An adapted distance between laws of SDEs

Benjamin A. Robinson
University of Vienna
June 7, 2023 - Optimal Transport, SIAM FME23
Joint work with

Julio Backhoff-Veraguas
University of Vienna

Sigrid Källblad
KTH Stockholm

Michaela Szölgyenyi
Universität Klagenfurt

An adapted distance between laws of SDEs

Benjamin A. Robinson
University of Vienna
June 7, 2023 - Optimal Transport, SIAM FME23

Joint work with

Julio Backhoff-Veraguas
University of Vienna

Sigrid Källblad
KTH Stockholm

Michaela Szölgyenyi
Universität Klagenfurt

An adapted distance between laws of SDEs

Benjamin A. Robinson
University of Vienna
June 7, 2023 - Optimal Transport, SIAM FME23
Joint work with

Julio Backhoff-Veraguas
University of Vienna

Sigrid Källblad
KTH Stockholm

Michaela Szölgyenyi
Universität Klagenfurt

Adapted Wasserstein distance between the laws of SDEs
(with J. Backhoff-Veraguas and S. Källblad) — arXiv:2209.03243, Sep 2022

An adapted distance between laws of SDEs

Benjamin A. Robinson
University of Vienna
June 7, 2023 - Optimal Transport, SIAM FME23
Joint work with

Julio Backhoff-Veraguas	Sigrid Källblad	Michaela Szölgyenyi
University of Vienna	KTH Stockholm	Universität Klagenfurt

Adapted Wasserstein distance between the laws of SDEs
(with J. Backhoff-Veraguas and S. Källblad) — arXiv:2209.03243, Sep 2022
Adapted Wasserstein distance for SDEs with irregular coefficients
(with M. Szölgyenyi) - in preparation

Distances between stochastic processes

$\left(X_{n}\right)_{n \in\{1, \ldots N\}},\left(Y_{n}\right)_{n \in\{1, \ldots, N\}}$ real-valued stochastic processes $\rightsquigarrow \mu, \nu$ probability measures on \mathbb{R}^{N}

Distances between stochastic processes

$\left(X_{n}\right)_{n \in\{1, \ldots N\}},\left(Y_{n}\right)_{n \in\{1, \ldots, N\}}$ real-valued stochastic processes $\rightsquigarrow \mu, \nu$ probability measures on \mathbb{R}^{N}

How to choose a "good" distance $d(\mu, \nu)$?

Distances between stochastic processes

Distances between stochastic processes

Distances between stochastic processes

Distances between stochastic processes

Distances between stochastic processes

$\left(X_{n}\right)_{n \in\{1, \ldots N\}},\left(Y_{n}\right)_{n \in\{1, \ldots, N\}}$ real-valued stochastic processes $\rightsquigarrow \mu, \nu$ probability measures on \mathbb{R}^{N}

How to choose a "good" distance $d(\mu, \nu)$?

Distances between stochastic processes

$\left(X_{n}\right)_{n \in\{1, \ldots N\}},\left(Y_{n}\right)_{n \in\{1, \ldots, N\}}$ real-valued stochastic processes $\rightsquigarrow \mu, \nu$ probability measures on \mathbb{R}^{N}

How to choose a "good" distance $d(\mu, \nu)$?
E.g. Wasserstein distance \mathcal{W}_{2} - from optimal transport

Distances between stochastic processes

$\left(X_{n}\right)_{n \in\{1, \ldots N\}},\left(Y_{n}\right)_{n \in\{1, \ldots, N\}}$ real-valued stochastic processes $\rightsquigarrow \mu, \nu$ probability measures on \mathbb{R}^{N}

How to choose a "good" distance $d(\mu, \nu)$?
E.g. Wasserstein distance \mathcal{W}_{2} :

$$
\mathcal{W}_{2}^{2}(\mu, \nu):=\inf _{T: T_{\#} \mu=\nu} \mathbb{E}\left[\sum_{n=1}^{N}\left|T_{n}(X)-X_{n}\right|^{2}\right]
$$

