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Preface

Preface to the second edition

Nearly every Ph.D. student in mathematics needs to pass a
preliminary or qualifying examination in real analysis. The purpose
of this book is to teach the material necessary to pass such an
examination.

I had three main goals in writing this text:
(1) present a very clear exposition;
(2) provide a large collection of useful exercises;
(3) make the text affordable.

Let me discuss each of these in more detail.

(1) There are a large number of real analysis texts already in
existence. Why write another? In my opinion, none of the exist-
ing texts are ideally suited to the beginning graduate student who
needs to pass a “prelim” or “qual.” They are either too hard, too
advanced, too encyclopedic, omit too many important topics, or
take a nonstandard approach to some of the basic theorems.

Students who are starting their graduate mathematics educa-
tion are often still developing their mathematical sophistication and
find that the more details that are provided, the better (within rea-
son). I have tried to make the writing as clear as possible and to
provide the details. For the sake of clarity, I present the theorems
and results as they will be tested, not in the absolutely most general
abstract context. On the other hand, a look at the index will show
that no topics that might appear on a preliminary or qualifying
examination are omitted.

All the proofs are “plain vanilla.” I avoid any clever tricks,
sneaky proofs, unusual approaches, and the like. These are the

xiii
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proofs and methods that most experts grew up on.

(2) There are over 400 exercises. I tried to make them inter-
esting and useful and to avoid problems that are overly technical.
Many are routine, many are of moderate difficulty, but some are
quite challenging. A substantial number are taken from prelimi-
nary examinations given in the past at major universities.

I thought long and hard as to whether to provide hints to the
exercises. When I teach the real analysis course, I give hints to the
harder questions. But some instructors will want a more challeng-
ing course than I give and some a less challenging one. I leave it
to the individual instructor to decide how many hints to give.

(3) I have on my bookshelf several books that I bought in the
early 1970’s that have the prices stamped in them: $10-$12. These
very same books now sell for $100-$200. The cost of living has
gone up in the last 40 years, but only by a factor of 5 or 6, not
a factor of 10. Why do publishers make textbooks so expensive?
This is particularly troublesome when one considers that nowadays
authors do their own typesetting and frequently their own page
layout.

My aim was to make the soft cover version of this text cost less
than $20 and to provide a version in .pdf format for free. To do
that, I am self-publishing the text.

At this point I should tell you a little bit about the subject
matter of real analysis. For an interval contained in the real line or
a nice region in the plane, the length of the interval or the area of
the region give an idea of the size. We want to extend the notion of
size to as large a class of sets as possible. Doing this for subsets of
the real line gives rise to Lebesgue measure. Chapters 2–4 discuss
classes of sets, the definition of measures, and the construction of
measures, of which one example is Lebesgue measure on the line.
(Chapter 1 is a summary of the notation that is used and the
background material that is required.)

Once we have measures, we proceed to the Lebesgue integral.
We talk about measurable functions, define the Lebesgue integral,
prove the monotone and dominated convergence theorems, look at
some simple properties of the Lebesgue integral, compare it to the
Riemann integral, and discuss some of the various ways a sequence
of functions can converge. This material is the subject of Chapters
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5–10.

Closely tied with measures and integration are the subjects of
product measures, signed measures, the Radon-Nikodym theorem,
the differentiation of functions on the line, and Lp spaces. These
are covered in Chapters 11–15.

Many courses in real analysis stop at this point. Others also in-
clude some or all of the following topics: the Fourier transform, the
Riesz representation theorem, Banach spaces, and Hilbert spaces.
We present these in Chapters 16–19.

Topology and probability are courses in their own right, but
they are something every analyst should know. The basics are
given in Chapters 20 and 21, resp.

Chapters 22–26 include a number of topics that are sometimes
included in examinations at some universities. These topics are
harmonic functions, Sobolev spaces, singular integrals, spectral
theory, and distributions.

The first edition of this text, which was titled Real analysis
for graduate students: measure and integration theory, stopped at
Chapter 19. The main comments I received on the first edition
were that I should cover additional topics. Thus, the second edition
includes Chapters 20 to 26. This increased the length from around
200 pages to around 400 pages.

The prerequisites to this text are a solid background in un-
dergraduate mathematics. An acquaintance with metric spaces is
assumed, but no other topology. A summary of what you need to
know is in Chapter 1. All the necessary background material can
be learned from many sources; one good place is the book [7].

At some universities preliminary or qualifying examinations in
real analysis are combined with those in undergraduate analysis or
complex analysis. If that is the case at your university, you will
have to supplement this book with texts in those subjects.

Further reading is always useful. I have found the books [4], [6],
and [8] helpful.

I would like to thank A. Baldenko, I. Ben-Ari, K. Bharath, K.
Burdzy, D. Ferrone, E. Giné, M. Gordina, E. Hsu, G. Lawler, L.
Lu, K. Marinelli, J. Pitman, M. Poehlitz, H. Ren,and L. Rogers
for some very useful suggestions. I would particularly like to thank
my colleague Sasha Teplyaev for using the text in his class and
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suggesting innumerable improvements.

If you have comments, suggestions, corrections, etc., I would be
glad to hear from you: r.bass@uconn.edu. I cannot, however,
provide hints or solutions to the exercises.

Good luck with your exam!

Preface to Version 2.1

Version 2.1 corrects all the errors in the second edition that I am
aware of. In addition I reorganized Section 4.2 to be more efficient.

I would like to thank all who pointed out errors and made
suggestions, especially Iddo Ben-Ari, Evarist Giné, and Sonmez
Sahutoglu.

There is a web page of errata that I plan to keep current:
www.math.uconn.edu/∼bass/errata.html



Chapter 1

Preliminaries

In this short chapter we summarize some of the notation and ter-
minology we will use and recall a few definitions and results from
undergraduate mathematics.

1.1 Notation and terminology

We use Ac, read “A complement,” for the set of points not in A.
To avoid some of the paradoxes of set theory, we assume all our
sets are subsets of some given set X, and to be precise, define

Ac = {x ∈ X : x /∈ A}.

We write
A−B = A ∩Bc

(it is common to also see A \B) and

A4B = (A−B) ∪ (B −A).

The set A4B is called the symmetric difference of A and B and
is the set of points that are in one of the sets but not the other. If
I is some non-empty index set, a collection of subsets {Aα}α∈I is
disjoint if Aα ∩Aβ = ∅ whenever α 6= β.

We write Ai ↑ if A1 ⊂ A2 ⊂ · · · and write Ai ↑ A if in addition
A = ∪∞i=1Ai. Similarly Ai ↓ means A1 ⊃ A2 ⊃ · · · and Ai ↓ A
means that in addition A = ∩∞i=1Ai.

1



2 CHAPTER 1. PRELIMINARIES

We use Q to denote the set of rational numbers, R the set of
real numbers, and C the set of complex numbers. We use

x ∨ y = max(x, y) and x ∧ y = min(x, y).

We can write a real number x in terms of its positive and negative
parts: x = x+ − x−, where

x+ = x ∨ 0 and x− = (−x) ∨ 0.

If z is a complex number, then z is the complex conjugate of z.
The composition of two functions is defined by f ◦ g(x) = f(g(x)).

If f is a function whose domain is the reals or a subset of the
reals, then limy→x+ f(y) and limy→x− f(y) are the right and left
hand limits of f at x, resp.

We say a function f : R → R is increasing if x < y im-
plies f(x) ≤ f(y) and f is strictly increasing if x < y implies
f(x) < f(y). (Some authors use “nondecreasing” for the former
and “increasing” for the latter.) We define decreasing and strictly
decreasing similarly. A function is monotone if f is either increas-
ing or decreasing.

Given a sequence {an} of real numbers,

lim sup
n→∞

an = inf
n

sup
m≥n

am,

lim inf
n→∞

an = sup
n

inf
m≥n

am.

For example, if

an =

{
1, n even;

−1/n, n odd,

then lim supn→∞ an = 1 and lim infn→∞ an = 0. The sequence
{an} has a limit if and only if lim supn→∞ an = lim infn→∞ an and
both are finite. We use analogous definitions when we take a limit
along the real numbers. For example,

lim sup
y→x

f(y) = inf
δ>0

sup
|y−x|<δ

f(y).

1.2 Some undergraduate mathematics

We recall some definitions and facts from undergraduate topology,
algebra, and analysis. The proofs and more details can be found
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in many places. A good source is [7]. Some of the results from
topology can also be found in Chapter 20.

A set X is a metric space if there exists a function d : X×X →
R, called the metric, such that
(1) d(x, y) = d(y, x) for all x, y ∈ X;
(2) d(x, y) ≥ 0 for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Condition (3) is called the triangle inequality.

Given a metric space X, let

B(x, r) = {y ∈ X : d(x, y) < r}

be the open ball of radius r centered at x. If A ⊂ X, the interior
of A, denoted Ao, is the set of x such that there exists rx > 0 with
B(x, rx) ⊂ A. The closure of A, denoted A, is the set of x ∈ X
such that every open ball centered at x contains at least one point
of A. A set A is open if A = Ao, closed if A = A. If f : X → R,
the support of f is the closure of the set {x : f(x) 6= 0}. f is
continuous at a point x if given ε > 0, there exists δ > 0 such
that |f(x) − f(y)| < ε whenever d(x, y) < δ. f is continuous if
it is continuous at every point of its domain. One property of
continuous functions is that f−1(F ) is closed and f−1(G) is open
if f is continuous, F is closed, and G is open.

A sequence {xn} ⊂ X converges to a point x ∈ X if for each
ε > 0 there exists N such that d(xn, x) < ε whenever n ≥ N . A
sequence is a Cauchy sequence if for each ε > 0 there exists N such
that d(xm, xn) < ε whenever m,n ≥ N . If every Cauchy sequence
in X converges to a point in X, we say X is complete.

An open cover of a subset K of X is a non-empty collection
{Gα}α∈I of open sets such that K ⊂ ∪α∈IGα. The index set I
can be finite or infinite. A set K is compact if every open cover
contains a finite subcover, i.e., there exists G1, . . . , Gn ∈ {Gα}α∈I
such that K ⊂ ∪ni=1Gi.

We have the following two facts about compact sets.

Proposition 1.1 If K is compact, F ⊂ K, and F is closed, then
F is compact.

Proposition 1.2 If K is compact and f is continuous on K, then
there exist x1 and x2 such that f(x1) = infx∈K f(x) and f(x2) =
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supx∈K f(x). In other words, f takes on its maximum and mini-
mum values.

Remark 1.3 If x 6= y, let r = d(x, y) and note that B(x, r/2) and
B(y, r/2) are disjoint open sets containing x and y, resp. Therefore
metric spaces are also what are called Hausdorff spaces.

Let F be either R or C. X is a vector space or linear space if
there exist two operations, addition (+) and scalar multiplication,
such that
(1) x+ y = y + x for all x, y ∈ X;
(2) (x+ y) + z = x+ (y + z) for all x, y, z ∈ X;
(3) there exists an element 0 ∈ X such that 0 + x = x for all
x ∈ X;
(4) for each x in X there exists an element −x ∈ X such that
x+ (−x) = 0;
(5) c(x+ y) = cx+ cy for all x, y ∈ X, c ∈ F ;
(6) (c+ d)x = cx+ dx for all x ∈ X, c, d ∈ F ;
(7) c(dx) = (cd)x for all x ∈ X, c, d ∈ F ;
(8) 1x = x for all x ∈ X.

We use the usual notation, e.g., x− y = x+ (−y).

X is a normed linear space if there exists a map x→ ‖x‖ such
that
(1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0;
(2) ‖cx‖ = |c| ‖x‖ for all c ∈ F and x ∈ X;
(3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X.

Given a normed linear space X, we can make X into a metric
space by setting d(x, y) = ‖x− y‖.

A set X has an equivalence relationship “∼” if
(1) x ∼ x for all x ∈ X;
(2) if x ∼ y, then y ∼ x;
(3) if x ∼ y and y ∼ z, then x ∼ z.

Given an equivalence relationship, X can be written as the
union of disjoint equivalence classes. x and y are in the same
equivalence class if and only if x ∼ y. For an example, let X = R
and say x ∼ y if x− y is a rational number.

A set X has a partial order “≤” if
(1) x ≤ x for all x ∈ X;
(2) if x ≤ y and y ≤ x, then x = y;
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(3) if x ≤ y and y ≤ z, then x ≤ z.

Note that given x, y ∈ X, it is not necessarily true that x ≤ y
or y ≤ x. For an example, let Y be a set, let X be the collection
of all subsets of Y , and say A ≤ B if A,B ∈ X and A ⊂ B.

We need the following three facts about the real line.

Proposition 1.4 Suppose K ⊂ R, K is closed, and K is contained
in a finite interval. Then K is compact.

Proposition 1.5 Suppose G ⊂ R is open. Then G can be written
as the countable union of disjoint open intervals.

Proposition 1.6 Suppose f : R → R is an increasing function.
Then both limy→x+ f(y) and limy→x− f(y) exist for every x. More-
over the set of x where f is not continuous is countable.

For an application of Hilbert space techniques to Fourier series,
which is the last section of Chapter 19, we will use the Stone-
Weierstrass theorem. The particular version we will use is the
following.

Theorem 1.7 Let X be a compact metric space and let A be a
collection of continuous complex-valued functions on X with the
following properties:
(1) If f, g ∈ A and c ∈ C, then f + g, fg, and cf are in A;
(2) If f ∈ A, then f ∈ A, where f is the complex conjugate of f ;
(3) If x ∈ X, there exists f ∈ A such that f(x) 6= 0;
(4) If x, y ∈ X with x 6= y, there exists f ∈ A such that f(x) 6=
f(y).
Then the closure of A with respect to the supremum norm is the
collection of continuous complex-valued functions on X.

The conclusion can be rephrased as saying that given f contin-
uous on X and ε > 0, there exists g ∈ A such that

sup
x∈X
|f(x)− g(x)| < ε.

When (3) holds, A is said to vanish at no point of X. When (4)
holds, A is said to separate points. In (3) and (4), the function f
depends on x and on x and y, resp.

For a proof of Theorem 1.7 see [4], [7], or Section 20.12.



6 CHAPTER 1. PRELIMINARIES



Chapter 2

Families of sets

2.1 Algebras and σ-algebras

When we turn to constructing measures in Chapter 4, we will see
that we cannot in general define the measure of an arbitrary set.
We will have to restrict the class of sets we consider. The class of
sets that we will want to use are σ-algebras (read “sigma algebras”).

Let X be a set.

Definition 2.1 An algebra is a collection A of subsets of X such
that
(1) ∅ ∈ A and X ∈ A;
(2) if A ∈ A, then Ac ∈ A;
(3) if A1, . . . , An ∈ A, then ∪ni=1Ai and ∩ni=1Ai are in A.

A is a σ-algebra if in addition
(4) whenever A1, A2, . . . are in A, then ∪∞i=1Ai and ∩∞i=1Ai are in
A.

In (4) we allow countable unions and intersections only; we do
not allow uncountable unions and intersections. Since ∩∞i=1Ai =
(∪∞i=1A

c
i )
c, the requirement that ∩∞i=1Ai be in A is redundant.

The pair (X,A) is called a measurable space. A set A is measurable
or A measurable if A ∈ A.

7
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Example 2.2 Let X = R, the set of real numbers, and let A be
the collection of all subsets of R. Then A is a σ-algebra.

Example 2.3 Let X = R and let

A = {A ⊂ R : A is countable or Ac is countable}.

Verifying parts (1) and (2) of the definition is easy. Suppose
A1, A2, . . . are each in A. If each of the Ai are countable, then
∪iAi is countable, and so is in A. If Aci0 is countable for some i0,
then

(∪iAi)c = ∩iAci ⊂ Aci0
is countable, and again ∪iAi is in A. Since ∩Ai = (∪iAci )c, then
the countable intersection of sets in A is again in A.

Example 2.4 Let X = [0, 1] and let A = {∅, X, [0, 1
2 ], ( 1

2 , 1]}.
Then A is a σ-algebra.

Example 2.5 Let X = {1, 2, 3} and let A = {X, ∅, {1}, {2, 3}}.
Then A is a σ-algebra.

Example 2.6 Let X = [0, 1], and let B1, . . . , B8 be subsets of X
which are pairwise disjoint and whose union is all of X. Let A be
the collection of all finite unions of the Bi’s as well as the empty
set. (Thus A consists of 28 elements.) Then A is a σ-algebra.

Lemma 2.7 If Aα is a σ-algebra for each α in some non-empty
index set I, then ∩α∈IAα is a σ-algebra.

Proof. This follows immediately from the definition.

If we have a collection C of subsets of X, define

σ(C) = ∩{Aα : Aα is a σ-algebra, C ⊂ Aα},

the intersection of all σ-algebras containing C. Since there is at
least one σ-algebra containing C, namely, the one consisting of all
subsets of X, we are never taking the intersection over an empty
class of σ-algebras. In view of Lemma 2.7, σ(C) is a σ-algebra. We
call σ(C) the σ-algebra generated by the collection C, or say that
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C generates the σ-algebra σ(C). It is clear that if C1 ⊂ C2, then
σ(C1) ⊂ σ(C2). Since σ(C) is a σ-algebra, then σ(σ(C)) = σ(C).

If X has some additional structure, say, it is a metric space,
then we can talk about open sets. If G is the collection of open
subsets of X, then we call σ(G) the Borel σ-algebra on X, and this
is often denoted B. Elements of B are called Borel sets and are
said to be Borel measurable. We will see later that when X is the
real line, B is not equal to the collection of all subsets of X.

We end this section with the following proposition.

Proposition 2.8 If X = R, then the Borel σ-algebra B is gener-
ated by each of the following collection of sets:
(1) C1 = {(a, b) : a, b ∈ R};
(2) C2 = {[a, b] : a, b ∈ R};
(3) C3 = {(a, b] : a, b ∈ R};
(4) C4 = {(a,∞) : a ∈ R}.

Proof. (1) Let G be the collection of open sets. By definition,
σ(G) is the Borel σ-algebra. Since every element of C1 is open,
then C1 ⊂ G, and consequently σ(C1) ⊂ σ(G) = B.

To get the reverse inclusion, if G is open, it is the countable
union of open intervals by Proposition 1.5. Every finite open in-
terval is in C1. Since (a,∞) = ∪∞n=1(a, a+ n), then (a,∞) ∈ σ(C1)
if a ∈ R and similarly (−∞, a) ∈ σ(C1) if a ∈ R. Hence if
G is open, then G ∈ σ(C1). This says G ⊂ σ(C1), and then
B = σ(G) ⊂ σ(σ(C1)) = σ(C1).

(2) If [a, b] ∈ C2, then [a, b] = ∩∞n=1(a − 1
n , b + 1

n ) ∈ σ(G).
Therefore C2 ⊂ σ(G), and hence σ(C2) ⊂ σ(σ(G)) = σ(G) = B.

If (a, b) ∈ C1, choose n0 ≥ 2/(b− a) and note

(a, b) = ∪∞n=n0

[
a+

1

n
, b− 1

n

]
∈ σ(C2).

Therefore C1 ⊂ σ(C2), from which it follows that B = σ(C1) ⊂
σ(σ(C2)) = σ(C2).

(3) Using (a, b] = ∩∞n=1(a, b + 1
n ), we see that C3 ⊂ σ(C1), and

as above we conclude that σ(C3) ⊂ σ(C1) = B. Using (a, b) =
∪∞n=n0

(a, b − 1
n ], provided n0 is taken large enough, C1 ⊂ σ(C3),

and as above we argue that B = σ(C1) ⊂ σ(C3).
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(4) Because (a, b] = (a,∞) − (b,∞), then C3 ⊂ σ(C4). Since
(a,∞) = ∪∞n=1(a, a+n], then C4 ⊂ σ(C3). As above, this is enough
to imply that σ(C4) = B.

2.2 The monotone class theorem

This section will be used in Chapter 11.

Definition 2.9 A monotone class is a collection of subsets M of
X such that
(1) if Ai ↑ A and each Ai ∈M, then A ∈M;
(2) if Ai ↓ A and each Ai ∈M, then A ∈M.

The intersection of monotone classes is a monotone class, and
the intersection of all monotone classes containing a given collection
of sets is the smallest monotone class containing that collection.

The next theorem, the monotone class theorem, is rather tech-
nical, but very useful.

Theorem 2.10 Suppose A0 is an algebra, A is the smallest σ-
algebra containing A0, and M is the smallest monotone class con-
taining A0. Then M = A.

Proof. A σ-algebra is clearly a monotone class, so M ⊂ A. We
must show A ⊂M.

Let N1 = {A ∈M : Ac ∈M}. Note N1 is contained in M and
contains A0. If Ai ↑ A and each Ai ∈ N1, then each Aci ∈ M and
Aci ↓ Ac. Since M is a monotone class, Ac ∈ M, and so A ∈ N1.
Similarly, if Ai ↓ A and each Ai ∈ N1, then A ∈ N1. Therefore N1

is a monotone class. Hence N1 =M, and we concludeM is closed
under the operation of taking complements.

Let N2 = {A ∈ M : A ∩ B ∈ M for all B ∈ A0}. Note
the following: N2 is contained in M and N2 contains A0 because
A0 is an algebra. If Ai ↑ A, each Ai ∈ N2, and B ∈ A0, then
A∩B = ∪∞i=1(Ai∩B). BecauseM is a monotone class, A∩B ∈M,
which implies A ∈ N2. We use a similar argument when Ai ↓ A.
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Therefore N2 is a monotone class, and we conclude N2 = M. In
other words, if B ∈ A0 and A ∈M, then A ∩B ∈M.

Let N3 = {A ∈ M : A ∩ B ∈ M for all B ∈ M}. As in
the preceding paragraph, N3 is a monotone class contained in M.
By the last sentence of the preceding paragraph, N3 contains A0.
Hence N3 =M.

We thus have that M is a monotone class closed under the
operations of taking complements and taking finite intersections.
If A1, A2, . . . are elements of M, then Bn = A1 ∩ · · · ∩ An ∈ M
for each n and Bn ↓ ∩∞i=1Ai. Since M is a monotone class, we
have that ∩∞i=1Ai ∈M. This shows that M is a σ-algebra, and so
A ⊂M.

2.3 Exercises

Exercise 2.1 Find an example of a set X and a monotone class
M consisting of subsets of X such that ∅ ∈ M, X ∈M, butM is
not a σ-algebra.

Exercise 2.2 Find an example of a set X and two σ-algebras A1

and A2, each consisting of subsets of X, such that A1 ∪ A2 is not
a σ-algebra.

Exercise 2.3 Suppose A1 ⊂ A2 ⊂ · · · are σ-algebras consisting
of subsets of a set X. Is ∪∞i=1Ai necessarily a σ-algebra? If not,
give a counterexample.

Exercise 2.4 Suppose M1 ⊂ M2 ⊂ · · · are monotone classes.
Let M = ∪∞n=1Mn. Suppose Aj ↑ A and each Aj ∈ M. Is A
necessarily in M? If not, give a counterexample.

Exercise 2.5 Let (Y,A) be a measurable space and let f map
X into Y , but do not assume that f is one-to-one. Define B =
{f−1(A) : A ∈ A}. Prove that B is a σ-algebra of subsets of X.

Exercise 2.6 Suppose A is a σ-algebra with the property that
whenever A ∈ A is non-empty, there exist B,C ∈ A with B∩C = ∅,
B ∪ C = A, and neither B nor C is empty. Prove that A is
uncountable.
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Exercise 2.7 Suppose F is a collection of real-valued functions on
X such that the constant functions are in F and f + g, fg, and cf
are in F whenever f, g ∈ F and c ∈ R. Suppose f ∈ F whenever
fn → f and each fn ∈ F . Define the function

χA(x) =

{
1, x ∈ A;

0, x /∈ A.

Prove that A = {A ⊂ X : χA ∈ F} is a σ-algebra.

Exercise 2.8 Does there exist a σ-algebra which has countably
many elements, but not finitely many?



Chapter 3

Measures

In this chapter we give the definition of a measure, some examples,
and some of the simplest properties of measures. Constructing
measures is often quite difficult and we defer the construction of
the most important one, Lebesgue measure, until Chapter 4

3.1 Definitions and examples

Definition 3.1 Let X be a set and A a σ-algebra consisting of
subsets of X. A measure on (X,A) is a function µ : A → [0,∞]
such that
(1) µ(∅) = 0;
(2) if Ai ∈ A, i = 1, 2, . . ., are pairwise disjoint, then

µ(∪∞i=1Ai) =

∞∑
i=1

µ(Ai).

Saying the Ai are pairwise disjoint means that Ai∩Aj = ∅ if i 6= j.

Definition 3.1(2) is known as countable additivity. We say a set
function is finitely additive if µ(∪ni=1Ai) =

∑n
i=1 µ(Ai) whenever

A1, . . . , An are in A and are pairwise disjoint.

The triple (X,A, µ) is called a measure space.

13
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Example 3.2 Let X be any set, A the collection of all subsets of
X, and µ(A) the number of elements in A. µ is called counting
measure.

Example 3.3 Let X = R, A the collection of all subsets of R,
x1, x2, . . . ∈ R, and a1, a2, . . . ≥ 0. Set

µ(A) =
∑

{i:xi∈A}

ai.

Example 3.4 Let δx(A) = 1 if x ∈ A and 0 otherwise. This
measure is called point mass at x.

Proposition 3.5 The following hold:
(1) If A,B ∈ A with A ⊂ B, then µ(A) ≤ µ(B).
(2) If Ai ∈ A and A = ∪∞i=1Ai, then µ(A) ≤

∑∞
i=1 µ(Ai).

(3) Suppose Ai ∈ A and Ai ↑ A. Then µ(A) = limn→∞ µ(An).
(4) Suppose Ai ∈ A and Ai ↓ A. If µ(A1) < ∞, then we have
µ(A) = limn→∞ µ(An).

Proof. (1) Let A1 = A, A2 = B − A, and A3 = A4 = · · · = ∅.
Now use part (2) of the definition of measure to write

µ(B) = µ(A) + µ(B −A) + 0 + 0 + · · · ≥ µ(A).

(2) Let B1 = A1, B2 = A2 − A1, B3 = A3 − (A1 ∪ A2), B4 =
A4 − (A1 ∪ A2 ∪ A3), and in general Bi = Ai − (∪i−1

j=1Aj). The Bi
are pairwise disjoint, Bi ⊂ Ai for each i, ∪ni=1Bi = ∪ni=1Ai for each
n, and ∪∞i=1Bi = ∪∞i=1Ai. Hence

µ(A) = µ(∪∞i=1Bi) =

∞∑
i=1

µ(Bi) ≤
∞∑
i=1

µ(Ai).

(3) Define the Bi as in (2). Recall that if ai are non-negative real
numbers, then

∑∞
i=1 ai is defined to be limn→∞

∑n
i=1 ai. Since

∪ni=1Bi = ∪ni=1Ai, then

µ(A) = µ(∪∞i=1Ai) = µ(∪∞i=1Bi) =

∞∑
i=1

µ(Bi)

= lim
n→∞

n∑
i=1

µ(Bi) = lim
n→∞

µ(∪ni=1Bi) = lim
n→∞

µ(∪ni=1Ai).
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(4) Apply (3) to the sets A1 − Ai, i = 1, 2, . . .. The sets A1 − Ai
increase to A1 −A, and so

µ(A1)− µ(A) = µ(A1 −A) = lim
n→∞

µ(A1 −An)

= lim
n→∞

[µ(A1)− µ(An)].

Now subtract µ(A1) from both sides and then multiply both sides
by −1.

Example 3.6 To see that µ(A1) <∞ is necessary in Proposition
3.5, let X be the positive integers, µ counting measure, and Ai =
{i, i + 1, . . .}. Then the Ai decrease, µ(Ai) = ∞ for all i, but
µ(∩iAi) = µ(∅) = 0.

Definition 3.7 A measure µ is a finite measure if µ(X) < ∞. A
measure µ is σ-finite if there exist sets Ei ∈ A for i = 1, 2, . . . such
that µ(Ei) <∞ for each i and X = ∪∞i=1Ei. If µ is a finite measure,
then (X,A, µ) is called a finite measure space, and similarly, if µ
is a σ-finite measure, then (X,A, µ) is called a σ-finite measure
space.

Suppose X is σ-finite so that X = ∪∞i=1Ei with µ(Ei) <∞ and
Ei ∈ A for each i. If we let Fn = ∪ni=1Ei, then µ(Fn) <∞ for each
n and Fn ↑ X. Therefore there is no loss of generality in supposing
the sets Ei in Definition 3.7 are increasing.

Let (X,A, µ) be a measure space. A subset A ⊂ X is a null
set if there exists a set B ∈ A with A ⊂ B and µ(B) = 0. We
do not require A to be in A. If A contains all the null sets, then
(X,A, µ) is said to be a complete measure space. The completion
of A is the smallest σ-algebra A containing A such that (X,A, µ)
is complete, where µ is a measure on A that is an extension of µ,
that is, µ(B) = µ(B) if B ∈ A. Sometimes one just says that A is
complete or that µ is complete when (X,A, µ) is complete.

A probability or probability measure is a measure µ such that
µ(X) = 1. In this case we usually write (Ω,F ,P) instead of
(X,A, µ), and F is called a σ-field, which is the same thing as
a σ-algebra.
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3.2 Exercises

Exercise 3.1 Suppose (X,A) is a measurable space and µ is a
non-negative set function that is finitely additive and such that
µ(∅) = 0 and µ(B) is finite for some non-empty B ∈ A. Sup-
pose that whenever Ai is an increasing sequence of sets in A, then
µ(∪iAi) = limi→∞ µ(Ai). Show that µ is a measure.

Exercise 3.2 Suppose (X,A) is a measurable space and µ is a
non-negative set function that is finitely additive and such that
µ(∅) = 0 and µ(X) <∞. Suppose that whenever Ai is a sequence
of sets in A that decrease to ∅, then limi→∞ µ(Ai) = 0. Show that
µ is a measure.

Exercise 3.3 Let X be an uncountable set and let A be the collec-
tion of subsets A of X such that either A or Ac is countable. Define
µ(A) = 0 if A is countable and µ(A) = 1 if A is uncountable. Prove
that µ is a measure.

Exercise 3.4 Suppose (X,A, µ) is a measure space and A,B ∈ A.
Prove that

µ(A) + µ(B) = µ(A ∪B) + µ(A ∩B).

Exercise 3.5 Prove that if µ1, µ2, . . . are measures on a measur-
able space and a1, a2, . . . ∈ [0,∞), then

∑∞
n=1 anµn is also a mea-

sure.

Exercise 3.6 Prove that if (X,A, µ) is a measure space, B ∈ A,
and we define ν(A) = µ(A ∩B) for A ∈ A, then ν is a measure.

Exercise 3.7 Suppose µ1, µ2, . . . are measures on a measurable
space (X,A) and µn(A) ↑ for each A ∈ A. Define

µ(A) = lim
n→∞

µn(A).

Is µ necessarily a measure? If not, give a counterexample. What
if µn(A) ↓ for each A ∈ A and µ1(X) <∞?

Exercise 3.8 Let (X,A, µ) be a measure space, let N be the col-
lection of null sets with respect to A and µ, and let B = σ(A∪N ).
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Show that B ∈ B if and only if there exists A ∈ A and N ∈ N
such that B = A ∪ N . Define µ(B) = µ(A) if B = A ∪ N with
A ∈ A and N ∈ N . Prove that µ(B) is uniquely defined for each
B ∈ B, that µ is a measure on B, that (X,B, µ) is complete, and
that (X,B, µ) is the completion of (X,A, µ).

Exercise 3.9 Suppose X is the set of real numbers, B is the Borel
σ-algebra, and m and n are two measures on (X,B) such that
m((a, b)) = n((a, b)) <∞ whenever −∞ < a < b <∞. Prove that
m(A) = n(A) whenever A ∈ B.

Exercise 3.10 Suppose (X,A) is a measurable space and C is an
arbitrary subset of A. Suppose m and n are two σ-finite mea-
sures on (X,A) such that m(A) = n(A) for all A ∈ C. Is it true
that m(A) = n(A) for all A ∈ σ(C)? What if m and n are finite
measures?
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Chapter 4

Construction of
measures

Our goal in this chapter is to give a method for constructing mea-
sures. This is a complicated procedure, and involves the concept
of outer measure, which we introduce in Section 4.1.

Our most important example will be one-dimensional Lebesgue
measure, which we consider in Section 4.2. Further results and
some examples related to Lebesgue measure are given in Section
4.3.

One cannot define the Lebesgue measure of every subset of the
reals. This is shown in Section 4.4.

The methods used to construct measures via outer measures
have other applications besides the construction of Lebesgue mea-
sure. The Carathéodory extension theorem is a tool developed in
Section 4.5 that can be used in constructing measures.

Let us present some of the ideas used in the construction of
Lebesgue measure on the line. We want the measure m of an open
interval to be the length of the interval. Since every open subset
of the reals is the countable union of disjoint open intervals (see
Proposition 1.5), if G = ∪∞i=1(ai, bi), where the intervals (ai, bi) are
pairwise disjoint, we must have

m(G) =

∞∑
i=1

(bi − ai).

19
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We then set

m(E) = inf{m(G) : G open, E ⊂ G}

for arbitrary subsets E ⊂ R. The difficulty is that m is not a
measure on the σ-algebra consisting of all subsets of the reals; this
is proved in Section 4.4. We resolve this by considering a strictly
smaller σ-algebra. This is the essential idea behind the construction
of Lebesgue measure, but it is technically simpler to work with
intervals of the form (a, b] rather than open intervals.

4.1 Outer measures

We begin with the notion of outer measure.

Definition 4.1 Let X be a set. An outer measure is a function
µ∗ defined on the collection of all subsets of X satisfying
(1) µ∗(∅) = 0;
(2) if A ⊂ B, then µ∗(A) ≤ µ∗(B);
(3) µ∗(∪∞i=1Ai) ≤

∑∞
i=1 µ

∗(Ai) whenever A1, A2, . . . are subsets of
X.

A set N is a null set with respect to µ∗ if µ∗(N) = 0.

A common way to generate outer measures is as follows.

Proposition 4.2 Suppose C is a collection of subsets of X such
that ∅ and there exist D1, D2, . . . in C such that X = ∪∞i=1Di.
Suppose ` : C → [0,∞] with `(∅) = 0. Define

µ∗(E) = inf
{ ∞∑
i=1

`(Ai) : Ai ∈ C for each i and E ⊂ ∪∞i=1Ai

}
.

(4.1)
Then µ∗ is an outer measure.

Proof. (1) and (2) of the definition of outer measure are obvious.
To prove (3), let A1, A2, . . . be subsets of X and let ε > 0. For
each i there exist Ci1, Ci2, . . . ∈ C such that Ai ⊂ ∪∞j=1Cij and
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∑
j `(Cij) ≤ µ∗(Ai) + ε/2i. Then ∪∞i=1Ai ⊂ ∪i ∪j Cij and

µ∗(∪∞i=1Ai) ≤
∑
i,j

`(Cij) =
∑
i

(∑
j

`(Cij)
)

≤
∞∑
i=1

µ∗(Ai) +
∞∑
i=1

ε/2i

=

∞∑
i=1

µ∗(Ai) + ε.

Since ε is arbitrary, µ∗(∪∞i=1Ai) ≤
∑∞
i=1 µ

∗(Ai).

Example 4.3 Let X = R and let C be the collection of intervals
of the form (a, b], that is, intervals that are open on the left and
closed on the right. Let `(I) = b − a if I = (a, b]. Define µ∗ by
(4.1). Proposition 4.2 shows that µ∗ is an outer measure, but we
will see in Section 4.4 that µ∗ is not a measure on the collection
of all subsets of R. We will also see, however, that if we restrict
µ∗ to a σ-algebra L which is strictly smaller than the collection of
all subsets of R, then µ∗ will be a measure on L. That measure is
what is known as Lebesgue measure. The σ-algebra L is called the
Lebesgue σ-algebra.

Example 4.4 Let X = R and let C be the collection of intervals
of the form (a, b] as in the previous example. Let α : R → R
be an increasing right continuous function on R. Thus α(x) =
limy→x+ α(y) for each x and α(x) ≤ α(y) if x < y. Let `(I) =
α(b) − α(a) if I = (a, b]. Again define µ∗ by (4.1). Again Propo-
sition 4.2 shows that µ∗ is an outer measure. Restricting µ∗ to
a smaller σ-algebra gives us what is known as Lebesgue-Stieltjes
measure corresponding to α. The special case where α(x) = x for
all x is Lebesgue measure.

In general we need to restrict µ∗ to a strictly smaller σ-algebra
than the collection of all subsets of R, but not always. For example,
if α(x) = 0 for x < 0 and 1 for x ≥ 0, then the corresponding
Lebesgue-Stieltjes measure is point mass at 0 (defined in Example
3.4), and the corresponding σ-algebra is the collection of all subsets
of R.



22 CHAPTER 4. CONSTRUCTION OF MEASURES

Definition 4.5 Let µ∗ be an outer measure. A set A ⊂ X is
µ∗-measurable if

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac) (4.2)

for all E ⊂ X.

Theorem 4.6 If µ∗ is an outer measure on X, then the collection
A of µ∗-measurable sets is a σ-algebra. If µ is the restriction of µ∗

to A, then µ is a measure. Moreover, A contains all the null sets.

This is sometimes known as the Carathéodory theorem, but do
not confuse this with the Carathéodory extension theorem in Sec-
tion 4.5.

Proof. By Definition 4.1,

µ∗(E) ≤ µ∗(E ∩A) + µ∗(E ∩Ac)

for all E ⊂ X. Thus to check (4.2) it is enough to show

µ∗(E) ≥ µ∗(E ∩A) + µ∗(E ∩Ac).

This will be trivial in the case µ∗(E) =∞.

Step 1. First we show A is an algebra. If A ∈ A, then Ac ∈ A by
symmetry and the definition of A. Suppose A,B ∈ A and E ⊂ X.
Then

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac)
= [µ∗(E ∩A ∩B) + µ∗(E ∩A ∩Bc)]

+ [µ∗(E ∩Ac ∩B) + µ∗(E ∩Ac ∩Bc)].

The second equality follows from the definition of A with E first
replaced by E∩A and then by E∩Ac. The first three summands on
the right of the second equals sign have a sum greater than or equal
to µ∗(E ∩ (A∪B)) because A∪B ⊂ (A∩B)∪ (A∩Bc)∪ (Ac ∩B).
Since Ac ∩Bc = (A ∪B)c, then

µ∗(E) ≥ µ∗(E ∩ (A ∪B)) + µ∗(E ∩ (A ∪B)c),

which shows A ∪B ∈ A. Therefore A is an algebra.



4.1. OUTER MEASURES 23

Step 2. Next we show A is a σ-algebra. Let Ai be pairwise disjoint
sets in A, let Bn = ∪ni=1Ai, and B = ∪∞i=1Ai. If E ⊂ X,

µ∗(E ∩Bn) = µ∗(E ∩Bn ∩An) + µ∗(E ∩Bn ∩Acn)

= µ∗(E ∩An) + µ∗(E ∩Bn−1).

Similarly, µ∗(E ∩ Bn−1) = µ∗(E ∩ An−1) + µ∗(E ∩ Bn−2), and
continuing, we obtain

µ∗(E ∩Bn) ≥
n∑
i=1

µ∗(E ∩Ai).

Since Bn ∈ A, then

µ∗(E) = µ∗(E ∩Bn) +µ∗(E ∩Bcn) ≥
n∑
i=1

µ∗(E ∩Ai) +µ∗(E ∩Bc).

Let n→∞. Recalling that µ∗ is an outer measure,

µ∗(E) ≥
∞∑
i=1

µ∗(E ∩Ai) + µ∗(E ∩Bc) (4.3)

≥ µ∗(∪∞i=1(E ∩Ai)) + µ∗(E ∩Bc)
= µ∗(E ∩B) + µ∗(E ∩Bc)
≥ µ∗(E).

This shows B ∈ A.

Now if C1, C2, . . . are sets in A, let A1 = C1, A2 = C2 − A1,
A3 = C3 − (A1 ∪ A2), and in general Ai = Ci − (∪i−1

j=1Aj). Since
each Ci ∈ A and A is an algebra, then Ai = Ci ∩ Cci−1 ∈ A. The
Ai are pairwise disjoint, so from the previous paragraph,

∪∞i=1Ci = ∪∞i=1Ai ∈ A.

Also, ∩∞i=1Ci = (∪∞i=1C
c
i )
c ∈ A, and therefore A is a σ-algebra.

Step 3. We now show µ∗ restricted to A is a measure. The only way
(4.3) can hold is if all the inequalities there are actually equalities,
and in particular,

µ∗(E) =

∞∑
i=1

µ∗(E ∩Ai) + µ∗(E ∩Bc).
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Taking E = B, we obtain

µ∗(B) =

∞∑
i=1

µ∗(Ai).

Recalling thatB = ∪∞i=1Ai, this shows that µ∗ is countably additive
on A.

Step 4. Finally, if µ∗(A) = 0 and E ⊂ X, then

µ∗(E ∩A) + µ∗(E ∩Ac) = µ∗(E ∩Ac) ≤ µ∗(E),

which shows A contains all the null sets.

4.2 Lebesgue-Stieltjes measures

Let X = R and let C be the collection of intervals of the form (a, b],
that is, intervals that are open on the left and closed on the right.
Let α(x) be an increasing right continuous function. This means
that α(x) ≤ α(y) if x < y and limz→x+ α(z) = α(x) for all x. We
do not require α to be strictly increasing. Define

`((a, b]) = α(b)− α(a).

Define

m∗(E) = inf
{ ∞∑
i=1

`(Ai) : Ai ∈ C for each i and E ⊂ ∪∞i=1Ai

}
.

(In this book we usually use m instead of µ when we are talking
about Lebesgue-Stieltjes measures.) We use Proposition 4.2 to tell
us that m∗ is an outer measure. We then use Theorem 4.6 to show
that m∗ is a measure on the collection of m∗-measurable sets. Note
that if K and L are adjacent intervals, that is, if K = (a, b] and
L = (b, c], then K ∪ L = (a, c] and

`(K) + `(L) = [α(b)− α(a)] + [α(c)− α(b)] (4.4)

= α(c)− α(a) = `(K ∪ L)

by the definition of `.

We first want to show that the measure of a half-open interval
(e, f ] is what it is supposed to be. We need the following lemma.
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Lemma 4.7 Let Jk = (ak, bk), k = 1, . . . , n, be a finite collection
of finite open intervals covering a finite closed interval [C,D]. Then

n∑
k=1

[α(bk)− α(ak)] ≥ α(D)− α(C). (4.5)

Proof. Since {Jk} is a cover of [C,D], there exists at least one
interval, say, Jk1 , such that C ∈ Jk1 . If Jk1 covers [C,D], we stop.
Otherwise, bk1 ≤ D, and there must be at least one interval, say,
Jk2 , such that bk1 ∈ Jk2 . If [C,D] ⊂ Jk1 ∪Jk2 , we stop. If not, then
bk1 < bk2 ≤ D, and there must be at least one interval, say, Jk3 that
contains bk2 . At each stage we choose Jkj so that bkj−1

∈ Jkj . We
continue until we have covered [C,D] with intervals Jk1 , . . . , Jkm .
Since {Jk} is a finite cover, we will stop for some m ≤ n.

By our construction we have

ak1 ≤ C < bk1 , akm < D < bkm ,

and for 2 ≤ j ≤ m,
akj < bkj−1 < bkj .

Then

α(D)− α(C) ≤ α(bkm)− α(ak1)

= [α(bkm)− α(bkm−1
)] + [α(bkm−1

)− α(bkm−2
)] + · · ·

+ [α(bk2)− α(bk1)] + [α(bk1)− α(ak1)]

≤ [α(bkm)− α(akm)] + [α(bkm−1
)− α(akm−1

)] + · · ·
+ [α(bk2)− α(ak2)] + [α(bk1)− α(ak1)].

Since {Jk1 , . . . , Jkm} ⊂ {J1, . . . , Jn}, this proves (4.5).

