h_{(k+1)}$ is increasing if b is Lipschitz, $h\ll 1$

$$\mathrm{d}X_t = b(X_t)\mathrm{d}t + \mathrm{d}W_t$$

Euler-Maruyama scheme

$$X_0^h = X_0,$$

$$X_t^h = X_{kh}^h + b(X_{kh})(t - kh) + W_t - W_{kh}, \quad t \in (kh, (k+1)h].$$

 $\label{eq:Write} \begin{array}{ll} \mathbf{X}^h_k := X^h_{kh} \quad \text{and} \quad \mu^h = \mathrm{Law}((X^h_k)_k). \end{array}$

Remark

 $X^h_k\mapsto X^h_{(k+1)}$ is increasing if b is Lipschitz, $h\ll 1$

Corollary

The unique discrete-time bi-causal optimal coupling between μ^h, ν^h is the Knothe–Rosenblatt coupling.

$$\mathrm{d}X_t = b(X_t)\mathrm{d}t + \sigma(X_t)\mathrm{d}W_t$$

 $X_0^h = X_0,$ $X_t^h = X_{kh}^h + b(X_{kh})(t - kh) + \sigma(X_{kh})(W_t^h - W_{kh}^h), \ t \in (kh, (k+1)h].$

$$\mathrm{d}X_t = b(X_t)\mathrm{d}t + \sigma(X_t)\mathrm{d}W_t$$

$$\begin{split} X_0^h &= X_0, \\ X_t^h &= X_{kh}^h + b(X_{kh})(t - kh) + \sigma(X_{kh})(W_t^h - W_{kh}^h), \ t \in (kh, (k+1)h]. \\ \text{Write} \quad X_k^h &:= X_{kh}^h \quad \text{and} \quad \mu^h = \text{Law}((X_k^h)_k). \end{split}$$

$$\mathrm{d}X_t = b(X_t)\mathrm{d}t + \sigma(X_t)\mathrm{d}W_t$$

$$\begin{split} X_0^h &= X_0, \\ X_t^h &= X_{kh}^h + b(X_{kh})(t - kh) + \sigma(X_{kh})(W_t^h - W_{kh}^h), \ t \in (kh, (k+1)h]. \\ \text{Write} \quad X_k^h &:= X_{kh}^h \quad \text{and} \quad \mu^h = \text{Law}((X_k^h)_k). \end{split}$$

Remark

 $X^h_k\mapsto X^h_{(k+1)}$ is increasing if b is Lipschitz, σ is Lipschitz, $h\ll 1$

$$\mathrm{d}X_t = b(X_t)\mathrm{d}t + \sigma(X_t)\mathrm{d}W_t$$

$$\begin{split} X_0^h &= X_0, \\ X_t^h &= X_{kh}^h + b(X_{kh})(t - kh) + \sigma(X_{kh})(W_t^h - W_{kh}^h), \ t \in (kh, (k+1)h]. \\ \text{Write} \quad X_k^h &:= X_{kh}^h \quad \text{and} \quad \mu^h = \text{Law}((X_k^h)_k). \end{split}$$

Remark

 $X^h_k \mapsto X^h_{(k+1)} \text{ is increasing if } b \text{ is Lipschitz, } \sigma \text{ is Lipschitz, } h \ll 1$

Corollary

The unique discrete-time bi-causal optimal coupling between μ^h, ν^h is the Knothe–Rosenblatt coupling.

Suppose that $(W, \overline{W}) \rho$ -correlated induces an optimal coupling for $\mathcal{AW}_p(\mu^h, \nu^h)$, for all h > 0.

Suppose that $(W, \overline{W}) \rho$ -correlated induces an optimal coupling for $\mathcal{AW}_p(\mu^h, \nu^h)$, for all h > 0.

Then (W, \overline{W}) also induces an optimal coupling for the limiting problem $\mathcal{AW}_p(\mu, \nu)$.

Suppose that $(W, \overline{W}) \rho$ -correlated induces an optimal coupling for $\mathcal{AW}_p(\mu^h, \nu^h)$, for all h > 0.

Then (W, \bar{W}) also induces an optimal coupling for the limiting problem $\mathcal{AW}_p(\mu, \nu)$.

Corollary

 $\mathcal{AW}_p(\mu^h,\nu^h) \to \mathcal{AW}_p(\mu,\nu).$

Suppose that $(W, \overline{W}) \rho$ -correlated induces an optimal coupling for $\mathcal{AW}_p(\mu^h, \nu^h)$, for all h > 0.

Then (W, \bar{W}) also induces an optimal coupling for the limiting problem $\mathcal{AW}_p(\mu, \nu)$.

Corollary

$$\mathcal{AW}_p(\mu^h,\nu^h) \to \mathcal{AW}_p(\mu,\nu).$$

Theorem 2 [Backhoff-Veraguas, Källblad, R. '22]

Suppose that the coefficients are continuous with linear growth and that pathwise uniqueness holds.

Then the synchronous coupling is optimal for $\mathcal{AW}_p(\mu, \nu)$.

Additional results

- Stability of (degenerate) correlated SDEs;
- Equivalence of topologies on a compact set;
- Extension to SDEs with irregular drifts work in progress with Michaela Szölgyenyi
- Convergence of optimisers work in progress with Julio Backhoff and Sigrid Källblad

- Stability of (degenerate) correlated SDEs;
- Equivalence of topologies on a compact set;
- Extension to SDEs with irregular drifts work in progress with Michaela Szölgyenyi
- Convergence of optimisers work in progress with Julio Backhoff and Sigrid Källblad

Open questions in discrete and continuous time:

- Non-Markovianity
- Higher dimensions

• ...

- We prove optimality of the synchronous coupling;
- We introduce a *monotone* numerical scheme;
- We show a stability result for bi-causal transport.

Julio Backhoff-Veraguas, Sigrid Källblad, and Benjamin A Robinson, *Adapted Wasserstein distance between the laws of SDEs*, arXiv:2209.03243 [math] (2022).