Distances between stochastic processes

$\left(X_{n}\right)_{n \in\{1, \ldots N\}},\left(Y_{n}\right)_{n \in\{1, \ldots, N\}}$ real-valued stochastic processes
$\rightsquigarrow \mu, \nu$ probability measures on \mathbb{R}^{N}
How to choose a "good" distance $d(\mu, \nu)$?
E.g. Wasserstein distance \mathcal{W}_{2} :

$$
\mathcal{W}_{2}^{2}(\mu, \nu):=\inf _{T: T_{\#} \mu=\nu} \mathbb{E}\left[\sum_{n=1}^{N}\left|T_{n}(X)-X_{n}\right|^{2}\right]
$$

Metrises weak convergence: $\mu_{n} \rightarrow \mu$ iff $\mathcal{W}_{2}\left(\mu_{n}, \mu\right) \rightarrow 0$.

Optimal transport

Probability measures μ, ν on \mathbb{R}^{N}
Find

$$
\begin{gathered}
\inf _{T: T_{\#} \mu=\nu} \mathbb{E}\left[\sum_{n=1}^{N}\left|T_{n}(X)-X_{n}\right|^{2}\right] . \\
T(X)=\left(T_{1}\left(X_{1}, \ldots, X_{N}\right), \ldots, T_{N}\left(X_{1}, \ldots, X_{N}\right)\right)
\end{gathered}
$$

Optimal transport

Probability measures μ, ν on \mathbb{R}^{N}
Find

$$
\begin{gathered}
\inf _{T: T_{\#} \mu=\nu} \mathbb{E}\left[\sum_{n=1}^{N}\left|T_{n}(X)-X_{n}\right|^{2}\right] \\
T(X)=\left(T_{1}\left(X_{1}, \ldots, X_{N}\right), \ldots, T_{N}\left(X_{1}, \ldots, X_{N}\right)\right)
\end{gathered}
$$

Optimal transport

Probability measures μ, ν on \mathbb{R}^{N}
Find

$$
\begin{gathered}
\inf _{T: T_{\#} \mu=\nu} \mathbb{E}\left[\sum_{n=1}^{N}\left|T_{n}(X)-X_{n}\right|^{2}\right] \\
T(X)=\left(T_{1}\left(X_{1}, \ldots, X_{N}\right), \ldots, T_{N}\left(X_{1}, \ldots, X_{N}\right)\right)
\end{gathered}
$$

Monge (1781), ...

Optimal transport

Probability measures μ, ν on \mathbb{R}^{N}
Find

$$
\begin{gathered}
\inf _{T: T_{\#} \mu=\nu} \mathbb{E}\left[\sum_{n=1}^{N}\left|T_{n}(X)-X_{n}\right|^{2}\right] \\
T(X)=\left(T_{1}\left(X_{1}, \ldots, X_{N}\right), \ldots, T_{N}\left(X_{1}, \ldots, X_{N}\right)\right)
\end{gathered}
$$

Monge (1781), ...
Kantorovich (1942), $\ldots \rightsquigarrow T$ random:

Optimal transport

Probability measures μ, ν on \mathbb{R}^{N}
Find

$$
\begin{gathered}
\inf _{T: T_{\#} \mu=\nu} \mathbb{E}\left[\sum_{n=1}^{N}\left|T_{n}(X)-X_{n}\right|^{2}\right] \\
T(X)=\left(T_{1}\left(X_{1}, \ldots, X_{N}\right), \ldots, T_{N}\left(X_{1}, \ldots, X_{N}\right)\right)
\end{gathered}
$$

Monge (1781), ...
Kantorovich (1942), $\ldots \rightsquigarrow T$ random: replace $(X, T(X))$ with coupling $(X, Y), X \sim \mu, Y \sim \nu$.

Distances between stochastic processes

Distances between stochastic processes

Distances between stochastic processes

Distances between stochastic processes

Distances between stochastic processes

$$
\begin{gathered}
V_{n}:=\sup _{\tau} \mathbb{E}^{\mu_{n}}\left[X_{\tau}\right] \approx \frac{1}{2} \quad V:=\sup _{\tau} \mathbb{E}^{\mu}\left[X_{\tau}\right]=0 \\
V_{n} \nrightarrow V \text { but } \mu_{n} \rightarrow \mu
\end{gathered}
$$

Distances between stochastic processes

Want

$$
d\left(\mu_{n}, \mu\right) \nrightarrow 0
$$

Distances between stochastic processes

Want

$$
d\left(\mu_{n}, \mu\right) \nrightarrow 0
$$

E.g. Acciaio, Aldous, Backhoff-Veraguas, Bartl, Beiglböck, Bion-Nadal, Eder, Hellwig, Lassalle, Pammer, Pflug, Pichler, Posch, Talay, among others ...