Proposition 4.8 If e and f are finite and I = (e, f ], then m∗(I) =
`(I).

Proof. First we show m∗(I) ≤ `(I). This is easy. Let A1 = I and
A2 = A3 = · · · = ∅. Then I ⊂ ∪∞i=1Ai, hence

m∗(I) ≤
∞∑
i=1

`(Ai) = `(A1) = `(I).
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For the other direction, suppose I ⊂ ∪∞i=1Ai, whereAi = (ci, di].
Let ε > 0 and choose C ∈ (e, f) such that α(C) − α(e) < ε/2.
This is possible by the right continuity of α. Let D = f . For
each i, choose d′i > di such that α(d′i) − α(di) < ε/2i+1 and let
Bi = (ci, d

′
i).

Then [C,D] is compact and {Bi} is an open cover for [C,D].
Use compactness to choose a finite subcover {J1, . . . , Jn} of {Bi}.
We now apply Lemma 4.7. We conclude that

`(I) ≤ α(D)−α(C)+ε/2 ≤
n∑
k=1

(α(d′k)−α(ck))+ε/2 ≤
∞∑
i=1

`(Ai)+ε.

Taking the infimum over all countable collections {Ai} that
cover I, we obtain

`(I) ≤ m∗(I) + ε.

Since ε is arbitrary, `(I) ≤ m∗(I).

The next step in the construction of Lebesgue-Stieltjes measure
corresponding to α is the following.

Proposition 4.9 Every set in the Borel σ-algebra on R is m∗-
measurable.

Proof. Since the collection of m∗-measurable sets is a σ-algebra,
it suffices to show that every interval J of the form (c, d] is m∗-
measurable. Let E be any set with m∗(E) <∞; we need to show

m∗(E) ≥ m∗(E ∩ J) +m∗(E ∩ Jc). (4.6)

Choose I1, I2, . . ., each of the form (ai, bi], such that E ⊂ ∪iIi and

m∗(E) ≥
∑
i

[α(bi)− α(ai)]− ε.

Since E ⊂ ∪iIi, we have

m∗(E ∩ J) ≤
∑
i

m∗(Ii ∩ J)

and
m∗(E ∩ Jc) ≤

∑
i

m∗(Ii ∩ Jc).
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Adding we have

m∗(E ∩ J) +m∗(E ∩ Jc) ≤
∑
i

[m∗(Ii ∩ J) +m∗(Ii ∩ Jc)].

Let K1 = (−∞, c] and K2 = (d,∞). Now Ii ∩ J is an interval
(possibly empty) that is open on the left and closed on the right.
Both Ii∩K1 and Ii∩K2 are also of this form, although it is possible
that either Ii∩K1 or Ii∩K2 or both might be empty, depending on
the relative locations of Ii and J . Using (4.4) twice and Proposition
4.8 three times, we see that

m∗(Ii ∩ J) +m∗(Ii ∩ Jc)
≤ m∗(Ii ∩K1) +m∗(Ii ∩ J) +m∗(Ii ∩K2)

= `∗(Ii ∩K1) + `∗(Ii ∩ J) + `∗(Ii ∩K2)

= `(Ii) = m∗(Ii).

Thus

m∗(E ∩ J) +m∗(E ∩ Jc) ≤
∑
i

m∗(Ii) ≤ m∗(E) + ε.

Since ε is arbitrary, this proves (4.6).

We now drop the asterisks from m∗ and call m Lebesgue-Stieltjes
measure. In the special case where α(x) = x, m is Lebesgue mea-
sure. In the special case of Lebesgue measure, the collection of m∗-
measurable sets is called the Lebesgue σ-algebra. A set is Lebesgue
measurable if it is in the Lebesgue σ-algebra.

Given a measure µ on R such that µ(K) < ∞ whenever K is
compact, define α(x) = µ((0, x]) if x ≥ 0 and α(x) = −µ((x, 0]) if
x < 0. Then α is increasing, right continuous, and Exercise 4.1 asks
you to show that µ is Lebesgue-Stieltjes measure corresponding to
α.

4.3 Examples and related results

Example 4.10 Let m be Lebesgue measure. If x ∈ R, then {x}
is a closed set and hence is Borel measurable. Moreover

m({x}) = lim
n→∞

m((x− (1/n), x]) = lim
n→∞

[x− (x− (1/n))] = 0.
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We then conclude

m([a, b]) = m((a, b]) +m({a}) = b− a+ 0 = b− a

and

m((a, b)) = m((a, b])−m({b}) = b− a− 0 = b− a.

Since σ-algebras are closed under the operation of countable
unions, then countable sets are Borel measurable. Adding 0 to
itself countably many times is still 0, so the Lebesgue measure of
a countable set is 0.

However there are uncountable sets which have Lebesgue mea-
sure 0. See the next example.

Example 4.11 Recall from undergraduate analysis that the Can-
tor set is constructed as follows. Let F0 be the interval [0, 1]. We
let F1 be what remains if we remove the middle third, that is,

F1 = F0 − ( 1
3 ,

2
3 ).

F1 consists of two intervals of length 1
3 each. We remove the middle

third of each of these two intervals and let

F2 = F1 − [( 1
9 ,

2
9 ) ∪ ( 7

9 ,
8
9 )].

We continue removing middle thirds, and the Cantor set F is ∩nFn.
Recall that the Cantor set is closed, uncountable, and every point
is a limit point. Moreover, it contains no intervals.

The measure of F1 is 2( 1
3 ), the measure of F2 is 4( 1

9 ), and the
measure of Fn is ( 2

3 )n. Since the Cantor set C is the intersection
of all these sets, the Lebesgue measure of C is 0.

Suppose we define f0 to be 1
2 on the interval ( 1

3 ,
2
3 ), to be 1

4 on
the interval ( 1

9 ,
2
9 ), to be 3

4 on the interval ( 7
9 ,

8
9 ), and so on. Define

f(x) = inf{f0(y) : y ≥ x, y /∈ C} for x < 1. Define f(1) = 1.
Notice f = f0 on the complement of the Cantor set. f is increasing,
so it has only jump discontinuities; see Proposition 1.6. But if it
has a jump continuity, there is a rational of the form k/2n with
k ≤ 2n that is not in the range of f . On the other hand, by the
construction, each of the values {k/2n : n ≥ 0, k ≤ 2n} is taken by
f0 for some point in the complement of C, and so is taken by f .
The only way this can happen is if f is continuous. This function
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f is called the Cantor-Lebesgue function or sometimes simply the
Cantor function. We will use it in examples later on. For now,
we note that it is a function that increases only on the Cantor set,
which is a set of Lebesgue measure 0, yet f is continuous.

Example 4.12 Let q1, q2, . . . be an enumeration of the rationals,
let ε > 0, and let Ii be the interval (qi − ε/2i, qi + ε/2i). Then the
measure of Ii is ε/2i−1, so the measure of ∪iIi is at most 2ε. (It is
not equal to that because there is a lot of overlap.) Therefore the
measure of A = [0, 1]− ∪iIi is larger than 1− 2ε. But A contains
no rational numbers.

Example 4.13 Let us follow the construction of the Cantor set,
with this difference. Instead of removing the middle third at the
first stage, remove the middle fourth, i.e., remove ( 3

8 ,
5
8 ). On each

of the two intervals that remain, remove the middle sixteenths. On
each of the four intervals that remain, remove the middle interval
of length 1

64 , and so on. The total that we removed is

1
4 + 2( 1

16 ) + 4( 1
64 ) + · · · = 1

2 .

The set that remains contains no intervals, is closed, every point
is a limit point, is uncountable, and has measure 1/2. Such a set
is called a generalized Cantor set. Of course, other choices than 1

4 ,
1
16 , etc. are possible.

Let A ⊂ [0, 1] be a Borel measurable set. We will show that
A is “almost equal” to the countable intersection of open sets and
“almost equal” to the countable union of closed sets. (A similar
argument to what follows is possible for subsets of R that have
finite measure; see Exercise 4.2.)

Proposition 4.14 Suppose A ⊂ [0, 1] is a Borel measurable set.
Let m be Lebesgue measure.

(1) Given ε > 0, there exists an open set G so that m(G−A) < ε
and A ⊂ G.

(2) Given ε > 0, there exists a closed set F so that m(A−F ) < ε
and F ⊂ A.

(3) There exists a set H which contains A that is the countable
intersection of a decreasing sequence of open sets and m(H −A) =
0.
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(4) There exists a set F which is contained in A that is the
countable union of an increasing sequence of closed sets which is
contained in A and m(A− F ) = 0.

Proof. (1) There exists a set of the form E = ∪∞j=1(aj , bj ] such

that A ⊂ E and m(E −A) < ε/2. Let G = ∪∞j=1(aj , bj + ε2−j−1).
Then G is open and contains A and

m(G− E) <

∞∑
j=1

ε2−j−1 = ε/2.

Therefore

m(G−A) ≤ m(G− E) +m(E −A) < ε.

(2) Find an open set G such that A′ ⊂ G and m(G − A′) < ε,
where A′ = [0, 1]−A. Let F = [0, 1]−G. Then F is closed, F ⊂ A,
and m(A− F ) ≤ m(G−A′) < ε.

(3) By (1), for each i, there is an open set Gi that contains A
and such that m(Gi − A) < 2−i. Then Hi = ∩ij=1Gj will contain

A, is open, and since it is contained in Gi, then m(Hi −A) < 2−i.
Let H = ∩∞i=1Hi. H need not be open, but it is the intersection of
countably many open sets. The set H is a Borel set, contains A,
and m(H−A) ≤ m(Hi−A) < 2−i for each i, hence m(H−A) = 0.

(4) If A′ = [0, 1]−A, apply (3) to A′ to find a set H containing
A′ that is the countable intersection of a decreasing sequence of
open sets and such that m(H − A′) = 0. Let J = [0, 1] −H. It is
left to the reader to verify that J has the desired properties.

The countable intersections of open sets are sometimes called
Gδ sets; the G is for geoffnet, the German word for “open” and
the δ for Durchschnitt, the German word for “intersection.” The
countable unions of closed sets are called Fσ sets, the F coming
from fermé, the French word for “closed,” and the σ coming from
Summe, the German word for “union.”

Therefore, when trying to understand Lebesgue measure, we
can look at Gδ or Fσ sets, which are not so bad, and at null sets,
which can be quite bad but don’t have positive measure.
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4.4 Nonmeasurable sets

Theorem 4.15 Let m∗ be defined by (4.1), where C is the collec-
tion of intervals that are open on the left and closed on the right
and `((a, b]) = b − a. m∗ is not a measure on the collection of all
subsets of R.

Proof. Suppose m∗ is a measure. Define x ∼ y if x−y is rational.
It is easy to see that this is an equivalence relationship on [0, 1].
For each equivalence class, pick an element out of that class (we
need to use the axiom of choice to do this). Call the collection of
such points A. Given a set B, define B+x = {y+x : y ∈ B}. Note
that `((a+ q, b+ q]) = b− a = `((a, b]) for each a, b, and q, and so
by the definition of m∗, we have m∗(A + q) = m∗(A) for each set
A and each q. Moreover, the sets A + q are disjoint for different
rationals q.

Now
[0, 1] ⊂ ∪q∈[−1,1]∩Q(A+ q),

where the union is only over rational q, so

1 ≤
∑

q∈[−1,1],q∈Q

m∗(A+ q),

and therefore m∗(A) > 0. But

∪q∈[−1,1]∩Q(A+ q) ⊂ [−1, 2],

where again the union is only over rational q, so if m∗ is a measure,
then

3 ≥
∑

q∈[0,1],q∈Q

m∗(A+ q),

which implies m∗(A) = 0, a contradiction.

4.5 The Carathéodory extension theo-
rem

We prove the Carathéodory extension theorem in this section. This
theorem abstracts some of the techniques used above to give a tool
for constructing measures in a variety of contexts.
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Let A0 be an algebra but not necessarily a σ-algebra. Saying
` is a measure on A0 means the following: (1) of Definition 3.1
holds and if A1, A2, . . . are pairwise disjoint elements of A0 and
also ∪∞i=1Ai ∈ A0, then `(∪∞i=1Ai) =

∑∞
i=1 `(Ai). Sometimes one

calls a measure on an algebra a premeasure. Recall σ(A0) is the
σ-algebra generated by A0.

Theorem 4.16 Suppose A0 is an algebra and ` : A0 → [0,∞] is
a measure on A0. Define

µ∗(E) = inf
{ ∞∑
i=1

`(Ai) : each Ai ∈ A0, E ⊂ ∪∞i=1Ai

}
for E ⊂ X. Then
(1) µ∗ is an outer measure;
(2) µ∗(A) = `(A) if A ∈ A0;
(3) every set in A0 and every µ∗-null set is µ∗-measurable;
(4) if ` is σ-finite, then there is a unique extension to σ(A0).

Proof. (1) is Proposition 4.2. We turn to (2). Suppose E ∈ A0.
We know µ∗(E) ≤ `(E) since we can take A1 = E and A2, A3, . . .
empty in the definition of µ∗. If E ⊂ ∪∞i=1Ai with Ai ∈ A0, let
Bn = E ∩ (An − (∪n−1

i=1 Ai)). Then the Bn are pairwise disjoint,
they are each in A0, and their union is E. Therefore

`(E) =

∞∑
i=1

`(Bi) ≤
∞∑
i=1

`(Ai).

Taking the infimum over all such sequences A1, A2, . . . shows that
`(E) ≤ µ∗(E).

Next we look at (3). Suppose A ∈ A0. Let ε > 0 and let E ⊂
X. Pick B1, B2, . . . ∈ A0 such that E ⊂ ∪∞i=1Bi and

∑
i `(Bi) ≤

µ∗(E) + ε. Then

µ∗(E) + ε ≥
∞∑
i=1

`(Bi) =

∞∑
i=1

`(Bi ∩A) +

∞∑
i=1

`(Bi ∩Ac)

≥ µ∗(E ∩A) + µ∗(E ∩Ac).

Since ε is arbitrary, µ∗(E) ≥ µ∗(E ∩ A) + µ∗(E ∩ Ac). Thus A is
µ∗-measurable. That µ∗-null sets are µ∗-measurable follows by the
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definition of µ∗-measurable and the fact that µ∗ satisfies Definition
4.1(2).

Finally, we look at (4). Suppose we have two extensions to
σ(A0), the smallest σ-algebra containing A0. One is µ∗ and let the
other extension be called ν. We will show that if E is in σ(A0),
then µ∗(E) = ν(E).

Let us first assume that µ∗ is a finite measure. The µ∗-measur-
able sets form a σ-algebra containing A0. Because E ∈ σ(A0), E
must be µ∗-measurable and

µ∗(E) = inf
{ ∞∑
i=1

`(Ai) : E ⊂ ∪∞i=1Ai, each Ai ∈ A0

}
.

But ` = ν onA0, so
∑
i `(Ai) =

∑
i ν(Ai). Therefore if E ⊂ ∪∞i=1Ai

with each Ai ∈ A0, then

ν(E) ≤
∑
i

ν(Ai) =
∑
i

`(Ai),

which implies
ν(E) ≤ µ∗(E). (4.7)

Since we do not know that ν is constructed via an outer measure,
we must use a different argument to get the reverse inequality. Let
ε > 0 and choose Ai ∈ A0 such that µ∗(E) + ε ≥

∑
i `(Ai) and

E ⊂ ∪iAi. Let A = ∪∞i=1Ai and Bk = ∪ki=1Ai. Observe

µ∗(E) + ε ≥
∑
i

`(Ai) =
∑
i

µ∗(Ai) ≥ µ∗(∪iAi) = µ∗(A),

hence µ∗(A− E) ≤ ε. We have

µ∗(A) = lim
k→∞

µ∗(Bk) = lim
k→∞

ν(Bk) = ν(A).

Then

µ∗(E) ≤ µ∗(A) = ν(A) = ν(E) + ν(A− E)

≤ ν(E) + µ∗(A− E) ≤ ν(E) + ε,

using (4.7) in the next to last inequality. Since ε is arbitrary, this
completes the proof when ` is finite.

It remains to consider the case when ` is σ-finite. Write X =
∪iKi, where Ki ↑ X and `(Ki) < ∞ for each i. By the preceding
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paragraph we have uniqueness for the measure `i defined by `i(A) =
`(A∩Ki). If µ and ν are two extensions of ` and A ∈ σ(A0), then

µ(A) = lim
i→∞

µ(A ∩Ki) = lim
i→∞

`i(A) = lim
i→∞

ν(A ∩Ki) = ν(A),

which proves µ = ν.

4.6 Exercises

Exercise 4.1 Let µ be a measure on the Borel σ-algebra of R such
that µ(K) < ∞ whenever K is compact, define α(x) = µ((0, x])
if x ≥ 0 and α(x) = −µ((x, 0]) if x < 0. Show that µ is the
Lebesgue-Stieltjes measure corresponding to α.

Exercise 4.2 Let m be Lebesgue measure and A a Lebesgue mea-
surable subset of R with m(A) < ∞. Let ε > 0. Show there exist
G open and F closed such that F ⊂ A ⊂ G and m(G− F ) < ε.

Exercise 4.3 If (X,A, µ) is a measure space, define

µ∗(A) = inf{µ(B) : A ⊂ B,B ∈ A}

for all subsets A of X. Show that µ∗ is an outer measure. Show
that each set in A is µ∗-measurable and µ∗ agrees with the measure
µ on A.

Exercise 4.4 Let m be Lebesgue-Stieltjes measure corresponding
to a right continuous increasing function α. Show that for each x,

m({x}) = α(x)− lim
y→x−

α(y).

Exercise 4.5 Suppose m is Lebesgue measure. Define x + A =
{x + y : y ∈ A} and cA = {cy : y ∈ A} for x ∈ R and c a
real number. Show that if A is a Lebesgue measurable set, then
m(x+A) = m(A) and m(cA) = |c|m(A).

Exercise 4.6 Let m be Lebesgue measure. Suppose for each n,
An is a Lebesgue measurable subset of [0, 1]. Let B consist of those
points x that are in infinitely many of the An.
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(1) Show B is Lebesgue measurable.
(2) If m(An) > δ > 0 for each n, show m(B) ≥ δ.
(3) If

∑∞
n=1m(An) <∞, prove that m(B) = 0.

(4) Give an example where
∑∞
n=1m(An) =∞, but m(B) = 0.

Exercise 4.7 Suppose ε ∈ (0, 1) and m is Lebesgue measure. Find
a measurable set E ⊂ [0, 1] such that the closure of E is [0, 1] and
m(E) = ε.

Exercise 4.8 If X is a metric space, B is the Borel σ-algebra, and
µ is a measure on (X,B), then the support of µ is the smallest
closed set F such that µ(F c) = 0. Show that if F is a closed subset
of [0, 1], then there exists a finite measure on [0, 1] whose support
is F .

Exercise 4.9 Let m be Lebesgue measure. Find an example of
Lebesgue measurable subsets A1, A2, . . . of [0, 1] such that m(An) >
0 for each n, m(An4Am) > 0 if n 6= m, and m(An ∩ Am) =
m(An)m(Am) if n 6= m.

Exercise 4.10 Let ε ∈ (0, 1), let m be Lebesgue measure, and
suppose A is a Borel measurable subset of R. Prove that if

m(A ∩ I) ≤ (1− ε)m(I)

for every interval I, then m(A) = 0.

Exercise 4.11 Suppose m is Lebesgue measure and A is a Borel
measurable subset of R with m(A) > 0. Prove that if

B = {x− y : x, y ∈ A},

then B contains a non-empty open interval centered at the origin.
This is known as the Steinhaus theorem.

Exercise 4.12 Let m be Lebesgue measure. Construct a Borel
subset A of R such that 0 < m(A ∩ I) < m(I) for every open
interval I.

Exercise 4.13 LetN be the non-measurable set defined in Section
4.4. Prove that if A ⊂ N and A is Lebesgue measurable, then
m(A) = 0.
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Exercise 4.14 Let m be Lebesgue measure. Prove that if A is a
Lebesgue measurable subset of R and m(A) > 0, then there is a
subset of A that is non-measurable.

Exercise 4.15 Let X be a set and A a collection of subsets of X
that form an algebra of sets. Suppose ` is a measure on A such
that `(X) < ∞. Define µ∗ using ` as in (4.1). Prove that a set A
is µ∗-measurable if and only if

µ∗(A) = `(X)− µ∗(Ac).

Exercise 4.16 (1) Give an example of a set X and a finite outer
measure µ∗ on X, subsets An ↑ A of X, and subsets Bn ↓ B of X
such that µ∗(An) does not converge to µ∗(A) and µ∗(Bn) does not
converge to µ∗(B).
(2) Let (X,A, µ) be a finite measure space, and define µ∗ as in
Exercise 4.3. Show that if An ↑ A for subsets An, A of X, then
µ∗(An) ↑ µ∗(A).

Exercise 4.17 Suppose A is a Lebesgue measurable subset of R
and

B = ∪x∈A[x− 1, x+ 1].

Prove that B is Lebesgue measurable.



Chapter 5

Measurable functions

We are now ready to move from sets to functions.

5.1 Measurability

Suppose we have a measurable space (X,A).

Definition 5.1 A function f : X → R is measurable or A measur-
able if {x : f(x) > a} ∈ A for all a ∈ R. A complex-valued function
is measurable if both its real and imaginary parts are measurable.

Example 5.2 Suppose f is real-valued and identically constant.
Then the set {x : f(x) > a} is either empty or all of X, so f is
measurable.

Example 5.3 Suppose f(x) = 1 if x ∈ A and 0 otherwise. Then
the set {x : f(x) > a} is either ∅, A, or X. Hence f is measurable
if and only if A is in A.

Example 5.4 Suppose X is the real line with the Borel σ-algebra
and f(x) = x. Then {x : f(x) > a} = (a,∞), and so f is measur-
able.

Proposition 5.5 Suppose f is real-valued. The following condi-
tions are equivalent.

37
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(1) {x : f(x) > a} ∈ A for all a ∈ R;
(2) {x : f(x) ≤ a} ∈ A for all a ∈ R;
(3) {x : f(x) < a} ∈ A for all a ∈ R;
(4) {x : f(x) ≥ a} ∈ A for all a ∈ R.

Proof. The equivalence of (1) and (2) and of (3) and (4) follow
from taking complements, e.g., {x : f(x) ≤ a} = {x : f(x) > a}c.
If f is measurable, then

{x : f(x) ≥ a} = ∩∞n=1{x : f(x) > a− 1/n}

shows that (4) holds if (1) does. If (4) holds, then (1) holds by
using the equality

{x : f(x) > a} = ∪∞n=1{x : f(x) ≥ a+ 1/n}.

This completes the proof.

Proposition 5.6 If X is a metric space, A contains all the open
sets, and f : X → R is continuous, then f is measurable.

Proof. Note that {x : f(x) > a} = f−1((a,∞)) is open, and hence
in A.

Proposition 5.7 Let c ∈ R. If f and g are measurable real-valued
functions, then so are f + g, −f , cf , fg, max(f, g), and min(f, g).

Proof. If f(x) + g(x) < a, then f(x) < a− g(x), and there exists
a rational r such that f(x) < r < a− g(x). Hence

{x : f(x) + g(x) < a} = ∪r∈Q({x : f(x) < r} ∩ {x : g(x) < a− r}).

This proves f + g is measurable.

Since {x : −f(x) > a} = {x : f(x) < −a}, then −f is measur-
able using Proposition 5.5.

If c > 0, then {x : cf(x) > a} = {x : f(x) > a/c} shows cf is
measurable. When c = 0, cf is measurable by Example 5.2. When
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c < 0, write cf = −(|c|f), which is measurable by what we have
already proved.

f2 is measurable since for a < 0, {x : f(x) > a} = X, while for
a ≥ 0,

{x : f(x)2 > a) = {x : f(x) >
√
a} ∪ {x : f(x) < −

√
a}.

The measurability of fg follows since

fg = 1
2 [(f + g)2 − f2 − g2].

The equality

{x : max(f(x), g(x)) > a} = {x : f(x) > a} ∪ {x : g(x) > a}

shows max(f, g) is measurable, and the result for min(f, g) follows
from min(f, g) = −max(−f,−g).

Proposition 5.8 If fi is a measurable real-valued function for
each i, then so are supi fi, infi fi, lim supi→∞ fi, and lim infi→∞ fi,
provided they are finite.

Proof. The result will follow for lim sup and lim inf once we
have the result for the sup and inf by using the definitions since
lim supi fi = infj supi≥j fj and similarly for the lim inf. We have
{x : supi fi(x) > a} = ∩∞i=1{x : fi(x) > a}, so supi fi is measur-
able, and the proof for inf fi is similar.

Definition 5.9 We say f = g almost everywhere, written f = g
a.e., if {x : f(x) 6= g(x)} has measure zero. Similarly, we say
fi → f a.e. if the set of x where fi(x) does not converge to f(x)
has measure zero.

If X is a metric space, B is the Borel σ-algebra, and f : X → R
is measurable with respect to B, we say f is Borel measurable. If
f : R → R is measurable with respect to the Lebesgue σ-algebra,
we say f is Lebesgue measurable.

We saw in Proposition 5.6 that all continuous functions are
Borel measurable. The same is true for increasing functions on the
real line.
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Proposition 5.10 If f : R → R is monotone, then f is Borel
measurable.

Proof. Let us suppose f is increasing, for otherwise we look at
−f . Given a ∈ R, let x0 = sup{y : f(y) ≤ a}. If f(x0) ≤ a, then
{x : f(x) > a} = (x0,∞). If f(x0) > a, then {x : f(x) > a} =
[x0,∞). In either case {x : f(x) > a} is a Borel set.

Proposition 5.11 Let (X,A) be a measurable space and let f :
X → R be an A measurable function. If A is in the Borel σ-algebra
on R, then f−1(A) ∈ A.

Proof. Let B be the Borel σ-algebra on R and C = {A ∈ B :
f−1(A) ∈ A}. If A1, A2, . . . ∈ C, then since

f−1(∪iAi) = ∪if−1(Ai) ∈ A,

we have that C is closed under countable unions. Similarly C is
closed under countable intersections and complements, so C is a
σ-algebra. Since f is measurable, C contains (a,∞) for every real
a, hence C contains the σ-algebra generated by these intervals, that
is, C contains B.

The above proposition says that if f is measurable, then the
inverse image of a Borel set is measurable.

Example 5.12 Let us construct a set that is Lebesgue measur-
able, but not Borel measurable. Recall the Lebesgue measurable
sets were constructed in Chapter 4 and include the completion of
the Borel σ-algebra.

Let f be the Cantor-Lebesgue function of Example 4.11 and
define

F (x) = inf{y : f(y) ≥ x}.

Although F is not continuous, observe that F is strictly increasing
(hence one-to-one) and maps [0, 1] into C, the Cantor set. Since F
is increasing, F−1 maps Borel measurable sets to Borel measurable
sets.
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Let m be Lebesgue measure and let A be the non-measurable
set we constructed in Proposition 4.15. Let B = F (A). Since
F (A) ⊂ C and m(C) = 0, then F (A) is a null set, hence is Lebesgue
measurable. On the other hand, F (A) is not Borel measurable, be-
cause if it were, then A = F−1(F (A)) would be Borel measurable,
a contradiction.

5.2 Approximation of functions

Definition 5.13 Let (X,A) be a measurable space. If E ∈ A,
define the characteristic function of E by

χE(x) =

{
1, x ∈ E;

0, x /∈ E.

A simple function s is a function of the form

s(x) =

n∑
i=1

aiχEi(x)

for real numbers ai and measurable sets Ei.

Proposition 5.14 Suppose f is a non-negative and measurable
function. Then there exists a sequence of non-negative measurable
simple functions sn increasing to f .

Proof. Let

Eni = {x : (i− 1)/2n ≤ f(x) < i/2n}

and
Fn = {x : f(x) ≥ n}

for n = 1, 2, . . . and i = 1, 2, . . . , n2n. Then define

sn =

n2n∑
i=1

i− 1

2n
χEni + nχFn .

In words, sn(x) = n if f(x) ≥ n. If f(x) is between (i − 1)/2n

and i/2n for i/2n ≤ n, we let sn(x) = (i− 1)/2n.

It is easy to see that sn has the desired properties.
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5.3 Lusin’s theorem

The following theorem is known as Lusin’s theorem. It is very
pretty but usually other methods are better for solving problems.
Example 5.16 will illustrate why this is a less useful theorem than
at first glance.

We use m for Lebesgue measure. Recall that the support of a
function f is the closure of the set {x : f(x) 6= 0}.

Theorem 5.15 Suppose f : [0, 1] → R is Borel measurable, m is
Lebesgue measure, and ε > 0. There exists a closed set F ⊂ [0, 1]
such that m([0, 1] − F ) < ε and the restriction of f to F is a
continuous function on F .

This theorem can be loosely interpreted as saying every measurable
function is “almost continuous.”

Proof. First let us suppose that f = χA, where A is a Borel
measurable subset of [0, 1]. By Proposition 4.14 we can find E
closed and G open such that E ⊂ A ⊂ G and m(G − A) < ε/2
and m(A − E) < ε/2. Let δ = inf{|x − y| : x ∈ E, y ∈ Gc}. Since
E ⊂ A ⊂ [0, 1], E is compact and δ > 0. Letting

g(x) =
(

1− d(x,E)

δ

)+

,

where y+ = max(y, 0) and d(x,E) = inf{|x − y| : y ∈ E}, we
see that g is continuous, takes values in [0, 1], is equal to 1 on
E, and equal to 0 on Gc. Take F = (E ∪ Gc) ∩ [0, 1]. Then
m([0, 1]− F ) ≤ m(G− E) < ε, and f = g on F .

Next suppose f =
∑M
i=1 aiχAi is simple, where each Ai is a

measurable subset of [0, 1] and each ai ≥ 0. Choose Fi closed such
that m([0, 1] − Fi) < ε/M and χAi restricted to Fi is continuous.
If we let F = ∩Mi=1Fi, then F is closed, m([0, 1] − F ) < ε, and f
restricted to F is continuous.

Now suppose f is non-negative, bounded by K, and has support
in [0, 1]. Let

Ain = {x : (i− 1)/2n ≤ f(x) < i/2n}.

Then

fn(x) =

K2n+1∑
i=1

i

2n
χAin(x)
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are simple functions increasing to f . Note that

hn(x) = fn+1(x)− fn(x)

is also a simple function and is bounded by 2−n. Choose F0 closed
such that m([0, 1]−F0) < ε/2 and f0 restricted to F0 is continuous.
For n ≥ 1, choose Fn closed such that m([0, 1]−Fn) < ε/2n+1 and
hn restricted to Fn is continuous. Let F = ∩∞n=0Fn. Then F , being
the intersection of closed sets, will be closed, and

m([0, 1]− F ) ≤
∞∑
n=0

m([0, 1]− Fn) < ε.

On the set F , we have that f0(x)+
∑∞
n=1 hn(x) converges uniformly

to f(x) because each hn is bounded by 2−n. The uniform limit of
continuous functions is continuous, hence f is continuous on F .

If f ≥ 0, let BK = {x : f(x) ≤ K}. Since f is everywhere finite,
BK ↑ [0, 1] as K →∞, hence m(BK) > 1− ε/3 if K is sufficiently
large. ChooseD ⊂ BK such thatD is closed andm(BK−D) < ε/3.
Now choose E ⊂ [0, 1] closed such that f · χD restricted to E is
continuous and m([0, 1] − E) < ε/3. Then F = D ∩ E is closed,
m([0, 1]− F ) < ε, and f restricted to F is continuous.

Finally, for arbitrary measurable f write f = f+− f− and find
F+ and F− closed such that m([0, 1]−F+) < ε/2, m([0, 1]−F−) <
ε/2, and f+ restricted to F+ is continuous and similarly for f−.
Then F = F+ ∩ F− is the desired set.

Example 5.16 Suppose f = χB , where B consists of the irra-
tionals in [0, 1]. f is Borel measurable because [0, 1]− B is count-
able, hence the union of countably many points, and thus the union
of countably many closed sets. Every point of [0, 1] is a point of
discontinuity of f because for any x ∈ [0, 1], there are both ratio-
nals and irrationals in every neighborhood of x, hence f takes the
values 0 and 1 in every neighborhood of x.

Recall Example 4.12. f restricted to the set A there is identi-
cally one, hence f restricted to A is a continuous function. A is
closed because it is equal to the interval [0, 1] minus the union of
open intervals.

This does not contradict Lusin’s theorem. No claim is made
that the function f is continuous at most points of [0, 1]. What is
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asserted is that there is a closed set F with large measure so that
f restricted to F is continuous when viewed as a function from F
to R.

5.4 Exercises

Exercise 5.1 Suppose (X,A) is a measurable space, f is a real-
valued function, and {x : f(x) > r} ∈ A for each rational number
r. Prove that f is measurable.

Exercise 5.2 Let f : (0, 1) → R be such that for every x ∈ (0, 1)
there exist r > 0 and a Borel measurable function g, both depend-
ing on x, such that f and g agree on (x− r, x + r) ∩ (0, 1). Prove
that f is Borel measurable.

Exercise 5.3 Suppose fn are measurable functions. Prove that

A = {x : lim
n→∞

fn(x) exists}

is a measurable set.

Exercise 5.4 If f : R → R is Lebesgue measurable, prove that
there exists a Borel measurable function g such that f = g a.e.

Exercise 5.5 Give an example of a collection of measurable non-
negative functions {fα}α∈A such that if g is defined by g(x) =
supα∈A fα(x), then g is finite for all x but g is non-measurable. (A
is allowed to be uncountable.)

Exercise 5.6 Suppose f : R → R is Lebesgue measurable and
g : R→ R is continuous. Prove that g ◦ f is Lebesgue measurable.
Is this true if g is Borel measurable instead of continuous? Is this
true if g is Lebesgue measurable instead of continuous?

Exercise 5.7 Suppose f : R → R is Borel measurable. Define A
to be the smallest σ-algebra containing the sets {x : f(x) > a} for
every a ∈ R. Suppose g : R → R is measurable with respect to
A, which means that {x : g(x) > a} ∈ A for every a ∈ R. Prove
that there exists a Borel measurable function h : R→ R such that
g = h ◦ f .
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Exercise 5.8 One can show that there exist discontinuous real-
valued functions f such that

f(x+ y) = f(x) + f(y) (5.1)

for all x, y ∈ R. (The construction uses Zorn’s lemma, which is
equivalent to the axiom of choice.) Prove that if f satisfies (5.1)
and in addition f is Lebesgue measurable, then f is continuous.
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Chapter 6

The Lebesgue integral

In this chapter we define the Lebesgue integral. We only give the
definition here; we consider the properties of the Lebesgue integral
in later chapters.

6.1 Definitions

Definition 6.1 Let (X,A, µ) be a measure space. If

s =

n∑
i=1

aiχEi

is a non-negative measurable simple function, define the Lebesgue
integral of s to be ∫

s dµ =

n∑
i=1

aiµ(Ei). (6.1)

Here, if ai = 0 and µ(Ei) = ∞, we use the convention that
aiµ(Ei) = 0. If f ≥ 0 is a measurable function, define∫

f dµ = sup
{∫

s dµ : 0 ≤ s ≤ f, s simple
}
. (6.2)

Let f be measurable and let f+ = max(f, 0) and f− = max(−f, 0).
Provided

∫
f+ dµ and

∫
f− dµ are not both infinite, define∫

f dµ =

∫
f+ dµ−

∫
f− dµ. (6.3)

47
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Finally, if f = u+ iv is complex-valued and
∫

(|u|+ |v|) dµ is finite,
define ∫

f dµ =

∫
u dµ+ i

∫
v dµ. (6.4)

A few remarks are in order. A function s might be written
as a simple function in more than one way. For example s =
χA∪B = χA + χB if A and B are disjoint. It is not hard to check
that the definition of

∫
s dµ is unaffected by how s is written. If

s =
∑m
i=1 aiχAi =

∑n
j=1 bjχBj , then we need to show

m∑
i=1

aiµ(Ai) =

n∑
j=1

bjµ(Bj). (6.5)

We leave the proof of this to the reader as Exercise 6.1.

Secondly, if s is a simple function, one has to think a moment
to verify that the definition of

∫
s dµ by means of (6.1) agrees with

its definition by means of (6.2).

Definition 6.2 If f is measurable and
∫
|f | dµ < ∞, we say f is

integrable.

The proof of the next proposition follows from the definitions.

Proposition 6.3 (1) If f is a real-valued measurable function with
a ≤ f(x) ≤ b for all x and µ(X) < ∞, then aµ(X) ≤

∫
f dµ ≤

bµ(X);

(2) If f and g are measurable, real-valued, and integrable and
f(x) ≤ g(x) for all x, then

∫
f dµ ≤

∫
g dµ.

(3) If f is integrable, then
∫
cf dµ = c

∫
f dµ for all complex c.

(4) If µ(A) = 0 and f is integrable, then
∫
fχA dµ = 0.

The integral
∫
fχA dµ is often written

∫
A
f dµ. Other nota-

tion for the integral is to omit the µ and write
∫
f if it is clear

which measure is being used, to write
∫
f(x)µ(dx), or to write∫

f(x) dµ(x).

When we are integrating a function f with respect to Lebesgue
measure m, it is usual to write

∫
f(x) dx for

∫
f(x)m(dx) and to
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define ∫ b

a

f(x) dx =

∫
[a,b]

f(x)m(dx).

Proposition 6.4 If f is integrable,∣∣∣∫ f
∣∣∣ ≤ ∫ |f |.

Proof. For the real case, this is easy. f ≤ |f |, so
∫
f ≤

∫
|f |. Also

−f ≤ |f |, so −
∫
f ≤

∫
|f |. Now combine these two facts.

For the complex case,
∫
f is a complex number. If it is 0, the

inequality is trivial. If it is not, then
∫
f = reiθ for some r and θ.

Then ∣∣∣ ∫ f
∣∣∣ = r = e−iθ

∫
f =

∫
e−iθf.

From the definition of
∫
f when f is complex, it follows that

Re (
∫
f) =

∫
Re (f). Since |

∫
f | is real, we have∣∣∣ ∫ f

∣∣∣ = Re
(∫

e−iθf
)

=

∫
Re (e−iθf) ≤

∫
|f |

as desired.

We do not yet know that
∫

(f + g) =
∫
f +

∫
g. We will see this

in Theorem 7.4.

6.2 Exercises

Exercise 6.1 Verify (6.5).

Exercise 6.2 Suppose f is non-negative and measurable and µ is
σ-finite. Show there exist simple functions sn increasing to f at
each point such that µ({x : sn(x) 6= 0}) <∞ for each n.

Exercise 6.3 Let f be a non-negative measurable function. Prove
that

lim
n→∞

∫
(f ∧ n) =

∫
f.
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Exercise 6.4 Let (X,A, µ) be a measure space and suppose µ is
σ-finite. Suppose f is integrable. Prove that given ε there exists δ
such that ∫

A

|f(x)|µ(dx) < ε

whenever µ(A) < δ.

Exercise 6.5 Suppose µ(X) <∞ and fn is a sequence of bounded
real-valued measurable functions that converge to f uniformly.
Prove that ∫

fn dµ→
∫
f dµ.

This is sometimes called the bounded convergence theorem.

Exercise 6.6 If fn is a sequence of non-negative integrable func-
tions such that fn(x) decreases to f(x) for every x, prove that∫
fn dµ→

∫
f dµ.

Exercise 6.7 Let (X,A, µ) be a finite measure space and sup-
pose f is a non-negative, measurable function that is finite at each
point of X, but not necessarily integrable. Prove that there ex-
ists a continuous increasing function g : [0,∞)→ [0,∞) such that
limx→∞ g(x) =∞ and g ◦ f is integrable.



Chapter 7

Limit theorems

The main reason the Lebesgue integral is so much easier to work
with than the Riemann integral is that it behaves nicely when
taking limits. In this chapter we prove the monotone convergence
theorem, Fatou’s lemma, and the dominated convergence theorem.
We also prove that the Lebesgue integral is linear.

7.1 Monotone convergence theorem

One of the most important results concerning Lebesgue integration
is the monotone convergence theorem.

Theorem 7.1 Suppose fn is a sequence of non-negative measur-
able functions with f1(x) ≤ f2(x) ≤ · · · for all x and with

lim
n→∞

fn(x) = f(x)

for all x. Then
∫
fn dµ→

∫
f dµ.

Proof. By Proposition 6.3(2),
∫
fn is an increasing sequence of

real numbers. Let L be the limit. Since fn ≤ f for all n, then
L ≤

∫
f . We must show L ≥

∫
f .

Let s =
∑m
i=1 aiχEi be any non-negative simple function less

than or equal to f and let c ∈ (0, 1). Let An = {x : fn(x) ≥ cs(x)}.
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Since fn(x) increases to f(x) for each x and c < 1, then An ↑ X.
For each n, ∫

fn ≥
∫
An

fn ≥ c
∫
An

sn

= c

∫
An

m∑
i=1

aiχEi

= c

m∑
i=1

aiµ(Ei ∩An).

If we let n → ∞, by Proposition 3.5(3) the right hand side con-
verges to

c

m∑
i=1

aiµ(Ei) = c

∫
s.

Therefore L ≥ c
∫
s. Since c is arbitrary in the interval (0, 1), then

L ≥
∫
s. Taking the supremum over all simple s ≤ f , we obtain

L ≥
∫
f .

Example 7.2 Let X = [0,∞) and fn(x) = −1/n for all x. Then∫
fn = −∞, but fn ↑ f where f = 0 and

∫
f = 0. The reason the

monotone convergence theorem does not apply here is that the fn
are not non-negative.

Example 7.3 Suppose fn = nχ(0,1/n). Then fn ≥ 0, fn → 0 for
each x, but

∫
fn = 1 does not converge to

∫
0 = 0. The reason the

monotone convergence theorem does not apply here is that the fn
do not increase to f for each x.

7.2 Linearity of the integral

Once we have the monotone convergence theorem, we can prove
that the Lebesgue integral is linear.

Theorem 7.4 If f and g are non-negative and measurable or if f
and g are integrable, then∫

(f + g) dµ =

∫
f dµ+

∫
g dµ.
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Proof. First suppose f and g are non-negative and simple, say,
f =

∑m
i=1 aiχAi and g =

∑n
j=1 bjχBj . Without loss of generality

we may assume that A1, . . . , Am are pairwise disjoint and that
B1, . . . , Bn are pairwise disjoint. Since ai = 0 and bj = 0 are
permissible, we may also assume ∪mi=1Ai = X = ∪nj=1Bj . Then

f + g =

m∑
i=1

n∑
j=1

(ai + bj)χAi∩Bj ,

and we have∫
(f + g) =

m∑
i=1

n∑
j=1

(ai + bj)µ(Ai ∩Bj)

=

m∑
i=1

n∑
j=1

aiµ(Ai ∩Bj) +

m∑
i=1

n∑
j=1

bjµ(Ai ∩Bj)

=

m∑
i=1

aiµ(Ai) +

n∑
j=1

bjµ(Bj)

=

∫
f +

∫
g.

Thus the theorem holds in this case.

Next suppose f and g are non-negative. Take sn non-negative,
simple, and increasing to f and tn non-negative, simple, and in-
creasing to g. Then sn+tn are simple functions increasing to f+g,
so the result follows from the monotone convergence theorem and∫

(f+g) = lim
n→∞

∫
(sn+tn) = lim

n→∞

∫
sn+ lim

n→∞

∫
tn =

∫
f+

∫
g.

Suppose now that f and g are real-valued and integrable but
take both positive and negative values. Since∫

|f + g| ≤
∫

(|f |+ |g|) =

∫
|f |+

∫
|g| <∞,

then f + g is integrable. Write

(f + g)+ − (f + g)− = f + g = f+ − f− + g+ − g−,

so that

(f + g)+ + f− + g− = f+ + g+ + (f + g)−.
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Using the result for non-negative functions,∫
(f + g)+ +

∫
f− +

∫
g− =

∫
f+ +

∫
g+ +

∫
(f + g)−.