Adapted topology

$$
\begin{gathered}
\mu, \nu \in \mathcal{P}\left(\mathbb{R}^{N}\right) \rightsquigarrow \mathcal{W}_{2}^{2}(\mu, \nu):=\inf _{T: T_{\#} \mu=\nu} \mathbb{E}\left[\sum_{n=1}^{N}\left|T_{n}(X)-X_{n}\right|^{2}\right] . \\
T(X)=\left(T_{1}\left(X_{1}, \ldots, X_{N}\right), \ldots, T_{N}\left(X_{1}, \ldots, X_{N}\right)\right)
\end{gathered}
$$

Adapted topology

$$
\begin{aligned}
& \mu, \nu \in \mathcal{P}\left(\mathbb{R}^{N}\right) \rightsquigarrow \inf _{\substack{T: T \neq \mu=\nu \\
\text { adapted }}} \mathbb{E}\left[\sum_{n=1}^{N}\left|T_{n}(X)-X_{n}\right|^{2}\right] . \\
& T(X)=\left(T_{1}\left(X_{1}\right), T_{2}\left(X_{1}, X_{2}\right), \ldots, T_{N}\left(X_{1}, \ldots, X_{N}\right)\right)
\end{aligned}
$$

Adapted topology

$$
\begin{gathered}
\mu, \nu \in \mathcal{P}\left(\mathbb{R}^{N}\right) \rightsquigarrow \quad \mathcal{A} \mathcal{W}_{2}^{2}(\mu, \nu):=\inf _{\substack{T: T \neq u=\nu \\
\text { bi-adapted }}} \mathbb{E}\left[\sum_{n=1}^{N}\left|T_{n}(X)-X_{n}\right|^{2}\right] . \\
T(X)=\left(T_{1}\left(X_{1}\right), T_{2}\left(X_{1}, X_{2}\right), \ldots, T_{N}\left(X_{1}, \ldots, X_{N}\right)\right)
\end{gathered}
$$

Adapted topology

$$
\mu, \nu \in \mathcal{P}\left(\mathbb{R}^{N}\right) \quad \rightsquigarrow \quad \mathcal{A} \mathcal{W}_{2}^{2}(\mu, \nu):=\inf _{\substack{T: T_{\neq 2}=\nu \\ \text { bi-adapted }}} \mathbb{E}\left[\sum_{n=1}^{N}\left|T_{n}(X)-X_{n}\right|^{2}\right] .
$$

Adapted topology

$$
\mu, \nu \in \mathcal{P}\left(\mathbb{R}^{N}\right) \quad \rightsquigarrow \mathcal{A} \mathcal{W}_{2}^{2}(\mu, \nu):=\inf _{\substack{T: T_{\#} \mu=\nu \\ \text { bi-adapted }}} \mathbb{E}\left[\sum_{n=1}^{N}\left|T_{n}(X)-X_{n}\right|^{2}\right] .
$$

Knothe-Rosenblatt rearrangement

Adapted topology

$$
\mu, \nu \in \mathcal{P}\left(\mathbb{R}^{N}\right) \quad \rightsquigarrow \mathcal{A} \mathcal{W}_{2}^{2}(\mu, \nu):=\inf _{\substack{T: T \neq \mu=\nu \\ \text { bi-adapted }}} \mathbb{E}\left[\sum_{n=1}^{N}\left|T_{n}(X)-X_{n}\right|^{2}\right] .
$$

Knothe-Rosenblatt rearrangement

- generalisation of monotone rearrangement

Adapted topology

$$
\mu, \nu \in \mathcal{P}\left(\mathbb{R}^{N}\right) \quad \rightsquigarrow \mathcal{A} \mathcal{W}_{2}^{2}(\mu, \nu):=\inf _{\substack{T: T_{\neq \mu} \\ \text { bi-adapted }}} \mathbb{E}\left[\sum_{n=1}^{N}\left|T_{n}(X)-X_{n}\right|^{2}\right] .
$$

Knothe-Rosenblatt rearrangement

$$
Y_{k}=T_{k}^{\mathrm{KR}}\left(X_{1}, \ldots, X_{k}\right)=F_{\nu_{Y_{1}, \ldots, Y_{k-1}}^{-1}}^{-} \circ F_{\mu_{X_{1}, \ldots, X_{k-1}}}\left(X_{k}\right),
$$

Adapted topology

$$
\mu, \nu \in \mathcal{P}\left(\mathbb{R}^{N}\right) \quad \rightsquigarrow \mathcal{A} \mathcal{W}_{2}^{2}(\mu, \nu):=\inf _{\substack{T: T_{\neq \mu} \mu \nu \\ \text { bi-adapted }}} \mathbb{E}\left[\sum_{n=1}^{N}\left|T_{n}(X)-X_{n}\right|^{2}\right] .
$$

Knothe-Rosenblatt rearrangement

$$
Y_{k}=T_{k}^{\mathrm{KR}}\left(X_{1}, \ldots, X_{k}\right)=F_{\nu_{Y_{1}, \ldots, Y_{k-1}}}^{-1} \circ F_{\mu_{X_{1}, \ldots, X_{k-1}}}\left(X_{k}\right)
$$

Theorem [Rüschendorf '85] [Posch '23+]
Under a monotonicity condition, the unique optimiser is the Knothe-Rosenblatt map T^{KR}. This induces the adapted weak toology.

Distances between stochastic processes

$$
\begin{gathered}
V_{n}:=\sup _{\tau} \mathbb{E}^{\mu_{n}}\left[X_{\tau}\right] \approx \frac{1}{2} \\
\mathcal{A} \mathcal{N}\left(\mu_{n}, \mu\right) \nrightarrow 0
\end{gathered}
$$

Coupling SDEs

$$
\begin{aligned}
& \mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} W_{t} \\
& \rightsquigarrow \\
& \mu \in \mathcal{P}(\Omega), \quad \Omega:=C([0,1], \mathbb{R})
\end{aligned}
$$

Coupling SDEs

$$
\begin{array}{llll}
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} W_{t} & \rightsquigarrow & \mu \\
\mathrm{~d} \bar{X}_{t}=\bar{b}\left(\bar{X}_{t}\right) \mathrm{d} t+\bar{\sigma}\left(\bar{X}_{t}\right) \mathrm{d} \bar{W}_{t} & \rightsquigarrow & \nu .
\end{array}
$$

$b, \bar{b}: \mathbb{R} \rightarrow \mathbb{R}, \sigma, \bar{\sigma}: \mathbb{R} \rightarrow \mathbb{R}_{+}$

Coupling SDEs

$$
\begin{array}{lll}
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} W_{t} & \rightsquigarrow & \mu \\
\mathrm{~d} \bar{X}_{t}=\bar{b}\left(\bar{X}_{t}\right) \mathrm{d} t+\bar{\sigma}\left(\bar{X}_{t}\right) \mathrm{d} \bar{W}_{t} & \rightsquigarrow & \nu .
\end{array}
$$

$b, \bar{b}: \mathbb{R} \rightarrow \mathbb{R}, \sigma, \bar{\sigma}: \mathbb{R} \rightarrow \mathbb{R}_{+}$

Adapted topology

$$
\mu, \nu \in \mathcal{P}(\Omega) \rightsquigarrow \mathcal{A} \mathcal{W}_{2}^{2}(\mu, \nu):=\inf _{\substack{T: T \neq \mu=\nu \\ \text { bi -adapted }}} \mathbb{E}\left[\|T(X)-X\|^{2}\right]
$$

Adapted topology

$\mu, \nu \in \mathcal{P}(\Omega) \quad \rightsquigarrow \mathcal{A} \mathcal{W}_{2}^{2}(\mu, \nu):=\inf _{\substack{T: T T_{\neq \mu=\nu} \\ \text { bi-adapted }}} \mathbb{E}\left[\int_{0}^{1}\left|T_{t}(X)-X_{t}\right|^{2} \mathrm{~d} t\right]$
Alternatives e.g. [Backhoff-Veraguas et al. '18], [Bartl et al. '23+]