Rearranging,∫
(f + g) =

∫
(f + g)+ −

∫
(f + g)−

=

∫
f+ −

∫
f− +

∫
g+ −

∫
g−

=

∫
f +

∫
g.

If f and g are complex-valued, apply the above to the real and
imaginary parts.

Proposition 7.5 Suppose fn are non-negative measurable func-
tions. Then ∫ ∞∑

n=1

fn =

∞∑
n=1

∫
fn.

Proof. Let FN =
∑N
n=1 fn. Since 0 ≤ Fn(x) ↑

∑∞
n=1 fn(x), we

can write ∫ ∞∑
n=1

fn =

∫
lim
N→∞

N∑
n=1

fn

=

∫
lim
N→∞

FN = lim
N→∞

∫
FN (7.1)

= lim
N→∞

N∑
n=1

∫
fn =

∞∑
n=1

∫
fn,

using the monotone convergence theorem and the linearity of the
integral.

7.3 Fatou’s lemma

The next theorem is known as Fatou’s lemma.
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Theorem 7.6 Suppose the fn are non-negative and measurable.
Then ∫

lim inf
n→∞

fn ≤ lim inf
n→∞

∫
fn.

Proof. Let gn = infi≥n fi. Then the gn are non-negative and
gn increases to lim infn fn. Clearly gn ≤ fi for each i ≥ n, so∫
gn ≤

∫
fi. Therefore ∫

gn ≤ inf
i≥n

∫
fi. (7.2)

If we take the limit in (7.2) as n → ∞, on the left hand side we
obtain

∫
lim infn fn by the monotone convergence theorem, while

on the right hand side we obtain lim infn
∫
fn.

A typical use of Fatou’s lemma is the following. Suppose we
have fn → f and supn

∫
|fn| ≤ K < ∞. Then |fn| → |f |, and by

Fatou’s lemma,
∫
|f | ≤ K.

7.4 Dominated convergence theorem

Another very important theorem is the dominated convergence the-
orem.

Theorem 7.7 Suppose that fn are measurable real-valued func-
tions and fn(x) → f(x) for each x. Suppose there exists a non-
negative integrable function g such that |fn(x)| ≤ g(x) for all x.
Then

lim
n→∞

∫
fn dµ→

∫
f dµ.

Proof. Since fn + g ≥ 0, by Fatou’s lemma,∫
f +

∫
g =

∫
(f + g) ≤ lim inf

n→∞

∫
(fn + g) = lim inf

n→∞

∫
fn +

∫
g.

Since g is integrable, ∫
f ≤ lim inf

n→∞

∫
fn. (7.3)
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Similarly, g − fn ≥ 0, so∫
g−
∫
f =

∫
(g−f) ≤ lim inf

n→∞

∫
(g−fn) =

∫
g+lim inf

n→∞

∫
(−fn),

and hence

−
∫
f ≤ lim inf

n→∞

∫
(−fn) = − lim sup

n→∞

∫
fn.

Therefore ∫
f ≥ lim sup

n→∞

∫
fn,

which with (7.3) proves the theorem.

Exercise 7.1 asks you to prove a version of the dominated con-
vergence theorem for complex-valued functions.

Example 7.3 is an example where the limit of the integrals is not
the integral of the limit because there is no dominating function g.

If in the monotone convergence theorem or dominated conver-
gence theorem we have only fn(x)→ f(x) almost everywhere, the
conclusion still holds. For example, if the fn are measurable, non-
negative, and fn ↑ f a.e., let A = {x : fn(x) → f(x)}. Then
fnχA(x) ↑ fχA(x) for each x. Since Ac has measure 0, we see from
Proposition 6.3(4) and the monotone convergence theorem that

lim
n

∫
fn = lim

n

∫
fnχA =

∫
fχA =

∫
f.

7.5 Exercises

Exercise 7.1 State and prove a version of the dominated conver-
gence theorem for complex-valued functions.

Exercise 7.2 The following generalized dominated convergence
theorem is often useful. Suppose fn, gn, f , and g are integrable,
fn → f a.e., gn → g a.e., |fn| ≤ gn for each n, and

∫
gn →

∫
g.

Prove that
∫
fn →

∫
f .

Exercise 7.3 Give an example of a sequence of non-negative func-
tions fn tending to 0 pointwise such that

∫
fn → 0, but there is no

integrable function g such that fn ≤ g for all n.
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Exercise 7.4 Suppose (X,A, µ) is a measure space, each fn is
integrable and non-negative, fn → f a.e., and

∫
fn →

∫
f . Prove

that for each A ∈ A ∫
A

fn dµ→
∫
A

f dµ.

Exercise 7.5 Suppose fn and f are integrable, fn → f a.e., and∫
|fn| →

∫
|f |. Prove that∫

|fn − f | → 0.

Exercise 7.6 Suppose f : R → R is integrable, a ∈ R, and we
define

F (x) =

∫ x

a

f(y) dy.

Show that F is a continuous function.

Exercise 7.7 Let fn be a sequence of non-negative Lebesgue mea-
surable functions on R. Is it necessarily true that

lim sup
n→∞

∫
fn dx ≤

∫
lim sup
n→∞

fn dx?

If not, give a counterexample.

Exercise 7.8 Find the limit

lim
n→∞

∫ n

0

(
1 +

x

n

)−n
log(2 + cos(x/n)) dx

and justify your reasoning.

Exercise 7.9 Find the limit

lim
n→∞

∫ n

0

(
1− x

n

)n
log(2 + cos(x/n)) dx

and justify your reasoning.

Exercise 7.10 Prove that the limit exists and find its value:

lim
n→∞

∫ 1

0

1 + nx2

(1 + x2)n
log(2 + cos(x/n)) dx.
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Exercise 7.11 Prove the limit exists and determine its value:

lim
n→∞

∫ ∞
0

ne−nx sin(1/x) dx.

Exercise 7.12 Let g : R→ R be integrable and let f : R→ R be
bounded, measurable, and continuous at 1. Prove that

lim
n→∞

∫ n

−n
f
(

1 +
x

n2

)
g(x) dx

exists and determine its value.

Exercise 7.13 Suppose µ(X) < ∞, fn converges to f uniformly,
and each fn is integrable. Prove that f is integrable and

∫
fn →∫

f . Is the condition µ(X) <∞ necessary?

Exercise 7.14 Prove that
∞∑
k=1

1

(p+ k)2
= −

∫ 1

0

xp

1− x
log x dx

for p > 0.

For this problem you may use the fact that if f is continuous
on [a, b] and F is differentiable on [a, b] with derivative f , then∫ b
a
f(x) dx = F (b) − F (a). This follows by the results of the next

chapter and the fundamental theorem of calculus.

Exercise 7.15 Let {fn} be a sequence of real-valued functions on
[0, 1] that is uniformly bounded.
(1) Show that if A is a Borel subset of [0, 1], then there exists a
subsequence nj such that

∫
A
fnj (x) dx converges.

(2) Show that if {Ai} is a countable collection of Borel subsets of
[0, 1], then there exists a subsequence nj such that

∫
Ai
fnj (x) dx

converges for each i.
(3) Show that there exists a subsequence nj such that

∫
A
fnj (x) dx

converges for each Borel subset A of [0, 1].

Exercise 7.16 Let (X,A, µ) be a measure space. A family of
measurable functions {fn} is uniformly integrable if given ε there
exists M such that∫

{x:|fn(x)|>M}
|fn(x)| dµ < ε
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for each n. The sequence is uniformly absolutely continuous if given
ε there exists δ such that ∣∣∣ ∫

A

fn dµ
∣∣∣ < ε

for each n if µ(A) < δ.

Suppose µ is a finite measure. Prove that {fn} is uniformly
integrable if and only if supn

∫
|fn| dµ <∞ and {fn} is uniformly

absolutely continuous.

Exercise 7.17 The following is known as the Vitali convergence
theorem. Suppose µ is a finite measure, fn → f a.e., and {fn} is
uniformly integrable. Prove that

∫
|fn − f | → 0.

Exercise 7.18 Suppose µ is a finite measure, fn → f a.e., each
fn is integrable, f is integrable, and

∫
|fn − f | → 0. Prove that

{fn} is uniformly integrable.

Exercise 7.19 Suppose µ is a finite measure and for some ε > 0

sup
n

∫
|fn|1+ε dµ <∞.

Prove that {fn} is uniformly integrable.

Exercise 7.20 Suppose fn is a uniformly integrable sequence of
functions defined on [0, 1]. Prove that there is a subsequence nj
such that

∫ 1

0
fnjg dx converges whenever g is a real-valued bounded

measurable function.

Exercise 7.21 Suppose µn is a sequence of measures on (X,A)
such that µn(X) = 1 for all n and µn(A) converges as n → ∞ for
each A ∈ A. Call the limit µ(A).
(1) Prove that µ is a measure.
(2) Prove that

∫
f dµn →

∫
f dµ whenever f is bounded and mea-

surable.
(3) Prove that ∫

f dµ ≤ lim inf
n→∞

∫
f dµn

whenever f is non-negative and measurable.
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Exercise 7.22 Let (X,A, µ) be a measure space and let f be non-
negative and integrable. Define ν on A by

ν(A) =

∫
A

f dµ.

(1) Prove that ν is a measure.
(2) Prove that if g is integrable with respect to ν, then fg is inte-
grable with respect to µ and∫

g dν =

∫
fg dµ.

Exercise 7.23 Suppose µ and ν are positive measures on the Borel
σ-algebra on [0, 1] such that

∫
f dµ =

∫
f dν whenever f is real-

valued and continuous on [0, 1]. Prove that µ = ν.

Exercise 7.24 Let B be the Borel σ-algebra on [0, 1]. Let µn be a
sequence of finite measures on ([0, 1],B) and let µ be another finite
measure on ([0, 1],B). Suppose µn([0, 1]) → µ([0, 1]). Prove that
the following are equivalent:
(1)

∫
f dµn →

∫
f dµ whenever f is a continuous real-valued func-

tion on [0, 1];
(2) lim supn→∞ µn(F ) ≤ µ(F ) for all closed subsets F of [0, 1];
(3) lim infn→∞ µn(G) ≥ µ(G) for all open subsets G of [0, 1];
(4) limn→∞ µn(A) = µ(A) whenever A is a Borel subset of [0, 1]
such that µ(∂A) = 0, where ∂A = A−Ao is the boundary of A;
(5) limn→∞ µn([0, x]) = µ([0, x]) for every x such that µ({x}) = 0.

Exercise 7.25 Let B be the Borel σ-algebra on [0, 1]. Suppose

µn are finite measures on ([0, 1],B) such that
∫
f dµn →

∫ 1

0
f dx

whenever f is a real-valued continuous function on [0, 1]. Suppose
that g is a bounded measurable function such that the set of dis-
continuities of g has measure 0. Prove that∫

g dµn →
∫ 1

0

g dx.

Exercise 7.26 Let B be the Borel σ-algebra on [0, 1]. Let µn be a
sequence of finite measures on ([0, 1],B) with supn µn([0, 1]) <∞.
Define αn(x) = µn([0, x]).
(1) If r is a rational in [0, 1], prove that there exists a subsequence
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{nj} such that αnj (r) converges.
(2) Prove that there exists a subsequence {nj} such that αn(r)
converges for every rational in [0, 1].
(3) Let α(r) = limn→∞ αn(r) for r rational and define

α(x) = lim
r→x+,r∈Q

α(r).

This means, since clearly α(r) ≤ α(s) if r < s, that

α(x) = inf{α(r) : r > x, r ∈ Q}.

Let µ be the Lebesgue-Stieltjes measure associated with α. Prove
that ∫

f dµn →
∫
f dµ

whenever f is a continuous real-valued function on [0, 1].
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Chapter 8

Properties of Lebesgue
integrals

We present some propositions which imply that a function is zero
a.e. and we give an approximation result.

8.1 Criteria for a function to be zero a.e.

The following two propositions are very useful.

Proposition 8.1 Suppose f is real-valued and measurable and for
every measurable set A we have

∫
A
f dµ = 0. Then f = 0 almost

everywhere.

Proof. Let A = {x : f(x) > ε}. Then

0 =

∫
A

f ≥
∫
A

ε = εµ(A)

since fχA ≥ εχA. Hence µ(A) = 0. We use this argument for
ε = 1/n and n = 1, 2, . . . to conclude

µ{x : f(x) > 0} = µ(∪∞n=1{x : f(x) > 1/n})

≤
∞∑
n=1

µ({x : f(x) > 1/n}) = 0.

63
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Similarly µ{x : f(x) < 0} = 0.

Proposition 8.2 Suppose f is measurable and non-negative and∫
f dµ = 0. Then f = 0 almost everywhere.

Proof. If f is not equal to 0 almost everywhere, there exists an n
such that µ(An) > 0 where An = {x : f(x) > 1/n}. But since f is
non-negative,

0 =

∫
f ≥

∫
An

f ≥ 1

n
µ(An),

a contradiction.

As a corollary to Proposition 8.1 we have the following.

Corollary 8.3 Let m be Lebesgue measure and a ∈ R. Suppose
f : R → R is integrable and

∫ x
a
f(y) dy = 0 for all x. Then f = 0

a.e.

Proof. For any interval [c, d],∫ d

c

f =

∫ d

a

f −
∫ c

a

f = 0.

By linearity, if G is the finite union of disjoint intervals, then∫
G
f = 0. By the dominated convergence theorem and Proposi-

tion 1.5,
∫
G
f = 0 for any open set G. Again by the dominated

convergence theorem, if Gn are open sets decreasing to H, then∫
H
f = limn

∫
Gn

f = 0.

If E is any Borel measurable set, Proposition 4.14 tells us that
there exists a sequence Gn of open sets that decrease to a set H
where H differs from E by a null set. Then∫

E

f =

∫
fχE =

∫
fχH =

∫
H

f = 0.

This with Proposition 8.1 implies f is zero a.e.
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8.2 An approximation result

We give a result on approximating a function on R by continuous
functions.

Theorem 8.4 Suppose f is a Borel measurable real-valued inte-
grable function on R. Let ε > 0. Then there exists a continuous
function g with compact support such that∫

|f − g| < ε.

Proof. If we write f = f+ − f−, it is enough to find continuous
functions g1 and g2 with compact support such that

∫
|f+ − g1| <

ε/2 and
∫
|f− − g2| < ε/2 and to let g = g1 − g2. Hence we may

assume f ≥ 0.

By the monotone convergence theorem,
∫
f · χ[−n,n] increases

to
∫
f , so by taking n large enough, the difference of the integrals

will be less than ε/2. If we find g continuous with compact support
such that

∫
|f ·χ[−n,n]− g| < ε/2, then

∫
|f − g| < ε. Therefore we

may in addition assume that f is 0 outside some bounded interval.

Suppose f = χA, where A is a bounded Borel measurable set.
We can choose G open and F closed such that F ⊂ A ⊂ G and
m(G− F ) < ε by Proposition 4.14. Without loss of generality, we
may assume G is also a bounded set. Since F is compact, there is
a minimum distance between F and Gc, say, δ. Let

g(x) =
(

1− dist (x, F )

δ

)+

.

Then g is continuous, 0 ≤ g ≤ 1, g is 1 on F , g is 0 on Gc, and g
has compact support. We have

|g − χA| ≤ χG − χF ,

so ∫
|g − χA| ≤

∫
(χG − χF ) = m(G− F ) < ε.

Thus our result holds for characteristic functions of bounded sets.

If f =
∑p
i=1 aiχAi , where each Ai is contained in a bounded

interval and each ai > 0, and we find gi continuous with compact
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support such that
∫
|χAi − gi| < ε/aip, then g =

∑p
i=1 aigi will

be the desired function. Thus our theorem holds for non-negative
simple functions with compact support.

If f is non-negative and has compact support, we can find simple
functions sm supported in a bounded interval increasing to f whose
integrals increase to

∫
f . Let sm be a simple function such that

sm ≤ f and
∫
sm ≥

∫
f − ε/2. We choose continuous g with

compact support such that
∫
|sm − g| < ε/2 using the preceding

paragraphs, and then
∫
|f − g| < ε.

The method of proof, where one proves a result for characteristic
functions, then simple functions, then non-negative functions, and
then finally integrable functions, is very common.

8.3 Exercises

Exercise 8.1 This exercise gives a change of variables formula in
two simple cases. Show that if f is an integrable function on the
reals and a is a non-zero real number, then∫

R
f(x+ a) dx =

∫
R
f(x) dx

and ∫
R
f(ax) dx = a−1

∫
R
f(x) dx.

Exercise 8.2 Let (X,A, µ) be a σ-finite measure space. Suppose
f is non-negative and integrable. Prove that if ε > 0, there exists
A ∈ A such that µ(A) <∞ and

ε+

∫
A

f dµ >

∫
f dµ.

Exercise 8.3 Suppose A is a Borel measurable subset of [0, 1], m
is Lebesgue measure, and ε ∈ (0, 1). Prove that there exists a
continuous function f : [0, 1]→ R such that 0 ≤ f ≤ 1 and

m({x : f(x) 6= χA(x)}) < ε.
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Exercise 8.4 Suppose f is a non-negative integrable function on
a measure space (X,A, µ). Prove that

lim
t→∞

t µ({x : f(x) ≥ t}) = 0.

Exercise 8.5 Find a non-negative function f on [0, 1] such that

lim
t→∞

tm({x : f(x) ≥ t}) = 0

but f is not integrable, where m is Lebesgue measure.

Exercise 8.6 Suppose µ is a finite measure. Prove that a measur-
able non-negative function f is integrable if and only if

∞∑
n=1

µ({x : f(x) ≥ n}) <∞.

Exercise 8.7 Let µ be a measure, not necessarily σ-finite, and
suppose f is real-valued and integrable with respect to µ. Prove
that A = {x : f(x) 6= 0} has σ-finite measure, that is, there exists
Fn ↑ A such that µ(Fn) <∞ for each n.

Exercise 8.8 Recall that a function f : R→ R is convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

whenever x < y ∈ R and λ ∈ [0, 1].
(1) Prove that if f is convex and x ∈ R, there exists a real number
c such that f(y) ≥ f(x) + c(y − x) for all y ∈ R. Graphically, this
says that the graph of f lies above the line with slope c that passes
through the point (x, f(x)).
(2) Let (X,A, µ) be a measure space, suppose µ(X) = 1, and let
f : R→ R be convex. Let g : X → R be integrable. Prove Jensen’s
inequality :

f
(∫

g dµ
)
≤
∫
X

f ◦ g dµ.

Exercise 8.9 Suppose f is a real-valued function on R such that

f
(∫ 1

0

g(x) dx
)
≤
∫ 1

0

f(g(x)) dx

whenever g is bounded and measurable. Prove that f is convex.
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Exercise 8.10 Suppose g : [0, 1]→ R is bounded and measurable
and ∫ 1

0

f(x)g(x) dx = 0

whenever f is continuous and
∫ 1

0
f(x) dx = 0. Prove that g is equal

to a constant a.e.



Chapter 9

Riemann integrals

We compare the Lebesgue integral and the Riemann integral. We
show that the Riemann integral of a function exists if and only if
the set of discontinuities of the function have Lebesgue measure
zero, and in that case the Riemann integral and Lebesgue integral
agree.

9.1 Comparison with the Lebesgue in-
tegral

We only consider bounded measurable functions from [a, b] into R.
If we are looking at the Lebesgue integral, we write

∫
f , while, tem-

porarily, if we are looking at the Riemann integral, we write R(f).
Recall that the Riemann integral on [a, b] is defined as follows: if
P = {x0, x1, . . . , xn} with x0 = a and xn = b is a partition of [a, b],
let

U(P, f) =

n∑
i=1

(
sup

xi−1≤x≤xi
f(x)

)
(xi − xi−1)

and

L(P, f) =

n∑
i=1

(
inf

xi−1≤x≤xi
f(x)

)
(xi − xi−1).

Set

R(f) = inf{U(P, f) : P is a partition}

69
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and

R(f) = sup{L(P, f) : P is a partition}.

The Riemann integral exists if R(f) = R(f), and the common value
is the Riemann integral, which we denote R(f).

Theorem 9.1 A bounded Borel measurable real-valued function f
on [a, b] is Riemann integrable if and only if the set of points at
which f is discontinuous has Lebesgue measure 0, and in that case,
the Riemann integral is equal in value to the Lebesgue integral.

Proof. Step 1. First we show that if f is Riemann integrable, then
f is continuous a.e. and R(f) =

∫
f . If P is a partition, define

TP (x) =

n∑
i=1

(
sup

xi−1≤y≤xi
f(y)

)
χ[xi−1,xi)(x),

and

SP (x) =

n∑
i=1

(
inf

xi−1≤y≤xi
f(y)

)
χ[xi−1,xi)(x).

We observe that
∫
TP = U(P, f) and

∫
SP = L(P, f).

If f is Riemann integrable, there exists a sequence of parti-
tions Qi such that U(Qi, f) ↓ R(f) and a sequence Q′i such that
L(Q′i, f) ↑ R(f). It is not hard to check that adding points to a par-
tition increases L and decreases U , so if we let Pi = ∪j≤i(Qj ∪Q′j),
then Pi is an increasing sequence of partitions, U(Pi, f) ↓ R(f)
and L(Pi, f) ↑ R(f). We see also that TPi(x) decreases at each
point, say, to T (x), and SPi(x) increases at each point, say, to
S(x). Also T (x) ≥ f(x) ≥ S(x). By the dominated convergence
theorem (recall that f is bounded)∫

(T − S) = lim
i→∞

∫
(TPi − SPi) = lim

i→∞
(U(Pi, f)− L(Pi, f)) = 0.

We conclude T = S = f a.e.

If x is not in the null set where T (x) 6= S(x) nor in ∪iPi, which is
countable and hence of Lebesgue measure 0, then TPi(x) ↓ f(x) and
SPi(x) ↑ f(x). We claim that f is continuous at such x. To prove
the claim, given ε, choose i large enough so that TPi(x)−SPi(x) < ε
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and then choose δ small enough so that (x− δ, x+ δ) is contained
in the subinterval of Pi that contains x. Finally, since

R(f) = lim
i→∞

U(Pi, f) = lim
i→∞

∫
TPi =

∫
f

by the dominated convergence theorem, we see that the Riemann
integral and Lebesgue integral agree.

Step 2. Now suppose that f is continuous a.e. Let ε > 0. Let Pi
be the partition where we divide [a, b] into 2i equal parts. If x is
not in the null set where f is discontinuous, nor in ∪∞i=1Pi, then
TPi(x) ↓ f(x) and SPi(x) ↑ f(x). By the dominated convergence
theorem,

U(Pi, f) =

∫
TPi →

∫
f

and

L(Pi, f) =

∫
SPi →

∫
f.

This does it.

Example 9.2 Let [a, b] = [0, 1] and f = χA, where A is the set of
irrational numbers in [0, 1]. If x ∈ [0, 1], every neighborhood of x
contains both rational and irrational points, so f is continuous at
no point of [0, 1]. Therefore f is not Riemann integrable.

Example 9.3 Define f(x) on [0, 1] to be 0 if x is irrational and to
be 1/q if x is rational and equals p/q when in reduced form. f is
discontinuous at every rational. If x is irrational and ε > 0, there
are only finitely many rationals r for which f(r) ≥ ε, so taking
δ less than the distance from x to any of this finite collection of
rationals shows that |f(y) − f(x)| < ε if |y − x| < δ. Hence f is
continuous at x. Therefore the set of discontinuities is a countable
set, hence of measure 0, hence f is Riemann integrable.

9.2 Exercises

Exercise 9.1 Find a measurable function f : [0, 1]→ R such that

R(f) 6=
∫ 1

0
f(x) dx and R(f) 6=

∫ 1

0
f(x) dx.
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Exercise 9.2 Find a function f : (0, 1] → R that is continuous,
is not Lebesgue integrable, but where the improper Riemann inte-

gral exists. Thus we want f such that
∫ 1

0
|f(x)|m(dx) = ∞ but

lima→0+R(fχ[a,1]) exists.

Exercise 9.3 Suppose f : [0, 1] → R is integrable, f is bounded
on (a, 1] for each a > 0, and the improper Riemann integral

lim
a→0+

R(fχ(a,1])

exists. Show that the limit is equal to
∫ 1

0
f(x) dx.

Exercise 9.4 Divide [a, b] into 2n equal subintervals and pick a
point xi out of each subinterval. Let µn be the measure defined by

µn(dx) = 2−n
2n∑
i=1

δxi(dx),

where δy is point mass at y. Note that if f is a bounded measurable
real-valued function on [a, b], then∫ b

a

f(x)µn(dx) =

2n∑
i=1

f(xi)2
−n (9.1)

is a Riemann sum approximation to R(f).
(1) Prove that µn([0, x])→ m([0, x]) for every x ∈ [0, 1]. Conclude

by Exercise 7.24 that
∫
f dµn →

∫ 1

0
f dx whenever f is continuous.

(2) Use Exercise 7.25 to see that if f is a bounded and measurable
function on [a, b] whose set of discontinuities has measure 0, then
the Riemann sum approximation of f given in (9.1) converges to
the Lebesgue integral of f . This provides an alternative proof of
Step 2 of Theorem 9.1.

Exercise 9.5 Let f be a bounded, real-valued, and measurable
function. Prove that if

f = lim
δ→0

sup
|y−x|<δ,a≤y≤b

f(y),

then f = T a.e., where we use the notation of Theorem 9.1. Con-
clude f is Lebesgue measurable.
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Exercise 9.6 Define f = limδ→0 inf |y−x|<δ,a≤y≤b f(y) and let f
be defined as in Exercise 9.5.
(1) Suppose that the set of discontinuities of a bounded real-valued
measurable function f has positive Lebesgue measure. Prove that
there exists ε > 0 such that if

Aε = {x ∈ [a, b] : f(x)− f(x) > ε},

then m(Aε) > 0.
(2) Prove that U(P, f) − L(P, f) > εm(Aε) for every partition P
on [a, b], using the notation of Theorem 9.1. Conclude that f is
not Riemann integrable. This provides another proof of Step 1 of
Theorem 9.1.

Exercise 9.7 A real-valued function on a metric space is lower
semicontinuous if {x : f(x) > a} is open whenever a ∈ R and
upper semicontinuous if {x : f(x) < a} is open whenever a ∈ R.
(1) Prove that if fn is a sequence of real-valued continuous functions
increasing to f , then f is lower semicontinuous.
(2) Find a bounded lower semicontinuous function f : [0, 1] → R
such that f is continuous everywhere except at x = 1/2.
(3) Find a bounded lower semicontinuous real-valued function f
defined on [0, 1] such that the set of discontinuities of f is equal to
the set of rationals in [0, 1].
(4) Find a bounded lower semicontinuous function f : [0, 1] → R
such that the set of discontinuities of f has positive measure.
(5) Does there exist a bounded lower semicontinuous function f :
[0, 1]→ R such that f is discontinuous a.e.?

Exercise 9.8 Find a sequence fn of continuous functions mapping
[0, 1] into [0, 1] such that the fn increase to a bounded function f
which is not Riemann integrable. Such an example shows there
is no monotone convergence theorem or dominated convergence
theorem for Riemann integrals.

Exercise 9.9 Let M > 0 and let B be the σ-algebra on [−M,M ]2

generated by the collection of sets of the form [a, b] × [c, d] with
−M ≤ a ≤ b ≤M and −M ≤ c ≤ d ≤M . Suppose µ is a measure
on ([−M,M ]2,B) such that

µ([a, b]× [c, d]) = (b− a)(d− c).

(We will construct such a measure µ in Chapter 11.) Prove that
if f is continuous with support in [−M,M ]2, then the Lebesgue
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integral of f with respect to µ is equal to the double (Riemann)
integral of f and the two multiple (Riemann) integrals of f .



Chapter 10

Types of convergence

There are various ways in which a sequence of functions fn can
converge, and we compare some of them.

10.1 Definitions and examples

Definition 10.1 If µ is a measure, we say a sequence of mea-
surable functions fn converges almost everywhere to f and write
fn → f a.e. if there is a set of measure 0 such that for x not in
this set we have fn(x)→ f(x).

We say fn converges in measure to f if for each ε > 0

µ({x : |fn(x)− f(x)| > ε})→ 0

as n→∞.

Let 1 ≤ p <∞. We say fn converges in Lp to f if∫
|fn − f |p dµ→ 0

as n→∞.

Proposition 10.2 (1) Suppose µ is a finite measure. If fn → f
a.e., then fn converges to f in measure.

(2) If µ is a measure, not necessarily finite, and fn → f in
measure, there is a subsequence nj such that fnj → f a.e.
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Proof. Let ε > 0 and suppose fn → f a.e. If

An = {x : |fn(x)− f(x)| > ε},

then χAn → 0 a.e., and by the dominated convergence theorem,

µ(An) =

∫
χAn(x)µ(dx)→ 0.

This proves (1).

To prove (2), suppose fn → f in measure, let n1 = 1, and
choose nj > nj−1 by induction so that

µ({x : |fnj (x)− f(x)| > 1/j}) ≤ 2−j .

Let Aj = {x : |fnj (x)− f(x)| > 1/j}. If we set

A = ∩∞k=1 ∪∞j=k Aj ,

then by Proposition 3.5

µ(A) = lim
k→∞

µ(∪∞j=kAj) ≤ lim
k→∞

∞∑
j=k

µ(Aj) ≤ lim
k→∞

2−k+1 = 0.

Therefore A has measure 0. If x /∈ A, then x /∈ ∪∞j=kAj for some
k, and so |fnj (x)− f(x)| ≤ 1/j for j ≥ k. This implies fnj → f on
Ac.

If A = ∩∞k=1 ∪∞j=k Aj , then x ∈ A if and only if x is in infinitely
many of the Aj . Sometimes one writes A = {Aj i.o.}.

Example 10.3 Part (1) of the above proposition is not true if
µ(X) =∞. To see this, let X = R and let fn = χ(n,n+1). We have
fn → 0 a.e., but fn does not converge in measure.

The next proposition compares convergence in Lp to conver-
gence in measure. Before we prove this, we prove an easy prelimi-
nary result known as Chebyshev’s inequality.

Lemma 10.4 If 1 ≤ p <∞, then

µ({x : |f(x)| ≥ a}) ≤
∫
|f |p dµ
ap

.
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Proof. Let A = {x : |f(x)| ≥ a}. Since χA ≤ |f |pχA/ap, we have

µ(A) ≤
∫
A

|f |p

ap
dµ ≤ 1

ap

∫
|f |p dµ.

This is what we wanted.

Proposition 10.5 If fn converges to f in Lp, then it converges in
measure.

Proof. If ε > 0, by Chebyshev’s inequality

µ({x : |fn(x)− f(x)| > ε}) = µ({x : |fn(x)− f(x)|p > εp})

≤
∫
|fn − f |p

εp
→ 0

as required.

Example 10.6 Let fn = n2χ(0,1/n) on [0, 1] and let µ be Lebesgue
measure. This gives an example where fn converges to 0 a.e. and
in measure, but does not converge in Lp for any p ≥ 1.

Example 10.7 We give an example where fn → f in measure and
in Lp, but not almost everywhere. Let S = {eiθ : 0 ≤ θ < 2π} be
the unit circle in the complex plane and define

µ(A) = m({θ ∈ [0, 2π) : eiθ ∈ A})

to be arclength measure on S, where m is Lebesgue measure on
[0, 2π).

Let X = S and let fn(x) = χFn(x), where

Fn =
{
eiθ :

n∑
j=1

1

j
≤ θ ≤

n+1∑
j=1

1

j

}
.

Let f(eiθ) = 0 for all θ.

Then µ(Fn) ≤ 1/(n + 1) → 0, so fn → f in measure. Also,
since fn is either 1 or 0,∫

|fn − f |p dµ =

∫
χFn dµ = µ(Fn)→ 0.
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But because
∑∞
j=1 1/j = ∞, each point of S is in infinitely many

Fn, and each point of S is in S − Fn for infinitely many n, so fn
does not converge to f at any point.

The Fn are arcs whose length tends to 0, but such that ∪n≥mFn
contains S for each m.

The following is known as Egorov’s theorem.

Theorem 10.8 Suppose µ is a finite measure, ε > 0, and fn → f
a.e. Then there exists a measurable set A such that µ(A) < ε and
fn → f uniformly on Ac.

This type of convergence is sometimes known as almost uniform
convergence. Egorov’s theorem is not as useful for solving problems
as one might expect, and students have a tendency to try to use it
when other methods work much better.

Proof. Let

Ank = ∪∞m=n{x : |fm(x)− f(x)| > 1/k}.

For fixed k, Ank decreases as n increases. The intersection ∩nAnk
has measure 0 because for almost every x, |fm(x)− f(x)| ≤ 1/k if
m is sufficiently large. Therefore µ(Ank) → 0 as n → ∞. We can
thus find an integer nk such that µ(Ankk) < ε2−k. Let

A = ∪∞k=1Ankk.

Hence µ(A) < ε. If x /∈ A, then x /∈ Ankk, and so |fn(x)− f(x)| ≤
1/k if n ≥ nk. Thus fn → f uniformly on Ac.

10.2 Exercises

Exercise 10.1 Suppose that fn is a sequence that is Cauchy in
measure. This means that given ε and a > 0, there exists N such
that if m,n ≥ N , then

µ({x : |fn(x)− fm(x)| > a}) < ε.

Prove that fn converges in measure.
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Exercise 10.2 Suppose µ(X) <∞. Define

d(f, g) =

∫
|f − g|

1 + |f − g|
dµ.

Prove that d is a metric on the space of measurable functions,
except for the fact that d(f, g) = 0 only implies that f = g a.e.,
not necessarily everywhere. Prove that fn → f in measure if and
only if d(fn, f)→ 0.

Exercise 10.3 Prove that if fn → f in measure and each fn is
non-negative, then ∫

f ≤ lim inf
n→∞

∫
fn.

Exercise 10.4 Prove that if An is measurable, µ(An) < ∞ for
each n, and χAn converges to f in measure, then there exists a
measurable set A such that f = χA a.e.

Exercise 10.5 Suppose for each ε there exists a measurable set F
such that µ(F c) < ε and fn converges to f uniformly on F . Prove
that fn converges to f a.e.

Exercise 10.6 Suppose that fn and f are measurable functions
such that for each ε > 0 we have

∞∑
n=1

µ({x : |fn(x)− f(x)| > ε}) <∞.

Prove that fn → f a.e.

Exercise 10.7 Let fn be a sequence of measurable functions and
define

gn(x) = sup
m≥n
|fm(x)− fn(x)|.

Prove that if gn converges in measure to 0, then fn converges a.e.

Exercise 10.8 If (X,A, µ) is a measure space and fn is a sequence
of real-valued measurable functions such that

∫
fng dµ converges

to 0 for every integrable g, is it necessarily true that fn converges
to 0 in measure? If not, give a counterexample.

Exercise 10.9 Suppose (X,A, µ) is a measure space and X is a
countable set. Prove that if fn is a sequence of measurable func-
tions converging to f in measure, then fn also converges to f a.e.
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Chapter 11

Product measures

We have defined Lebesgue measure on the line. Now we give a
method for constructing measures on the plane, in n-dimensional
Euclidean spaces, and many other product spaces. The main theo-
rem, the Fubini theorem, which allows one to interchange the order
of integration, is one of the most important theorems in real anal-
ysis.

11.1 Product σ-algebras

Suppose (X,A, µ) and (Y,B, ν) are two measure spaces and suppose
also that µ and ν are σ-finite measures. A measurable rectangle is
a set of the form A×B, where A ∈ A and B ∈ B.

Let C0 be the collection of finite unions of disjoint measurable
rectangles. Thus every element of C0 is of the form ∪ni=1(Ai ×Bi),
where Ai ∈ A, Bi ∈ B, and if i 6= j, then (Ai×Bi)∩ (Aj×Bj) = ∅.
Since (A×B)c = (A×Bc) ∪ (Ac × Y ) and the intersection of two
measurable rectangles is a measurable rectangle, it is easy to check
that C0 is an algebra of sets. We define the product σ-algebra

A× B = σ(C0).

If E ∈ A× B, we define the x-section of E by

sx(E) = {y ∈ Y : (x, y) ∈ E}
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and similarly define the y-section:

ty(E) = {x : (x, y) ∈ E}.

Given a function f : X×Y → R that is A×B measurable, for each
x and y we define Sxf : Y → R and Tyf : X → R by

Sxf(y) = f(x, y), Tyf(x) = f(x, y).

Lemma 11.1 (1) If E ∈ A × B, then sx(E) ∈ B for each x and
ty(E) ∈ A for each y.
(2) If f is A×B measurable, then Sxf is B measurable for each x
and Tyf is A measurable for each y.

Proof. (1) Let C be the collection of sets in A × B for which
sx(E) ∈ B for each x. We will show that C is a σ-algebra containing
the measurable rectangles, and hence is all of A× B.

If E = A × B, then sx(E) is equal to B if x ∈ A and equal to
∅ if x /∈ A. Hence sx(E) ∈ B for each x when E is a measurable
rectangle.

If E ∈ C, then y ∈ sx(Ec) if and only if (x, y) ∈ Ec, which
happens if and only if y /∈ sx(E). Therefore sx(Ec) = (sx(E))c, and
C is closed under the operation of taking complements. Similarly,
it is easy to see that sx(∪∞i=1Ei) = ∪∞i=1sx(Ei), and so C is closed
under the operation of countable unions.

Therefore C is a σ-algebra containing the measurable rectangles,
and hence is equal to A×B. The argument for ty(E) is the same.

(2) Fix x. If f = χE for E ∈ A × B, note that Sxf(y) =
χsx(E)(y), which is B measurable. By linearity, Sxf is B measurable
when f is a simple function. If f is non-negative, take A × B
measurable simple functions rn increasing to f , and since Sxrn ↑
Sxf , then Sxf is B measurable. Writing f = f+ − f− and using
linearity again shows that Sxf is B measurable. The argument for
Tyf is the same.

Let E ∈ A× B and let

h(x) = ν(sx(E)), k(y) = µ(ty(E)).
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Proposition 11.2 (1) h is A measurable and k is B measurable.
(2) We have ∫

h(x)µ(dx) =

∫
k(y) ν(dy). (11.1)

Since χsx(E)(y) = SxχE(y) for all x and y, (11.1) could be
written as∫ [ ∫

SxχE(y) ν(dy)
]
µ(dx) =

∫ [ ∫
TyχE(x)µ(dx)

]
ν(dy).

We will usually write this as∫ ∫
χE(x, y) ν(dy)µ(dx) =

∫ ∫
χE(x, y)µ(dx) ν(dy).

Proof. First suppose µ and ν are finite measures. Let C be the
collection of sets in A×B for which (1) and (2) hold. We will prove
that C contains C0 and is a monotone class. This will prove that C
is the smallest σ-algebra containing C0 and hence is equal to A×B.

If E = A×B, with A ∈ A and B ∈ B, then h(x) = χA(x)ν(B),
which is A measurable, and

∫
h(x)µ(dx) = µ(A)ν(B). Similarly,

k(y) = µ(A)χB(y) is B measurable and
∫
k(y) ν(dy) = µ(A)ν(B).

Therefore (1) and (2) hold for measurable rectangles.

If E = ∪ni=1Ei, where each Ei is a measurable rectangle and the
Ei are disjoint, then sx(E) = ∪ni=1sx(Ei), and since the sx(Ei) are
disjoint, then

h(x) = ν(sx(E)) = ν(∪ni=1sx(Ei)) =

n∑
i=1

ν(sx(Ei)).

This shows that h is A measurable, since it is the sum of A mea-
surable functions. Similarly k(y) is B measurable. If we let hi(x) =
ν(sx(Ei)) and define ki(y) similarly, then∫

hi(x)µ(dx) =

∫
ki(y) ν(dy)

by the preceding paragraph, and then (2) holds for E by linearity.
Therefore C contains C0.

Suppose En ↑ E and each En ∈ C. If we let hn(x) = ν(sx(En))
and let kn(y) = µ(ty(En)), then hn ↑ h and kn ↑ k. Therefore h is
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A measurable and k is B measurable. We have (11.1) holding when
h and k are replaced by hn and kn, resp. We let n → ∞ and use
the monotone convergence theorem to see that (11.1) holds with h
and k.

If En ↓ E with each En ∈ C, almost the same argument shows
that h and k are measurable with respect to A and B, and that
(11.1) holds. The only difference is that we use the dominated con-
vergence theorem in place of the monotone convergence theorem.
This is where we need µ and ν to be finite measures.

We have shown C is a monotone class containing C0. By the
monotone class theorem (Theorem 2.10), C is equal to σ(C0), which
is A× B.

Finally suppose µ and ν are σ-finite. Then there exist Fi ↑ X
and Gi ↑ Y such that each Fi is A measurable and has finite µ
measure and each Gi is B measurable and has finite ν measure.
Let µi(A) = µ(A ∩ Fi) for each A ∈ A and νi(A) = ν(A ∩ Gi) for
each B ∈ B. Let hi(x) = νi(sx(E)) = ν(sx(E) ∩Gi) and similarly
define ki(y). By what we have proved above, hi is A measurable,
ki is B measurable, and (11.1) holds if we replace h and k by hi and
ki, resp. Now hi ↑ h and ki ↑ k, which proves the measurability of
h and k. Applying the monotone convergence theorem proves that
(11.1) holds with h and k.

We now define µ× ν by

µ× ν(E) =

∫
h(x)µ(dx) =

∫
k(y) ν(dy). (11.2)

Clearly µ× ν(∅) = 0. If E1, . . . , En are disjoint and in A× B and
E = ∪ni=1Ei, then we saw in the proof of Proposition 11.2 that
ν(sx(E)) =

∑n
i=1 ν(sx(Ei)). We conclude that

µ× ν(E) =

∫
ν(sx(E))µ(dx) =

n∑
i=1

∫
ν(sx(Ei))µ(dx)

=

n∑
i=1

µ× ν(Ei),

or µ × ν is finitely additive. If En ↑ E with each En ∈ A × B
and we let hn(x) = ν(sx(En)), then hn ↑ h, and by the monotone
convergence theorem, µ × ν(En) ↑ µ × ν(E). Therefore µ × ν is a
measure.
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Note that if E = A×B is a measurable rectangle, then h(x) =
χA(x)ν(B) and so

µ× ν(A×B) = µ(A)ν(B),

which is what it should be.

11.2 The Fubini theorem

The main result of this chapter is the Fubini theorem, which allows
one to interchange the order of integration. This is sometimes
called the Fubini-Tonelli theorem.

Theorem 11.3 Suppose f : X×Y → R is measurable with respect
to A×B. Suppose µ and ν are σ-finite measures on X and Y , resp.
If either

(a) f is non-negative, or
(b)

∫
|f(x, y)| d(µ× ν)(x, y) <∞,

then
(1) for each x, the function y 7→ f(x, y) is measurable with respect
to B;
(2) for each y, the function x 7→ f(x, y) is measurable with respect
to A;
(3) the function g(x) =

∫
f(x, y) ν(dy) is measurable with respect

to A;
(4) the function h(y) =

∫
f(x, y)µ(dx) is measurable with respect

to B;
(5) we have∫

f(x, y) d(µ× ν)(x, y) =

∫ [ ∫
f(x, y) dµ(x)

]
dν(y) (11.3)

=

∫ [ ∫
f(x, y) dν(y)

]
µ(dx).

The last integral in (11.3) should be interpreted as∫ [ ∫
Sxf(y) ν(dy)

]
µ(dx)

and similarly for the second integral in (11.3). Since no confusion
results, most often the brackets are omitted in (11.3).
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Proof. If f is the characteristic function of a set in A × B, then
(1)–(5) are merely a restatement of Lemma 11.1 and Proposition
11.2. By linearity, (1)–(5) hold if f is a simple function. Since the
increasing limit of measurable functions is measurable, then writing
a non-negative function as the increasing limit of simple functions
and using the monotone convergence theorem shows that (1)–(5)
hold when f is non-negative. In the case where

∫
|f | d(µ×ν) <∞,

writing f = f+ − f− and using linearity proves (1)–(5) for this
case, too.