Adapted topology

$\mu, \nu \in \mathcal{P}(\Omega) \quad \rightsquigarrow \mathcal{A} \mathcal{W}_{2}^{2}(\mu, \nu):=\inf _{\substack{T: T \\ \text { bi }- \text { adapted } \\ \text { bi }}} \mathbb{E}\left[\int_{0}^{1}\left|T_{t}(X)-X_{t}\right|^{2} \mathrm{~d} t\right]$
Alternatives e.g. [Backhoff-Veraguas et al. '18], [Bartl et al. '23+] Applications to

- Stability in finance [Backhoff-Veraguas at al. '20]
- Martingale Optimal Transport [Backhoff-Veraguas et al. '18],
- Mimicking martingales [Pammer, R. , Schachermayer '22]

Adapted topology

$$
\mu, \nu \in \mathcal{P}(\Omega) \rightsquigarrow \mathcal{A} \mathcal{W}_{2}^{2}(\mu, \nu):=\inf _{\substack{T: T \neq \mu=\nu \\ \text { bi- } T_{\text {alapted }}}} \mathbb{E}\left[\int_{0}^{1}\left|T_{t}(X)-X_{t}\right|^{2} \mathrm{~d} t\right]
$$

Synchronous coupling

Continuous-time analogue of Knothe-Rosenblatt coupling

$$
W=\bar{W}
$$

Adapted topology

$$
\mu, \nu \in \mathcal{P}(\Omega) \quad \rightsquigarrow \mathcal{A} \mathcal{W}_{2}^{2}(\mu, \nu):=\inf _{\substack{T: T_{\neq \mu=\nu} \\ \text { bi-adapted }}} \mathbb{E}\left[\int_{0}^{1}\left|T_{t}(X)-X_{t}\right|^{2} \mathrm{~d} t\right]
$$

Synchronous coupling
Continuous-time analogue of Knothe-Rosenblatt coupling

$$
W=\bar{W}
$$

Theorem 1 [Backhoff-Veraguas, Källblad, R. '22]
Optimising over adapted maps T
\Leftrightarrow
Optimising over correlations between W, \bar{W}.

Adapted topology

Example

Product coupling — W, \bar{W} independent

Adapted topology

Synchronous coupling

Choose the same driving Brownian motion $W=\bar{W}$.

Adapted topology

$$
\begin{array}{lll}
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} W_{t} & \rightsquigarrow & \mu \\
\mathrm{~d} \bar{X}_{t}=\bar{b}\left(\bar{X}_{t}\right) \mathrm{d} t+\bar{\sigma}\left(\bar{X}_{t}\right) \mathrm{d} \bar{W}_{t} & \rightsquigarrow & \nu .
\end{array}
$$

$b, \bar{b}: \mathbb{R} \rightarrow \mathbb{R}, \sigma, \bar{\sigma}: \mathbb{R} \rightarrow \mathbb{R}_{+}$
Theorem 2 [Backhoff-Veraguas, Källblad, R. '22]
Suppose that the coefficients are continuous with linear growth and that pathwise uniqueness holds the synchronous coupling is optimal.

Adapted topology

$$
\begin{array}{lll}
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} W_{t} & \rightsquigarrow & \mu \\
\mathrm{~d} \bar{X}_{t}=\bar{b}\left(\bar{X}_{t}\right) \mathrm{d} t+\bar{\sigma}\left(\bar{X}_{t}\right) \mathrm{d} \bar{W}_{t} & \rightsquigarrow & \nu .
\end{array}
$$

$b, \bar{b}: \mathbb{R} \rightarrow \mathbb{R}, \sigma, \bar{\sigma}: \mathbb{R} \rightarrow \mathbb{R}_{+}$
Theorem 2 [Backhoff-Veraguas, Källblad, R. '22]
Suppose that the coefficients are continuous with linear growth and that pathwise uniqueness holds the synchronous coupling is optimal.

Theorem 3 [R., Szölgyenyi '23+]

Under very mild conditions, the synchronous coupling is optimal, and we have an efficient method to compute $\mathcal{A W}_{p}(\mu, \nu)$.