Observe that if we know∫ ∫
|f(x, y)|µ(dx) ν(dy) <∞,

then since |f(x, y)| is non-negative the Fubini theorem tells us that∫
|f(x, y)| d(µ× ν) =

∫ ∫
|f(x, y)|µ(dx) ν(dy) <∞

We can then apply the Fubini theorem again to conclude∫
f(x, y) d(µ× ν) =

∫ ∫
f(x, y) dµ dν =

∫ ∫
f(x, y) dν dµ.

Thus in the hypotheses of the Fubini theorem, we could as well
assume

∫ ∫
|f(x, y)| dµ dν <∞ or

∫ ∫
|f(x, y)| dν dµ <∞.

When f is measurable with respect to A×B, we sometimes say
that f is jointly measurable.

Even when (X,A, µ) and (Y,B, ν) are complete, it will not be
the case in general that (X × Y,A × B, µ × ν) is complete. For
example, let (X,A, µ) = (Y,B, ν) be Lebesgue measure on [0, 1]
with the Lebesgue σ-algebra. Let A be a non-measurable set in
[0, 1] and let E = A×{1/2}. Then E is not a measurable set with
respect to A×B, or else A = t1/2(E) would be in A by Lemma 11.1.
On the other hand, E ⊂ [0, 1]×{1/2}, which has zero measure with
respect to µ× ν, so E is a null set.

One can take the completion of (X × Y,A× B, µ× ν) without
great difficulty. See [8] for details.

There is no difficulty extending the Fubini theorem to the prod-
uct of n measures. If we have µ1, . . . , µn all equal to m, Lebesgue
measure on R with the Lebesgue σ-algebra L, then the completion
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of (Rn,L × · · · × L,m× · · · ×m) is called n-dimensional Lebesgue
measure.

For a general change of variables theorem, see [4].

11.3 Examples

We give two examples to show that the hypotheses of the Fubini
theorem are necessary.

Example 11.4 Let X = Y = [0, 1] with µ and ν both being
Lebesgue measure. Let gi be continuous functions with support

in (1/(i+ 1), 1/i) such that
∫ 1

0
gi(x) dx = 1, i = 1, 2, . . .. Let

f(x, y) =

∞∑
i=1

[gi(x)− gi+1(x)]gi(y).

For each point (x, y) at most two terms in the sum are non-zero, so
the sum is actually a finite one. If we first integrate with respect
to y, we get ∫ 1

0

f(x, y) dy =

∞∑
i=1

[gi(x)− gi+1(x)].

This is a telescoping series, and sums to g1(x). Therefore∫ 1

0

∫ 1

0

f(x, y) dy dx =

∫ 1

0

g1(x) dx = 1.

On the other hand, integrating first with respect to x gives 0, so∫ 1

0

∫ 1

0

f(x, y) dx dy = 0.

This doesn’t contradict the Fubini theorem because∫ 1

0

∫ 1

0

|f(x, y)| dx dy =∞.

Example 11.5 For this example, you have to take on faith a bit of
set theory. There exists a set X together with a partial order “≤”
such that X is uncountable but for any y ∈ X, the set {x ∈ X :
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x ≤ y} is countable. An example is to let X be the set of countable
ordinals. The σ-algebra is the collection of subsets A of X such
that either A or Ac is countable. Define µ on X by µ(A) = 0 if
A is countable and 1 if A is uncountable. Define f on X ×X by
f(x, y) = 1 if x ≤ y and zero otherwise. Then

∫ ∫
f(x, y) dy dx = 1

but
∫ ∫

f(x, y) dx dy = 0. The reason there is no contradiction is
that f is not measurable with respect to the product σ-algebra.

11.4 Exercises

Exercise 11.1 State and prove a version of the Fubini theorem
for complex-valued functions.

Exercise 11.2 Let (X,A) and (Y,B) be two measurable spaces
and let f ≥ 0 be measurable with respect to A × B. Let g(x) =
supy∈Y f(x, y) and suppose g(x) < ∞ for each x. Is g necessarily
measurable with respect to A? If not, find a counterexample.

Exercise 11.3 Prove the equality∫ ∞
−∞
|f(x)| dx =

∫ ∞
0

m({x : |f(x)| ≥ t}) dt,

where m is Lebesgue measure.

Exercise 11.4 Let A be a Lebesgue measurable subset of [0, 1]2

with m2(A) = 1, where m2 is two-dimensional Lebesgue measure.
Show that for almost every x ∈ [0, 1] (with respect to one di-
mensional Lebesgue measure) the set sx(A) has one-dimensional
Lebesgue measure one.

Exercise 11.5 Let f : [0, 1]2 → R be such that for every x ∈ [0, 1]
the function y → f(x, y) is Lebesgue measurable on [0, 1] and for
every y ∈ [0, 1] the function x → f(x, y) is continuous on [0, 1].
Prove that f is measurable with respect to the the completion of
the product σ-algebra L × L on [0, 1]2. Here L is the Lebesgue
σ-algebra on [0, 1].

Exercise 11.6 Suppose f is real-valued and integrable with re-
spect to two-dimensional Lebesgue measure on [0, 1]2 and∫ a

0

∫ b

0

f(x, y) dy dx = 0
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for all a ∈ [0, 1] and b ∈ [0, 1]. Prove that f = 0 a.e.

Exercise 11.7 Prove that∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)3/4
log(4 + sinx) dy dx

=

∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)3/4
log(4 + sinx) dx dy.

Exercise 11.8 Let X = Y = [0, 1] and let B be the Borel σ-
algebra. Let m be Lebesgue measure and µ counting measure on
[0, 1].
(1) If D = {(x, y) : x = y}, show that D is measurable with respect
to B × B.
(2) Show that∫

X

∫
Y

χD(x, y)µ(dy)m(dx) 6=
∫
Y

∫
X

χD(x, y)m(dx)µ(dy).

Why does this not contradict the Fubini theorem?

Exercise 11.9 Let X = Y = R and let B be the Borel σ-algebra.
Define

f(x, y) =


1, x ≥ 0 and x ≤ y < x+ 1;

−1, x ≥ 0 and x+ 1 ≤ y < x+ 2;

0, otherwise.

Show that ∫ ∫
f(x, y) dy dx 6=

∫ ∫
f(x, y) dx dy.

Why does this not contradict the Fubini theorem?

Exercise 11.10 Find a real-valued function f that is integrable
on [0, 1]2 such that∫ a

0

∫ 1

0

f(x, y) dy dx = 0,

∫ 1

0

∫ b

0

f(x, y) dy dx = 0

for every a, b ∈ [0, 1], but f is not zero almost everywhere with
respect to 2-dimensional Lebesgue measure.
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Exercise 11.11 Let µ be a finite measure on R and let f(x) =
µ((−∞, x]). Show∫

[f(x+ c)− f(x)] dx = cµ(R).

Exercise 11.12 Use

1

x
=

∫ ∞
0

e−xy dy

and the Fubini theorem to calculate∫ b

0

∫ ∞
0

e−xy sinx dy dx

two different ways. Then prove that

lim
b→∞

∫ b

0

sinx

x
dx =

π

2
.

Recall that ∫
eau sinu du =

eau(a sinu− cosu)

1 + a2
+ C.

Exercise 11.13 Let X = {1, 2, . . .} and let µ be counting measure
on X. Define f : X ×X → R by

f(x, y) =


1, x = y;

−1, x = y + 1;

0, otherwise.

Show that∫
X

∫
X

f(x, y)µ(dx)µ(dy) 6=
∫
X

∫
X

f(x, y)µ(dy)µ(dx).

Why is this not a contradiction to the Fubini theorem?

Exercise 11.14 Let {an} and {rn} be two sequences of real num-
bers such that

∑∞
n=1 |an| <∞. Prove that

∞∑
n=1

an√
|x− rn|

converges absolutely for almost every x ∈ R.
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Exercise 11.15 Let (X,A, µ) and (Y,B, ν) be measure spaces.
Prove that if λ is a measure on A× B such that

λ(A×B) = µ(A)ν(B)

whenever A ∈ A and B ∈ B, then λ = µ× ν on A× B.

Exercise 11.16 Let S be the unit circle {eiθ : 0 ≤ θ < 2π} and
define a measure µ on S by µ(A) = m({θ : eiθ ∈ A}), where m is
Lebesgue measure on [0, 2π). Let m2 be two-dimensional Lebesgue
measure. Show that if A is a Borel subset of S and R > 0, then

m2({reiθ : 0 < r < R, eiθ ∈ A}) = µ(A)R2/2.

Exercise 11.17 Use Exercise 11.16 to prove that if f is a continu-
ous real-valued function with support in the ball B(0, R) = {(x, y) :
x2 + y2 < R2}, then∫ ∫

B(0,R)

f(x, y) dy dx =

∫ 2π

0

∫ R

0

f(r cos θ, r sin θ) r dr dθ.

Exercise 11.18 Prove that∫ ∞
0

e−x
2/2 dx =

√
π/2

by filling in the missing steps and making rigorous the following.
If I =

∫∞
0
e−x

2/2 dx, then

I2 =

∫ ∞
0

∫ ∞
0

e−(x2+y2)/2 dy dx =

∫ π/2

0

∫ ∞
0

e−r
2/2r dr dθ = π/2.

Exercise 11.19 If M = (Mij)
n
i,j=1 is a n × n matrix and x =

(x1, . . . , xn) ∈ Rn, define Mx to be the element of Rn whose ith

coordinate is
∑n
j=1Mijxj . (This is just the usual matrix multipli-

cation of a n×n matrix and a n×1 matrix.) If A is a Borel subset
of Rn, let M(A) = {Mx : x ∈ A}.
(1) If c ∈ R and

Mij =


c, i = j = 1;

1, i = j 6= 1;

0, i 6= j;
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show
mn(M(A)) = |c|mn(A) = |detM |mn(A),

where we use mn for n-dimensional Lebesgue measure. (Multipli-
cation by M multiplies the first coordinate by c.)
(2) If 1 ≤ k ≤ n and

Mij =


1, i = 1 and j = k;

1, j = 1 and i = k;

1, i = j and neither equals k;

0, otherwise;

show
mn(M(A)) = mn(A) = |detM |mn(A).

(Multiplication by M interchanges the first and kth coordinates.)
(3) If c ∈ R and

Mij =


1, i = j;

c, i = 1, j = 2;

0, otherwise,

show
mn(M(A)) = mn(A) = |detM |mn(A).

(Multiplication by M replaces x1 by x1 + cx2.)
(4) Since every n× n matrix can be written as the product of ma-
trices each of which has the form given in (1), (2), or (3), conclude
that if M is any n× n matrix, then

mn(M(A)) = |detM |mn(A).

(5) If M is an orthogonal matrix, so that M times its transpose
is the identity, show mn(M(A)) = mn(A). (Multiplication by an
orthogonal matrix is a rotation of Rn.)



Chapter 12

Signed measures

Signed measures have the countable additivity property of mea-
sures, but are allowed to take negative as well as positive val-
ues. We will see shortly that an example of a signed measure is
ν(A) =

∫
A
f dµ, where f is integrable and takes both positive and

negative values.

12.1 Positive and negative sets

Definition 12.1 Let A be a σ-algebra. A signed measure is a
function µ : A → (−∞,∞] such that µ(∅) = 0 and if A1, A2, . . .
are pairwise disjoint and all the Ai are in A, then µ(∪∞i=1Ai) =∑∞
i=1 µ(Ai), where the series converges absolutely if µ(∪∞i=1Ai) is

finite.

When we want to emphasize that a measure is defined as in
Definition 3.1 and only takes non-negative values, we refer to it as
a positive measure.

Definition 12.2 Let µ be a signed measure. A set A ∈ A is called
a positive set for µ if µ(B) ≥ 0 whenever B ⊂ A and B ∈ A. We
say A ∈ A is a negative set if µ(B) ≤ 0 whenever B ⊂ A and
B ∈ A. A null set A is one where µ(B) = 0 whenever B ⊂ A and
B ∈ A.

93
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Note that if µ is a signed measure, then

µ(∪∞i=1Ai) = lim
n→∞

µ(∪ni=1Ai).

The proof is the same as in the case of positive measures.

Example 12.3 Suppose m is Lebesgue measure and

µ(A) =

∫
A

f dm

for some integrable f . If we let P = {x : f(x) ≥ 0}, then P
is easily seen to be a positive set, and if N = {x : f(x) < 0},
then N is a negative set. The Hahn decomposition which we give
below is a decomposition of our space (in this case R) into the
positive and negative sets P and N . This decomposition is unique,
except that C = {x : f(x) = 0} could be included in N instead
of P , or apportioned partially to P and partially to N . Note,
however, that C is a null set. The Jordan decomposition below is
a decomposition of µ into µ+ and µ−, where µ+(A) =

∫
A
f+ dm

and µ−(A) =
∫
A
f− dm.

Proposition 12.4 Let µ be a signed measure which takes values
in (−∞,∞]. Let E be measurable with µ(E) < 0. Then there exists
a measurable subset F of E that is a negative set with µ(F ) < 0.

Proof. If E is a negative set, we are done. If not, there exists a
measurable subset with positive measure. Let n1 be the smallest
positive integer such that there exists E1 ⊂ E with µ(E1) ≥ 1/n1.
We then define pairwise disjoint measurable sets E2, E3, . . . by in-
duction as follows. Let k ≥ 2 and suppose E1, . . . , Ek−1 are pair-
wise disjoint measurable sets with µ(Ei) > 0 for i = 1, . . . , k − 1.
If Fk = E − (E1 ∪ · · · ∪ Ek−1) is a negative set, then

µ(Fk) = µ(E)−
k−1∑
i=1

µ(Ei) ≤ µ(E) < 0

and Fk is the desired set F . If Fk is not a negative set, let nk be
the smallest positive integer such that there exists Ek ⊂ Fk with
Ek measurable and µ(Ek) ≥ 1/nk.
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We stop the construction if there exists k such that Fk is a
negative set with µ(Fk) < 0. If not, we continue and let F =
∩kFk = E − (∪kEk). Since 0 > µ(E) > −∞ and µ(Ek) ≥ 0, then

µ(E) = µ(F ) +

∞∑
k=1

µ(Ek).

Then µ(F ) ≤ µ(E) < 0, so the sum converges.

It remains to show that F is a negative set. Suppose G ⊂ F is
measurable with µ(G) > 0. Then µ(G) ≥ 1/N for some N . But
this contradicts the construction, since for some k, nk > N , and
we would have chosen the set G instead of the set Ek at stage k.
Therefore F must be a negative set.

12.2 Hahn decomposition theorem

Recall that we write A4B for (A−B)∪ (B−A). The following is
known as the Hahn decomposition.

Theorem 12.5 (1) Let µ be a signed measure taking values in
(−∞,∞]. There exist disjoint measurable sets E and F in A whose
union is X and such that E is a negative set and F is a positive
set.

(2) If E′ and F ′ are another such pair, then E4E′ = F4F ′ is
a null set with respect to µ.

(3) If µ is not a positive measure, then µ(E) < 0. If −µ is not
a positive measure, then µ(F ) > 0.

Proof. (1) Let L = inf{µ(A) : A is a negative set}. Choose
negative sets An such that µ(An) → L. Let E = ∪∞n=1An. Let
Bn = An− (B1∪· · ·∪Bn−1) for each n. Since An is a negative set,
so is each Bn. Also, the Bn are disjoint and ∪nBn = ∪nAn = E.
If C ⊂ E, then

µ(C) = lim
n→∞

µ(C ∩ (∪ni=1Bi)) = lim
n→∞

n∑
i=1

µ(C ∩Bi) ≤ 0.

Thus E is a negative set.
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Since E is a negative set,

µ(E) = µ(An) + µ(E −An) ≤ µ(An).

Letting n→∞, we obtain µ(E) = L.

Let F = Ec. If F were not a positive set, there would exist
B ⊂ F with µ(B) < 0. By Proposition 12.4 there exists a negative
set C contained in B with µ(C) < 0. But then E ∪ C would be a
negative set with µ(E ∪ C) < µ(E) = L, a contradiction.

(2) To prove uniqueness, if E′, F ′ are another such pair of sets
and A ⊂ E−E′ ⊂ E, then µ(A) ≤ 0. But A ⊂ E−E′ = F ′−F ⊂
F ′, so µ(A) ≥ 0. Therefore µ(A) = 0. The same argument works if
A ⊂ E′ −E, and any subset of E4E′ can be written as the union
of A1 and A2, where A1 ⊂ E − E′ and A2 ⊂ E′ − E.

(3) Suppose µ is not a positive measure but µ(E) = 0. If A ∈ A,
then

µ(A) = µ(A ∩ E) + µ(A ∩ F ) ≥ µ(E) + µ(A ∩ F ) ≥ 0,

which says that µ must be a positive measure, a contradiction. A
similar argument applies for −µ and F .

Let us say two measures µ and ν are mutually singular if there
exist two disjoint sets E and F in A whose union is X with µ(E) =
ν(F ) = 0. This is often written µ ⊥ ν.

Example 12.6 If µ is Lebesgue measure restricted to [0, 1/2], that
is, µ(A) = m(A∩ [0, 1/2]), and ν is Lebesgue measure restricted to
[1/2, 1], then µ and ν are mutually singular. We let E = (1/2, 1]
and F = [0, 1/2]. This example works because the Lebesgue mea-
sure of {1/2} is 0.

Example 12.7 A more interesting example is the following. Let f
be the Cantor-Lebesgue function where we define f(x) = 1 if x ≥ 1
and f(x) = 0 if x ≤ 0 and let ν be the Lebesgue-Stieltjes measure
associated with f . Let µ be Lebesgue measure. Then µ ⊥ ν. To
see this, we let E = C, where C is the Cantor set, and F = Cc. We
already know that m(E) = 0 and we need to show ν(F ) = 0. To do
that, we need to show ν(I) = 0 for every open interval contained
in F . This will follow if we show ν(J) = 0 for every interval of the
form J = (a, b] contained in F . But f is constant on every such
interval, so f(b) = f(a), and therefore ν(J) = f(b)− f(a) = 0.



12.3. JORDAN DECOMPOSITION THEOREM 97

12.3 Jordan decomposition theorem

The following is known as the Jordan decomposition theorem.

Theorem 12.8 If µ is a signed measure on a measurable space
(X,A), there exist positive measures µ+ and µ− such that µ =
µ+−µ− and µ+ and µ− are mutually singular. This decomposition
is unique.

Proof. Let E and F be negative and positive sets, resp., for µ
so that X = E ∪ F and E ∩ F = ∅. Let µ+(A) = µ(A ∩ F ),
µ−(A) = −µ(A ∩ E). This gives the desired decomposition.

If µ = ν+ − ν− is another such decomposition with ν+, ν−

mutually singular, let E′ be a set such that ν+(E′) = 0 and
ν−((E′)c) = 0. Set F ′ = (E′)c. Hence X = E′∪F ′ and E′∩F ′ = ∅.
If A ⊂ F ′, then ν−(A) ≤ ν−(F ′) = 0, and so

µ(A) = ν+(A)− ν−(A) = ν+(A) ≥ 0,

and consequently F ′ is a positive set for µ. Similarly, E′ is a nega-
tive set for µ. Thus E′, F ′ gives another Hahn decomposition of X.
By the uniqueness part of the Hahn decomposition theorem, F4F ′
is a null set with respect to µ. Since ν+(E′) = 0 and ν−(F ′) = 0,
if A ∈ A, then

ν+(A) = ν+(A ∩ F ′) = ν+(A ∩ F ′)− ν−(A ∩ F ′)
= µ(A ∩ F ′) = µ(A ∩ F ) = µ+(A),

and similarly ν− = µ−.

The measure
|µ| = µ+ + µ− (12.1)

is called the total variation measure of µ and |µ|(X) is called the
total variation of µ.

12.4 Exercises

Exercise 12.1 Suppose µ is a signed measure. Prove that A is a
null set with respect to µ if and only if |µ|(A) = 0.
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Exercise 12.2 Let µ be a signed measure. Define∫
f dµ =

∫
f dµ+ −

∫
f dµ−.

Prove that ∣∣∣ ∫ f dµ
∣∣∣ ≤ ∫ |f | d|µ|.

Exercise 12.3 Let µ be a signed measure on (X,A). Prove that

|µ|(A) = sup
{∣∣∣ ∫

A

f dµ
∣∣∣ : |f | ≤ 1

}
.

Exercise 12.4 Let (X,A) be a measurable space. Suppose λ =
µ − ν, where µ and ν are finite positive measures. Prove that
µ(A) ≥ λ+(A) and ν(A) ≥ λ−(A) for every A ∈ A.

Exercise 12.5 Let (X,A) be a measurable space. Prove that if µ
and ν are finite signed measures, then |µ+ ν|(A) ≤ |µ|(A) + |ν|(A)
for every A ∈ A.

Exercise 12.6 Suppose that µ is a signed measure on (X,A).
Prove that if A ∈ A, then

µ+(A) = sup{µ(B) : B ∈ A, B ⊂ A}

and
µ−(A) = − inf{µ(B) : B ∈ A, B ⊂ A}.

Exercise 12.7 Suppose that µ is a signed measure on (X,A).
Prove that if A ∈ A, then

|µ|(A) = sup
{ n∑
j=1

|µ(Bj)| : each Bj ∈ A,

the Bj are disjoint,∪nj=1Bj = A
}
.



Chapter 13

The Radon-Nikodym
theorem

Suppose f is non-negative and integrable with respect to µ. If we
define ν by

ν(A) =

∫
A

f dµ, (13.1)

then ν is a measure. The only part that needs thought is the
countable additivity. If An are disjoint measurable sets, we have

ν(∪nAn) =

∫
∪nAn

f dµ =

∞∑
n=1

∫
An

f dµ =

∞∑
n=1

ν(An)

by using Proposition 7.5. Moreover, ν(A) is zero whenever µ(A)
is.

In this chapter we consider the converse. If we are given two
measures µ and ν, when does there exist f such that (13.1) holds?
The Radon-Nikodym theorem answers this question.

13.1 Absolute continuity

Definition 13.1 A measure ν is said to be absolutely continuous
with respect to a measure µ if ν(A) = 0 whenever µ(A) = 0. We
write ν � µ.

99
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Proposition 13.2 Let ν be a finite measure. Then ν is absolutely
continuous with respect to µ if and only if for all ε there exists δ
such that µ(A) < δ implies ν(A) < ε.

Proof. Suppose for each ε, there exists δ such that µ(A) < δ
implies ν(A) < ε. If µ(A) = 0, then ν(A) < ε for all ε, hence
ν(A) = 0, and thus ν � µ.

Suppose now that ν � µ. If there exists an ε for which no
corresponding δ exists, then there exists Ek such that µ(Ek) < 2−k

but ν(Ek) ≥ ε. Let F = ∩∞n=1 ∪∞k=n Ek. Then

µ(F ) = lim
n→∞

µ(∪∞k=nEk) ≤ lim
n→∞

∞∑
k=n

2−k = 0,

but
ν(F ) = lim

n→∞
ν(∪∞k=nEk) ≥ ε;

This contradicts the absolute continuity.

13.2 The main theorem

Lemma 13.3 Let µ and ν be finite positive measures on a mea-
surable space (X,A). Either µ ⊥ ν or else there exists ε > 0 and
G ∈ A such that µ(G) > 0 and G is a positive set for ν − εµ.

Proof. Consider the Hahn decomposition for ν − 1
nµ. Thus there

exists a negative set En and a positive set Fn for this measure,
En and Fn are disjoint, and their union is X. Let F = ∪nFn and
E = ∩nEn. Note Ec = ∪nEcn = ∪nFn = F .

For each n, E ⊂ En, so

ν(E) ≤ ν(En) ≤ 1
nµ(En) ≤ 1

nµ(X).

Since ν is a positive measure, this implies ν(E) = 0.

One possibility is that µ(Ec) = 0, in which case µ ⊥ ν. The
other possibility is that µ(Ec) > 0. In this case, µ(Fn) > 0 for
some n. Let ε = 1/n and G = Fn. Then from the definition of Fn,
G is a positive set for ν − εµ.
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We now are ready for the Radon-Nikodym theorem.

Theorem 13.4 Suppose µ is a σ-finite positive measure on a mea-
surable space (X,A) and ν is a finite positive measure on (X,A)
such that ν is absolutely continuous with respect to µ. Then there
exists a µ-integrable non-negative function f which is measurable
with respect to A such that

ν(A) =

∫
A

f dµ

for all A ∈ A. Moreover, if g is another such function, then f = g
almost everywhere with respect to µ.

The function f is called the Radon-Nikodym derivative of ν with
respect to µ or sometimes the density of ν with respect to µ, and
is written f = dν/dµ. Sometimes one writes

dν = f dµ.

The idea of the proof is to look at the set of f such that∫
A
f dµ ≤ ν(A) for each A ∈ A, and then to choose the one such

that
∫
X
f dµ is largest.

Proof. Step 1. Let us first prove the uniqueness assertion. Sup-
pose f and g are two functions such that∫

A

f dµ = ν(A) =

∫
A

g dµ

for all A ∈ A. For every set A we have∫
A

(f − g) dµ = ν(A)− ν(A) = 0.

By Proposition 8.1 we have f − g = 0 a.e. with respect to µ.

Step 2. Let us assume µ is a finite measure for now. In this step
we define the function f . Define

F =
{
g measurable : g ≥ 0,

∫
A

g dµ ≤ ν(A) for all A ∈ A
}
.

F is not empty because 0 ∈ F . Let L = sup{
∫
g dµ : g ∈ F},

and let gn be a sequence in F such that
∫
gn dµ → L. Let hn =

max(g1, . . . , gn).
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We claim that if g1 and g2 are in F , then h2 = max(g1, g2) is
also in F . To see this, let B = {x : g1(x) ≥ g2(x)}, and write∫

A

h2 dµ =

∫
A∩B

h2 dµ+

∫
A∩Bc

h2 dµ

=

∫
A∩B

g1 dµ+

∫
A∩Bc

g2 dµ

≤ ν(A ∩B) + ν(A ∩Bc)
= ν(A).

Therefore h2 ∈ F .

By an induction argument, hn is in F .

The hn increase, say to f . By the monotone convergence theo-
rem, ∫

A

f dµ ≤ ν(A) (13.2)

for all A ∈ A and ∫
f dµ ≥

∫
hn dµ ≥

∫
gn dµ

for each n, so
∫
f dµ = L.

Step 3. Next we prove that f is the desired function. Define a
measure λ by

λ(A) = ν(A)−
∫
A

f dµ.

λ is a positive measure since f ∈ F .

Suppose λ is not mutually singular to µ. By Lemma 13.3, there
exists ε > 0 and G such that G is measurable, µ(G) > 0, and G is
a positive set for λ− εµ. For any A ∈ A,

ν(A)−
∫
A

f dµ = λ(A) ≥ λ(A ∩G) ≥ εµ(A ∩G) =

∫
A

εχG dµ,

or

ν(A) ≥
∫
A

(f + εχG) dµ.

Hence f + εχG ∈ F . But∫
X

(f + εχG) dµ = L+ εµ(G) > L,
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a contradiction to the definition of L.

Therefore λ ⊥ µ. Then there must exist H ∈ A such that
µ(H) = 0 and λ(Hc) = 0. Since ν � µ, then ν(H) = 0, and hence

λ(H) = ν(H)−
∫
H

f dµ = 0.

This implies λ = 0, or ν(A) =
∫
A
f dµ for all A.

Step 4. We now suppose µ is σ-finite. There exist Fi ↑ X such
that µ(Fi) < ∞ for each i. Let µi be the restriction of µ to Fi,
that is, µi(A) = µ(A ∩ Fi). Define νi, the restriction of ν to Fi,
similarly. If µi(A) = 0, then µ(A ∩ Fi) = 0, hence ν(A ∩ Fi) = 0,
and thus νi(A) = 0. Therefore νi � µi. If fi is the function such
that dνi = fi dµi, the argument of Step 1 shows that fi = fj on Fi
if i ≤ j. Define f by f(x) = fi(x) if x ∈ Fi. Then for each A ∈ A,

ν(A ∩ Fi) = νi(A) =

∫
A

fi dµi =

∫
A∩Fi

f dµ.

Letting i→∞ shows that f is the desired function.

13.3 Lebesgue decomposition theorem

The proof of the Lebesgue decomposition theorem is almost the
same as the proof of the Radon-Nikodym theorem.

Theorem 13.5 Suppose µ is a σ-finite positive measure and ν is
a finite positive measure. There exist positive measures λ, ρ such
that ν = λ+ ρ, ρ is absolutely continuous with respect to µ, and λ
and µ are mutually singular.

Proof. As in the proof of Theorem 13.4 we reduce to the case
where µ is a finite measure. Define F and L and construct f as
in the proof of the Radon-Nikodym theorem. Let ρ(A) =

∫
A
f dµ

and let λ = ν − ρ. Our construction shows that∫
A

f dµ ≤ ν(A),
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so λ(A) ≥ 0 for all A. We have ρ+ λ = ν. We need to show µ and
λ are mutually singular.

If not, by Lemma 13.3, there exists ε > 0 and F ∈ A such that
µ(F ) > 0 and F is a positive set for λ − εµ. We get a contradic-
tion exactly as in the proof of the Radon-Nikodym theorem. We
conclude that λ ⊥ µ.

13.4 Exercises

Exercise 13.1 This exercise asks you to prove the Radon-Niko-
dym theorem for signed measures. Let (X,A) be a measurable
space. Suppose ν is a finite signed measure, µ is a finite positive
measure, and ν(A) = 0 whenever µ(A) = 0 and A ∈ A. Show there
exists an integrable real-valued function f such that ν(A) =

∫
A
f dµ

for all A ∈ A.

Exercise 13.2 State and prove a version of the Lebesgue decom-
position theorem for signed measures.

Exercise 13.3 We define a complex measure µ on a measurable
space (X,A) to be a bounded map from A to C such that µ(∅) = 0
and µ(∪∞i=1Ai) =

∑∞
i=1 µ(Ai) whenever the Ai are in A and are

pairwise disjoint. Note that this implies that µ(A) is finite for each
measurable set A. Formulate and prove a Radon-Nikodym theorem
for complex measures.

Exercise 13.4 Let µ be a complex measure on a measurable space
(X,A). The total variation measure is defined to be a positive
measure |µ| such that d|µ| = |f | dρ, where ρ is a positive measure
and f is a measurable function such that dµ = f dρ. The quantity
|µ|(X) is called the total variation of µ. Prove that the definition of
|µ| is independent of the choice of ρ, that is, if dµ = f1 dρ1 = f2 dρ2,
then |f1| dρ1 = |f2| dρ2.

Exercise 13.5 Let (X,A) be a measurable space and let µ and ν
be two finite measures. We say µ and ν are equivalent measures if
µ� ν and ν � µ. Show that µ and ν are equivalent if and only if
there exists a µ-integrable function f that is strictly positive a.e.
with respect to µ such that dν = f dµ.
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Exercise 13.6 Suppose µ and ν are two finite measures such that
ν is absolutely continuous with respect to µ. Let ρ = µ+ ν. Note
that µ(A) ≤ ρ(A) and ν(A) ≤ ρ(A) for each measurable A. In
particular, µ � ρ and ν � ρ. Prove that if f = dµ/dρ and
g = dν/dρ, then f is strictly positive for almost every x with
respect to µ, f + g = 1, and dν = (g/f) dµ.

Exercise 13.7 If µ is a signed measure on (X,A) and |µ| is the
total variation measure, prove that there exists a real-valued func-
tion f that is measurable with respect to A such that |f | = 1 a.e.
with respect to µ and dµ = f d|µ|.

Exercise 13.8 Suppose µ, ν, and ρ are signed measures, ν � µ,
and ρ� ν. Prove that ρ� µ and

dρ

dµ
=
dρ

dν
· dν
dµ
.

Exercise 13.9 Let µ be a positive measure and ν a signed mea-
sure. Prove that ν � µ if and only if ν+ � µ and ν− � µ.

Exercise 13.10 Suppose λn is a sequence of positive measures
on a measurable space (X,A) with supn λn(X) < ∞ and µ is
another finite positive measure on (X,A). Suppose λn = fn dµ+νn
is the Lebesgue decomposition of λn; in particular, νn ⊥ µ. If
λ =

∑∞
n=1 λn is a finite measure, show that

λ =
( ∞∑
n=1

fn

)
dµ+

∞∑
n=1

νn

is the Lebesgue decomposition of λ.

Exercise 13.11 The point of this exercise is to demonstrate that
the Radon-Nikodym derivative can depend on the σ-algebra.

Suppose X is a set and E ⊂ F are two σ-algebras of subsets of
X. Let µ, ν be two finite positive measures on (X,F) and suppose
ν � µ. Let µ be the restriction of µ to (X, E) and ν the restriction
of ν to E . Find an example of the above framework where dν/dµ 6=
dν/dµ, that is, where the Radon-Nikodym derivative of ν with
respect to µ (in terms of E) is not the same as the Radon-Nikodym
derivative of ν with respect to µ (in terms of F).
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Exercise 13.12 Let (X,F , µ) be a measure space, and suppose E
is a sub-σ-algebra of F , that is, E is itself a σ-algebra and E ⊂ F .
Suppose f is a non-negative integrable function that is measurable
with respect to F . Define ν(A) =

∫
A
f dµ for A ∈ E and let µ be

the restriction of µ to E .
(1) Prove that ν � µ.
(2) Since ν and µ are measures on E , then g = dν/dµ is measurable
with respect to E . Prove that∫

A

g dµ =

∫
A

f dµ (13.3)

whenever A ∈ E . g is called the conditional expectation of f with
respect to E and we write g = E [f | E ]. If f is integrable and
real-valued but not necessarily non-negative, we define

E [f | E ] = E [f+ | E ]− E [f− | E ].

(3) Show that f = g if and only if f is measurable with respect to
E .
(4) Prove that if h is E measurable and

∫
A
h dµ =

∫
A
f dµ for all

A ∈ E , then h = g a.e. with respect to µ.



Chapter 14

Differentiation

In this chapter we want to look at when a function from R to R is
differentiable and when the fundamental theorem of calculus holds.
Briefly, our results are the following.
(1) The derivative of

∫ x
a
f(y) dy is equal to f a.e. if f is integrable

(Theorem 14.5);
(2) Functions of bounded variation, in particular monotone func-
tions, are differentiable (Theorem 14.8);

(3)
∫ b
a
f ′(y) dy = f(b)−f(a) if f is absolutely continuous (Theorem

14.15).

Our approach uses what are known as maximal functions and
uses the Radon-Nikodym theorem and the Lebesgue decomposition
theorem. However, some students and instructors prefer a more
elementary proof of the results on differentiation. In Sections 14.5,
14.6, and 14.7 we give an alternative approach that avoids the
use of the Radon-Nikodym theorem and Lebesgue decomposition
theorem.

The definition of derivative is the same as in elementary calcu-
lus. A function f is differentiable at x if

lim
h→0

f(x+ h)− f(x)

h

exists, and the limit is called the derivative of f at x and is denoted
f ′(x). If f : [a, b] → R, we say f is differentiable on [a, b] if the

107
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derivative exists for each x ∈ (a, b) and both

lim
h→0+

f(a+ h)− f(a)

h
and lim

h→0−

f(b+ h)− f(b)

h

exist.

14.1 Maximal functions

In this section we consider real-valued functions on Rn. Let B(x, r)
be the open ball with center x and radius r.

The following is an example of what is known as a covering
lemma. We use m for Lebesgue measure on Rn throughout this
section.

Proposition 14.1 Suppose E ⊂ Rn is covered by a collection of
balls {Bα} and there exists a positive real number R such that the
diameter of each Bα is bounded by R. Then there exists a disjoint
sequence B1, B2, . . . of elements of {Bα} such that

m(E) ≤ 5n
∑
k

m(Bk).

Proof. Let d(Bα) be the diameter of Bα. Choose B1 such that

d(B1) ≥ 1
2 sup

α
d(Bα).

Once B1, . . . , Bk are chosen, choose Bk+1 disjoint from B1, . . . , Bk
such that

d(Bk+1) ≥ 1
2 sup{d(Bα) : Bα is disjoint from B1, . . . , Bk}.

The procedure might terminate after a finite number of steps or it
might not.

If
∑
km(Bk) = ∞, we have our result. Suppose

∑
km(Bk) <

∞. Let B∗k be a ball with the same center as Bk but 5 times the
radius. We claim E ⊂ ∪kB∗k . Once we have this,

m(E) ≤ m(∪kB∗k) ≤
∑
k

m(B∗k) = 5n
∑
k

m(Bk).
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To show E ⊂ ∪kB∗k , it suffices to show each Bα ⊂ ∪kB∗k , since
{Bα} is a cover of E. Fix α. If Bα is one of the Bk, we are done.

If
∑
km(Bk) < ∞, then d(Bk) → 0. Let k be the smallest

integer such that d(Bk+1) < 1
2d(Bα). Bα must intersect one of

B1, . . . , Bk, or else we would have chosen it instead of Bk+1. There-
fore Bα intersects Bj0 for some j0 ≤ k. We know 1

2d(Bα) ≤ d(Bj0),
and some simple geometry shows that Bα ⊂ B∗j0 . In fact, let xj0
be the center of Bj0 and y a point in Bα ∩Bj0 . If x ∈ Bα, then

|x− xj0 | ≤ |x− y|+ |y − xj0 | < d(Bα) + d(Bj0)/2 ≤ 5
2d(Bj0),

or x ∈ B∗j0 . Therefore Bα ⊂ Bj0 , and the proof is complete.

We say f is locally integrable if
∫
K
|f(x)| dx is finite whenever

K is compact. If f is locally integrable, define

Mf(x) = sup
r>0

1

m(B(x, r))

∫
B(x,r)

|f(y)| dy.

Note that without the supremum, we are looking at the average of
|f | over B(x, r). The function Mf is called the maximal function
of f .

We now prove a weak 1-1 inequality, due to Hardy and Little-
wood. It is so named because M does not map integrable functions
into integrable functions, but comes close in a certain sense to doing
so.

Theorem 14.2 If f is integrable, then for all β > 0

m({x : Mf(x) > β}) ≤ 5n

β

∫
|f(x)| dx.

Proof. Fix β and let Eβ = {x : Mf(x) > β}. If x ∈ Eβ , then there
exists a ball Bx centered at x such that

∫
Bx
|f(x)| dx > βm(Bx)

by the definition of Mf(x). Then

m(Bx) ≤
∫
|f |
β

,

so {Bx} is a cover of Eβ by balls whose diameters are bounded
by some number independent of x. Extract a disjoint sequence
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B1, B2, . . . such that m(Eβ) ≤ 5n
∑
km(Bk). Then

m(Eβ) ≤ 5n
∑
k

m(Bk) ≤ 5n

β

∑
k

∫
Bk

|f |

=
5n

β

∫
∪kBk

|f | ≤ 5n

β

∫
|f |,

as desired.

If we look at the function f(x) = χB , where B is the unit ball,
note that Mf(x) is approximately a constant times |x|−n for x
large, so Mf is not integrable. Hence M does not map the class of
integrable functions into the class of integrable functions.

Theorem 14.3 Let

fr(x) =
1

m(B(x, r))

∫
B(x,r)

f(y) dy. (14.1)

If f is locally integrable, then fr(x)→ f(x) a.e. as r → 0.

Proof. It suffices to prove that for each N , fr(x) → f(x) for
almost every x ∈ B(0, N). Fix N . We may suppose without loss of
generality that f is 0 outside of B(0, 2N), and thus we may suppose
f is integrable.

Fix β > 0. Let ε > 0. Using Theorem 8.4, take g continuous
with compact support such that

∫
|f − g| dm < ε. If gr is defined

analogously to fr using (14.1),

|gr(x)− g(x)| =
∣∣∣ 1

m(B(x, r))

∫
B(x,r)

[g(y)− g(x)] dy
∣∣∣ (14.2)

≤ 1

m(B(x, r))

∫
B(x,r)

|g(y)− g(x)| dy → 0

as r → 0 by the continuity of g. We have

lim sup
r→0

|fr(x)− f(x)| ≤ lim sup
r→0

|fr(x)− gr(x)|

+ lim sup
r→0

|gr(x)− g(x)|

+ |g(x)− f(x)|.
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The second term on the right is 0 by (14.2). We now use Theorem
14.2 and Lemma 10.4 to write

m({x : lim sup
r→0

|fr(x)− f(x)| > β})

≤ m({x : lim sup
r→0

|fr(x)− gr(x)| > β/2})

+m({x : |f(x)− g(x)| > β/2})

≤ m({x : M(f − g)(x) > β/2}) +

∫
|f − g|
β/2

≤ 2(5n + 1)

β

∫
|f − g|

<
2(5n + 1)ε

β
,

where we use the definition of the maximal function to see that

|fr(x)− gr(x)| ≤M(f − g)(x)

for all r. This is true for every ε, so

m({x : lim sup
r→0

|fr(x)− f(x)| > β}) = 0.

We apply this with β = 1/j for each positive integer j, and we
conclude

m({x : lim sup
r→0

|fr(x)− f(x)| > 0})

≤
∞∑
j=1

m({x : lim sup
r→0

|fr(x)− f(x)| > 1/j}) = 0.

This is the result we seek.

We can get a stronger statement:

Theorem 14.4 For almost every x

1

m(B(x, r))

∫
B(x,r)

|f(y)− f(x)| dy → 0

as r → 0.
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Proof. For each rational c there exists a set Nc of measure 0 such
that

1

m(B(x, r))

∫
B(x,r)

|f(y)− c| dy → |f(x)− c|

for x /∈ Nc; we see this by applying Theorem 14.3 to the function
|f(x) − c|. Let N = ∪c∈QNc and suppose x /∈ N . Let ε > 0 and
choose c rational such that |f(x)− c| < ε. Then

1

m(B(x, r))

∫
B(x,r)

|f(y)− f(x)| dy

≤ 1

m(B(x, r))

∫
B(x,r)

|f(y)− c| dy

+
1

m(B(x, r))

∫
B(x,r)

|f(x)− c| dy

=
1

m(B(x, r))

∫
B(x,r)

|f(y)− c| dy + |f(x)− c|

and hence

lim sup
r→0

1

m(B(x, r))

∫
B(x,r)

|f(y)− f(x)| dy ≤ 2|f(x)− c| < 2ε.

Since ε is arbitrary, our result follows.

If we apply the above to the function f = χE , then for almost
all x ∈ E

1

m(B(x, r)

∫
B(x,r)

χE → 1,

or
m(E ∩B(x, r))

m(B(x, r))
→ 1,

and similarly, for almost all x /∈ E, the ratio tends to 0. The points
where the ratio tends to 1 are called points of density for E.

14.2 Antiderivatives

For the remainder of the chapter we consider real-valued functions
on the real line R. We can use the results on maximal functions
to show that the derivative of the antiderivative of an integrable
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function is the function itself. A ball B(x, h) in R is merely the
interval (x−h, x+h). We use m for Lebesgue measure throughout.

Define the indefinite integral or antiderivative of an integrable
function f by

F (x) =

∫ x

a

f(t) dt.

Recall by Exercise 7.6 that F is continuous.

Theorem 14.5 Suppose f : R → R is integrable and a ∈ R. De-
fine

F (x) =

∫ x

a

f(y) dy.

Then F is differentiable almost everywhere and F ′(x) = f(x) a.e.

Proof. If h > 0, we have

F (x+ h)− F (x) =

∫ x+h

x

f(y) dy,

so∣∣∣F (x+ h)− F (x)

h
− f(x)

∣∣∣ =
1

h

∣∣∣ ∫ x+h

x

(f(y)− f(x)) dy
∣∣∣

≤ 2
1

m(B(x, h))

∫ x+h

x−h
|f(y)− f(x)| dy.

By Theorem 14.4, the right hand side goes to 0 as h→ 0 for almost
every x, and we conclude the right hand derivative of F exists and
equals f for almost every x. The left hand derivative is handled
similarly.

14.3 Bounded variation

In this section we show that functions of bounded variation are
differentiable almost everywhere. We start with right continuous
increasing functions.
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Lemma 14.6 Suppose H : R→ R is increasing, right continuous,
and constant for x ≥ 1 and x ≤ 0. Let λ be the Lebesgue-Stieltjes
measure defined using the function H and suppose λ and m are
mutually singular. Then

lim
r→0

λ(B(x, r))

m(B(x, r))
= 0

for almost every x (with respect to the measure m).

Proof. This is clear if x < 0 or x > 1. Since λ ⊥ m, there exist
measurable sets E and F such that λ(F ) = 0, m(E) = 0, and
F = Ec. Let ε > 0.

Step 1. The first step of the proof is to find a bounded open set
G such that F ⊂ G and λ(G) < ε. By the definition of Lebesgue-
Stieltjes measure, there exist ai < bi such that F ⊂ ∪∞i=1(ai, bi]
and

∞∑
i=1

[H(bi)−H(ai)] < ε/2.

Since H is right continuous, for each i there exists b′i > bi such that

H(b′i)−H(bi) < ε/2i+1.

If G′ = ∪∞i=1(ai, b
′
i), then G′ is open, G′ contains F , and

λ(G′) ≤
∞∑
i=1

λ((ai, b
′
i)) ≤

∞∑
i=1

λ((ai, b
′
i]) =

∞∑
i=1

[H(b′i)−H(ai)] < ε.

Since H is constant on (−∞, 0] and [1,∞), we can take G to be
the set G = G′ ∩ (−1, 2).

Step 2. If β > 0, let

Aβ =
{
x ∈ F ∩ [0, 1] : lim sup

r→0

λ(B(x, r))

m(B(x, r))
> β

}
.

The second step is to show that m(Aβ) = 0. If x ∈ Aβ , then
x ∈ F ⊂ G, and there exists an open ball Bx centered at x and
contained in G such that λ(Bx)/m(Bx) > β. Use Proposition 14.1
to find a disjoint subsequence B1, B2, . . . such that

m(Aβ) ≤ 5

∞∑
i=1

m(Bi).
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Then

m(Aβ) ≤ 5

∞∑
i=1

m(Bi) ≤
5

β

∞∑
i=1

λ(Bi) ≤
5

β
λ(G) ≤ 5

β
ε.

Since ε is arbitrary, and our construction of G did not depend on
β, then m(Aβ) = 0.

Since m(A1/k) = 0 for each k, then

m({x ∈ F ∩ [0, 1] : lim sup
r→0

λ(B(x, r))/m(B(x, r)) > 0}) = 0.

Since m(E) = 0, this completes the proof.

Proposition 14.7 Let F : R→ R be an increasing and right con-
tinuous function. Then F ′ exists a.e. Moreover, F ′ is locally inte-

grable and for every a < b,
∫ b
a
F ′(x) dx ≤ F (b)− F (a).

Proof. We will show F is differentiable a.e. on [0, 1]. Once we have
that, the same argument can be used to show that F is differen-
tiable a.e. on [−N,N ] for each N , and that proves that F is differ-
entiable a.e. on R. If we redefine F so that F (x) = limy→0+ F (y)
if x ≤ 0 and F (x) = F (1) if x > 1, then F is still right continuous
and increasing, and we have not affected the differentiability of F
on [0, 1] except possibly at the points 0 and 1.

Let ν be the Lebesgue-Stieltjes measure defined in terms of F .
By the Lebesgue decomposition theorem, we can write ν = λ+ ρ,
where λ ⊥ m and ρ� m. Note

ρ([0, 1]) ≤ ν([0, 1]) = F (1)− F (0).

By the Radon-Nikodym theorem there exists a non-negative inte-
grable function f such that ρ(A) =

∫
A
f dm for each measurable

A.

Let

H(x) = λ((0, x]) = ν((0, x])−ρ((0, x]) = F (x)−F (0)−
∫ x

0

f(y) dy.

By Exercise 7.6, the function x →
∫ x

0
f(y) dy is continuous, so

H is right continuous, increasing, and λ is the Lebesgue-Stieltjes
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measure defined in terms of H. By Lemma 14.6,

lim sup
h→0+

H(x+ h)−H(x)

h
≤ lim sup

h→0+

H(x+ h)−H(x− h)

h

= lim sup
h→0+

λ((x− h, x+ h])

h

≤ 4 lim sup
h→0+

λ(B(x, 2h))

4h
= 0

for almost every x. The same is true for the left hand derivative,
so H ′ exists and equals 0 for almost every x. We saw by Theo-
rem 14.5 that the function x →

∫ x
0
f(y) dy is differentiable almost

everywhere, and we conclude that F is differentiable a.e.

We have shown that F ′ = f a.e. If a < b,∫ b

a

F ′(x) dx =

∫ b

a

f(x) dx = ρ((a, b]) ≤ ν((a, b]) = F (b)− F (a).

This completes the proof.

Here is the main theorem on the differentiation of increasing
functions.

Theorem 14.8 If F : R → R is increasing, then F ′ exists a.e.
and ∫ b

a

F ′(x) dx ≤ F (b)− F (a) (14.3)

whenever a < b.

Proof. Let G(x) = limy→x+ F (y). Since F is increasing, there
are at most countably many values of x where F is not continuous
(Proposition 1.6), so F (x) = G(x) a.e. Since G is increasing and
right continuous, G is differentiable a.e. by Proposition 14.7. We
will show that if x is a point where G is differentiable and at the
same time F (x) = G(x), then F ′(x) exists and is equal to G′(x).

Let x be such a point, let L = G′(x) and let ε > 0. Because F
and G are increasing, for any h > 0 there exists a point xh strictly
between x+ h and x+ (1 + ε)h where F and G agree, and so

F (x+ h) ≤ F (xh) = G(xh) ≤ G(x+ (1 + ε)h).
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Then

lim sup
h→0+

F (x+ h)− F (x)

h
≤ lim sup

h→0+

G(x+ (1 + ε)h)−G(x)

h

= (1 + ε) lim sup
h→0+

G(x+ (1 + ε)h)−G(x)

(1 + ε)h

= (1 + ε)L.

Similarly, lim infh→0+[F (x + h) − F (x)]/h ≥ (1 − ε)L. Since ε
is arbitrary, the right hand derivative of F exists at x and is equal
to L. That the left hand derivative equals L is proved similarly.

Since F ′ = G′ a.e., then F ′ is locally integrable. If a < b, take
an ↓ a and bn ↑ b such that F and G agree on an and bn. Then
using Proposition 14.7,

F (b)− F (a) ≥ F (bn)− F (an)

= G(bn)−G(an) ≥
∫ bn

an

G′(x) dx

=

∫ bn

an

F ′(x) dx.

Now let n→∞ and use the monotone convergence theorem.

Remark 14.9 Note that if F is the Cantor-Lebesgue function,
then F ′(x) = 0 a.e., in fact at every point of Cc, where C is the
Cantor set. Thus

1 = F (1)− F (0) > 0 =

∫ 1

0

F ′(x) dx,

and we do not in general have equality in (14.3).

A real-valued function f is of bounded variation on [a, b] if

sup
{ k∑
i=1

|f(xi)− f(xi−1)|
}

is finite, where the supremum is over all partitions a = x0 < x1 <
· · · < xk = b of [a, b].
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Lemma 14.10 If f is of bounded variation on [a, b], then f can be
written as f = f1 − f2, the difference of two increasing functions
on [a, b].

Proof. Define

f1(y) = sup
{ k∑
i=1

[f(xi)− f(xi−1)]+
}

and

f2(y) = sup
{ k∑
i=1

[f(xi)− f(xi−1)]−
}
,

where the supremum is over all partitions a = x0 < x1 < · · · <
xk = y for y ∈ [a, b]. f1 and f2 are measurable since they are both
increasing. Since

k∑
i=1

[f(xi)− f(xi−1)]+ =

k∑
i=1

[f(xi)− f(xi−1)]− + f(y)− f(a),

taking the supremum over all partitions of [a, y] yields

f1(y) = f2(y) + f(y)− f(a).

Clearly f1 and f2 are increasing in y, and the result follows by
solving for f(y).

Using this lemma and Theorem 14.8, we see that functions of
bounded variation are differentiable a.e. Note that the converse
is not true: the function sin(1/x) defined on (0, 1] is differentiable
everywhere, but is not of bounded variation.

Remark 14.11 If we write a function f of bounded variation as
the difference of two increasing functions f1 and f2 as in Lemma
14.10, then the quantity (f1(b)+f2(b))−(f1(a)+f2(a)) is called the
total variation of f on the interval [a, b]. We make the observation
that if f is of bounded variation on the interval [a, b] and on the
interval [b, c], then it is of bounded variation on the interval [a, c].

Remark 14.12 If f is an increasing function [a, b] that is continu-
ous from the right, we can write f = f1−f2, where f1 is continuous
and

f2(x) =
∑
a<t≤x

(f(t)− f(t−)).
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Only countably many of the summands in the definition of f2 can be
non-zero in view of Proposition 1.6, each summand is non-negative,
and the sum is finite because it is bounded by f(x)− f(a). Using
Lemma 14.10, we can similarly decompose any function of bounded
variation that is continuous from the right.

14.4 Absolutely continuous functions

A real-valued function f is absolutely continuous on [a, b] if given ε

there exists δ such that
∑k
i=1 |f(bi)−f(ai)| < ε whenever {(ai, bi)}

is a finite collection of disjoint intervals with
∑k
i=1 |bi − ai| < δ.

It is easy to see that absolutely continuous functions are con-
tinuous and that the Cantor-Lebesgue function is not absolutely
continuous.

Lemma 14.13 If f is absolutely continuous, then it is of bounded
variation.

Proof. By the definition of absolutely continuous function with
ε = 1, there exists δ such that

∑k
i=1 |f(bi) − f(ai)| < 1 whenever∑k

i=1(bi−ai) ≤ δ and the (ai, bi) are disjoint open intervals. Hence
for each j the total variation of f on [a + jδ, a + (j + 1)δ] is less
than or equal to 1. Using Remark 14.11, we see the total variation
of f on [a, b] is finite.

Lemma 14.14 Suppose f is of bounded variation and we decom-
pose f as f = f1 − f2 as in Lemma 14.10, where f1 and f2 are
increasing functions. If f is absolutely continuous, then so are f1

and f2.

Proof. Given ε there exists δ such that
∑k
i=1 |f(bi) − f(ai)| <

ε whenever
∑k
i=1(bi − ai) ≤ δ and the (ai, bi) are disjoint open

intervals. Partitioning each interval (ai, bi) into subintervals with
ai = si0 < si1 < · · · < siJi = bi, then

k∑
i=1

Ji−1∑
j=0

(si,j+1 − sij) =

k∑
i=1

(bi − ai) ≤ δ.



120 CHAPTER 14. DIFFERENTIATION

Hence
k∑
i=1

Ji−1∑
j=0

|f(si,j+1)− f(sij)| ≤ ε.

Taking the supremum over all such partitions,

k∑
i=1

|(f1 + f2)(bi)− (f1 + f2)(ai)| ≤ ε,

and our conclusion follows.

Here is the main theorem on absolutely continuous functions.

Theorem 14.15 If F is absolutely continuous, then F ′ exists a.e.,
and ∫ b

a

F ′(x) dx = F (b)− F (a).

Proof. By Lemma 14.14 it suffices to suppose F is increasing and
absolutely continuous. Let ν be the Lebesgue-Stieltjes measure de-
fined in terms of F . Since F is continuous, F (d)−F (c) = ν((c, d)).

Taking a limit as k →∞, we see that given ε there exists δ such
that

∑∞
i=1 |F (bi)− F (ai)| ≤ ε whenever {(ai, bi)} is a collection of

disjoint intervals with
∑∞
i=1(bi−ai) < δ. Since any open set G can

be written as the union of disjoint intervals {(ai, bi)}, this can be
rephrased as saying, given ε there exists δ such that

ν(G) =

∞∑
i=1

ν((ai, bi)) =

∞∑
i=1

(F (bi)− F (ai)) ≤ ε

whenever G is open and m(G) < δ. If m(A) < δ and A is Borel
measurable, then there exists an open set G containing A such that
m(G) < δ, and then ν(A) ≤ ν(G) ≤ ε. We conclude that ν � m.

Hence there exists a non-negative integrable function f such
that

ν(A) =

∫
A

f dm

for all Borel measurable sets A. In particular, for each x ∈ [a, b],

F (x)− F (a) = ν((a, x)) =

∫ x

a

f(y) dy.
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By Theorem 14.5, F ′ exists and is equal to f a.e. Setting x = b we
obtain

F (b)− F (a) =

∫ b

a

F ′(y) dy

as desired.

14.5 Approach 2 – differentiability

In this and the following two sections we give an alternative ap-
proach to Theorems 14.5, 14.8, and 14.15 that avoids the use of
the Radon-Nikodym theorem, and instead proceeds via a covering
lemma due to Vitali.

Let m be Lebesgue measure. Let E ⊂ R be a measurable set
and let G be a collection of intervals. We say G is a Vitali cover of
E if for each x ∈ E and each ε > 0 there exists an interval G ∈ G
containing x whose length is less than ε.

The following is known as the Vitali covering lemma, and is a
refinement of Proposition 14.1.

Lemma 14.16 Suppose E has finite measure and let G be a Vitali
cover of E. Given ε > 0 there exists a finite subcollection of disjoint
intervals I1, . . . , In ∈ G such that m(E − ∪ni=1In) < ε.

Proof. We may replace each interval in G by a closed one, since
the set of endpoints of a finite subcollection will have measure 0.

Let G be an open set of finite measure containing E. Since G is
a Vitali cover, we may suppose without loss of generality that each
set of G is contained in G. Let

a0 = sup{m(I) : I ∈ G}.

Let I1 be any element of G with m(I1) ≥ a0/2. Let

a1 = sup{m(I) : I ∈ G, I disjoint from I1},

and choose I2 ∈ G disjoint from I1 such that m(I2) ≥ a1/2. Con-
tinue in this way, choosing In+1 disjoint from I1, . . . , In and in G
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with length at least one half as large as any other such interval in
G that is disjoint from I1, . . . , In.

If the process stops at some finite stage, we are done. If not, we
generate a sequence of disjoint intervals I1, I2, . . . Since they are
disjoint and all contained in G, then

∑∞
i=1m(Ii) ≤ m(G) < ∞.

Therefore there exists N such that
∑∞
i=N+1m(Ii) < ε/5.

Let R = E−∪Ni=1Ii. We claim m(R) < ε. Let I∗n be the interval
with the same center as In but five times the length. Let x ∈ R.
Since we supposed each interval in G was to be modified so as to
include its endpoints, then ∪ni=1Ii is closed. Hence there exists
an interval I ∈ G containing x with I disjoint from I1, . . . , IN .
Since

∑
nm(In) <∞, then

∑
n an ≤ 2

∑
nm(In) <∞, and an →

0. Hence I must either be one of the In for some n > N or at
least intersect it, for otherwise we would have chosen I at some
stage. Let n be the smallest integer such that I intersects In; note
n > N . We have m(I) ≤ an−1 ≤ 2m(In). Since x is in I and I
intersects In, the distance from x to the midpoint of In is at most
m(I) +m(In)/2 ≤ (5/2)m(In). Therefore x ∈ I∗n.

Thus we have R ⊂ ∪∞i=N+1I
∗
i , so

m(R) ≤
∞∑

i=N+1

m(I∗i ) = 5

∞∑
i=N+1

m(Ii) < ε.

This completes the proof.

Given a real-valued function f , we define the derivates of f at
x by

D+f(x) = lim sup
h→0+

f(x+ h)− f(x)

h
,

D−f(x) = lim sup
h→0−

f(x+ h)− f(x)

h
,

D+f(x) = lim inf
h→0+

f(x+ h)− f(x)

h
,

D−f(x) = lim inf
h→0−

f(x+ h)− f(x)

h
.

If all the derivates are equal, then f is differentiable at x and f ′(x)
is the common value.
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Theorem 14.17 Suppose f is increasing on [a, b]. Then f is dif-
ferentiable almost everywhere, f ′ is integrable, and∫ b

a

f ′(x) dx ≤ f(b)− f(a). (14.4)

Proof. We will show that the set where any two derivates are
unequal has measure zero. Let us consider the set

E = {x : D+f(x) > D−f(x)},

the other sets being similar. Let

Euv = {x : D+f(x) > v > u > D−f(x)}.

If we show m(Euv) = 0, then observing that E ⊂ ∪u,v∈Q,u<vEuv
will show that m(E) = 0.

Let s = m(Euv), let ε > 0, and choose an open set G such
that Euv ⊂ G and m(G) < s + ε. For each x ∈ Euv there exists
an arbitrarily small interval [x − h, x] contained in G such that
f(x) − f(x − h) < uh. Use Lemma 14.16 to choose I1, . . . , IN
which are disjoint and whose interiors cover a subset A of Euv of
measure greater than s− ε. Write In = [xn − hn, xn]. Thus

A = Euv ∩ (∩Nn=1(xn − hn, xn)).

Taking a sum,

N∑
n=1

[f(xn)− f(xn − hn)] < u

n∑
n=1

hn < um(G) < u(s+ ε).

Each point y in the subset A is the left endpoint of an arbitrarily
small interval (y, y+ k) that is contained in some In and for which
f(y + k) − f(y) > vk. Using Lemma 14.16 again, we pick out a
finite collection J1, . . . , JM whose union contains a subset of A of
measure larger than s− 2ε. Summing over these intervals yields

M∑
i=1

[f(yi + ki)− f(yi)] > v

M∑
i=1

ki > v(s− 2ε).

Each interval Ji is contained in some interval In, and if we sum
over those i for which Ji ⊂ In we find∑

{i:Ji⊂In}

[f(yi + ki)− f(yi)] ≤ f(xn)− f(xn − hn),
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since f is increasing. Thus

N∑
n=1

[f(xn)− f(xn − hn)] ≥
M∑
i=1

[f(yi + ki)− f(yi)],

and so u(s + ε) > v(s − 2ε). This is true for each ε, so us ≥ vs.
Since v > u, this implies s = 0.

We prove similarly that D+f = D+f a.e. and D−f = D−f a.e.
and conclude that

g(x) = lim
h→0

f(x+ h)− f(x)

h

is defined almost everywhere and that f is differentiable wherever
g is finite.

Define f(x) = f(b) if x ≥ b. Let

gn(x) = n[f(x+ 1/n)− f(x)].

Then gn(x)→ g(x) for almost all x, and so g is measurable. Since
f is increasing, gn ≥ 0. By Fatou’s lemma and the fact that f is
increasing, ∫ b

a

g ≤ lim inf
n

∫ b

a

gn

= lim inf
n

n

∫ b

a

[f(x+ 1/n)− f(x)]

= lim inf
n

[
n

∫ b+1/n

b

f − n
∫ a+1/n

a

f
]

= lim inf
n

[
f(b)− n

∫ a+1/n

a

f
]

≤ f(b)− f(a).

We used a change of variables in the second equality. This shows
that g is integrable and hence finite almost everywhere.

We refer the reader to Lemma 14.10 to see that a function of
bounded variation is differentiable almost everywhere.
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14.6 Approach 2 – antiderivatives

Continuing the alternative approach, we look at when the deriva-
tive of

F (x) =

∫ x

a

f(t) dt (14.5)

is equal to f(x) a.e.

Theorem 14.18 If f is integrable and F is defined by (14.5), then
F ′(x) = f(x) for almost every x.

Proof. By writing f = f+ − f−, it suffices to consider the case
where f is non-negative. In this case F is increasing, and so F ′

exists a.e. By Exercise 7.6 we know F is continuous.

Suppose for the moment that f is bounded by K. Then∣∣∣F (x+ 1/n)− F (x)

1/n

∣∣∣ =
∣∣∣n ∫ x+1/n

x

f(t) dt
∣∣∣

is also bounded by K. By the dominated convergence theorem,∫ c

a

F ′(x) dx = lim
n
n

∫ c

a

[F (x+ 1/n)− F (x)] dx

= lim
n

[
n

∫ c+1/n

c

F (x) dx− n
∫ a+c

a

F (x) dx
]

= F (c)− F (a) =

∫ c

a

f(x) dx.

We used a change of variables for the second equality and the fact
that F is continuous for the third equality. Therefore∫ c

a

[F ′(x)− f(x)] dx = 0

for all c, which implies F ′ = f a.e. by Corollary 8.3.

We continue to assume f is non-negative but now allow f to be
unbounded. Since f − (f ∧K) ≥ 0, then

GK(x) =

∫ x

a

[f − (f ∧K)] dx
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is increasing, and hence has a derivative almost everywhere. More-
over,

G′K(x) = lim
n→∞

GK(x+ 1/n)−GK(x)

1/n
≥ 0

at points x where G′ exists since G is increasing. By the preceding
paragraph, we know the derivative of

HK(x) =

∫ x

a

(f ∧K) dx

is equal to f ∧K almost everywhere. Therefore

F ′(x) = G′K(x) +H ′K(x) ≥ (f ∧K)(x), a.e.

Since K is arbitrary, F ′ ≥ f a.e., and so∫ b

a

F ′ ≥
∫ b

a

f = F (b)− F (a).

Combining with (14.4) we conclude that
∫ b
a

[F ′ − f ] = 0. Since
F ′ − f ≥ 0 a.e., this tells us that F ′ = f a.e.

14.7 Approach 2 – absolute continuity

Finally, we continue the alternative approach to look at when∫ b
a
F ′(y) dy = F (b)− F (a).

We refer the reader to Lemma 14.13 for the proof that if f is
absolutely continuous, then it is of bounded variation.

Lemma 14.19 If f is absolutely continuous on [a, b] and f ′(x) = 0
a.e., then f is constant.

The Cantor-Lebesgue function is an example to show that we
need the absolute continuity.

Proof. Let c ∈ [a, b], let E = {x ∈ [a, c] : f ′(x) = 0}, and let

ε > 0. Choose δ such that
∑K
i=1 |f(bi) − f(ai)| < ε whenever∑K

i=1 |bi − ai| ≤ δ and the (ai, bi) are disjoint intervals. For each
point x ∈ E∩[a, c) there exist arbitrarily small intervals [x, x+h] ⊂
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[a, c] such that |f(x + h) − f(x)| < εh. By Lemma 14.16 we can
find a finite disjoint collection of such intervals that cover all of
E except for a set of measure less than δ. We label the intervals
[ai, bi] so that ai < bi ≤ ai+1. Except for a set of measure less
than δ, E is covered by ∪i(ai, bi). This implies that ∪i(bi, ai+1)
has measure less than δ, or

∑
i |ai+1 − bi| ≤ δ. By our choice of δ

and the definition of absolute continuity,∑
i

|f(ai+1)− f(bi)| < ε.

On the other hand, by our choice of the intervals (ai, bi),∑
i

|f(bi)− f(ai)| < ε
∑
i

(bi − ai) ≤ ε(c− a).

Adding these two inequalities together,

|f(c)− f(a)| =
∣∣∣∑
i

[f(ai+1)− f(bi)] +
∑
i

[f(bi)− f(ai)]
∣∣∣

≤ ε+ ε(c− a).

Since ε is arbitrary, then f(c) = f(a), which implies that f is
constant.

Theorem 14.20 If F is absolutely continuous, then

F (b)− F (a) =

∫ b

a

F ′(y) dy.

Proof. Suppose F is absolutely continuous on [a, b]. Then F is of
bounded variation, so F = F1−F2 where F1 and F2 are increasing,
and F ′ exists a.e. Since |F ′(x)| ≤ F ′1(x) + F ′2(x), then∫

|F ′(x)| dx ≤ (F1(b) + F2(b))− (F1(a)− F2(a)),

and hence F ′ is integrable. If

G(x) =

∫ x

a

F ′(t) dt,

then G is absolutely continuous by Exercise 14.2, and hence F −G
is absolutely continuous. Then (F −G)′ = F ′ −G′ = F ′ − F ′ = 0
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a.e., using Theorem 14.18 for the second equality. By Lemma 14.19,
F − G is constant, and thus F (x) − G(x) = F (a) − G(a). We
conclude

F (x) =

∫ x

a

F ′(t) dt+ F (a).

If we set x = b, we get our result.

14.8 Exercises

Exercise 14.1 (1) Show that if f and g are absolutely continuous
on an interval [a, b], then the product fg is also.
(2) Prove the integration by parts formula:

fb)g(b)− f(a)g(a) =

∫ b

a

f(x)g′(x) dx+

∫ b

a

f ′(x)g(x) dx.

Exercise 14.2 If f is integrable and real-valued, a ∈ R, and

F (x) =

∫ x

a

f(y) dy,

prove that F is of bounded variation and is absolutely continuous.

Exercise 14.3 Suppose that f is a real-valued continuous function
on [0, 1] and that ε > 0. Prove that there exists a continuous
function g such that g′(x) exists and equals 0 for a.e. x and

sup
x∈[0,1]

|f(x)− g(x)| < ε.

Exercise 14.4 Suppose f is a real-valued continuous function on
[0, 1] and f is absolutely continuous on (a, 1] for every a ∈ (0, 1). Is
f necessarily absolutely continuous on [0, 1]? If f is also of bounded
variation on [0, 1], is f absolutely continuous on [0, 1]? If not, give
counterexamples.

Exercise 14.5 A real-valued function f is Lipschitz with constant
M if

|f(x)− f(y)| ≤M |x− y|
for all x, y ∈ R. Prove that f is Lipschitz with constant M if and
only if f is absolutely continuous and |f ′| ≤M a.e.
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Exercise 14.6 Suppose Fn is a sequence of increasing non-nega-
tive right continuous functions on [0, 1] such that supn Fn(1) <∞.
Let F =

∑∞
n=1 Fn and suppose F (1) <∞. Prove that

F ′(x) =

∞∑
n=1

F ′n(x)

for almost every x.

Exercise 14.7 Suppose f is absolutely continuous on [0, 1] and
for A ⊂ [0, 1] we let f(A) = {f(x) : x ∈ A}. Prove that if A has
Lebesgue measure 0, then f(A) has Lebesgue measure 0.

Exercise 14.8 If f is real-valued and differentiable at each point
of [0, 1], is f necessarily absolutely continuous on [0, 1]? If not, find
a counterexample.

Exercise 14.9 Find an increasing function f such that f ′ = 0 a.e.
but f is not constant on any open interval.

Exercise 14.10 If f : [a, b] → R is continuous, let M(y) be the
number of points x in [a, b] such that f(x) = y. M(y) may be
finite or infinite. Prove that M is Borel measurable and

∫
M(y) dy

equals the total variation of f on [a, b].

Exercise 14.11 Let α ∈ (0, 1). Find a Borel subset E of [−1, 1]
such that

lim
r→0+

m(E ∩ [−r, r])
2r

= α.

Exercise 14.12 Suppose f is a real-valued continuous function
on [a, b] and the derivate D+f is non-negative on [a, b]. Prove that
f(b) ≥ f(a). What if instead we have that D+f is non-negative on
[a, b]?

Exercise 14.13 Let

f(x) =

∫ ∞
−∞

e−xy
2

1 + y2
dy.

(1) Find the derivative of f .
(2) Find an ordinary differential equation that f solves. Find the
solution to this ordinary differential equation to determine an ex-
plicit value for f(x).
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Exercise 14.14 Let (X,A, µ) be a measure space where µ(X) > 0
and let f be a real-valued integrable function. Define

g(x) =

∫
|f(y)− x|µ(dy)

for x ∈ R.
(1) Prove that g is absolutely continuous.
(2) Prove that limx→∞ g(x) =∞ and limx→−∞ g(x) =∞.
(3) Find g′(x) and prove that g(x0) = infx∈R g(x) if and only if

µ({y : f(y) > x0}) = µ({y : f(y) < x0}).

Exercise 14.15 Suppose A ⊂ [0, 1] has Lebesgue measure zero.
Find an increasing function f : [0, 1] → R that is absolutely con-
tinuous, but

lim
h→0

f(x+ h)− f(x)

h
=∞

for each x ∈ A.

Exercise 14.16 Suppose that µ is a measure on the Borel σ-
algebra on [0, 1] and for every f that is real-valued and continuously
differentiable we have∣∣∣ ∫ f ′(x)µ(dx)

∣∣∣ ≤ (∫ 1

0

f(x)2 dx
)1/2

.

(1) Show that µ is absolutely continuous with respect to Lebesgue
measure on [0, 1].
(2) If g is the Radon-Nikodym derivative of µ with respect to
Lebesgue measure, prove that there exists a constant c > 0 such
that

|g(x)− g(y)| ≤ c|x− y|1/2, x, y ∈ [0, 1].

Exercise 14.17 Let p > 1 and f, g ∈ Lp(R). Define

H(t) =

∫ ∞
−∞
|f(x) + tg(x)|p dx

for t ∈ R. Prove that H is a differentiable function and find its
derivative.



Chapter 15

Lp spaces

We introduce some spaces of functions, called the Lp spaces. We
define the Lp norm of a function, prove completeness of the norm,
discuss convolutions, and consider the bounded linear functionals
on Lp. We assume throughout this chapter that the measure µ is
σ-finite.

15.1 Norms

Let (X,A, µ) be a σ-finite measure space. For 1 ≤ p < ∞, define
the Lp norm of f by

‖f‖p =
(∫
|f(x)|p dµ

)1/p

. (15.1)

For p =∞, define the L∞ norm of f by

‖f‖∞ = inf{M : µ({x : |f(x)| ≥M}) = 0}. (15.2)

Thus the L∞ norm of a function f is the smallest number M such
that |f | ≤M a.e.

For 1 ≤ p ≤ ∞ the space Lp is the set {f : ‖f‖p < ∞}. One
can also write Lp(X) or Lp(µ) if one wants to emphasize the space
or the measure. It is clear that ‖f‖p = 0 if and only if f = 0 a.e.

If 1 < p <∞, we define q by

1

p
+

1

q
= 1

131
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and call q the conjugate exponent of p.

Basic to the study of Lp spaces is Hölder’s inequality. Note that
when p = q = 2, this is the Cauchy-Schwarz inequality.

Proposition 15.1 If 1 < p, q <∞ and p−1 + q−1 = 1, then∫
|fg| dµ ≤ ‖f‖p‖g‖q.

This also holds if p =∞ and q = 1.

Proof. If M = ‖f‖∞, then |f | ≤ M a.e. and
∫
|fg| ≤ M

∫
|g|.

The case p =∞ and q = 1 follows.

Now let us assume 1 < p, q < ∞. If ‖f‖p = 0, then f = 0 a.e.
and

∫
|fg| = 0, so the result is clear if ‖f‖p = 0 and similarly if

‖g‖q = 0. Let F (x) = |f(x)|/‖f‖p and G(x) = |g(x)|/‖g‖q. Note
‖F‖p = 1 and ‖G‖q = 1, and it suffices to show that

∫
FGdµ ≤ 1.

The second derivative of the function ex is again ex, which is
everywhere positive. Any function whose second derivative is ev-
erywhere non-negative is convex, so if 0 ≤ λ ≤ 1, we have

eλa+(1−λ)b ≤ λea + (1− λ)eb (15.3)

for every pair of reals a ≤ b. If F (x), G(x) 6= 0, let a = p logF (x),
b = q logG(x), λ = 1/p, and 1 − λ = 1/q. We then obtain from
(15.3) that

F (x)G(x) ≤ F (x)p

p
+
G(x)q

q
.

Clearly this inequality also holds if F (x) = 0 or G(x) = 0. Inte-
grating, ∫

FGdµ ≤
‖F‖pp
p

+
‖G‖qq
q

=
1

p
+

1

q
= 1.

This completes the proof.

One application of Hölder’s inequality is to prove Minkowski’s
inequality, which is simply the triangle inequality for Lp.

We first need the following lemma:

Lemma 15.2 If a, b ≥ 0 and 1 ≤ p <∞, then

(a+ b)p ≤ 2p−1ap + 2p−1bp. (15.4)
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Proof. The case a = 0 is obvious, so we assume a > 0. Dividing
both sides by ap, letting x = b/a, and setting

f(x) = 2p−1 + 2p−1xp − (1 + x)p,

the inequality we want to prove is equivalent to showing f(x) ≥ 0
for x ≥ 0. Note f(0) > 0, f(1) = 0, limx→∞ f(x) = ∞, and the
only solution to f ′(x) = 0 on (0,∞) is x = 1. We conclude that f
takes its minimum at x = 1 and hence f(x) ≥ 0 for x ≥ 0.

Here is Minkowski’s inequality.

Proposition 15.3 If 1 ≤ p ≤ ∞, then

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Proof. Since |(f + g)(x)| ≤ |f(x)| + |g(x)|, integrating gives the
case when p = 1. The case p =∞ is also easy. Now let us suppose
1 < p <∞. If ‖f‖p or ‖g‖p is infinite, the result is obvious, so we
may assume both are finite. The inequality (15.4) with a = |f(x)|
and b = |g(x)| yields, after an integration,∫

|(f + g)(x)|p dµ ≤ 2p−1

∫
|f(x)|p dµ+ 2p−1

∫
|g(x)|p dµ.

We therefore have ‖f+g‖p <∞. Clearly we may assume ‖f+g‖p >
0.

Now write

|f + g|p ≤ |f | |f + g|p−1 + |g| |f + g|p−1

and apply Hölder’s inequality with q = (1− 1
p )−1. We obtain∫

|f+g|p ≤ ‖f‖p
(∫
|f+g|(p−1)q

)1/q

+‖g‖p
(∫
|f+g|(p−1)q

)1/q

.

Since p−1 + q−1 = 1, then (p− 1)q = p, so we have

‖f + g‖pp ≤
(
‖f‖p + ‖g‖p

)
‖f + g‖p/qp .

Dividing both sides by ‖f+g‖p/qp and using the fact that p−(p/q) =
1 gives us our result.
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Recall the definition of normed linear space from Chapter 1.
We would like to say that by virtue of Minkowski’s inequality, Lp

is a normed linear space. This is not quite right. The Lp norm of a
function satisfies all the properties of a norm except that ‖f‖p = 0
does not imply that f is the zero function, only that f = 0 a.e.
The procedure we follow to circumvent this is to say two functions
are equivalent if they differ on a set of measure 0. This is an
equivalence relation for functions. We then define the space Lp to
be the set of equivalence classes with respect to this equivalence
relation, and define ‖f‖p to be the Lp norm of any function in the
same equivalence class as f . We then have that ‖ · ‖p is a norm on
Lp. We henceforth keep this interpretation in the back of our minds
when we talk about a function being in Lp; the understanding is
that we identify functions that are equal a.e.

Recall Definition 10.1: fn converges to f in Lp if
∫
|fn−f |p → 0

as n→∞. In terms of Lp norms, this is equivalent to ‖fn−f‖pp → 0
as n→∞.

Related to the definition of L∞ is the following terminology.
Given a real-valued measurable function f , the essential supremum
and essential infimum are defined by

ess sup f = inf{M : µ({x : f(x) > M}) = 0}

and

ess inf f = sup{m : µ({x : f(x) < m}) = 0}.

15.2 Completeness

We show that the space Lp viewed as a metric space is complete.

Theorem 15.4 If 1 ≤ p ≤ ∞, then Lp is complete.

Proof. We will do only the case p <∞ and leave the case p =∞
as Exercise 15.1.

Step 1. Suppose fn is a Cauchy sequence in Lp. Our first step is
to find a certain subsequence. Given ε = 2−(j+1), there exists nj
such that if n,m ≥ nj , then ‖fn − fm‖p ≤ 2−(j+1). Without loss
of generality we may assume nj ≥ nj−1 for each j.
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Step 2. Set n0 = 0 and define f0 to be identically 0. Our candidate
for the limit function will be

∑
m(fnm − fnm−1). In this step we

show absolute convergence of this series.

Set gj(x) =
∑j
m=1 |fnm(x) − fnm−1

(x)|. Of course, gj(x) in-
creases in j for each x. Let g(x), which might be infinite, be the
limit. By Minkowski’s inequality

‖gj‖p ≤
j∑

m=1

‖fnm − fnm−1
‖p

≤ ‖fn1 − fn0‖p +

j∑
m=2

2−m

≤ ‖fn1
‖p + 1

2 .

By Fatou’s lemma,∫
|g(x)|p µ(dx) ≤ lim

j→∞

∫
|gj(x)|p µ(dx)

= lim
j→∞

‖gj‖pp

≤ 1
2 + ‖fn1‖p.

Hence g is finite a.e. This proves the absolute convergence for
almost every x.

Step 3. We define our function f . Set

f(x) =

∞∑
m=1

[fnm(x)− fnm−1
(x)].

We showed in Step 2 that this series is absolutely convergent for
almost every x, so f is well defined for a.e. x. Set f(x) = 0 for any
x where absolute convergence does not hold. We have

f(x) = lim
K→∞

K∑
m=1

[fnm(x)− fnm−1(x)] = lim
K→∞

fnK (x)

since we have a telescoping series. By Fatou’s lemma,

‖f − fnj‖pp =

∫
|f − fnj |p ≤ lim inf

K→∞

∫
|fnK − fnj |p

= lim inf
K→∞

‖fnK − fnj‖pp ≤ 2(−j+1)p.
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Step 4. We have thus shown that ‖f − fnj‖p → 0 as j →∞. It is
standard that a Cauchy sequence with a convergent subsequence
itself converges. Here is the proof in our case. Given ε > 0, there
exists N such that ‖fn − fm‖p < ε if m,n ≥ N . In particular,
‖fnj − fm‖p < ε if j is large enough. By Fatou’s lemma,

‖f − fm‖pp ≤ lim inf
j→∞

‖fnj − fm‖pp ≤ εp

if m ≥ N . This shows that fm converges to f in Lp norm.

Next we show:

Proposition 15.5 The set of continuous functions with compact
support is dense in Lp(R) for 1 ≤ p <∞.

Proof. Suppose f ∈ Lp. We have
∫
|f −fχ[−n,n]|p → 0 as n→∞

by the dominated convergence theorem, the dominating function
being |f |p. Hence it suffices to approximate functions in Lp that
have compact support. By writing f = f+ − f− we may suppose
f ≥ 0. Consider simple functions sm increasing to f ; then we
have

∫
|f − sm|p → 0 by the dominated convergence theorem, so

it suffices to approximate simple functions with compact support.
By linearity, it suffices to approximate characteristic functions with
compact support. Given E, a Borel measurable set contained in
a bounded interval, and ε > 0, we showed in Proposition 8.4 that
there exists g continuous with compact support and with values in
[0, 1] such that

∫
|g−χE | < ε. Since |g−χE | ≤ 1, then

∫
|g−χE |p ≤∫

|g − χE | < ε. This completes the proof.

The same proof shows the following corollary.

Corollary 15.6 The set of continuous functions on [a, b] are dense
in the space L2([a, b]) with respect to L2([a, b]) norm.

15.3 Convolutions

The convolution of two measurable functions f and g is defined by

f ∗ g(x) =

∫
f(x− y)g(y) dy,
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provided the integral exists. By a change of variables, this is the
same as

∫
f(y)g(x− y) dy, so f ∗ g = g ∗ f .

Proposition 15.7 If f, g ∈ L1, then f ∗ g is in L1 and

‖f ∗ g‖1 ≤ ‖f‖1‖g‖1. (15.5)

Proof. We have∫
|f ∗ g(x)| dx ≤

∫ ∫
|f(x− y)| |g(y)| dy dx. (15.6)

Since the integrand on the right is non-negative, we can apply the
Fubini theorem to see that the right hand side is equal to∫ ∫

|f(x− y)| dx |g(y)| dy =

∫ ∫
|f(x)| dx |g(y)| dy (15.7)

= ‖f‖1‖g‖1.

The first equality here follows by a change of variables (see Exercise
8.1). This together with (15.6) proves (15.5). From (15.5) we
conclude that f ∗ g is finite a.e.

15.4 Bounded linear functionals

A linear functional on Lp is a map H from Lp to R satisfying

H(f + g) = H(f) +H(g), H(af) = aH(f)

whenever f, g ∈ Lp and a ∈ R. (One can also have complex-valued
linear functionals, but we do not consider them in this section. See,
however, Exercise 15.28.) H is a bounded linear functional if

‖H‖ = sup{|Hf | : ‖f‖p ≤ 1} (15.8)

is finite. The dual space of Lp is the collection of all bounded linear
functionals with norm given by (15.8). Our goal in this section is
to identify the dual of Lp.

We define the signum function or sign function by

sgn (x) =


−1, x < 0;

0, x = 0;

1, x > 0.
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Note x sgn (x) = |x|.

The following is very useful.

Theorem 15.8 For 1 < p <∞ and p−1 + q−1 = 1,

‖f‖p = sup
{∫

fg dµ : ‖g‖q ≤ 1
}
. (15.9)

When p = 1, (15.9) holds if we take q = ∞, and if p = ∞, (15.9)
holds if we take q = 1.

Proof. The right hand side of (15.9) is less than the left hand
side by Hölder’s inequality. Thus we need only show that the right
hand side is greater than the left hand side.

Case 1: p = 1. Take g(x) = sgn f(x). Then |g| is bounded by 1
and fg = |f |. This takes care of the case p = 1.

Case 2: p = ∞. If ‖f‖∞ = 0, the result is trivial, so suppose
‖f‖∞ > 0. Since µ is σ-finite, there exist sets Fn increasing up to
X such that µ(Fn) < ∞ for each n. If M = ‖f‖∞, let a be any
finite real less than M . By the definition of L∞ norm, the measure
of An = {x ∈ Fn : |f(x)| > a} must be positive if n is sufficiently
large. Let

gn(x) =
sgn (f(x))χAn(x)

µ(An)
.

Then the L1 norm of gn is 1 and
∫
fgn =

∫
An
|f |/µ(An) ≥ a. Since

a is arbitrary, the supremum on the right hand side of (15.9) must
be M .

Case 3: 1 < p < ∞. We may suppose ‖f‖p > 0. Let Fn be
measurable sets of finite measure increasing to X, qn a sequence of
non-negative simple functions increasing to f+, rn a sequence of
non-negative simple functions increasing to f−, and

sn(x) = (qn(x)− rn(x))χFn(x).

Then sn(x) → f(x) for each x, |sn(x)| increases to |f(x)| for each
x, each sn is a simple function, and ‖sn‖p < ∞ for each n. Then
‖sn‖p → ‖f‖p by the monotone convergence theorem, whether or
not ‖f‖p is finite. For n sufficiently large, ‖sn‖p > 0.

Let

gn(x) = (sgn f(x))
|sn(x)|p−1

‖sn‖p/qp

.
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gn is again a simple function. Since (p− 1)q = p, then

‖gn‖q =
(
∫
|sn|(p−1)q)1/q

‖sn‖p/qp

=
‖sn‖p/qp

‖sn‖p/qp

= 1.

On the other hand, since |f | ≥ |sn|,∫
fgn =

∫
|f | |sn|p−1

‖sn‖p/qp

≥
∫
|sn|p

‖sn‖p/qp

= ‖sn‖p−(p/q)
p .

Since p − (p/q) = 1, then
∫
fgn ≥ ‖sn‖p, which tends to ‖f‖p.

This proves the right hand side of (15.9) is at least as large as the
left hand side.

The proof of Theorem 15.8 also establishes

Corollary 15.9 For 1 < p <∞ and p−1 + q−1 = 1,

‖f‖p = sup
{∫

fg : ‖g‖q ≤ 1, g simple
}
.

Proposition 15.10 Suppose 1 < p < ∞, p−1 + q−1 = 1, and
g ∈ Lq. If we define H(f) =

∫
fg for f ∈ Lp, then H is a bounded

linear functional on Lp and ‖H‖ = ‖g‖q.

Proof. The linearity is obvious. That ‖H‖ ≤ ‖g‖q follows by
Hölder’s inequality. Using Theorem 15.8 and writing

‖H‖ = sup
‖f‖p≤1

|H(f)| = sup
‖f‖p≤1

∣∣∣ ∫ fg
∣∣∣ ≥ sup

‖f‖p≤1

∫
fg = ‖g‖q

completes the proof.