A monotone numerical scheme

$$
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t
$$

Euler scheme

$$
\begin{aligned}
& X_{0}^{h}=X_{0} \\
& X_{t}^{h}=X_{k h}^{h}+b\left(X_{k h}\right)(t-k h), \quad t \in(k h,(k+1) h]
\end{aligned}
$$

A monotone numerical scheme

$$
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\mathrm{d} W_{t}
$$

Euler-Maruyama scheme

$$
\begin{aligned}
& X_{0}^{h}=X_{0} \\
& X_{t}^{h}=X_{k h}^{h}+b\left(X_{k h}\right)(t-k h)+W_{t}-W_{k h}, \quad t \in(k h,(k+1) h]
\end{aligned}
$$

A monotone numerical scheme

$$
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\mathrm{d} W_{t}
$$

Euler-Maruyama scheme

$$
\begin{aligned}
& X_{0}^{h}=X_{0} \\
& X_{t}^{h}=X_{k h}^{h}+b\left(X_{k h}\right)(t-k h)+W_{t}-W_{k h}, \quad t \in(k h,(k+1) h]
\end{aligned}
$$

Write $\quad X_{k}^{h}:=X_{k h}^{h} \quad$ and $\quad \mu^{h}=\operatorname{Law}\left(\left(X_{k}^{h}\right)_{k}\right)$.

A monotone numerical scheme

$$
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\mathrm{d} W_{t}
$$

Euler-Maruyama scheme

$$
\begin{aligned}
& X_{0}^{h}=X_{0} \\
& X_{t}^{h}=X_{k h}^{h}+b\left(X_{k h}\right)(t-k h)+W_{t}-W_{k h}, \quad t \in(k h,(k+1) h]
\end{aligned}
$$

Write $\quad X_{k}^{h}:=X_{k h}^{h} \quad$ and $\quad \mu^{h}=\operatorname{Law}\left(\left(X_{k}^{h}\right)_{k}\right)$.

Remark

$X_{k}^{h} \mapsto X_{(k+1)}^{h}$ is increasing if b is Lipschitz, $h \ll 1$

A monotone numerical scheme

$$
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\mathrm{d} W_{t}
$$

Euler-Maruyama scheme

$$
\begin{aligned}
& X_{0}^{h}=X_{0} \\
& X_{t}^{h}=X_{k h}^{h}+b\left(X_{k h}\right)(t-k h)+W_{t}-W_{k h}, \quad t \in(k h,(k+1) h]
\end{aligned}
$$

Write $\quad X_{k}^{h}:=X_{k h}^{h} \quad$ and $\quad \mu^{h}=\operatorname{Law}\left(\left(X_{k}^{h}\right)_{k}\right)$.

Remark

$X_{k}^{h} \mapsto X_{(k+1)}^{h}$ is increasing if b is Lipschitz, $h \ll 1$

Corollary

The unique discrete-time bi-causal optimal coupling between μ^{h}, ν^{h} is the Knothe-Rosenblatt coupling.

A monotone numerical scheme

$$
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} W_{t}
$$

Monotone Euler-Maruyama scheme

$$
\begin{aligned}
& X_{0}^{h}=X_{0} \\
& X_{t}^{h}=X_{k h}^{h}+b\left(X_{k h}\right)(t-k h)+\sigma\left(X_{k h}\right)\left(W_{t}^{h}-W_{k h}^{h}\right), t \in(k h,(k+1) h] .
\end{aligned}
$$

A monotone numerical scheme

$$
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} W_{t}
$$

Monotone Euler-Maruyama scheme
$X_{0}^{h}=X_{0}$,
$X_{t}^{h}=X_{k h}^{h}+b\left(X_{k h}\right)(t-k h)+\sigma\left(X_{k h}\right)\left(W_{t}^{h}-W_{k h}^{h}\right), t \in(k h,(k+1) h]$.
Write $\quad X_{k}^{h}:=X_{k h}^{h} \quad$ and $\quad \mu^{h}=\operatorname{Law}\left(\left(X_{k}^{h}\right)_{k}\right)$.