Theorem 15.11 Suppose 1 < p < ∞, p−1 + q−1 = 1, and H is
a real-valued bounded linear functional on Lp. Then there exists
g ∈ Lq such that H(f) =

∫
fg and ‖g‖q = ‖H‖.

This theorem together with Proposition 15.10 allows us to iden-
tify the dual space of Lp with Lq.
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Proof. Suppose we are given a bounded linear functional H on
Lp. First suppose µ(X) < ∞. Define ν(A) = H(χA). We will
show that ν is a measure, that ν � µ and that g = dν/dµ is the
function we seek.

If A and B are disjoint, then

ν(A ∪B) = H(χA∪B) = H(χA + χB)

= H(χA) +H(χB) = ν(A) + ν(B).

To show ν is countably additive, it suffices to show that if An ↑ A,
then ν(An) → ν(A), and then use Exercise 3.1. But if An ↑ A,
then χAn → χA in Lp, and so ν(An) = H(χAn)→ H(χA) = ν(A);
we use here the fact that µ(X) < ∞. We conclude that ν is a
countably additive signed measure. Moreover, if µ(A) = 0, then
χA = 0 a.e., hence ν(A) = H(χA) = 0. Using Exercise 13.1, which
is the Radon-Nikodym theorem for signed measures, we see there
exists a real-valued integrable function g such that ν(A) =

∫
A
g for

all sets A.

If s =
∑
i aiχAi is a simple function, by linearity we have

H(s) =
∑
i

aiH(χAi) =
∑
i

aiν(Ai) =
∑
i

ai

∫
gχAi =

∫
gs.

(15.10)
By Corollary 15.9 and (15.10),

‖g‖q = sup
{∫

gs : ‖s‖p ≤ 1, s simple
}

= sup{H(s) : ‖s‖p ≤ 1, s simple} ≤ ‖H‖.

If sn are simple functions tending to f in Lp (see Exercise 15.2),
then H(sn)→ H(f), while by Hölder’s inequality∣∣∣ ∫ sng −

∫
fg
∣∣∣ =

∣∣∣ ∫ (sn − f)g
∣∣∣ ≤ ‖sn − f‖p‖g‖q → 0,

so
∫
sng →

∫
fg. We thus have H(f) =

∫
fg for all f ∈ Lp, and

‖g‖q ≤ ‖H‖. By Hölder’s inequality, ‖H‖ ≤ ‖g‖q.

In the case where µ is σ-finite, but not necessarily finite, let
Fn ↑ X so that µ(Fn) < ∞ for each n. Define functionals Hn by
Hn(f) = H(fχFn). Clearly each Hn is a bounded linear functional
on Lp. Applying the above argument, we see there exist gn such
that Hn(f) =

∫
fgn and ‖gn‖q = ‖Hn‖ ≤ ‖H‖. It is easy to see
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that gn is 0 if x /∈ Fn. Moreover, by the uniqueness part of the
Radon-Nikodym theorem, if n > m, then gn = gm on Fm. Define
g by setting g(x) = gn(x) if x ∈ Fn. Then g is well defined. By
Fatou’s lemma, g is in Lq with a norm bounded by ‖H‖. Note
fχFn → f in Lp by the dominated convergence theorem. Since H
is a bounded linear functional on Lp, we have Hn(f) = H(fχFn)→
H(f). On the other hand

Hn(f) =

∫
Fn

fgn =

∫
Fn

fg →
∫
fg

by the dominated convergence theorem. Thus H(f) =
∫
fg. Again

by Hölder’s inequality ‖H‖ ≤ ‖g‖q.

15.5 Exercises

Exercise 15.1 Show that L∞ is complete.

Exercise 15.2 Prove that the collection of simple functions is
dense in Lp.

Exercise 15.3 Prove the equality∫
|f(x)|p dx =

∫ ∞
0

ptp−1m({x : |f(x)| ≥ t}) dt

for p ≥ 1.

Exercise 15.4 Consider the measure space ([0, 1],B,m), where B
is the Borel σ-algebra and m is Lebesgue measure, and suppose f
is a measurable function. Prove that ‖f‖p → ‖f‖∞ as p→∞.

Exercise 15.5 When does equality hold in Hölder’s inequality?
When does equality hold in the Minkowski inequality?

Exercise 15.6 Give an example to show that Lp 6⊂ Lq in general
if 1 < p < q < ∞. Give an example to show that Lq 6⊂ Lp in
general if 1 < p < q <∞.
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Exercise 15.7 Define

gn(x) = nχ[0,n−3](x).

(1) Show that if f ∈ L2([0, 1]), then∫ 1

0

f(x)gn(x) dx→ 0

as n→∞.
(2) Show that there exists f ∈ L1([0, 1]) such that

∫ 1

0
f(x)gn(x) dx

6→ 0.

Exercise 15.8 Suppose µ is a finite measure on the Borel subsets
of R such that

f(x) =

∫
R
f(x+ t)µ(dt), a.e.,

whenever f is real-valued, bounded, and integrable. Prove that
µ({0}) = 1.

Exercise 15.9 Suppose µ is a measure with µ(X) = 1 and f ∈ Lr
for some r > 0, where we define Lr for r < 1 exactly as in (15.1).
Prove that

lim
p→0
‖f‖p = exp

(∫
log |f | dµ

)
,

where we use the convention that exp(−∞) = 0.

Exercise 15.10 Suppose 1 < p <∞ and q is the conjugate expo-
nent to p. Suppose fn → f a.e. and supn ‖fn‖p < ∞. Prove that
if g ∈ Lq, then

lim
n→∞

∫
fng =

∫
fg.

Does this extend to the case where p = 1 and q =∞? If not, give
a counterexample.

Exercise 15.11 If f ∈ L1(R) and g ∈ Lp(R) for some p ∈ [1,∞),
prove that

‖f ∗ g‖p ≤ ‖f‖1‖g‖p.

Exercise 15.12 Suppose p ∈ (1,∞) and q is its conjugate expo-
nent. Prove that if f ∈ Lp(R) and g ∈ Lq(R), then f∗g is uniformly
continuous and f ∗ g(x)→ 0 as x→∞ and as x→ −∞.
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Exercise 15.13 Show that if f and g are continuous with compact
support, then f ∗ g is continuous with compact support.

Exercise 15.14 Suppose f ∈ L∞(R), fh(x) = f(x+ h), and

lim
h→0
‖fh − f‖∞ = 0.

Prove that there exists a uniformly continuous function g on R such
that f = g a.e.

Exercise 15.15 Let p ∈ [1,∞) and suppose µ is a finite measure.
Prove that f ∈ Lp(µ) if and only if

∞∑
n=1

(2n)pµ({x : |f(x)| > 2n}) <∞.

Exercise 15.16 Suppose µ(X) = 1 and f and g are non-negative
functions such that fg ≥ 1 a.e. Prove that(∫

f dµ
)(∫

g dµ
)
≥ 1.

Exercise 15.17 Suppose f : [1,∞)→ R, f(1) = 0, f ′ exists and is
continuous and bounded, and f ′ ∈ L2([1,∞)). Let g(x) = f(x)/x.
Show g ∈ L2([1,∞)).

Exercise 15.18 Find an example of a measurable f : [1,∞)→ R
such that f(1) = 0, f ′ exists and is continuous and bounded, f ′ ∈
L1([1,∞)), but the function g(x) = f(x)/x is not in L1.

Exercise 15.19 Prove the generalized Minkowski inequality : If
(X,A, µ) and (Y,B, ν) are measure spaces, f is measurable with
respect to A× B, and 1 < p <∞, then(∫

X

(∫
Y

|f(x, y)| ν(dy)
)p
µ(dx)

)1/p

≤
∫
Y

(∫
X

|f(x, y)|p µ(dx)
)1/p

ν(dy).

This could be rephrased as∥∥∥ ‖f‖L1(ν)

∥∥∥
Lp(µ)

≤
∥∥∥ ‖f‖Lp(µ)

∥∥∥
L1(ν)

.
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Does this extend to the cases where p = 1 or p = ∞? If not, give
counterexamples.

If Y = {1, 2}, ν(dy) = δ1(dy)+δ2(dy), where δ1 and δ2 are point
masses at 1 and 2, resp., and we let g1(x) = f(x, 1), g2(x) = f(x, 2),
we recover the usual Minkowski inequality, Proposition 15.3.

Exercise 15.20 Let α ∈ (0, 1) and K(x) = |x|−α for x ∈ R. Note
that K is not in Lp for any p ≥ 1. Prove that if f is non-negative,
real-valued, and integrable on R and

g(x) =

∫
f(x− t)K(t) dt,

then g is finite a.e.

Exercise 15.21 Suppose p > 1 and q is its conjugate exponent,
f is an absolutely continuous function on [0, 1] with f ′ ∈ Lp, and
f(0) = 0. Prove that if g ∈ Lq, then∫ 1

0

|fg| dx ≤
(1

p

)1/p

‖f ′‖p‖g‖q.

Exercise 15.22 Suppose f : R → R is in Lp for some p > 1 and
also in L1. Prove there exist constants c > 0 and α ∈ (0, 1) such
that ∫

A

|f(x)| dx ≤ cm(A)α

for every Borel measurable set A ⊂ R, where m is Lebesgue mea-
sure.

Exercise 15.23 Suppose f : R → R is integrable and there exist
constants c > 0 and α ∈ (0, 1) such that∫

A

|f(x)| dx ≤ cm(A)α

for every Borel measurable set A ⊂ R, where m is Lebesgue mea-
sure. Prove there exists p > 1 such that f ∈ Lp.

Exercise 15.24 Suppose 1 < p <∞, f : (0,∞)→ R, and f ∈ Lp
with respect to Lebesgue measure. Define

g(x) =
1

x

∫ x

0

f(y) dy.
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Prove that
‖g‖p ≤

p

p− 1
‖f‖p.

This is known as Hardy’s inequality.

Exercise 15.25 Suppose (X,A, µ) is a measure space and suppose
K : X × X → R is measurable with respect to A × A. Suppose
there exists M <∞ such that∫

X

|K(x, y)|µ(dy) ≤M

for each x and ∫
X

|K(x, y)|µ(dx) ≤M

for each y. If f is measurable and real-valued, define

Tf(x) =

∫
X

K(x, y)f(y)µ(dy)

if the integral exists.
(1) Show that ‖Tf‖1 ≤M‖f‖1.
(2) If 1 < p <∞, show that ‖Tf‖p ≤M‖f‖p.

Exercise 15.26 Suppose A and B are two Borel measurable sub-
sets of R, each with finite strictly positive Lebesgue measure. Show
that χA∗χB is a continuous non-negative function that is not iden-
tically equal to 0.

Exercise 15.27 Suppose A and B are two Borel measurable sub-
sets of R with strictly positive Lebesgue measure. Show that

C = {x+ y : x ∈ A, y ∈ B}

contains a non-empty open interval.

Exercise 15.28 Suppose 1 < p < ∞ and q is the conjugate ex-
ponent of p. Prove that if H is a bounded complex-valued lin-
ear functional on Lp, then there exists a complex-valued measur-
able function g ∈ Lq such that H(f) =

∫
fg for all f ∈ Lp and

‖H‖ = ‖g‖q.
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Chapter 16

Fourier transforms

Fourier transforms give a representation of a function in terms of
frequencies. There is a great deal known about Fourier transforms
and their applications. We give an introduction here.

16.1 Basic properties

If f is a complex-valued function and f ∈ L1(Rn), define the

Fourier transform f̂ to be the function with domain Rn and range
C given by

f̂(u) =

∫
Rn
eiu·xf(x) dx, u ∈ Rn. (16.1)

We are using u · x for the standard inner product in Rn. Various
books have slightly different definitions. Some put a negative sign
and/or 2π before the iu · x, some have a (2π)−1 or a (2π)−1/2 in
front of the integral. The basic theory is the same in any case.

Some basic properties of the Fourier transform are given by

Proposition 16.1 Suppose f and g are in L1. Then
(1) f̂ is bounded and continuous;

(2) ̂(f + g)(u) = f̂(u) + ĝ(u);

(3) (̂af)(u) = af̂(u) if a ∈ C;

(4) if a ∈ Rn and fa(x) = f(x+ a), then f̂a(u) = e−iu·af̂(u);
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(5) if a ∈ Rn and ga(x) = eia·xg(x), then ĝa(u) = ĝ(u+ a);

(6) if a is a non-zero real number and ha(x) = f(ax), then ĥa(u) =

a−nf̂(u/a).

Proof. (1) f̂ is bounded because f ∈ L1 and |eiu·x| = 1. We have

f̂(u+ h)− f̂(u) =

∫ (
ei(u+h)·x − eiu·x

)
f(x) dx.

Then

|f̂(u+ h)− f̂(u)| ≤
∫ ∣∣eiu·x∣∣ · ∣∣eih·x − 1

∣∣ |f(x)| dx.

The integrand is bounded by 2|f(x)|, which is integrable, and
eih·x − 1 → 0 as h → 0. Thus the continuity follows by the domi-
nated convergence theorem.

(2) and (3) are easy by a change of variables. (4) holds because

f̂a(u) =

∫
eiu·xf(x+ a) dx =

∫
eiu·(x−a)f(x) dx = e−iu·af̂(u)

by a change of variables. For (5),

ĝa(u) =

∫
eiu·xeia·xf(x) dx =

∫
ei(u+a)·xf(x) dx = f̂(u+ a).

Finally for (6), by a change of variables,

ĥa(u) =

∫
eiu·xf(ax) dx = a−n

∫
eiu·(y/a)f(y) dy

= a−n
∫
ei(u/a)·yf(y) dy = a−nf̂(u/a),

as required.

One reason for the usefulness of Fourier transforms is that they
relate derivatives and multiplication.

Proposition 16.2 Suppose f ∈ L1 and xjf(x) ∈ L1, where xj is
the jth coordinate of x. Then

∂f̂

∂uj
(u) = i

∫
eiu·xxjf(x) dx.
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Proof. Let ej be the unit vector in the jth direction. Then

f̂(u+ hej)− f̂(u)

h
=

1

h

∫ (
ei(u+hej)·x − eiu·x

)
f(x) dx

=

∫
eiu·x

(eihxj − 1

h

)
f(x) dx.

Since ∣∣∣ 1
h

(
eihxj − 1

)∣∣∣ ≤ |xj |
and xjf(x) ∈ L1, the right hand side converges to

∫
eiu·xixjf(x) dx

by the dominated convergence theorem. Therefore the left hand
side converges. The limit of the left hand side is ∂f̂/∂uj .

Proposition 16.3 Suppose f : R→ R is integrable, f is absolutely
continuous, and f ′ is integrable. Then the Fourier transform of f ′

is −iuf̂(u).

The higher dimensional version of this is left as Exercise 16.4.

Proof. Since f ′ is integrable,

|f(y)− f(x)| ≤
∫ y

x

|f ′(z)| dz → 0

as x, y →∞ by the dominated convergence theorem. This implies
that f(yn) is a Cauchy sequence whenever yn → ∞, and we con-
clude that f(y) converges as y →∞. Since f is integrable, the only
possible value for the limit is 0. The same is true for the limit as
y → −∞.

By integration by parts (use Exercise 14.1 and a limit argu-
ment),

f̂ ′ (u) =

∫ ∞
−∞

eiuxf ′(x) dx = −
∫ ∞
−∞

iueiuxf(x) dx

= −iuf̂(u),

as desired.

Recall the definition of convolution given in Section 15.3. Recall
also (15.7), which says that∫ ∫

|f(x− y)| |g(y)| dx dy = ‖f‖1‖g‖1. (16.2)
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Proposition 16.4 If f, g ∈ L1, then the Fourier transform of f ∗g
is f̂(u)ĝ(u).

Proof. We have

f̂ ∗ g(u) =

∫
eiu·x

∫
f(x− y)g(y) dy dx

=

∫ ∫
eiu·(x−y)f(x− y) eiu·yg(y) dx dy

=

∫
f̂(u)eiu·yg(y) dy = f̂(u)ĝ(u).

We applied the Fubini theorem in the second equality; this is valid
because as we see from (16.2), the absolute value of the integrand
is integrable. We used a change of variables to obtain the third
equality.

16.2 The inversion theorem

We want to give a formula for recovering f from f̂ . First we need
to calculate the Fourier transform of a particular function.

Proposition 16.5 (1) Suppose f1 : R→ R is defined by

f1(x) =
1√
2π
e−x

2/2.

Then f̂1(u) = e−u
2/2.

(2) Suppose fn : Rn → R is given by

fn(x) =
1

(2π)n/2
e−|x|

2/2.

Then f̂n(u) = e−|u|
2/2.

Proof. (1) may also be proved using contour integration, but let’s

give a (mostly) real variable proof. Let g(u) =
∫
eiuxe−x

2/2 dx.
Differentiate with respect to u. We may differentiate under the
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integral sign because (ei(u+h)x − eiux)/h is bounded in absolute

value by |x| and |x|e−x2/2 is integrable; therefore the dominated
convergence theorem applies. We then obtain

g′(u) = i

∫
eiuxxe−x

2/2 dx.

By integration by parts (see Exercise 14.1) this is equal to

−u
∫
eiuxe−x

2/2 dx = −ug(u).

Solving the differential equation g′(u) = −ug(u), we have

[log g(u)]′ =
g′(u)

g(u)
= −u,

so log g(u) = −u2/2 + c1, and then

g(u) = c2e
−u2/2. (16.3)

By Exercise 11.18, g(0) =
∫
e−x

2/2 dx =
√

2π, so c2 =
√

2π. Sub-

stituting this value of c2 in (16.3) and dividing both sides by
√

2π
proves (1).

For (2), since fn(x) = f1(x1) · · · f1(xn) if x = (x1, . . . , xn), then

f̂n(u) =

∫
· · ·
∫
ei

∑
j ujxjf1(x1) · · · f1(xn) dx1 · · · dxn

= f̂1(u1) · · · f̂1(un) = e−|u|
2/2.

This completes the proof.

One more preliminary is needed before proving the inversion
theorem.

Proposition 16.6 Suppose ϕ is in L1 and
∫
ϕ(x) dx = 1. Let

ϕδ(x) = δ−nϕ(x/δ).

(1) If g is continuous with compact support, then g∗ϕδ converges
to g pointwise as δ → 0.

(2) If g is continuous with compact support, then g∗ϕδ converges
to g in L1 as δ → 0.

(3) If f ∈ L1, then ‖f ∗ ϕδ − f‖1 → 0 as δ → 0.
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Proof. (1) We have by a change of variables (Exercise 8.1) that∫
ϕδ(y) dy = 1. Then

|g ∗ ϕδ(x)− g(x)| =
∣∣∣ ∫ (g(x− y)− g(x))ϕδ(y) dy

∣∣∣
=
∣∣∣ ∫ (g(x− δy)− g(x))ϕ(y) dy

∣∣∣
≤
∫
|g(x− δy)− g(x)| |ϕ(y)| dy.

Since g is continuous with compact support and hence bounded and
ϕ is integrable, the right hand side goes to zero by the dominated
convergence theorem, the dominating function being 2‖g‖∞ϕ.

(2) We now use the Fubini theorem to write∫
|g ∗ ϕδ(x)− g(x)| dx =

∫ ∣∣∣ ∫ (g(x− y)− g(x))ϕδ(y) dy
∣∣∣ dx

=

∫ ∣∣∣ ∫ (g(x− δy)− g(x))ϕ(y) dy
∣∣∣ dx

≤
∫ ∫

|g(x− δy)− g(x)| |ϕ(y)| dy dx

=

∫ ∫
|g(x− δy)− g(x)| dx |ϕ(y)| dy.

Let

Gδ(y) =

∫
|g(x− δy)− g(x)| dx.

By the dominated convergence theorem, for each y, Gδ(y) tends to
0 as δ → 0, since g is continuous with compact support. Moreover
Gδ is bounded in absolute value by 2‖g‖1. Using the dominated
convergence theorem again and the fact that ϕ is integrable, we see
that

∫
Gδ(y) |ϕ(y)| dy tends to 0 as δ → 0.

(3) Let ε > 0. Let g be a continuous function with compact
support so that ‖f − g‖1 < ε. Let h = f − g. A change of variables
shows that ‖ϕδ‖1 = ‖ϕ‖1. Observe

‖f ∗ ϕδ − f‖1 ≤ ‖g ∗ ϕδ − g‖1 + ‖h ∗ ϕδ − h‖1.

Also

‖h∗ϕδ−h‖1 ≤ ‖h‖1 +‖h∗ϕδ‖1 ≤ ‖h‖1 +‖h‖1‖ϕδ‖1 < ε(1+‖ϕ‖1)
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by Proposition 15.7. Therefore, using (2),

lim sup
δ→0

‖f ∗ ϕδ − f‖1 ≤ lim sup
δ→0

‖h ∗ ϕδ − h‖1 ≤ ε(1 + ‖ϕ‖1).

Since ε is arbitrary, we have our conclusion.

Now we are ready to give the inversion formula. The proof seems
longer than one might expect it to be, but there is no avoiding the
introduction of the function Ha or some similar function.

Theorem 16.7 Suppose f and f̂ are both in L1. Then

f(y) =
1

(2π)n

∫
e−iu·y f̂(u) du, a.e.

Proof. If g(x) = a−nk(x/a), then the Fourier transform of g is

k̂(au). Hence the Fourier transform of

1

an
1

(2π)n/2
e−x

2/2a2

is e−a
2u2/2. If we let

Ha(x) =
1

(2π)n
e−|x|

2/2a2 ,

we have

Ĥa(u) = (2π)−n/2ane−a
2|u|2/2.

We write∫
f̂(u)e−iu·yHa(u) du =

∫ ∫
eiu·xf(x)e−iu·yHa(u) dx du

=

∫ ∫
eiu·(x−y)Ha(u) du f(x) dx

=

∫
Ĥa(x− y)f(x) dx. (16.4)

We can interchange the order of integration because∫ ∫
|f(x)| |Ha(u)| dx du <∞
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and |eiu·x| = 1. The left hand side of the first line of (16.4) con-
verges to

(2π)−n
∫
f̂(u)e−iu·y dy

as a → ∞ by the dominated convergence theorem since Ha(u) →
(2π)−n and f̂ ∈ L1. The last line of (16.4) is equal to∫

Ĥa(y − x)f(x) dx = f ∗ Ĥa(y), (16.5)

using that Ĥa is symmetric. But by Proposition 16.6, setting δ =
a−1, we see that f ∗ Ĥa converges to f in L1 as a→∞.

16.3 The Plancherel theorem

The last topic that we consider is the Plancherel theorem.

Theorem 16.8 Suppose f is continuous with compact support.
Then f̂ ∈ L2 and

‖f‖2 = (2π)−n/2‖f̂‖2. (16.6)

Proof. First note that if we combine (16.4) and (16.5), then∫
f̂(u)eiu·yHa(u) du = f ∗ Ĥa(y).

Now take y = 0 and use the symmetry of Ĥa to obtain∫
f̂(u)Ha(u) du = f ∗ Ĥa(0). (16.7)

Let g(x) = f(−x), where a denotes the complex conjugate of a.
Since ab = ab,

ĝ(u) =

∫
eiu·xf(−x) dx =

∫
e−iu·xf(−x) dx

=

∫
eiu·xf(x) dx = f̂(u).
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The third equality follows by a change of variables. By (16.7) with
f replaced by f ∗ g,∫

f̂ ∗ g(u)Ha(u) du = f ∗ g ∗ Ĥa(0). (16.8)

Observe that f̂ ∗ g(u) = f̂(u)ĝ(u) = |f̂(u)|2. Thus the left hand
side of (16.8) converges by the monotone convergence theorem to

(2π)−n
∫
|f̂(u)|2 du

as a → ∞. Since f and g are continuous with compact support,
then by Exercise 15.13, f ∗ g is also, and so the right hand side
of (16.8) converges to f ∗ g(0) =

∫
f(y)g(−y) dy =

∫
|f(y)|2 dy by

Proposition 16.6(2).

Remark 16.9 We can use Theorem 16.8 to define f̂ when f ∈ L2

so that (16.6) will continue to hold. The set of continuous functions
with compact support is dense in L2 by Proposition 15.5. Given a
function f in L2, choose a sequence {fm} of continuous functions
with compact support such that fm → f in L2. Then ‖fm−fn‖2 →
0 as m,n→∞. By (16.6), {f̂m} is a Cauchy sequence in L2, and

therefore converges to a function in L2, which we call f̂ .

Let us check that the limit does not depend on the choice of
the sequence. If {f ′m} is another sequence of continuous functions
with compact support converging to f in L2, then {fm − f ′m} is a
sequence of continuous functions with compact support converging
to 0 in L2. By (16.6), f̂m − f̂ ′m converges to 0 in L2, and therefore

f̂ ′m has the same limit as f̂m. Thus f̂ is defined uniquely up to
almost everywhere equivalence. By passing to the limit in L2 on
both sides of (16.6), we see that (16.6) holds for f ∈ L2.

16.4 Exercises

Exercise 16.1 Find the Fourier transform of χ[a,b] and in partic-
ular, find the Fourier transform of χ[−n,n].

Exercise 16.2 Find a real-valued function f ∈ L1 such that f̂ /∈
L1.
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Exercise 16.3 Show that if f ∈ L1 and f is everywhere strictly
positive, then |f̂(y)| < f̂(0) for y 6= 0.

Exercise 16.4 If f is integrable, real-valued, and all the partial
derivatives fj = ∂f/∂xj are integrable, prove that the Fourier

transform of fj is given by f̂j(u) = −iuj f̂(u).

Exercise 16.5 Let S be the class of real-valued functions f on R
such that for every k ≥ 0 and m ≥ 0, |x|m|f (k)(x)| → 0 as |x| → ∞,
where f (k) is the kth derivative of f when k ≥ 1 and f (0) = f . The
collection S is called the Schwartz class. Prove that if f ∈ S, then
f̂ ∈ S.

Exercise 16.6 The Fourier transform of a finite signed measure µ
on Rn is defined by

µ̂(u) =

∫
eiu·x µ(dx).

Prove that if µ and ν are two finite signed measures on Rn (with
respect to the completion of L × · · · × L, where L is the Lebesgue
σ-algebra on R) such that µ̂(u) = ν̂(u) for all u ∈ Rn, then µ = ν.

Exercise 16.7 If f is real-valued and continuously differentiable
on R, prove that(∫

|f |2 dx
)2

≤ 4
(∫
|xf(x)|2 dx

)(∫
|f ′|2 dx

)
.

Exercise 16.8 Prove Heisenberg’s inequality (which is very useful
in quantum mechanics): there exists c > 0 such that if a, b ∈ R
and f is in L2, then(∫

(x−a)2|f(x)|2 dx
)(∫

(u−b)2|f̂(u)|2 du
)
≥ c
(∫
|f(x)|2 dx

)2

.

Find the best constant c.



Chapter 17

Riesz representation

In Chapter 4 we constructed measures on R. In this chapter we
will discuss how to construct measures on more general topological
spaces X.

If X is a topological space, let B be the Borel σ-algebra and
suppose µ is a σ-finite measure on (X,B). Throughout this chap-
ter we will restrict our attention to real-valued functions. If f is
continuous on X, let us define

L(f) =

∫
X

f dµ.

Clearly L is linear, and if f ≥ 0, then L(f) ≥ 0. The main topic
of this chapter is to prove a converse, the Riesz representation
theorem.

We need more hypotheses on X than just that it is a topological
space. For simplicity, throughout this chapter we suppose X is
a compact metric space. In fact, with almost no changes in the
proof, we could let X be a compact Hausdorff space, and with only
relatively minor changes, we could even let X be a locally compact
Hausdorff metric space. See Remark 17.1. But here we stick to
compact metric spaces.

We let C(X) be the collection of continuous functions from X
to R. Recall that the support of a function f is the closure of
{x : f(x) 6= 0}. We write supp (f) for the support of f . If G is an
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open subset of X, we define FG by

FG = {f ∈ C(X) : 0 ≤ f ≤ 1, supp (f) ⊂ G}.

Observe that if f ∈ FG, then 0 ≤ f ≤ χG, but the converse
does not hold. For example, if X = [−2, 2], G = (−1, 1), and
f(x) = (1− x2)+, then 0 ≤ f ≤ χG, but the support of f , which is
[−1, 1], is not contained in G.

17.1 Partitions of unity

The reason we take our set X to be a metric space is that if K ⊂
G ⊂ X, where K is compact and G is open, then there exists
f ∈ FG such that f is 1 on K. If we let

f(x) =
(

1− d(x,K)

δ/2

)+

,

where d(x,K) = inf{d(x, y) : y ∈ K} is the distance from x to K
and δ = inf{d(x, y) : x ∈ K, y ∈ Gc}, then this f will do the job.

Remark 17.1 If X is a compact Hausdorff space instead of a com-
pact metric one, we can still find such an f , that is, f ∈ FG with
f ≥ χK when K ⊂ G, K is compact, and G is open. Urysohn’s
lemma is the result from topology that guarantees such an f exists;
see Section 20.6. (A Hausdorff space X is one where if x, y ∈ X,
x 6= y, there exist disjoint open sets Gx and Gy with x ∈ Gx and
y ∈ Gy. An example of a compact Hausdorff space that is not a
metric space and cannot be made into a metric space is [0, 1]R with
the product topology.) See Chapter 20 for details.

We will need the following proposition.

Proposition 17.2 Suppose K is compact and K ⊂ G1 ∪ · · · ∪Gn,
where the Gi are open sets. There exist gi ∈ FGi for i = 1, 2, . . . , n
such that

∑n
i=1 gi(x) = 1 if x ∈ K.

The collection {gi} is called a partition of unity on K, subordi-
nate to the cover {Gi}.

Proof. Let x ∈ K. Then x will be in at least one Gi. Single points
are always compact, so there exists hx ∈ FGi such that hx(x) = 1.
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Let Nx = {y : hx(y) > 0}. Since hx is continuous, then Nx is open,
x ∈ Nx, and Nx ⊂ Gi.

The collection {Nx} is an open cover for the compact set K, so
there exists a finite subcover {Nx1

, . . . , Nxm}. For each i, let

Fi = ∪{Nxj : Nxj ⊂ Gi}.

Each Fi is closed, and since X is compact, Fi is compact. We have
Fi ⊂ Gi. Let us choose fi ∈ FGi such that fi is 1 on Fi.

Now define

g1 = f1,

g2 = (1− f1)f2,

· · ·
gn = (1− f1)(1− f2) · · · (1− fn−1)fn.

Clearly gi ∈ FGi . Note g1 + g2 = 1 − (1 − f1)(1 − f2), and an
induction argument shows that

g1 + · · ·+ gn = 1− (1− f1)(1− f2) · · · (1− fn).

If x ∈ K, then x ∈ Nxj for some j, so x ∈ Fi for some i. Then
fi(x) = 1, which implies

∑n
k=1 gk(x) = 1.

17.2 The representation theorem

Let L be a linear functional mapping C(X) to R. Thus L(f + g) =
L(f) + L(g) and L(af) = aL(f) if f, g ∈ C(X) and a ∈ R. L is a
positive linear functional if L(f) ≥ 0 whenever f ≥ 0 on X.

Here is the Riesz representation theorem. B is the Borel σ-
algebra on X, that is, the smallest σ-algebra that contains all the
open subsets of X.

Theorem 17.3 Let X be a compact metric space and L a positive
linear functional on C(X). Then there exists a measure µ on (X,B)
such that

L(f) =

∫
f(y)µ(dy), f ∈ C(X). (17.1)
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We often write Lf for L(f). Since X is compact, taking f identi-
cally equal to 1 in (17.1) shows that µ is a finite measure.

Proof. If G is open, let

`(G) = sup{Lf : f ∈ FG}

and for E ⊂ X, let

µ∗(E) = inf{`(G) : E ⊂ G,G open}.

Step 1 of the proof will be to show µ∗ is an outer measure. Step
2 is to show that every open set is µ∗-measurable. Step 3 is to
apply Theorem 4.6 to obtain a measure µ. Step 4 establishes some
regularity of µ and Step 5 shows that (17.1) holds.

Step 1. We show µ∗ is an outer measure. The only function in F∅
is the zero function, so `(∅) = 0, and therefore µ∗(∅) = 0. Clearly
µ∗(A) ≤ µ∗(B) if A ⊂ B.

To show the countable subadditivity of µ∗, first let G1, G2, . . .
be open sets. For any open set H we see that µ∗(H) = `(H). Let
G = ∪iGi and let f be any element of FG. Let K be the support of
f . Then K is compact, {Gi} is an open cover for K, and therefore
there exists n such that K ⊂ ∪ni=1Gi. Let {gi} be a partition of
unity for K subordinate to {Gi}ni=1. Since K is the support of f ,
we have f =

∑n
i=1 fgi. Since gi ∈ FGi and f is bounded by 1, then

fgi ∈ FGi . Therefore

Lf =

n∑
i=1

L(fgi) ≤
n∑
i=1

µ∗(Gi) ≤
∞∑
i=1

µ∗(Gi).

Taking the supremum over f ∈ FG,

µ∗(G) = `(G) ≤
∞∑
i=1

µ∗(Gi).

If A1, A2, . . . are subsets of X, let ε > 0, and choose Gi open
such that `(Gi) ≤ µ∗(Gi) + ε2−i. Then

µ∗(∪∞i=1Ai) ≤ µ∗(∪∞i=1Gi) ≤
∞∑
i=1

µ∗(Gi) ≤
∞∑
i=1

µ∗(Ai) + ε.

Since ε is arbitrary, countable subadditivity is proved, and we con-
clude that µ∗ is an outer measure.
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Step 2. We show that every open set is µ∗-measurable. Suppose G
is open and E ⊂ X. It suffices to show

µ∗(E) ≥ µ∗(E ∩G) + µ∗(E ∩Gc), (17.2)

since the opposite inequality is true by the countable subadditivity
of µ∗.

First suppose E is open. Choose f ∈ FE∩G such that

L(f) > `(E ∩G)− ε/2.

Let K be the support of f . Since Kc is open, we can choose
g ∈ FE∩Kc such that L(g) > `(E ∩Kc) − ε/2. Then f + g ∈ FE ,
and

`(E) ≥ L(f + g) = Lf + Lg ≥ `(E ∩G) + `(E ∩Kc)− ε
= µ∗(E ∩G) + µ∗(E ∩Kc)− ε
≥ µ∗(E ∩G) + µ∗(E ∩Gc)− ε.

Since ε is arbitrary, (17.2) holds when E is open.

If E ⊂ X is not necessarily open, let ε > 0 and choose H open
such that E ⊂ H and `(H) ≤ µ∗(E) + ε. Then

µ∗(E) + ε ≥ `(H) = µ∗(H) ≥ µ∗(H ∩G) + µ∗(H ∩Gc)
≥ µ∗(E ∩G) + µ∗(E ∩Gc).

Since ε is arbitrary, (17.2) holds.

Step 3. Let B be the Borel σ-algebra on X. By Theorem 4.6,
the restriction of µ∗ to B, which we call µ, is a measure on B. In
particular, if G is open, µ(G) = µ∗(G) = `(G).

Step 4. In this step we show that if K is compact, f ∈ C(X), and
f ≥ χK , then L(f) ≥ µ(K). Let ε > 0 and define

G = {x : f(x) > 1− ε},

which is open. If g ∈ FG, then g ≤ χG ≤ f/(1− ε), so

(1− ε)−1f − g ≥ 0.

Because L is a positive linear functional,

L((1− ε)−1f − g) ≥ 0,
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which leads to Lg ≤ Lf/(1− ε). This is true for all g ∈ FG, hence

µ(K) ≤ µ(G) ≤ Lf

1− ε
.

Since ε is arbitrary, µ(K) ≤ Lf .

Step 5. We now establish (17.1). By writing f = f+ − f− and
using the linearity of L, to show (17.1) for continuous functions
we may suppose f ≥ 0. Since X is compact, then f is bounded,
and multiplying by a constant and using linearity, we may suppose
0 ≤ f ≤ 1.

Let n ≥ 1 and let Ki = {x : f(x) ≥ i/n}. Since f is continuous,
each Ki is a closed set, hence compact. K0 is all of X. Define

fi(x) =


0, x ∈ Kc

i−1;

f(x)− i−1
n , x ∈ Ki−1 −Ki;

1
n , x ∈ Ki.

Note f =
∑n
i=1 fi and χKi ≤ nfi ≤ χKi−1

. Therefore

µ(Ki)

n
≤
∫
fi dµ ≤

µ(Ki−1)

n
,

and so
1

n

n∑
i=1

µ(Ki) ≤
∫
f dµ ≤ 1

n

n−1∑
i=0

µ(Ki). (17.3)

Let ε > 0 and let G be an open set containing Ki−1 such that
µ(G) < µ(Ki−1) + ε. Then nfi ∈ FG, so

L(nfi) ≤ µ(G) ≤ µ(Ki−1) + ε.

Since ε is arbitrary, L(fi) ≤ µ(Ki−1)/n. By Step 4, L(nfi) ≥
µ(Ki), and hence

1

n

n∑
i=1

µ(Ki) ≤ L(f) ≤ 1

n

n−1∑
i=0

µ(Ki). (17.4)

Comparing (17.3) and (17.4) we see that∣∣∣L(f)−
∫
f dµ

∣∣∣ ≤ µ(K0)− µ(Kn)

n
≤ µ(X)

n
.

Since, as we saw above, µ(X) = L(1) <∞ and n is arbitrary, then
(17.1) is established.



17.3. REGULARITY 163

Example 17.4 If f is continuous on [a, b], let L(f) be the Rie-
mann integral of f on the interval [a, b]. Then L is a positive linear
functional on C([a, b]). In this case, the measure whose existence is
given by the Riesz representation theorem is Lebesgue measure.

Remark 17.5 Let X be a metric space, not necessarily compact.
A continuous function f vanishes at infinity if given ε > 0 there
exists a compact set K such that |f(x)| < ε if x /∈ K. C0(X) is
the usual notation for the set of continuous functions vanishing at
infinity. There is a version of the Riesz representation theorem for
C0(X). See [4] for details.

17.3 Regularity

We establish the following regularity property of measures on com-
pact metric spaces.

Proposition 17.6 Suppose X is a compact measure space, B is
the Borel σ-algebra, and µ is a finite measure on the measurable
space (X,B). If E ∈ B and ε > 0, there exists K ⊂ E ⊂ G such
that K is compact, G is open, µ(G − E) < ε, and µ(E −K) < ε.
(K and G depend on ε as well as on E.)

Proof. Let us say that a subset E ∈ B is approximable if given ε >
0 there exists K ⊂ E ⊂ G with K compact, G open, µ(G−E) < ε,
and µ(E−F ) < ε. LetH be the collection of approximable subsets.
We will show H contains all the compact sets and H is a σ-algebra,
which will prove that H = B, and thus establish the proposition.

If K is compact, let Gn = {x : d(x,K) < 1/n}. Then the Gn are
open sets decreasing to K, and if n is large enough, µ(Gn−K) < ε.
Thus every compact set is in H.

If E is inH and ε > 0, then chooseK ⊂ E ⊂ G withK compact,
G open, µ(E−K) < ε, and µ(G−E) < ε. Then Gc ⊂ Ec ⊂ Kc, Gc

is closed, hence compact, Kc is open, µ(Kc−Ec) = µ(E−K) < ε,
and µ(Ec −Gc) = µ(G− E) < ε. Therefore H is closed under the
operation of taking complements.

Suppose E1, E2, . . . ∈ H. For each i choose Ki compact and Gi
open such that Ki ⊂ Ei ⊂ Gi, µ(Gi−Ei) < ε2−i, and µ(Ei−Ki) <
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ε2−(i+1). Then ∪∞i=1Gi is open, contains ∪∞i=1Ei, and

µ(∪iGi − ∪iEi) ≤
∞∑
i=1

µ(Gi − Ei) < ε.

We see that ∪∞i=1Ki is contained in ∪∞i=1Ei and similarly,

µ(∪∞i=1Ei − ∪∞i=1Ki) ≤
∞∑
i=1

µ(Ei −Ki) < ε/2.

Since ∪ni=1Ki increases to ∪∞i=1Ki, we can choose n large so that

µ(∪∞i=n+1Ki) < ε/2.

Then ∪ni=1Ki, being the finite union of compact sets, is compact,
is contained in ∪∞i=1Ei, and

µ(∪∞i=1Ei − ∪ni=1Ki) < ε.

This proves that ∪iEi is in H.

Since H is closed under the operations of taking complements
and countable unions and ∩iEi = (∪iEci )c, then H is also closed
under the operation of taking countable intersections. Therefore H
is a σ-algebra.

A measure is called regular if

µ(E) = inf{µ(G) : G open, E ⊂ G}

and
µ(E) = sup{µ(K) : K compact,K ⊂ E}

for all measurable E. An immediate consequence of what we just
proved is that finite measures on (X,B) are regular when X is a
compact metric space.

17.4 Bounded linear functionals

We have proved the Riesz representation theorem for positive linear
functionals on C(X). In Chapter 25 we will need a version for
complex-valued bounded linear functionals. We do the real-valued
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case in this section; the complex-valued case follows relatively easily
and is Exercise 17.10.

The following proposition is key. We set ‖f‖ = supx∈X |f(x)|
for f ∈ C(X) and if I is a bounded linear functional on C(X), we
let ‖I‖ = sup‖f‖=1 |I(f)|.

Proposition 17.7 Suppose I is a bounded linear functional on
C(X). Then there exist positive bounded linear functionals J and
K such that I = J −K.

Proof. For g ∈ C(X) with g ≥ 0, define

J(g) = sup{I(f) : f ∈ C(X), 0 ≤ f ≤ g}.

Since I(0) = 0, then J(g) ≥ 0. Since |I(f)| ≤ ‖I‖ ‖f‖ ≤ ‖I‖ ‖g‖ if
0 ≤ f ≤ g, then |J(g)| ≤ ‖I‖ ‖g‖. Clearly J(cg) = cJ(g) if c ≥ 0.

We prove that

J(g1 + g2) = J(g1) + J(g2) (17.5)

if g1, g2 ∈ C(X) are non-negative. If 0 ≤ f1 ≤ g1 and 0 ≤ f2 ≤ g2

with each of the four functions in C(X), we have 0 ≤ f1 + f2 ≤
g1 + g2, so

J(g1 + g2) ≥ I(f1 + f2) = I(f1) + I(f2).

Taking the supremum over all such f1 and f2,

J(g1 + g2) ≥ J(g1) + J(g2). (17.6)

To get the opposite inequality, suppose 0 ≤ f ≤ g1 + g2 with
each function non-negative and in C(X). Let f1 = f ∧ g1 and
f2 = f − f1. Note f1, f2 ∈ C(X). Since f1 ≤ f , then f2 ≥
0. If f(x) ≤ g1(x), we have f(x) = f1(x) ≤ f1(x) + g2(x). If
f(x) > g1(x), we have f(x) ≤ g1(x)+g2(x) = f1(x)+g2(x). Hence
f ≤ f1 + g2, so f2 = f − f1 ≤ g2. Thus

I(f) = I(f1) + I(f2) ≤ J(g1) + J(g2).

Taking the supremum over f ∈ C(X) with 0 ≤ f ≤ g1 + g2,

J(g1 + g2) ≤ J(g1) + J(g2).
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Combining with (17.6) proves (17.5).

If f ∈ C(X), define J(f) = J(f+)− J(f−). We have

f+
1 − f

−
1 + f+

2 − f
−
2 = f1 + f2 = (f1 + f2)+ − (f1 + f2)−,

so
f+

1 + f+
2 + (f1 + f2)− = (f1 + f2)+ + f−1 + f−2 .

Hence

J(f+
1 ) + J(f+

2 ) + J((f1 + f2)−) = J((f1 + f2)+) + J(f−1 ) + J(f−2 ).

Rearranging,
J(f1 + f2) = J(f1) + J(f2).

Showing J(cf) = cJ(f) is easier, and we conclude J is a linear
functional on C(X).

We write

|J(f)| = |J(f+)− J(f−)| ≤ J(f+) ∨ J(f−)

≤ (‖I‖ ‖f+‖) ∨ (‖I‖ ‖f−‖)
= ‖I‖ (‖f+‖ ∨ ‖f−‖)
≤ ‖I‖ ‖f‖.

Thus J is a bounded linear functional.

If f ≥ 0, then J(f) ≥ 0. Set K = J − I. If f ≥ 0, then
I(f) ≤ J(f), so K(f) ≥ 0, and K is also a positive operator.

We now state the Riesz representation theorem for bounded
real-valued linear functionals.

Theorem 17.8 If X is a compact metric space and I is a bounded
linear functional on C(X), there exists a finite signed measure µ on
the Borel σ-algebra such that

I(f) =

∫
f dµ

for each f ∈ C(X).

Proof. Write I = J − K as in Proposition 17.7. By the Riesz
representation theorem for positive linear functionals there exist
positive finite measures µ+ and µ− such that J(f) =

∫
f dµ+ and

K(f) =
∫
f dµ− for every f ∈ C(X). Then µ = µ+ − µ− will be

the signed measure we seek.
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17.5 Exercises

Exercise 17.1 Suppose F is a closed subset of [0, 1] and we define

L(f) =

∫ 1

0

fχF dx

for real-valued continuous functions f on [0, 1]. Prove that if µ is
the measure whose existence is given by the Riesz representation
theorem, then µ(A) = m(A ∩ F ), where m is Lebesgue measure.

Exercise 17.2 Suppose X is a compact metric space and µ is a
finite regular measure on (X,B), where B is the Borel σ-algebra.
Prove that if f is a real-valued measurable function and ε > 0,
there exists a closed set F such that µ(F c) < ε and the restriction
of f to F is a continuous function on F .

Exercise 17.3 Let C1([0, 1]) be the set of functions whose deriva-
tive exists and is continuous on [0, 1]. Suppose L is a linear func-
tional on C1([0, 1]) such that

|L(f)| ≤ c1‖f ′‖+ c2‖f‖

for all f ∈ C1([0, 1]), where c1 and c2 are positive constants and the
norm is the supremum norm. Show there exists a signed measure
µ on the Borel subsets of [0, 1] and a constant K such that

L(f) =

∫
f ′ dµ+Kf(0), f ∈ C1([0, 1]).

Exercise 17.4 Suppose X and Y are compact metric spaces and
F : X → Y is a continuous map from X onto Y . If ν is a finite
measure on the Borel sets of Y , prove that there exists a measure
µ on the Borel sets of X such that∫

Y

f dν =

∫
X

f ◦ F dµ

for all f that are continuous on Y .

Exercise 17.5 LetX be a compact metric space. Prove that C(X)
has a countable dense subset.



168 CHAPTER 17. RIESZ REPRESENTATION

Exercise 17.6 Let X be a compact metric space and let B be the
Borel σ-algebra on X. Let µn be a sequence of finite measures
on (X,B) and let µ be another finite measure on (X,B). Suppose
µn(X)→ µ(X). Prove that the following are equivalent:
(1)

∫
f dµn →

∫
f dµ whenever f is a continuous real-valued func-

tion on X;
(2) lim supn→∞ µn(F ) ≤ µ(F ) for all closed subsets F of X;
(3) lim infn→∞ µn(G) ≥ µ(G) for all open subsets G of X;
(4) limn→∞ µn(A) = µ(A) whenever A is a Borel subset of X such
that µ(∂A) = 0, where ∂A = A−Ao is the boundary of A.

Exercise 17.7 Let X be a compact metric space and let B be the
Borel σ-algebra on X. Let µn be a sequence of finite measures on
(X,B) and suppose supn µn(X) <∞.
(1) Prove that if f ∈ C(X), there is a subsequence {nj} such that∫
f dµnj converges.

(2) Let A be a countable dense subset of C(X). Prove that there
is a subsequence {nj} such that

∫
f dµnj converges for all f ∈ A.

(3) With {nj} as in (2), prove that
∫
f dµnj converges for all f ∈

C(X).
(4) Let L(f) = limnj→∞

∫
f dµnj . Prove that L(f) is a positive

linear functional on C(X). Conclude that there exists a measure µ
such that ∫

f dµnj →
∫
f dµ

for all f ∈ C(X).

Exercise 17.8 Prove that if X is a compact metric space, B is the
Borel σ-algebra, and µ and ν are two finite positive measures on
(X,B) such that ∫

f dµ =

∫
f dν

for all f ∈ C(X), then µ = ν.

Exercise 17.9 Prove that if X is a compact metric space, B is
the Borel σ-algebra, and µ and ν are two finite signed measures on
(X,B) such that ∫

f dµ =

∫
f dν

for all f ∈ C(X), then µ = ν.
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Exercise 17.10 State and prove a version of the Riesz represen-
tation theorem for complex measures.

Exercise 17.11 Prove that if X is a compact metric space, B is
the Borel σ-algebra, and µ is a complex measure on (X,B), then
the total variation of µ, defined in Exercise 13.4, equals

sup
f∈C(X)

∣∣∣ ∫ f dµ
∣∣∣.
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Chapter 18

Banach spaces

Banach spaces are normed linear spaces that are complete. We
will give the definitions, discuss the existence of bounded linear
functionals, prove the Baire category theorem, and derive some
consequences such as the uniform boundedness theorem and the
open mapping theorem.

18.1 Definitions

The definition of normed linear space X over a field of scalars F ,
where F is either the real numbers or the complex numbers, was
given in Chapter 1. Recall that a normed linear space is a metric
space if we use the metric d(x, y) = ‖x− y‖.

Definition 18.1 We define a Banach space to be a normed lin-
ear space that is complete, that is, where every Cauchy sequence
converges.

A linear map is a map L from a normed linear space X to a
normed linear space Y satisfying L(x + y) = L(x) + L(y) for all
x, y ∈ X and L(αx) = αL(x) for all x ∈ X and α ∈ F . We will
sometimes write Lx for L(x). Since L(0) = L(0+0) = L(0)+L(0),
then L(0) = 0.

171
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Definition 18.2 A linear map f from X to R is a real linear func-
tional, a linear map from X to C a complex linear functional. f is
a bounded linear functional if

‖f‖ = sup{|f(x)| : x ∈ X, ‖x‖ ≤ 1} <∞.

Proposition 18.3 The following are equivalent.
(1) The linear functional f is bounded.
(2) The linear functional f is continuous.
(3) The linear functional f is continuous at 0.

Proof. |f(x)−f(y)| = |f(x−y)| ≤ ‖f‖ ‖x−y‖, so (1) implies (2).
That (2) implies (3) is obvious. To show (3) implies (1), if f is not
bounded, there exists a sequence xn ∈ X such that ‖xn‖ = 1 for
each n, but |f(xn)| → ∞. If we let yn = xn/|f(xn)|, then yn → 0
but |f(yn)| = 1 6→ 0, contradicting (3).

18.2 The Hahn-Banach theorem

We want to prove that there are plenty of linear functionals. First
we state Zorn’s lemma, which is equivalent to the axiom of choice.

If we have a set Y with a partial order “≤” (defined in Chapter
1), a linear ordered subset X ⊂ Y is one such that if x, y ∈ X, then
either x ≤ y or y ≤ x (or both) holds. A linearly ordered subset
X ⊂ Y has an upper bound if there exists an element z of Y (but
it is not necessary that z ∈ X) such that x ≤ z for all x ∈ X. An
element z of Y is maximal if z ≤ y for y ∈ Y implies y = z.

Here is Zorn’s lemma.

Lemma 18.4 If Y is a partially ordered set and every linearly
ordered subset of Y has an upper bound, then Y has a maximal
element.

A subspace of a normed linear space X is a subset M ⊂ X such
that M is itself a normed linear space.

We now give the Hahn-Banach theorem for real linear function-
als.
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Theorem 18.5 If M is a subspace of a normed linear space X and
f is a bounded real linear functional on M , then f can be extended
to a bounded linear functional F on X such that ‖F‖ = ‖f‖.

Saying that F is an extension of f means that the domain of F
contains the domain of f and F (x) = f(x) if x is in the domain of
f .

Proof. If ‖f‖ = 0, then we take F to be identically 0, so we
may assume that ‖f‖ 6= 0, and then by multiplying by a constant,
that ‖f‖ = 1. We first show that we can extend f by at least one
dimension.

Choose x0 ∈ X −M and let M1 be the vector space spanned
by M and x0. Thus M1 consists of all vectors of the form x+ λx0,
where x ∈ X and λ is real.

We have for all x, y ∈M

f(x)− f(y) = f(x− y) ≤ ‖x− y‖ ≤ ‖x− x0‖+ ‖y − x0‖.

Hence
f(x)− ‖x− x0‖ ≤ f(y) + ‖y − x0‖

for all x, y ∈M . Choose α ∈ R such that

f(x)− ‖x− x0‖ ≤ α ≤ f(y) + ‖y − x0‖

for all x, y ∈ M . Define f1(x + λx0) = f(x) + λα. This is clearly
an extension of f to M1.

We need to verify that the norm of f1 is less than or equal to
1. Let x ∈M and λ ∈ R. By our choice of α, f(x)−‖x−x0‖ ≤ α,
or f(x) − α ≤ ‖x − x0‖, and α ≤ f(x) + ‖x − x0‖, or f(x) − α ≥
−‖x− x0‖. Thus

|f(x)− α| ≤ ‖x− x0‖.
Replacing x by −x/λ and multiplying by |λ|, we get

|λ| | − f(x)/λ− α| ≤ |λ| ‖ − x/λ− x0‖,

or
|f1(x+ λx0)| = |f(x) + λα| ≤ ‖x+ λx0‖,

which is what we wanted to prove.

We now establish the existence of an extension of f to all of X.
Let F be the collection of all linear extensions F of f satisfying
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‖F‖ ≤ 1. This collection is partially ordered by inclusion. That is,
if f1 is an extension of f to a subspace M1 and f2 is an extension of
f to a subspace M2, we say f1 ≤ f2 if M1 ⊂M2. Since the union of
any increasing family of subspaces of X is again a subspace, then
the union of a linearly ordered subfamily of F lies in F . By Zorn’s
lemma, F has a maximal element, say, F1. By the construction
of the preceding two paragraphs, if the domain of F1 is not all of
X, we can find an extension, which would be a contradiction to F1

being maximal. Therefore F1 is the desired extension.

To get a version for complex valued linear functionals is quite
easy. Note that if f(x) = u(x) + iv(x), then the real part of f ,
namely, u = Re f , is a real valued linear functional. Also, u(ix) =
Re f(ix) = Re if(x) = −v(x), so that v(x) = −u(ix), and hence
f(x) = u(x)− iu(ix).

Theorem 18.6 If M is a subspace of a normed linear space X
and f is a bounded complex linear functional on M , then f can be
extended to a bounded linear functional F on X such that ‖F‖ =
‖f‖.

Proof. Assume without loss of generality that ‖f‖ = 1. Let
u = Re f . Note |u(x)| ≤ |f(x)| ≤ ‖x‖. Now use the version of the
Hahn-Banach theorem for real linear functionals to find a linear
functional U that is an extension of u to X such that ‖U‖ ≤ 1. Let
F (x) = U(x)− iU(ix).

It only remains to show that the norm of F is at most 1. Fix
x, and write F (x) = reiθ. Then

|F (x)| = r = e−iθF (x) = F (e−iθx).

Since this quantity is real and non-negative,

|F (x)| = U(e−iθx) ≤ ‖U‖ ‖e−iθx‖ ≤ ‖x‖.

This holds for all x, so ‖F‖ ≤ 1.

As an application of the Hahn-Banach theorem, given a sub-
spaceM and an element x0 not inM such that infx∈M ‖x−x0‖ > 0,
we can define f(x+ λx0) = λ for x ∈M , and then extend this lin-
ear functional to all of X. Then f will be 0 on M but non-zero at
x0.
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Another application is to fix x0 6= 0, let f(λx0) = λ‖x0‖, and
then extend f to all of X. Thus there exists a linear functional f
such that f(x0) = ‖x0‖ and ‖f‖ = 1.

18.3 Baire’s theorem and consequences

We turn now to the Baire category theorem and some of its con-
sequences. Recall that if A is a set, we use A for the closure of A
and Ao for the interior of A. A set A is dense in X if A = X and
A is nowhere dense if (A)o = ∅.

The Baire category theorem is the following. Completeness of
the metric space is crucial to the proof.

Theorem 18.7 Let X be a complete metric space.
(1) If Gn are open sets dense in X, then ∩nGn is dense in X.
(2) X cannot be written as the countable union of nowhere dense
sets.

Proof. We first show that (1) implies (2). Suppose we can write
X as a countable union of nowhere dense sets, that is, X = ∪nEn
where (En)o = ∅. We let Fn = En, which is a closed set, and then
F on = ∅ and X = ∪nFn. Let Gn = F cn, which is open. Since F on = ∅,
then Gn = X. Starting with X = ∪nFn and taking complements,
we see that ∅ = ∩nGn, a contradiction to (1).

We must prove (1). Suppose G1, G2, . . . are open and dense in
X. Let H be any non-empty open set in X. We need to show there
exists a point in H ∩ (∩nGn). We will construct a certain Cauchy
sequence {xn} and the limit point, x, will be the point we seek.

Let B(z, r) = {y ∈ X : d(z, y) < r}, where d is the metric. Since
G1 is dense in X, H∩G1 is non-empty and open, and we can find x1

and r1 such that B(x1, r1) ⊂ H ∩G1 and 0 < r1 < 1. Suppose we
have chosen xn−1 and rn−1 for some n ≥ 2. Since Gn is dense, then
Gn ∩B(xn−1, rn−1) is open and non-empty, so there exists xn and
rn such that B(xn, rn) ⊂ Gn ∩ B(xn−1, rn−1) and 0 < rn < 2−n.
We continue and get a sequence xn in X. If m,n > N , then xm
and xn both lie on B(xN , rN ), and so d(xm, xn) < 2rN < 2−N+1.
Therefore xn is a Cauchy sequence, and since X is complete, xn
converges to a point x ∈ X.
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It remains to show that x ∈ H ∩ (∩nGn). Since xn lies in
B(xN , rN ) if n > N , then x lies in each B(xN , rN ), and hence in
each GN . Therefore x ∈ ∩nGn. Also,

x ∈ B(xn, rn) ⊂ B(xn−1, rn−1) ⊂ · · · ⊂ B(x1, r1) ⊂ H.

Thus we have found a point x in H ∩ (∩nGn).

A set A ⊂ X is called meager or of the first category if it is
the countable union of nowhere dense sets; otherwise it is of the
second category.

A linear map L from a normed linear space X into a normed
linear space Y is a bounded linear map if

‖L‖ = sup{‖Lx‖ : ‖x‖ = 1} (18.1)

is finite.

An important application of the Baire category theorem is the
Banach-Steinhaus theorem, also called the uniform boundedness
theorem.

Theorem 18.8 Suppose X is a Banach space and Y is a normed
linear space. Let A be an index set and let {Lα : α ∈ A} be a
collection of bounded linear maps from X into Y . Then either
there exists a positive real number M < ∞ such that ‖Lα‖ ≤ M
for all α ∈ A or else supα ‖Lαx‖ =∞ for some x.

Proof. Let `(x) = supα∈A ‖Lαx‖. Let Gn = {x : `(x) > n}.
We argue that Gn is open. The map x → ‖Lαx‖ is a continuous
function for each α since Lα is a bounded linear functional. This
implies that for each α, the set {x : ‖Lαx‖ > n} is open. Since
x ∈ Gn if and only if for some α ∈ A we have ‖Lαx‖ > n, we
conclude Gn is the union of open sets, hence is open.

Suppose there exists N such that GN is not dense in X. Then
there exists x0 and r such that B(x0, r) ∩ GN = ∅. This can
be rephrased as saying that if ‖x − x0‖ ≤ r, then ‖Lα(x)‖ ≤ N
for all α ∈ A. If ‖y‖ ≤ r, we have y = (x0 + y) − x0. Then
‖(x0 + y)− x0‖ = ‖y‖ ≤ r, and hence ‖Lα(x0 + y)‖ ≤ N for all α.
Also, of course, ‖x0 − x0‖ = 0 ≤ r, and thus ‖Lα(x0)‖ ≤ N for all
α. We conclude that if ‖y‖ ≤ r and α ∈ A,

‖Lαy‖ = ‖Lα((x0 + y)− x0)‖ ≤ ‖Lα(x0 + y)‖+ ‖Lαx0‖ ≤ 2N.
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Consequently, supα ‖Lα‖ ≤M with M = 2N/r.

The other possibility, by the Baire category theorem, is that
every Gn is dense in X, and in this case ∩nGn is dense in X. But
`(x) =∞ for every x ∈ ∩nGn.

The following theorem is called the open mapping theorem. It is
important that L be onto. A mapping L : X → Y is open if L(U)
is open in Y whenever U is open in X. For a measurable set A, we
let L(A) = {Lx : x ∈ A}.

Theorem 18.9 Let X and Y be Banach spaces. A bounded linear
map L from X onto Y is open.

Proof. We need to show that if B(x, r) ⊂ X, then L(B(x, r)) con-
tains a ball in Y . We will show L(B(0, r)) contains a ball centered
at 0 in Y . Then using the linearity of L, L(B(x, r)) will contain
a ball centered at Lx in Y . By linearity, to show that L(B(0, r))
contains a ball centered at 0, it suffices to show that L(B(0, 1))
contains a ball centered at 0 in Y .

Step 1. We show that there exists r such that B(0, r2−n) ⊂
L(B(0, 2−n)) for each n. Since L is onto, Y = ∪∞n=1L(B(0, n)).
The Baire category theorem tells us that at least one of the sets
L(B(0, n)) cannot be nowhere dense. Since L is linear, L(B(0, 1))
cannot be nowhere dense. Thus there exist y0 and r such that
B(y0, 4r) ⊂ L(B(0, 1)).

Pick y1 ∈ L(B(0, 1)) such that ‖y1 − y0‖ < 2r and let z1 ∈
B(0, 1) be such that y1 = Lz1. Then B(y1, 2r) ⊂ B(y0, 4r) ⊂
L(B(0, 1)). Thus if ‖y‖ < 2r, then y + y1 ∈ B(y1, 2r), and so

y = −Lz1 + (y + y1) ∈ L(−z1 +B(0, 1)).

Since z1 ∈ B(0, 1), then −z1 +B(0, 1) ⊂ B(0, 2), hence

y ∈ L(−z1 +B(0, 1)) ⊂ L(B(0, 2)).

By the linearity of L, if ‖y‖ < r, then y ∈ L(B(0, 1)). It follows
by linearity that if ‖y‖ < r2−n, then y ∈ L(B(0, 2−n)). This can
be rephrased as saying that if ‖y‖ < r2−n and ε > 0, then there
exists x such that ‖x‖ < 2−n and ‖y − Lx‖ < ε.

Step 2. Suppose ‖y‖ < r/2. We will construct a sequence {xj} by
induction such that y = L(

∑∞
j=1 xj). By Step 1 with ε = r/4, we
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can find x1 ∈ B(0, 1/2) such that ‖y − Lx1‖ < r/4. Suppose we
have chosen x1, . . . , xn−1 such that∥∥∥y − n−1∑

j=1

Lxj

∥∥∥ < r2−n.

Let ε = r2−(n+1). By Step 1, we can find xn such that ‖xn‖ < 2−n

and ∥∥∥y − n∑
j=1

Lxj

∥∥∥ =
∥∥∥(y − n−1∑

j=1

Lxj

)
− Lxn

∥∥∥ < r2−(n+1).

We continue by induction to construct the sequence {xj}. Let
wn =

∑n
j=1 xj . Since ‖xj‖ < 2−j , then wn is a Cauchy sequence.

Since X is complete, wn converges, say, to x. But then ‖x‖ <∑∞
j=1 2−j = 1, and since L is continuous, y = Lx. That is, if

y ∈ B(0, r/2), then y ∈ L(B(0, 1)).

Remark 18.10 Suppose X and Y are Banach spaces and L is the
collection of bounded linear maps from X into Y . If we define
(L + M)x = Lx + Mx and (cL)x = c(Lx) for L,M ∈ L, x ∈ X,
and c ∈ F , and if we define ‖L‖ by (18.1), then L itself is a normed
linear space. Exercise 18.7 asks you to prove that L is a Banach
space, i.e., that L with the norm given by (18.1) is complete.

When Y = F , either the set of real numbers or the set of com-
plex numbers, then L is the set of bounded linear functionals on X.
In this case we write X∗ instead of L and call X∗ the dual space
of X.

18.4 Exercises

Exercise 18.1 Find a measure space (X,A, µ), a subspace Y of
L1(µ), and a bounded linear functional f on Y with norm 1 such
that f has two distinct extensions to L1(µ) and each of the exten-
sions has norm equal to 1.

Exercise 18.2 Show that Lp([0, 1]) is separable, that is, there is a
countable dense subset, if 1 ≤ p <∞. Show that L∞([0, 1]) is not
separable.
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Exercise 18.3 For k ≥ 1 and functions f : [0, 1] → R that are k
times differentiable, define

‖f‖Ck = ‖f‖∞ + ‖f ′‖∞ + · · ·+ ‖f (k)‖∞,

where f (k) is the kth derivative of f . Let Ck([0, 1]) be the collection
of k times continuously differentiable functions f with ‖f‖Ck <∞.
Is Ck(0, 1]) complete with respect to the norm ‖ · ‖Ck?

Exercise 18.4 Let α ∈ (0, 1). For f a real-valued continuous
function on [0, 1] define

‖f‖Cα = sup
x∈[0,1]

|f(x)|+ sup
x,y∈[0,1],x 6=y

|f(x)− f(y)|
|x− y|α

.

Let Cα([0, 1]) be the set of functions f with ‖f‖Cα < ∞. Is
Cα([0, 1]) complete with respect to the norm ‖ · ‖Cα?

Exercise 18.5 For positive integers n let

An =
{
f ∈ L1([0, 1]) :

∫ 1

0

|f(x)|2 dx ≤ n
}
.

Show that each An is a closed subset of L1([0, 1]) with empty inte-
rior.

Exercise 18.6 Suppose L is a linear functional on a normed linear
space X. Prove that L is a bounded linear functional if and only
if the set {x ∈ X : L(x) = 0} is closed.

Exercise 18.7 Prove that L as defined in Remark 18.10 is a Ba-
nach space.

Exercise 18.8 A set A in a normed linear space is convex if

λx+ (1− λ)y ∈ A

whenever x, y ∈ A and λ ∈ [0, 1].
(1) Prove that if A is convex, then the closure of A is convex.
(2) Prove that the open unit ball in a normed linear space is convex.
(The open unit ball is the set of x such that ‖x‖ < 1.)
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Exercise 18.9 The unit ball in a normed linear space X is strictly
convex if ‖λx + (1 − λ)y‖ < 1 whenever ‖f‖ = ‖g‖ = 1, f 6= g,
and λ ∈ (0, 1).
(1) Let (X,A, µ) be a measure space. Prove that the unit ball in
Lp(µ) is strictly convex.
(2) Prove that the unit balls in L1(µ), L∞(µ), and C(X) are not
strictly convex provided X consists of more than one point.

Exercise 18.10 Let fn be a sequence of continuous functions on
R that converge at every point. Prove there exist an interval and a
number M such that supn |fn| is bounded by M on that interval.

Exercise 18.11 Suppose ‖ · ‖1 and ‖ · ‖2 are two norms such that
‖x‖1 ≤ ‖x‖2 for all x in a vector space X, and suppose X is
complete with respect to both norms. Prove that there exists a
positive constant c such that

‖x‖2 ≤ c‖x‖1

for all x ∈ X.

Exercise 18.12 Suppose X and Y are Banach spaces.
(1) Let X × Y be the set of ordered pairs (x, y) with

(x1 + x2, y1 + y2) = (x1, y1) + (x2, y2)

for each x1, x2 ∈ X and y1, y2 ∈ Y and c(x, y) = (cx, cy) if x ∈ R.
Define ‖(x, y)‖ = ‖x‖+ ‖y‖. Prove that X × Y is a Banach space.
(2) Let L be a linear map from X into Y such that if xn → x in
X and Lxn → y in Y , then y = Lx. Such a map is called a closed
map. Let G be the graph of L, defined by G = {(x, y) : y = Lx}.
Prove that G is a closed subset of X × Y , hence is complete.
(3) Prove that the function (x, Lx) → x is continuous, one-one,
linear, and maps G onto X.
(4) Prove the closed graph theorem, which says that if L is a linear
map from one Banach space to another that is a closed map, then
L is a continuous map.

Exercise 18.13 Let X be the space of continuously differentiable
functions on [0, 1] with the supremum norm and let Y = C([0, 1]).
Define D : X → Y by Df = f ′. Show that D is a closed map but
not a bounded one.
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Exercise 18.14 Let A be the set of real-valued continuous func-
tions on [0, 1] such that∫ 1/2

0

f(x) dx−
∫ 1

1/2

f(x) dx = 1.

Prove that A is a closed convex subset of C([0, 1]), but there does
not exist f ∈ A such that

‖f‖ = inf
g∈A
‖g‖.

Exercise 18.15 Let An be the subset of the real-valued continu-
ous functions on [0, 1] given by

An = {f : there exists x ∈ [0, 1] such that

|f(x)− f(y)| ≤ n|x− y| for all y ∈ [0, 1]}.

(1) Prove that An is nowhere dense in C([0, 1]).
(2) Prove that there exist functions f in C([0, 1]) which are nowhere
differentiable on [0, 1], that is, f ′(x) does not exist at any point of
[0, 1].
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Chapter 19

Hilbert spaces

Hilbert spaces are complete normed linear spaces that have an inner
product. This added structure allows one to talk about orthonor-
mal sets. We will give the definitions and basic properties. As an
application we briefly discuss Fourier series.

19.1 Inner products

Recall that if a is a complex number, then a represents the complex
conjugate. When a is real, a is just a itself.

Definition 19.1 Let H be a vector space where the set of scalars
F is either the real numbers or the complex numbers. H is an
inner product space if there is a map 〈·, ·〉 from H ×H to F such
that
(1) 〈y, x〉 = 〈x, y〉 for all x, y ∈ H;
(2) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 for all x, y, z ∈ H;
(3) 〈αx, y〉 = α〈x, y〉, for x, y ∈ H and α ∈ F ;
(4) 〈x, x〉 ≥ 0 for all x ∈ H;
(5) 〈x, x〉 = 0 if and only if x = 0.

We define ‖x‖ = 〈x, x〉1/2, so that 〈x, x〉 = ‖x‖2. From the
definitions it follows easily that 〈0, y〉 = 0 and 〈x, αy〉 = α〈x, y〉.

The following is the Cauchy-Schwarz inequality. The proof is
the same as the one usually taught in undergraduate linear algebra

183
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classes, except for some complications due to the fact that we allow
the set of scalars to be the complex numbers.

Theorem 19.2 For all x, y ∈ H, we have

|〈x, y〉| ≤ ‖x‖ ‖y‖.

Proof. Let A = ‖x‖2, B = |〈x, y〉|, and C = ‖y‖2. If C = 0, then
y = 0, hence 〈x, y〉 = 0, and the inequality holds. If B = 0, the
inequality is obvious. Therefore we will suppose that C > 0 and
B 6= 0.

If 〈x, y〉 = Reiθ, let α = eiθ, and then |α| = 1 and α〈y, x〉 =
|〈x, y〉| = B. Since B is real, we have that α〈x, y〉 also equals
|〈x, y〉|.

We have for real r

0 ≤ ‖x− rαy‖2

= 〈x− rαy, x− rαy〉
= 〈x, x〉 − rα〈y, x〉 − rα〈x, y〉+ r2〈y, y〉
= ‖x‖2 − 2r|〈x, y〉|+ r2‖y‖2.

Therefore
A− 2Br + Cr2 ≥ 0

for all real numbers r. Since we are supposing that C > 0, we may
take r = B/C, and we obtain B2 ≤ AC. Taking square roots of
both sides gives the inequality we wanted.

From the Cauchy-Schwarz inequality we get the triangle in-
equality :

Proposition 19.3 For all x, y ∈ H we have

‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Proof. We write

‖x+ y‖2 = 〈x+ y, x+ y〉 = 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉
≤ ‖x‖2 + 2‖x‖ ‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2,
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as desired.

The triangle inequality implies

‖x− z‖ ≤ ‖x− y‖+ ‖y − z‖.

Therefore ‖ · ‖ is a norm on H, and so if we define the distance
between x and y by ‖x− y‖, we have a metric space.

Definition 19.4 A Hilbert space H is an inner product space that
is complete with respect to the metric d(x, y) = ‖x− y‖.

Example 19.5 Let µ be a positive measure on a set X, let H =
L2(µ), and define

〈f, g〉 =

∫
fg dµ.

As is usual, we identify functions that are equal a.e. H is easily seen
to be a Hilbert space. To show the completeness we use Theorem
15.4.

If we let µ be counting measure on the natural numbers, we
get what is known as the space `2. An element of `2 is a sequence
a = (a1, a2, . . .) such that

∑∞
n=1 |an|2 < ∞ and if b = (b1, b2, . . .),

then

〈a, b〉 =

∞∑
n=1

anbn.

We get another common Hilbert space, n-dimensional Euclidean
space, by letting µ be counting measure on {1, 2, . . . , n}.

Proposition 19.6 Let y ∈ H be fixed. Then the functions x →
〈x, y〉 and x→ ‖x‖ are continuous.

Proof. By the Cauchy-Schwarz inequality,

|〈x, y〉 − 〈x′, y〉| = |〈x− x′, y〉| ≤ ‖x− x′‖ ‖y‖,

which proves that the function x → 〈x, y〉 is continuous. By the
triangle inequality, ‖x‖ ≤ ‖x− x′‖+ ‖x′‖, or

‖x‖ − ‖x′‖ ≤ ‖x− x′‖.
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The same holds with x and x′ reversed, so

| ‖x‖ − ‖x′‖ | ≤ ‖x− x′‖,

and thus the function x→ ‖x‖ is continuous.

19.2 Subspaces

Definition 19.7 A subset M of a vector space is a subspace if
M is itself a vector space with respect to the same operations of
addition and scalar multiplication. A closed subspace is a subspace
that is closed relative to the metric given by 〈·, ·〉.

For an example of a subspace that is not closed, consider `2

and let M be the collection of sequences for which all but finitely
many elements are zero. M is clearly a subspace. Let xn =
(1, 1

2 , . . . ,
1
n , 0, 0, . . .) and x = (1, 1

2 ,
1
3 , . . .). Then each xn ∈ M ,

x /∈M , and we conclude M is not closed because

‖xn − x‖2 =

∞∑
j=n+1

1

j2
→ 0

as n→∞.

Since ‖x+y‖2 = 〈x+ y, x+ y〉 and similarly for ‖x−y‖2, ‖x‖2,
and ‖y‖2, a simple calculation yields the parallelogram law :

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2. (19.1)

A set E ⊂ H is convex if λx+(1−λx) ∈ E whenever 0 ≤ λ ≤ 1
and x, y ∈ E.

Proposition 19.8 Each non-empty closed convex subset E of H
has a unique element of smallest norm.

Proof. Let δ = inf{‖x‖ : x ∈ E}. Dividing (19.1) by 4, if x, y ∈ E,
then

1
4‖x− y‖

2 = 1
2‖x‖

2 + 1
2‖y‖

2 −
∥∥∥x+ y

2

∥∥∥2

.
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Since E is convex, if x, y ∈ E, then (x+ y)/2 ∈ E, and we have

‖x− y‖2 ≤ 2‖x‖2 + 2‖y‖2 − 4δ2. (19.2)

Choose yn ∈ E such that ‖yn‖ → δ. Applying (19.2) with x
replaced by yn and y replaced by ym, we see that

‖yn − ym‖2 ≤ 2‖yn‖2 + 2‖ym‖2 − 4δ2,

and the right hand side tends to 0 as m and n tend to infinity.
Hence yn is a Cauchy sequence, and since H is complete, it con-
verges to some y ∈ H. Since yn ∈ E and E is closed, y ∈ E. Since
the norm is a continuous function, ‖y‖ = lim ‖yn‖ = δ.

If y′ is another point with ‖y′‖ = δ, then by (19.2) with x
replaced by y′ we have ‖y − y′‖ = 0, and hence y = y′.

We say x ⊥ y, or x is orthogonal to y, if 〈x, y〉 = 0. Let x⊥, read
“x perp,” be the set of all y in X that are orthogonal to x. If M is a
subspace, let M⊥ be the set of all y that are orthogonal to all points
in M . The subspace M⊥ is called the orthogonal complement of
M . It is clear from the linearity of the inner product that x⊥ is a
subspace of H. The subspace x⊥ is closed because it is the same
as the set f−1({0}), where f(x) = 〈x, y〉, which is continuous by
Proposition 19.6. Also, it is easy to see that M⊥ is a subspace,
and since

M⊥ = ∩x∈Mx⊥,

M⊥ is closed. We make the observation that if z ∈M ∩M⊥, then

‖z‖2 = 〈z, z〉 = 0,

so z = 0.

Lemma 19.9 Let M be a closed subspace of H with M 6= H. Then
M⊥ contains a non-zero element.

Proof. Choose x ∈ H with x /∈M . Let E = {w − x : w ∈M}. It
is routine to check that E is a closed and convex subset of H. By
Proposition 19.8, there exists an element y ∈ E of smallest norm.

Note y + x ∈M and we conclude y 6= 0 because x /∈M .
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We show y ∈ M⊥ by showing that if w ∈ M , then 〈w, y〉 = 0.
This is obvious if w = 0, so assume w 6= 0. We know y + x ∈ M ,
so for any real number t we have tw + (y + x) ∈M , and therefore
tw + y ∈ E. Since y is the element of E of smallest norm,

〈y, y〉 = ‖y‖2 ≤ ‖tw + y‖2

= 〈tw + y, tw + y〉
= t2〈w,w〉+ 2tRe 〈w, y〉+ 〈y, y〉,

which implies
t2〈w,w〉+ 2tRe 〈w, y〉 ≥ 0

for each real number t. Choosing t = −Re 〈w, y〉/〈w,w〉, we obtain

−|Re 〈w, y〉|2

〈w,w〉
≥ 0,

from which we conclude Re 〈w, y〉 = 0.

Since w ∈M , then iw ∈M , and if we repeat the argument with
w replaced by iw, then we get Re 〈iw, y〉 = 0, and so

Im 〈w, y〉 = −Re (i〈w, y〉) = −Re 〈iw, y〉 = 0.

Therefore 〈w, y〉 = 0 as desired.

If in the proof above we set Px = y + x and Qx = −y, then
Px ∈ M and Qx ∈ M⊥, and we can write x = Px + Qx. We call
Px and Qx the orthogonal projections of x onto M and M⊥, resp.
If x = z + z′ where z ∈M and z′ ∈M⊥, then Px− z = z′ −Qx is
in both M and M⊥, hence is 0, so z = Px and z′ = Qx. Therefore
each element of H can be written as the sum of an element of M
and an element of M⊥ in exactly one way.

The following is sometimes called the Riesz representation theo-
rem, although usually that name is reserved for Theorem 17.3. To
motivate the theorem, consider the case where H is n-dimensional
Euclidean space. Elements of Rn can be identified with n × 1
matrices and linear maps from Rn to Rm can be represented by
multiplication on the left by a m×n matrix A. For bounded linear
functionals on H, m = 1, so A is 1 × n, and the y of the next
theorem is the vector associated with the transpose of A.

Theorem 19.10 If L is a bounded linear functional on H, then
there exists a unique y ∈ H such that Lx = 〈x, y〉.
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Proof. The uniqueness is easy. If Lx = 〈x, y〉 = 〈x, y′〉, then
〈x, y − y′〉 = 0 for all x, and in particular, when x = y − y′.

We now prove existence. If Lx = 0 for all x, we take y = 0.
Otherwise, let M = {x : Lx = 0}, take z 6= 0 in M⊥, and let
y = αz where α = Lz/〈z, z〉. Notice y ∈M⊥,

Ly =
Lz

〈z, z〉
Lz = |Lz|2/〈z, z〉 = 〈y, y〉,

and y 6= 0.

If x ∈ H and

w = x− Lx

〈y, y〉
y,

then Lw = 0, so w ∈M , and hence 〈w, y〉 = 0. Then

〈x, y〉 = 〈x− w, y〉 = Lx

as desired.

19.3 Orthonormal sets

A subset {uα}α∈A of H is orthonormal if ‖uα‖ = 1 for all α and
〈uα, uβ〉 = 0 whenever α, β ∈ A and α 6= β.

The Gram-Schmidt procedure from linear algebra also works in
infinitely many dimensions. Suppose {xn}∞n=1 is a linearly inde-
pendent sequence, i.e., no finite linear combination of the xn is 0.
Let u1 = x1/‖x1‖ and define inductively

vN = xN −
n−1∑
i=1

〈xN , ui〉ui,

uN = vN/‖vN‖.

We have 〈vN , ui〉 = 0 if i < N , so u1, . . . , uN are orthonormal.

Proposition 19.11 If {uα}α∈A is an orthonormal set, then for
each x ∈ H, ∑

α∈A
|〈x, uα〉|2 ≤ ‖x‖2. (19.3)
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This is called Bessel’s inequality. This inequality implies that
only finitely many of the summands on the left hand side of (19.3)
can be larger than 1/n for each n, hence only countably many of
the summands can be non-zero.

Proof. Let F be a finite subset of A. Let

y =
∑
α∈F
〈x, uα〉uα.

Then
0 ≤ ‖x− y‖2 = ‖x‖2 − 〈x, y〉 − 〈y, x〉+ ‖y‖2.

Now

〈y, x〉 =
〈∑
α∈F
〈x, uα〉uα, x

〉
=
∑
α∈F
〈x, uα〉〈uα, x〉 =

∑
α∈F
|〈x, uα〉|2.

Since this is real, then 〈x, y〉 = 〈y, x〉. Also

‖y‖2 = 〈y, y〉 =
〈∑
α∈F
〈x, uα〉uα,

∑
β∈F

〈x, uβ〉uβ
〉

=
∑
α,β∈F

〈x, uα〉〈x, uβ〉〈uα, uβ〉

=
∑
α∈F
|〈x, uα〉|2,

where we used the fact that {uα} is an orthonormal set. Therefore

0 ≤ ‖y − x‖2 = ‖x‖2 −
∑
α∈F
|〈x, uα〉|2.

Rearranging, ∑
α∈F
|〈x, uα〉|2 ≤ ‖x‖2

when F is a finite subset of A. If N is an integer larger than n‖x‖2,
it is not possible that |〈x, uα〉|2 > 1/n for more than N of the α.
Hence |〈x, uα〉|2 6= 0 for only countably many α. Label those α’s
as α1, α2, . . .. Then

∑
α∈A
|〈x, uα〉|2 =

∞∑
j=1

|〈x, uαj 〉|2 = lim
J→∞

J∑
j=1

|〈x, uαj 〉|2 ≤ ‖x‖2,

which is what we wanted.
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Proposition 19.12 Suppose {uα}α∈A is orthonormal. Then the
following are equivalent.
(1) If 〈x, uα〉 = 0 for each α ∈ A, then x = 0.
(2) ‖x‖2 =

∑
α∈A |〈x, uα〉|2 for all x.

(3) For each x ∈ H, x =
∑
α∈A 〈x, uα〉uα.

We make a few remarks. When (1) holds, we say the orthonor-
mal set is complete. (2) is called Parseval’s identity. In (3) the
convergence is with respect to the norm of H and implies that only
countably many of the terms on the right hand side are non-zero.

Proof. First we show (1) implies (3). Let x ∈ H. By Bessel’s
inequality and the remarks following the statement of Proposition
19.11 there can be at most countably many α such that |〈x, uα〉|2 6=
0. Let α1, α2, . . . be an enumeration of those α. By Bessel’s in-
equality, the series

∑
i |〈x, uαi〉|2 converges. Using that {uα} is an

orthonormal set,

∥∥∥ n∑
j=m

〈x, uαj 〉uαj
∥∥∥2

=

n∑
j,k=m

〈x, uαj 〉〈x, uαk〉〈uαj , uαk〉

=

n∑
j=m

|〈x, uαj 〉|2 → 0

as m,n → ∞. Thus
∑n
j=1 〈x, uαj 〉uαj is a Cauchy sequence, and

hence converges. Let z =
∑∞
j=1 〈x, uαj 〉uαj . Then 〈z − x, uαj 〉 = 0

for each αj . By (1), this implies z − x = 0.

We see that (3) implies (2) because

‖x‖2 −
n∑
j=1

|〈x, uαj 〉|2 =
∥∥∥x− n∑

j=1

〈x, uαj 〉uαj
∥∥∥2

→ 0.

That (2) implies (1) is clear.

Example 19.13 Take H = `2 = {x = (x1, x2, . . .) :
∑
|xi|2 <∞}

with 〈x, y〉 =
∑
i xiyi. Then {ei} is a complete orthonormal sys-

tem, where ei = (0, 0, . . . , 0, 1, 0, . . .), i.e., the only non-zero coor-
dinate of ei is the ith one.
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If K is a subset of a Hilbert space H, the set of finite linear
combinations of elements of K is called the span of K.

A collection of elements {eα} is a basis for H if the set of finite
linear combinations of the eα is dense in H. A basis, then, is a
subset of H such that the closure of its span is all of H.

Proposition 19.14 Every Hilbert space has an orthonormal basis.

This means that (3) in Proposition 19.12 holds.

Proof. If B = {uα} is orthonormal, but not a basis, let V be the
closure of the linear span of B, that is, the closure with respect to
the norm in H of the set of finite linear combinations of elements
of B. Choose x ∈ V ⊥, and if we let B′ = B ∪ {x/‖x‖}, then B′ is
a basis that is strictly bigger than B.

It is easy to see that the union of an increasing sequence of
orthonormal sets is an orthonormal set, and so there is a maximal
one by Zorn’s lemma. By the preceding paragraph, this maximal
orthonormal set must be a basis, for otherwise we could find a
larger basis.

19.4 Fourier series

An interesting application of Hilbert space techniques is to Fourier
series, or equivalently, to trigonometric series. For our Hilbert
space we take H = L2([0, 2π)) and let

un =
1√
2π
einx

for n an integer. (n can be negative.) Recall that

〈f, g〉 =

∫ 2π

0

f(x)g(x) dx

and ‖f‖2 =
∫ 2π

0
|f(x)|2 dx.

It is easy to see that {un} is an orthonormal set:∫ 2π

0

einxe−imx dx =

∫ 2π

0

ei(n−m)x dx = 0
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if n 6= m and equals 2π if n = m.

Let F be the set of finite linear combinations of the un, i.e.,
the span of {un}. We want to show that F is a dense subset of
L2([0, 2π)). The first step is to show that the closure of F with
respect to the supremum norm is equal to the set of continuous
functions f on [0, 2π) with f(0) = f(2π). We will accomplish this
by using the Stone-Weierstrass theorem, Theorem 1.7.

We identify the set of continuous functions on [0, 2π) that take
the same value at 0 and 2π with the continuous functions on the
circle. To do this, let S = {eiθ : 0 ≤ θ < 2π} be the unit circle in C.

If f is continuous on [0, 2π) with f(0) = f(2π), define f̃ : S → C
by f̃(eiθ) = f(θ). Note ũn(eiθ) = einθ.

Let F̃ be the set of finite linear combinations of the ũn. S is a
compact metric space. Since the complex conjugate of ũn is ũ−n,

then F̃ is closed under the operation of taking complex conjugates.
Since ũn·ũm = ũn+m, it follows that F is closed under the operation
of multiplication. That it is closed under scalar multiplication and
addition is obvious. ũ0 is identically equal to 1, so F̃ vanishes at
no point. If θ1, θ2 ∈ S and θ1 6= θ2, then θ1 − θ2 is not an integer
multiple of 2π, so

ũ1(θ1)

ũ1(θ2)
= ei(θ1−θ2) 6= 1,

or ũ1(θ1) 6= ũ1(θ2). Therefore F separates points. By the Stone-
Weierstrass theorem (Theorem 1.7), the closure of F with respect
to the supremum norm is equal to the set of continuous complex-
valued functions on S.