A monotone numerical scheme

$$
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} W_{t}
$$

Monotone Euler-Maruyama scheme
$X_{0}^{h}=X_{0}$,
$X_{t}^{h}=X_{k h}^{h}+b\left(X_{k h}\right)(t-k h)+\sigma\left(X_{k h}\right)\left(W_{t}^{h}-W_{k h}^{h}\right), t \in(k h,(k+1) h]$.
Write $\quad X_{k}^{h}:=X_{k h}^{h} \quad$ and $\quad \mu^{h}=\operatorname{Law}\left(\left(X_{k}^{h}\right)_{k}\right)$.
Remark
$X_{k}^{h} \mapsto X_{(k+1)}^{h}$ is increasing if b is Lipschitz, σ is Lipschitz, $h \ll 1$

A monotone numerical scheme

$$
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} W_{t}
$$

Monotone Euler-Maruyama scheme
$X_{0}^{h}=X_{0}$,
$X_{t}^{h}=X_{k h}^{h}+b\left(X_{k h}\right)(t-k h)+\sigma\left(X_{k h}\right)\left(W_{t}^{h}-W_{k h}^{h}\right), t \in(k h,(k+1) h]$.
Write $\quad X_{k}^{h}:=X_{k h}^{h} \quad$ and $\quad \mu^{h}=\operatorname{Law}\left(\left(X_{k}^{h}\right)_{k}\right)$.
Remark
$X_{k}^{h} \mapsto X_{(k+1)}^{h}$ is increasing if b is Lipschitz, σ is Lipschitz, $h \ll 1$

Corollary

The unique discrete-time bi-causal optimal coupling between μ^{h}, ν^{h} is the Knothe-Rosenblatt coupling.

Summary

- We prove optimality of the synchronous coupling;
- We show a stability result for bi-causal transport;
- Equivalence of topologies on a compact set;
- Introduce a numerical method to compute the value;

Summary

- Extension to SDEs with irregular drifts - work in progress with Michaela Szölgyenyi
- Convergence of optimisers - work in progress with Julio Backhoff and Sigrid Källblad

Summary

- Extension to SDEs with irregular drifts - work in progress with Michaela Szölgyenyi
- Convergence of optimisers - work in progress with Julio Backhoff and Sigrid Källblad

Open questions in discrete and
continuous time:

- Non-Markovianity
- Higher dimensions

Summary

- Extension to SDEs with irregular drifts - work in progress with Michaela Szölgyenyi
- Convergence of optimisers - work in progress with Julio Backhoff and Sigrid Källblad

Open questions in discrete and
continuous time:

- Non-Markovianity
- Higher dimensions

Stability

Theorem 3 [Backhoff-Veraguas, Källblad, R. '22]
Suppose that $(W, \bar{W}) \rho$-correlated induces an optimal coupling for $\mathcal{A} \mathcal{W}_{p}\left(\mu^{h}, \nu^{h}\right)$, for all $h>0$.

Stability

Theorem 3 [Backhoff-Veraguas, Källblad, R. '22]
Suppose that $(W, \bar{W}) \rho$-correlated induces an optimal coupling for $\mathcal{A L}_{p}\left(\mu^{h}, \nu^{h}\right)$, for all $h>0$.

Then (W, \bar{W}) also induces an optimal coupling for the limiting problem $\mathcal{A W}_{p}(\mu, \nu)$.

Stability

Theorem 3 [Backhoff-Veraguas, Källblad, R. '22]
Suppose that (W, \bar{W}) ρ-correlated induces an optimal coupling for $\mathcal{A} \mathcal{W}_{p}\left(\mu^{h}, \nu^{h}\right)$, for all $h>0$.

Then (W, \bar{W}) also induces an optimal coupling for the limiting problem $\mathcal{A W}_{p}(\mu, \nu)$.

Corollary

$$
\mathcal{A} \mathcal{W}_{p}\left(\mu^{h}, \nu^{h}\right) \rightarrow \mathcal{A} \mathcal{W}_{p}(\mu, \nu)
$$

Stability

Theorem 3 [Backhoff-Veraguas, Källblad, R. '22]
Suppose that (W, \bar{W}) ρ-correlated induces an optimal coupling for $\mathcal{A} \mathcal{W}_{p}\left(\mu^{h}, \nu^{h}\right)$, for all $h>0$.

Then (W, \bar{W}) also induces an optimal coupling for the limiting problem $\mathcal{A W}_{p}(\mu, \nu)$.

Corollary

$$
\mathcal{A W}_{p}\left(\mu^{h}, \nu^{h}\right) \rightarrow \mathcal{A} \mathcal{W}_{p}(\mu, \nu)
$$

Theorem 2 [Backhoff-Veraguas, Källblad, R. '22]
Suppose that the coefficients are continuous with linear growth and that pathwise uniqueness holds.

Then the synchronous coupling is optimal for $\mathcal{A} \mathcal{W}_{p}(\mu, \nu)$.

Equality of topologies

Define the compact set

$$
A_{\Lambda}:=\{\phi: \mathbb{R} \rightarrow \mathbb{R}:|\phi(y)-\phi(x)| \leq \Lambda|y-x|,|\phi(0)| \leq \Lambda\}
$$

and
$\mathcal{P}_{\Lambda}:=\left\{\right.$ laws of SDEs with coefficients in some $\left.A_{\Lambda}\right\}$

Equality of topologies

Define the compact set

$$
A_{\Lambda}:=\{\phi: \mathbb{R} \rightarrow \mathbb{R}:|\phi(y)-\phi(x)| \leq \Lambda|y-x|,|\phi(0)| \leq \Lambda\}
$$

and
$\mathcal{P}_{\Lambda}:=\left\{\right.$ laws of SDEs with coefficients in some $\left.A_{\Lambda}\right\}$

Theorem 4 [Backhoff-Veraguas, Källblad, R. '22]
The following metrics induce the same topology on \mathcal{P}_{Λ} :

- $\mathcal{S W}_{p}$ - cost of synchronous coupling;

Equality of topologies

Define the compact set

$$
A_{\Lambda}:=\{\phi: \mathbb{R} \rightarrow \mathbb{R}:|\phi(y)-\phi(x)| \leq \Lambda|y-x|,|\phi(0)| \leq \Lambda\}
$$

and
$\mathcal{P}_{\Lambda}:=\left\{\right.$ laws of SDEs with coefficients in some $\left.A_{\Lambda}\right\}$

Theorem 4 [Backhoff-Veraguas, Källblad, R. '22]
The following metrics induce the same topology on \mathcal{P}_{Λ} :

- $\mathcal{S W}_{p}$ - cost of synchronous coupling;
- $\mathcal{A W}_{p}$;

Equality of topologies

Define the compact set

$$
A_{\Lambda}:=\{\phi: \mathbb{R} \rightarrow \mathbb{R}:|\phi(y)-\phi(x)| \leq \Lambda|y-x|,|\phi(0)| \leq \Lambda\}
$$

and
$\mathcal{P}_{\Lambda}:=\left\{\right.$ laws of SDEs with coefficients in some $\left.A_{\Lambda}\right\}$

Theorem 4 [Backhoff-Veraguas, Källblad, R. '22]
The following metrics induce the same topology on \mathcal{P}_{Λ} :

- $\mathcal{S W}_{p}$ - cost of synchronous coupling;
- $\mathcal{A W}_{p}$;
- \mathcal{W}_{p}.

Summary

- We prove optimality of the synchronous coupling;
- We introduce a monotone numerical scheme;
- We show a stability result for bi-causal transport;
- Equivalence of topologies on a compact set;

Summary

- We prove optimality of the synchronous coupling;
- We introduce a monotone numerical scheme;
- We show a stability result for bi-causal transport;
- Equivalence of topologies on a compact set;
- Extension to SDEs with irregular drifts - work in progress with Michaela Szölgyenyi
- Convergence of optimisers - work in progress with Julio Backhoff and Sigrid Källblad

Summary

- We prove optimality of the synchronous coupling;
- We introduce a monotone numerical scheme;
- We show a stability result for bi-causal transport;
- Equivalence of topologies on a compact set;
- Extension to SDEs with irregular drifts - work in progress with Michaela Szölgyenyi
- Convergence of optimisers - work in progress with Julio Backhoff and Sigrid Källblad

Open questions in discrete and continuous time:

- Non-Markovianity
- Higher dimensions