If f ∈ L2([0, 2π)), then∫
|f − fχ[1/m,2π−1/m]|2 → 0

by the dominated convergence theorem as m → ∞. By Corollary
15.6 any function in L2([1/m, 2π − 1/m]) can be approximated
in L2 by continuous functions which have support in the interval
[1/m, 2π−1/m]. By what we showed above, a continuous function
with support in [1/m, 2π−1/m] can be approximated uniformly on
[0, 2π) by elements of F . Finally, if g is continuous on [0, 2π) and
gm → g uniformly on [0, 2π), then gm → g in L2([0, 2π)) by the
dominated convergence theorem. Putting all this together proves
that F is dense in L2([0, 2π)).
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It remains to show the completeness of the un. If f is orthogonal
to each un, then it is orthogonal to every finite linear combination,
that is, to every element of F . Since F is dense in L2([0, 2π)), we
can find fn ∈ F tending to f in L2. Then

‖f‖2 = |〈f, f〉| ≤ |〈f − fn, f〉|+ |〈fn, f〉|.

The second term on the right of the inequality sign is 0. The first
term on the right of the inequality sign is bounded by ‖f −fn‖ ‖f‖
by the Cauchy-Schwarz inequality, and this tends to 0 as n →
∞. Therefore ‖f‖2 = 0, or f = 0, hence the {un} are complete.
Therefore {un} is a complete orthonormal system.

Given f in L2([0, 2π)), write

cn = 〈f, un〉 =

∫ 2π

0

fun dx =
1√
2π

∫ 2π

0

f(x)e−inx dx,

the Fourier coefficients of f . Parseval’s identity says that

‖f‖2 =
∑
n

|cn|2.

For any f in L2 we also have∑
|n|≤N

cnun → f

as N →∞ in the sense that∥∥∥f − ∑
|n|≤N

cnun

∥∥∥
2
→ 0

as N →∞.

Using einx = cosnx+ i sinnx, we have

∞∑
n=−∞

cne
inx = A0 +

∞∑
n=1

Bn cosnx+

∞∑
n=1

Cn sinnx,

where A0 = c0, Bn = cn + c−n, and Cn = i(cn − c−n). Conversely,
using cosnx = (einx + e−inx)/2 and sinnx = (einx − e−inx)/2i,

A0 +

∞∑
n=1

Bn cosnx+

∞∑
n=1

Cn sinnx =

∞∑
n=−∞

cne
inx

if we let c0 = A0, cn = Bn/2 + Cn/2i for n > 0 and cn = Bn/2 −
Cn/2i for n < 0. Thus results involving the un can be transferred
to results for series of sines and cosines and vice versa.
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19.5 Exercises

Exercise 19.1 For f, g ∈ L2([0, 1]), let 〈f, g〉 =
∫ 1

0
f(x)g(x) dx.

Let H = C([0, 1]) be the functions that are continuous on [0, 1]. Is
H a Hilbert space with respect to the norm defined in terms of the
inner product 〈·, ·〉? Justify your answer.

Exercise 19.2 Suppose H is a Hilbert space with a countable ba-
sis. Suppose ‖xn‖ → ‖x‖ as n→∞ and 〈xn, y〉 → 〈x, y〉 as n→∞
for every y ∈ H. Prove that ‖xn − x‖ → 0 as n→∞.

Exercise 19.3 Prove that if M is a closed subspace of a Hilbert
space H, then (M⊥)⊥ = M . Is this necessarily true if M is not
closed? If not, give a counterexample.

Exercise 19.4 Give an example of a subspace M of a Hilbert
space H such that M 6= H but M⊥ = {0}.

Exercise 19.5 Prove that if H is infinite-dimensional, that is, it
has no finite basis, then the closed unit ball in H is not compact.

Exercise 19.6 Suppose an is a sequence of real numbers such that

∞∑
n=1

anbn <∞

whenever
∑∞
n=1 b

2
n <∞. Prove that

∑∞
n=1 a

2
n <∞.

Exercise 19.7 We say xn → x weakly if 〈xn, y〉 → 〈x, y〉 for every
y in H. Prove that if xn is a sequence in H with supn ‖xn‖ ≤ 1,
then there is a subsequence {nj} and an element x of H with
‖x‖ ≤ 1 such that xnj converges to x weakly.

Exercise 19.8 If A is a measurable subset of [0, 2π], prove that

lim
n→∞

∫
A

einx dx = 0.

This is special case of the Riemann-Lebesgue lemma.
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Exercise 19.9 The purpose of Exercise 13.6 was to show that in
proving the Radon-Nikodym theorem, we can assume that ν(A) ≤
µ(A) for all measurable A. Assume for the current problem that
this is the case and that µ and ν are finite measures. We use this
to give an alternative proof of the Radon-Nikodym theorem.

For f real-valued and in L2 with respect to µ, define L(f) =∫
f dν.

(1) Show that L is a bounded linear functional on L2(µ).
(2) Conclude by Theorem 19.10 that there exists a real-valued
measurable function g in L2(µ) such that L(f) =

∫
fg dµ for all

f ∈ L2(µ). Prove that dν = g dµ.

Exercise 19.10 Suppose f is a continuous real-valued function on
R such that f(x + 1) = f(x) for every x. Let γ be an irrational
number. Prove that

lim
n→∞

1

n

n∑
j=1

f(jγ) =

∫ 1

0

f(x) dx.

Exercise 19.11 If M is a closed subspace of a Hilbert space, let
x+M = {x+ y : y ∈M}.
(1) Prove that x+M is a closed convex subset of H.
(2) Let Qx be the point of x+M of smallest norm and Px = x−Qx.
P is called the projection of x onto M . Prove that P and Q are
mappings of H into M and M⊥, respectively.
(3) Prove that P and Q are linear mappings.
(4) Prove that if x ∈M , then Px = x and Qx = 0.
(5) Prove that if x ∈M⊥, then Px = 0 and Qx = x.
(6) Prove that

‖x‖2 = ‖Px‖2 + ‖Qx‖2.

Exercise 19.12 Suppose {en} is an orthonormal basis for a sep-
arable Hilbert space and {fn} is an orthonormal set such that∑
‖en − fn‖ < 1. Prove that {fn} is a basis.



Chapter 20

Topology

I have assumed up until now that you are familiar with metric
spaces. This chapter studies more general topological spaces. Top-
ics include compactness, connectedness, separation results, embed-
dings, and approximation results.

20.1 Definitions

Definition 20.1 Let X be an arbitrary set. A topology T is a
collection of subsets of X such that
(1) X, ∅ ∈ T ;
(2) if Gα ∈ T for each α in a non-empty index set I, then ∪α∈IGα ∈
T ;
(3) if G1, . . . , Gn ∈ T , then ∩ni=1Gi ∈ T .
A topological space is a set X together with a topology T of subsets
of X.

Property (2) says that T is closed under the operation of arbi-
trary unions, while (3) says that T is closed under the operation
of finite intersections.

An open set G is an element of T . A set F is a closed set if F c

is open.

Example 20.2 Let X be a metric space with a metric d. A subset
G of X is open in the metric space sense if whenever x ∈ G, there

197
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exists r depending on x such that B(x, r) ⊂ G, where B(x, r) =
{y : d(x, y) < r}. A metric space becomes a topological space if
we let T be the collection of open sets. We call T the topology
generated by the metric d.

Example 20.3 If X is an arbitrary set and T is the collection of
all subsets of X, then the topology T is called the discrete topology.

Example 20.4 If X is an arbitrary set and T = {∅, X}, then the
topology T is called the trivial topology.

There are a large number of terms associated with topology.
Let us start with some that have a geometric interpretation. Let
A be a subset of a topological space (X, T ), but not necessarily an
element of T . A point x is an interior point of A if there exists
G ∈ T such that x ⊂ G ⊂ A. The interior of A, frequently denoted
by Ao, is the set of interior points of A.

A point x, not necessarily an element of A, is a limit point of
A if every open set that contains x contains a point of A other
than x. The set of limit points of A is sometimes denoted A′.
Another name for limit point is accumulation point. The closure
of A, frequently denoted A, is the set A ∪A′.

The boundary of A, sometimes written ∂A, is A−Ao. A point
x ∈ A is an isolated point of A if x ∈ A− A′, that is, it is a point
of A that is not a limit point of A.

If X is the real line, with the topology coming from the usual
metric d(x, y) = |x − y| and A = (0, 1], then Ao = (0, 1), A′ =
[0, 1], A = [0, 1], and ∂A = {0, 1}. A has no isolated points. If
B = {1, 1

2 ,
1
3 ,

1
4 , . . .}, then Bo = ∅, B′ = {0}, B = {0, 1, 1

2 ,
1
3 , . . .},

and ∂B = B. Each point of B is an isolated point of B. If C is the
set of rationals in [0, 1], then C = [0, 1], Co = ∅, and ∂C = [0, 1].

A set A is a neighborhood of x if x ∈ Ao, that is, if there exists
an open set G such that x ∈ G ⊂ A. Some authors require a
neighborhood to be open, but this is not common usage. We will
call A an open neighborhood when A is both a neighborhood and
an open set.

Let us prove two propositions which will give some practice with
the definitions.
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Proposition 20.5 (1) If F1, . . . , Fn are closed sets, then ∪ni=1Fi
is closed.
(2) If Fα is a closed set for each α in a non-empty index set I,
then ∩α∈IFα is closed.

Proof. (1) Since each Fi is closed, then each F ci is open. Hence

(∪ni=1Fi)
c = ∩ni=1F

c
i

is open. Therefore ∪ni=1Fi is closed.

(2) is similar.

Proposition 20.6 (1) If A is a subset of X, then

A = ∩{F : F closed, A ⊂ F}. (20.1)

(2) A is closed.

Proof. Let B denote the right hand side of (20.1). We first show
that A ⊂ B by showing that if x /∈ B, then x /∈ A. If x /∈ B, there
exists a closed set F containing A such that x /∈ F . Then F c is an
open set containing x which is disjoint from A. Since x ∈ F c, then
x /∈ A and x is not a limit point of A, hence x /∈ A.

We finish the proof of (1) by showing B ⊂ A. Let x ∈ B.
One possibility is that x ∈ A, in which case x ∈ A. The second
possibility is that x /∈ A. Let G be an open set containing x. If
G is disjoint from A, then Gc is a closed set containing A that
does not contain the point x, a contradiction to the definition of
B. Therefore, in this second case where x /∈ A, every open set
containing x intersects A, which says that x is a limit point of A,
hence x ∈ A.

This proves (1). Since the intersection of closed sets is closed,
(2) follows.

Next let us discuss some situations where there are several
topologies present. Let (X, T ) be a topological space and let Y
be a subset of a set X. If we define U = {G ∩ Y : G ∈ T }, then it
is routine to check that U is a topology of subsets of Y . The space



200 CHAPTER 20. TOPOLOGY

(Y,U) is a subspace of (X, T ). We say an element of U is relatively
open and call U the relative topology.

As an example, let X = [0, 1] with the usual metric and let
Y = [1/2, 1]. The set A = [1/2, 3/4) is relatively open but is not
an open subset of X.

Given two topologies T and T ′ on a set X with T ⊂ T ′, we say
T is weaker or coarser than T ′ and T ′ is stronger or finer than T .
A stronger topology has more open sets.

Suppose (X, T ) is a topological space and ∼ is an equivalence
relation for X. Let X be the set of equivalence classes and let
E : X → X be defined by setting E(x) equal to the equivalence
class containing x. Define U = {A ⊂ X : E−1(A) ∈ T }, where
E−1(A) = {x : E(x) ⊂ A}. Then U is called the quotient topology
on X.

Next we discuss bases, subbases, and the product topology.

A subcollection B of T is an open base if every element of T
is a union of sets in B. A subcollection S of T is a subbase if the
collection of finite intersections of elements of S is an open base for
T .

As an example, consider R2 with the topology generated by the
metric

d((x1, y1), (x2, y2)) = (|x1 − x2|2 + |y1 − y2|2)1/2,

the usual Euclidean metric. If B(x, r) = {y ∈ R2 : d(x, y) < r},
then the collection of balls {B(x, r) : x ∈ R2, r > 0} forms an open
base for T . The set of rectangles {(x, y) : a < x < b, c < y < d}
where a < b, c < d also forms an open base. To give an example of
a subbase, let

C1 = {(x, y) : a < x < b, y ∈ R}, C2 = {(x, y) : x ∈ R, c < y < d},

and then let S = C1∪C2. Every set in S is open, and any rectangle is
the intersection of an element of C1 with an element of C2. Therefore
the finite intersections of elements in S form a base, and therefore
S is a subbase.

Any collection C of subsets of a set X generates a topology
T on X by letting T be the smallest topology that has C as a
subbase. This means that we first take the collection B of all finite
intersections of elements of C, and then let T be the collection of
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arbitrary unions of elements of B. It is easy to see that T is a
topology which has C as a subbase.

Suppose I is a non-empty index set and for each α ∈ I, (Xα, Tα)
is a topological set. (We will always take our index sets to be
non-empty.) Let X =

∏
α∈I Xα, the product set. Let πα be the

projection of X onto Xα.

When all theXα are equal to the same spaceX, we use the nota-
tion XI for

∏
α∈I Xα. We remark that just as n-tuples (x1, . . . , xn)

can be viewed as functions from {1, . . . , n} into a set and sequences
can be viewed as functions from {1, 2, . . .} into a set, then elements
of XI can be viewed as functions from I into X.

Let {Xα}, α ∈ I, be a non-empty collection of topological
spaces, let Tα be the topology on Xα, let X =

∏
α∈I Xα, and

let πα be the projection of X onto Xα. Set

Cα = {π−1
α (A) : A ∈ Tα}.

The product topology is the topology generated by ∪α∈ICα.

This is a bit confusing, so let us look at the special case where
I = {1, 2, . . . , n}. Then X is the set of n-tuples {x1, x2, . . . , xn},
where xi ∈ Xi. If x = (x1, x2, . . . , xn), then πi(x) = xi, the ith

coordinate. The collection Ci is the collection of sets of the form( i−1∏
j=1

Xj

)
×A×

( n∏
j=i+1

Xj

)
,

where A is open in Xi. Let S = ∪ni=1Ci and let B be the collection
of finite intersections of elements of S. A set in B will be of the
form A1 × · · · × An, where Ai is open in Xi for each i. (Nothing
prevents some of the Ai being all of Xi.) The product topology is
then the set of arbitrary unions of sets in B.

A subcollection Bx of open sets containing the point x is an
open base at the point x if every open set containing x contains an
element of Bx.

We discuss some terms connected to infinite sets. A set A ⊂ X
is dense in X if A = X. The set A is nowhere dense if the closure
of A has empty interior, that is, (A)o = ∅. A space X is separable if
there exists a countable subset of X that is dense in X. A space X
is second countable if it has a countable base. A topological space
is first countable if every point x has a countable open base at x.
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A sequence {x1, x2, . . .} converges to a point y if whenever G
is an open set containing y, there exists N such that xn ∈ G if
n ≥ N . If there exists a subsequence of {x1, x2, . . .} that converges
to a point y, then y is called a subsequential limit of the sequence.
Another name for a subsequential limit point is cluster point.

Proposition 20.7 Let X be a metric space. Then X is second
countable if and only if it is separable.

Proof. Suppose X is second countable, and B = {G1, G2, . . .} is a
countable base. Pick a point xi ∈ Gi for each i. Clearly A = {xi} is
countable, and we claim that it is dense in X. If y ∈ X and H is an
open set containing y, then by the definition of base, y ∈ Gj ⊂ H
for some j. Therefore H contains xj , and so intersects A. Since H
is arbitrary, this shows y ∈ A. Since y is arbitrary, X = A. Note
that this part of the proof did not use the fact that X is a metric
space.

Now suppose X is a separable metric space with {xi} a count-
able dense subset of X. Let

B = {B(xi, r) : r rational, r > 0, i = 1, 2, . . .}.

Note that B is countable and we show that B is a base. It suffices
to show that if y ∈ X and G is an open set of X containing y,
then there exists an element of B containing y and contained in
G. Since G is open, there exists s such that y ∈ B(y, s) ⊂ G.
Since {xi} is separable, there exists j such that B(y, s/4) contains
xj . Take r rational with s/4 < r < s/2. Then B(xj , r) ∈ B.
Since d(xj , y) < s/4, then y ∈ B(xj , r). Since d(xj , y) < s/4 and
B(y, s) ⊂ G, then B(xj , r) ⊂ G.

We next define nets. A set I is a directed set if there exists an
ordering “≤” satisfying
(1) α ≤ α for all α ∈ I;
(2) if α ≤ β and β ≤ γ, then α ≤ γ;
(3) if α and β are in I, there exists γ ∈ I such that α ≤ γ and
β ≤ γ.

Here are two examples. For the first, let I = {1, 2, . . .} and
say j ≤ k if j is less than or equal to k in the usual sense. For the
second, let x be a point in a topological space, let I be the collection
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of open neighborhoods of x, and say N1 ≤ N2 if N2 ⊂ N1. Note
that this ordering is the reverse of the usual inclusion ordering.

A net is a mapping from a directed set I into a topological space
X. A net 〈xα〉, α ∈ I, converges to a point y if for each open set G
containing y there is an α0 ∈ I such that xα ∈ G whenever α ≥ α0.

If I is the first example of directed sets, namely, the positive in-
tegers, the notion of convergence is the same as that for a sequence
to converge.

Proposition 20.8 Let E be a subset of a topological space. If
there is a net consisting of infinitely many different points in E
that converges to y, then y is a limit point of E. If y is a limit
point of E, then there is a net taking values in E that converges to
y.

Proof. It is easy to see that if there is an infinite net {xα} taking
values in E that converges to y, then y is a limit point of E. Sup-
pose y is a limit point of E. We take as a directed set I our second
example, the collection of all open neighborhoods of y, ordered by
reverse inclusion. For each Gα in this collection, we choose (the
axiom of choice is used here) an element xα of Gα ∩ E different
than x. Such a point xα exists because y is a limit point of E.

It now remains to show that 〈xα〉 converges to y, and that is a
matter of checking the definitions. If G is an open set containing y,
then G is equal to Gα0

for some α0 ∈ I. If α ≥ α0, then Gα ⊂ Gα0
,

so xα ∈ Gα ⊂ Gα0
= G. This is what it means for the net 〈xα〉 to

converge to the point y.

Exercise 20.19 shows why the convergence of nets is more useful
for general topological spaces than the convergence of sequences.

Remark 20.9 We have talked quite a bit in this book about al-
most every convergence. One might ask whether one can construct
a topology which is in some sense consistent with this type of con-
vergence. The answer is no.

To see this, recall Example 10.7 where we had a sequence of
bounded measurable functions {fn} converging to 0 in measure
but not almost everywhere. If there were a topology consistent
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with almost everywhere convergence, then there would be a neigh-
borhood A of the function 0 such that fn /∈ A for infinitely many
n. We can thus extract a subsequence {fnj} such that no fnj is in
A. However the subsequence {fnj} still converges in measure to 0,
hence there is a further subsequence {fnjk } which converges almost
everywhere to 0 by Proposition 10.2. This implies that fnjk ∈ A
for all k sufficiently large, contradicting the fact that no fnj is in
the neighborhood A of 0.

Finally we talk about continuous functions. Suppose (X, T )
and (Y,U) are two topological spaces. A function f : X → Y is
continuous if f−1(G) ∈ T whenever G ∈ U . The function f is
open if f(H) is in U whenever H ∈ T . A homeomorphism between
X and Y is a function f that is one-to-one, onto, continuous, and
open. In this case, since f is one-to-one and onto, then f−1 exists,
and saying f is open is the same as saying f−1 is continuous.

Suppose f is a continuous function from X into Y and F is
closed in Y . Then (f−1(F ))c = f−1(F c) will be open in X since
F c is open in Y , and therefore f−1(F ) is closed in X. Thus the
inverse image of a closed set under a continuous function is closed.

Conversely, suppose the inverse image of every closed set in Y
is closed in X and G is open in Y . Then (f−1(G))c = f−1(Gc) will
be closed in X, and so the inverse image of G is open in X. This
implies that f is continuous.

Given a topological space (Y,U) and a non-empty collection of
functions {fα}, α ∈ I, from X to Y , the topology on X generated
by the fα is defined to be the topology generated by

{f−1
α (G) : G ∈ U , α ∈ I}.

Proposition 20.10 Suppose f is a function from a topological
space (X, T ) to a topological space (Y,U). Let S be a subbase for
Y . If f−1(G) ∈ T whenever G ∈ S, then f is continuous.

Proof. Let B be the collection of finite intersections of elements
of S. By the definition of subbase, B is a base for Y . Suppose
H = G1 ∩ G2 ∩ · · · ∩ Gn with each Gi ∈ S. Since f−1(H) =
f−1(G1) ∩ · · · ∩ f−1(Gn) and T is closed under the operation of
finite intersections, then f−1(H) ∈ T . If J is an open subset of
Y , then J = ∪α∈IHα, where I is a non-empty index set and each
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Hα ∈ B. Then f−1(J) = ∪α∈If−1(Hα), which proves f−1(J) ∈ T .
That is what we needed to show.

20.2 Compactness

Let X be a topological space. Let A be a subset of X. An open
cover of A is a non-empty collection {Gα}, α ∈ I, of open subsets
of X such that A ⊂ ∪α∈IGα. A subcover is a subcollection of {Gα}
that is also a cover of A. A is compact if every open cover of A has
a finite subcover.

We will develop several characterizations of compactness. For
now, observe that every finite set is compact.

It is easier to give examples of sets that are not compact. If
X = R with the usual metric, then X is not compact. To see this,
notice that {(n, n+ 2)}, n an integer, covers R, but any finite sub-
collection can cover at most a bounded set. For another example,
let A = (0, 1/4]. If we let Gi = (2−i−2, 2−i), i = 1, 2, . . ., then
{Gi} covers A but if {Gi1 , . . . Gin} is any finite subcollection, the
interval (0, 2−I−2] will not be covered, where I = i1 ∨ · · · ∨ in.

Proposition 20.11 If A ⊂ B, B is compact, and A is closed, then
A is compact.

Proof. Let G = {Gα}, α ∈ I, be an open cover for A. Add
to this collection the set Ac, which is open. This larger collection,
H = G∪{Ac}, will be an open cover for B, and since B is compact,
there is a finite subcover H′. If Ac is in H′, discard it, and let
G′ = H′−{Ac}. Then G′ is finite, is a subset of G and covers A.

Proposition 20.12 Let X and Y be topological spaces, f a con-
tinuous function from X into Y , and A a compact subset of X.
Then f(A) = {f(x) : x ∈ A} is a compact subset of Y .

Proof. Let {Gα}, α ∈ I, be an open cover for f(A). Then
{f−1(Gα)}, α ∈ I, will be an open cover for A. We used here
the fact that since f is continuous, the inverse image of an open
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set is open. Since A is compact, there exist finitely many sets
{f−1(Gα1), . . . , f−1(Gαn)} that cover A. Then {Gα1 , . . . , Gαn} is
a finite subcover for f(A).

A collection of closed subsets of X has the finite intersection
property if every finite subcollection has non-empty intersection.

Proposition 20.13 A topological space X is compact if and only
if any collection of closed sets with the finite intersection property
has non-empty intersection.

Proof. Suppose X is compact and {Fα}, α ∈ I, is a non-empty
collection of closed sets with the finite intersection property. If
∩α∈IFα = ∅, then {F cα} is an open cover for X. Thus there exist
finitely many sets {F cα1

, . . . , F cαn} which form a finite subcover for
X. This means that ∩ni=1Fαi = ∅, which contradicts the finite
intersection property.

Conversely, suppose any collection of closed sets with the fi-
nite intersection property has non-empty intersection. If {Gα},
α ∈ I, is an open cover for X, then {Gcα} has empty intersection.
Hence there must exist {Gcα1

, . . . , Gcαn} which has empty intersec-
tion. Then {Gα1 , . . . , Gαn} is a finite subcover. Therefore X is
compact.

Here are a few more definitions. A set A is precompact if A is
compact. A set A is σ-compact if there exist K1,K2, . . . compact
such that A = ∪∞i=1Ki. A set A is countably compact if every
countable cover of A has a finite subcover.

A set A is sequentially compact if every sequence of elements in
A has a subsequence which converges to a point of A. A set A has
the Bolzano-Weierstrass property if every infinite subset of A has
a limit point in A.

20.3 Tychonoff’s theorem

Tychonoff’s theorem says that the product of compact spaces is
compact. We will get to this theorem in stages. We will need Zorn’s
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lemma to prove Tychonoff’s theorem; this cannot be avoided, since
it is known that Tychonoff’s theorem implies the axiom of choice.

Let (X, T ) be a topological space, let B be a basis for T , and
let S be a subbasis. Naturally enough, if A is a subset of X and
{Gα} is an open cover for A such that each Gα ∈ B, then {Gα}
is called a basic open cover , while if each Gα ∈ S, then {Gα} is a
subbasic open cover .

Proposition 20.14 Suppose A is a subset of X and every basic
open cover of A has a finite subcover. Then A is compact.

Proof. Let {Gα} be an open cover for A; we only assume here that
Gα ∈ T . If x ∈ A, there exists αx such that x ∈ Gαx , and by the
definition of basis, there exists Bx ∈ B such that x ∈ Bx ⊂ Gαx .
Then {Bx}, x ∈ A, is a basic open cover of A. By hypothesis there
is a basic open subcover {Bx1

, . . . Bxn}. Since Bxi ⊂ Gαxi , then
{Gαx1 , . . . , Gαxn } will be a finite subcollection of {Gα} that covers
A. Thus every open cover of A has a finite subcover, and hence A
is compact.

Much harder is the fact that for A to be compact, it suffices
that every subbasic open cover have a finite subcover. First we
prove the following lemma, which is where Zorn’s lemma is used.

Lemma 20.15 Let A be a subset of X. Suppose C ⊂ E are two
collections of open subsets of X and suppose that no finite subcol-
lection of C covers A. Then there exists a maximal subset D of E
that contains C and such that no finite subcollection of D covers A.

Saying that D is maximal means that if D ⊂ D′ ⊂ E and no finite
subcollection of D′ covers A, then D′ must equal D.

Proof. Let B be the class of all subcollections B of E such that
B contains C and no subcollection of B covers A. We order B by
inclusion. If we prove that every totally ordered subset of B has an
upper bound in B, our lemma will follow by Zorn’s lemma.

Let B′ be a totally ordered subset of B. Let

B = ∪{Bα : Bα ∈ B′}.
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Clearly C ⊂ B ⊂ E , and we must show that no finite subcollection
of B covers A.

Suppose there exist B1, . . . , Bn in B such that A ⊂ ∪ni=1Bi.
For each i, there exists αi such that Bi ∈ Bαi for some Bαi ∈ B′.
Since B′ is totally ordered, one of the Bαi contains all the others.
Let us suppose it is Bαn , since otherwise we can relabel. But then
Bi ∈ Bαi ⊂ Bαn for each i, contradicting that Bαn has no finite
subcollection that covers A. We conclude that B is an upper bound
for B′.

Theorem 20.16 Suppose A is a subset of X and every subbasic
open cover of A has a finite subcover. Then A is compact.

Proof. Let B be a basis for T , the topology on X, and let S be
a subbasis. We will show that every basic open cover of A has a
finite subcover and then apply Proposition 20.14. We will achieve
this by supposing that C is a basic open cover of A having no finite
subcover and show that this leads to a contradiction.

Step 1. The first step is to enlarge C. Since C ⊂ B and no finite
subcover of C covers A, by Lemma 20.15 there exists a maximal D
such that C ⊂ D ⊂ B and no finite subcover of D covers A.

Step 2. We write D = {Bα : α ∈ I}, where I is an index set and
each Bα ∈ B. Fix α for now. By the definition of subbase, we can
find n ≥ 1 and S1, . . . , Sn ∈ S such that Bα = S1 ∩ · · · ∩ Sn.

We claim that at least one of the Si in in D. Suppose not. Let
i ≤ n. Since Si is a subbasic open set, it is also a basic open set,
and therefore C ⊂ D ∪ {Si} ⊂ B. By the maximality property of
D, the collection D ∪ {Si} must have a finite subcover of A. Thus
there exist Bi1, . . . , Biki ∈ D such that

A ⊂ Si ∪Bi1 ∪ · · · ∪Biki . (20.2)

This holds for each i.

If x ∈ A, one possibility is that x ∈ Bij for some i ≤ n, j ≤ ki.
The other possibility is that x /∈ Bij for any i ≤ n, j ≤ ki. In
this second case, (20.2) implies that x ∈ Si for each i, and hence
x ∈ S1 ∩ · · · ∩ Sn = Bα.
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Under either possibility we have that {Bij : i ≤ n, j ≤ ki} ∪
{Bα} is a finite subcollection of D that covers A. This is a con-
tradiction. We conclude that at least one of the Si is in D. We
rename Si as Sα.

Step 3. Now we no longer fix α and we do the above argument for
each α, obtaining a collection of subbasic open sets {Sα}. Since
{Sα} ⊂ D, then {Sα} has no finite subcover of A. On the other
hand, Bα ⊂ Sα, so A ⊂ ∪αBα ⊂ ∪αSα. Therefore {Sα} is a
subbasic open cover of A. By the hypothesis of the theorem, {Sα}
has a finite subcover. This is our contradiction. We conclude that
{Bα} must have a finite subcover, and thus A is compact.

We now state and prove the Tychonoff theorem.

Theorem 20.17 The non-empty product of compact topological
spaces is compact.

Proof. Suppose we have a non-empty family {Xα}, α ∈ I, of
compact topological spaces, and we let X =

∏
α∈I Xα. A subbase

for X is the collection {π−1
α (Gα)}, where α ∈ I, Gα is an open

subset of Xα, and πα is the projection of X onto Xα.

Let H = {Hβ} be a collection of subbasic open sets for X that
covers X. Assume that H has no finite subcover.

Fix α for the moment. Let Hα = H ∩ Cα, where

Cα = {π−1
α (Gα) : Gα is open in Xα}.

Thus Hβ ∈ Hα if Hβ ∈ H and there exists an open set Gαβ in Xα

such that Hβ = π−1
α (Gαβ).

If {πα(Hβ) : Hβ ∈ Hα} covers Xα, then since Xα is compact,
there exists a finite subcover {πα(Hβ1

), . . . , πα(Hβn)} of Xα. But
then {Hβ1

, . . . ,Hβn} is a finite cover of X, a contradiction. There-
fore there exists xα ∈ Xα such that xα /∈ ∪Hβ∈Hαπα(Hβ).

We do this for each α. Let x be the point of X whose αth

coordinate is xα, that is, πα(x) = xα for each α. If x ∈ Hβ for
some Hβ ∈ H, then x ∈ π−1

α (Gαβ) for some α ∈ I and some Gαβ
open in Xα. But then xα = πα(x) ∈ Gαβ , a contradiction to the
definition of xα. Therefore x /∈ ∪Hβ∈HHβ , or H is not a cover of
X, a contradiction.
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We conclude that our assumption that H had no finite subcover
is wrong, and a finite subcover does indeed exist. Then X is com-
pact by Theorem 20.16.

Remark 20.18 Consider X = [−1, 1]N, where N = {1, 2, . . .}.
This means X =

∏∞
i=1Xi where each Xi = [0, 1]. By the Ty-

chonoff theorem, X is compact when furnished with the product
topology.

This does not contradict Exercise 19.5, which says that the
closed unit ball in an infinite-dimensional Hilbert space is never
compact. The reason is that there are two different topologies in-
volved. If we consider [−1, 1]N as a Hilbert space, the metric is
given by

d(x, y) =
( ∞∑
i=1

|xi − yi|2
)1/2

.

Let en be the point whose coordinates are zero except for the nth

coordinate, which is 1. Then {en} is a sequence in X that does not
converge to 0 when X has the topology inherited as a metric space
with the metric d. However, πi(en)→ 0 as n→∞ for each i, and
so by Exercise 20.18, en → 0 in the product topology. Therefore
the two topologies are different.

20.4 Compactness and metric spaces

Most undergraduate classes do not deal with compactness in metric
spaces in much detail. We will provide that detail here.

Let X be a metric space with metric d. A set A is a bounded
set if there exists x0 ∈ X and M > 0 such that A ⊂ B(x0,M).

Proposition 20.19 If A is a compact subset of a metric space X,
then A is closed and bounded.

Proof. To show boundedness, choose x0 ∈ A and notice that
{B(x0, n)}, n ≥ 1, is an open cover for X and hence for A. Since
A is compact, it has a finite subcover, and boundedness follows.
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To show A is closed, let x be a limit point of A and suppose
x /∈ A. For each y ∈ A, let ry = d(x, y)/4. Observe that {B(y, ry)},
y ∈ A, is an open cover for A, and hence there is a finite subcover
{B(y1, ry1), . . . , B(yn, ryn)}. Then

F = ∪ni=1B(yi, ryi)

will be a closed set (recall C is the closure of C) containing A but
not containing x. Therefore F c is an open set containing x but no
point of A, contradicting that x is a limit point of A.

Recall that A has the Bolzano-Weierstrass property if every
infinite set in A has a limit point in A and A is sequentially compact
if every sequence in A has a subsequence which converges to a point
in A.

Proposition 20.20 Let X be a metric space. A subset A has the
Bolzano-Weierstrass property if and only if it is sequentially com-
pact.

Proof. First suppose that A has the Bolzano-Weierstrass property.
If {xi} is a sequence in A, one possibility is that there are only
finitely many distinct points. In that case one of the points must
appear in the sequence infinitely often, and those appearances form
a subsequence that converge to a point in A. The other possibility
is that {xi} is an infinite set. Then there exists y that is a limit
point of this set. Let i1 = 1. For each n, choose in > in−1 such
that d(xin , y) < 2−n. It is possible to choose such a number in
because if not, we can find r < 2−n small enough so that B(y, r)
does not contain any point of {xi} other than possibly y itself,
which contradicts that y is a limit point. The subsequence {xin}
is the subsequence we seek.

Now suppose that A is sequentially compact. Let B be an
infinite subset of A. We can choose distinct points x1, x2, . . . in B.
If y is a subsequential limit point of this sequence that is in A, then
y will be a limit point of B that is in A.

A bit harder is the following theorem.

Theorem 20.21 Let X be a metric space and let A be a subset of
X. The following are equivalent.
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(1) A is compact;
(2) A is sequentially compact;
(3) A has the Bolzano-Weierstrass property.

Proof. We already know (2) and (3) are equivalent. We first prove
that (1) implies (3). Let B be an infinite subset of A. If B has
no limit point in A, then for each y ∈ A we can find ry such that
B(y, ry) contains no point of B except possibly y itself. Choose
a finite subcover B(y1, ry1), . . . , B(yn, ryn) of A. Then B ⊂ A ⊂
∪ni=1B(yi, ryi), but at the same time, the union contains at most n
points of B, contradicting that B is infinite.

We next prove (2) implies (1). Let {Gα}, α ∈ I, be an open
cover of A. First we show that there exists ε > 0 with the property
that if x ∈ A, then there exists αx ∈ I such that x ∈ B(x, ε) ⊂ Gαx .
If not, for all n large enough there exist xn such that B(xn, 1/n)
is not contained in any Gα. Let y be a subsequential limit point of
{xn}. y is in some Gβ , and since Gβ is open, there exists δ > 0 such
that y ∈ B(y, δ) ⊂ Gβ . However y is a subsequential limit point of
{xn}, and so there exists m > 2/δ such that d(xm, y) < δ/2. Then

xm ∈ B(xm, 1/m) ⊂ B(xm, δ/2) ⊂ B(y, δ) ⊂ Gβ ,

a contradiction to how the xn were chosen.

Now we can prove that if (2) holds, then A is compact. Let
{Gα} be an open cover of A and let ε be chosen as in the previous
paragraph. Pick x1 ∈ A. If B(x1, ε) covers A, stop. If not, choose
x2 ∈ A − B(x1, ε). If {B(x1, ε), B(x2, ε)} covers A, stop. If not,
choose x3 ∈ A−B(x1, ε)−B(x2, ε). Continue. This procedure must
stop after finitely many steps, or else we have an infinite sequence
{xn} such that d(xi, xj) ≥ ε if i 6= j, and such a sequence cannot
have a convergent subsequence. Therefore we have a collection
{B(x1, ε), . . . , B(xn, ε)} that covers A. For each xi choose Gαi
such that xi ∈ B(x,ε) ⊂ Gαi ; this is possible by our choice of ε.
Then {Gα1 , . . . , Gαn} is the desired subcover.

As a corollary we get the Heine-Borel theorem, although there
are easier proofs.

Theorem 20.22 A subset of Rn is compact if and only if it is
closed and bounded.
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Proof. We have already shown that compact sets are closed and
bounded. Since closed subsets of compact sets are compact, to
show the converse it suffices to show that [−M,M ]n is compact for
each integer M , since any bounded set A will be contained in such
a set if M is large enough. By the Tychonoff theorem, it suffices
to show [−M,M ] is compact in R.

Let B be an infinite subset of [−M,M ]. Let J1 = [a1, b1] =
[−M,M ]. One of the two intervals [a1, (a1 +b1)/2], [(a1 +b1)/2, b1]
must contain infinitely many points of B (perhaps both inter-
vals do). Choose one that has infinitely many points and call
it J2 = [a2, b2]. At least one of the intervals [a2, (a2 + b2)/2],
[(a2 + b2)/2, b2] contains infinitely many points of B. Choose it
and call it J3 = [a3, b3]. Continue. The sequence a1, a2, a3, . . . is
an increasing sequence of real numbers bounded by M , and so this
sequence has a least upper bound z. Let ε > 0. Since B(z, ε) con-
tains Jn for all n sufficiently large, then B(z, ε) contains infinitely
many points of B, and hence z is a limit point of B. Therefore
[−M,M ] has the Bolzano-Weierstrass property, and so is compact.

Given a set A, an ε-net for A is a subset {x1, x2, . . .} such that
{B(xi, ε)} covers A. A is totally bounded if for each ε there ex-
ists a finite ε-net. Recall that a set A is complete if every Cauchy
sequence in A converges to a point in A. (The notion of Cauchy
sequence makes sense only in metric spaces, not in general topo-
logical spaces.)

Theorem 20.23 A subset A of a metric space is compact if and
only if it is both complete and totally bounded.

Proof. First suppose A is compact. If ε > 0, then {B(x, ε)},
x ∈ A, is an open cover of A. Choosing a finite subcover shows
that A has a finite ε-net. Since ε is arbitrary, A is totally bounded.

Let {xn} be a Cauchy sequence in A. Since A is compact, by
Theorem 20.21 there is a subsequence {xnj} that converges, say
to y ∈ A. If ε > 0, there exists N such that d(xn, xm) < ε/2 if
n,m ≥ N . Choose nj > N such that d(xnj , y) < ε/2. Then if
n ≥ N ,

d(xn, y) ≤ d(xn, xnj ) + d(xnj , y) < ε.
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Therefore the entire sequence converges to y, which proves that A
is complete.

Now suppose that A is totally bounded and complete. We let B
= {x1, x2, . . .} be a sequence in A. If the set is finite, clearly there is
a convergent subsequence, so we suppose there are infinitely many
distinct points. Since A is totally bounded, it has a finite 1/2-net,
and there exist balls B(y11, 1/2), . . ., B(y1n1

, 1/2) that cover A.
Choose one, call it B′1, that contains infinitely many of the xi and
let C1 = B′1 ∩ B. Since A is totally bounded, it has a finite 1/4-
net and there exist balls B(y21, 1/4), . . . , B(y2n2

, 1/4) that cover
A. At least one of these, call it B′2, must contain infinitely many
points of C1; let C2 = B′2 ∩ C1. Continue to obtain a sequence
C1 ⊃ C2 ⊃ · · · so that each Ci contains infinitely many points of
B. Choose ni > ni−1 such that xni ∈ Ci.

We claim {xni} is a Cauchy sequence. Let ε > 0 and choose N
such that 2−N+1 < ε. If N ≤ i < j, then xnj ∈ Cj ⊂ Ci, xni ∈ Ci,
and Ci is contained in a ball of radius 2−i, hence

d(xni , xnj ) ≤ 2 · 2−i ≤ 2−N+1 < ε.

Therefore {xni} is a Cauchy sequence.

Since A is complete, then {xni} converges to a point in A. This
implies that B has a subsequence that converges, and we conclude
by Theorem 20.21 that A is compact.

If X and Y are metric spaces with metrics dX and dY , resp.,
then f : X → Y is uniformly continuous if given ε, there exists δ
such that dY (f(x), f(y)) < ε whenever dX(x, y) < δ.

Proposition 20.24 If X is a compact metric space, Y is a metric
space, and f : X → Y is continuous, then f is uniformly continu-
ous.

Proof. Let ε > 0. For each x ∈ X, there exists rx such that if
y ∈ B(x, 2rx), then dY (f(x), f(y)) < ε/2. Choose a finite subcover

{B(x1, rx1
) . . . , B(xn, rxn)}

of X. Let δ = min(rx1 , . . . , rxn). If z, z′ ∈ X with dX(z, z′) < δ,
then z ∈ B(xi, rxi) for some i. By our choice of δ, z′ ∈ B(xi, 2rxi).
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Then

dY (f(z), f(z′)) ≤ dY (f(z), f(xi)) + dY (f(xi), f(z′)) < ε,

which is what we wanted.

The final topic we discuss in this section is the completion of a
metric space. If X and Y are metric spaces, a map ϕ : X → Y is
an isometry if dY (ϕ(x), ϕ(y)) = dX(x, y) for all x, y ∈ X, where
dX is the metric for X and dY the one for Y . A metric space X∗

is the completion of a metric space X is there is an isometry ϕ of
X into X∗ such that ϕ(X) is dense in X∗ and X∗ is complete.

Theorem 20.25 If X is a metric space, then it has a completion
X∗.

Of course, if X is already complete, its completion is X itself and
ϕ is the identity map.

Proof. Step 1. We define X∗ and a metric d∗. To do this, we
introduce the set X ′ consisting of the set of Cauchy sequences in
X. Thus {xn} ∈ X ′ if {xn} is a Cauchy sequence with respect to
the metric d of X. Let us say {xn} ∼ {yn} if limn→∞ d(xn, yn) = 0.
It is routine to check that this is an equivalence relation between
elements of X ′. We let X∗ be the set of equivalence classes in X ′.
We denote the equivalence class containing {xn} ∈ X ′ by xn.

Let us define

d∗(xn, yn) = lim
n→∞

d(xn, yn).

This will be our metric for X∗, but before we prove that it is a
metric, we first need to make sure that the limit in the definition
exists. If {xn} and {yn} are Cauchy sequences in X, given ε there
exists N such that d(xm, xn) < ε and d(ym, yn) < ε if m,n ≥ N .
For m,n ≥ N ,

d(xn, yn) ≤ d(xn, xN ) + d(xN , yN ) + d(yN , yn) ≤ 2ε+ d(xN , yN )

and

d(xN , yN ) ≤ d(xN , xn) + d(xn, yn) + d(yn, yN ) ≤ 2ε+ d(xn, yn).
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Thus
|d(xn, yn)− d(xN , yN )| ≤ 2ε,

and the same holds with n replaced by m. Therefore

|d(xm, ym)− d(xn, yn)| ≤ |d(xm, ym)− d(xN , yN )|
+ |d(xn, yn)− d(xN , yN )|

≤ 4ε.

This proves that {d(xn, yn)} is a Cauchy sequence of real numbers.
Since R is complete, then d(xn, yn) has a limit as n→∞.

Step 2. We prove that d∗ is a metric. First of all, if {xn} ∼ {x′n},
then

lim |d(xn, yn)− d(x′n, yn)| ≤ lim d(xn, x
′
n) = 0,

and the definition of d∗ does not depend on what representative of
xn we choose.

It is routine to check that d∗(xn, yn) ≥ 0, that d∗(xn, yn) equals
d∗(yn, xn), and that

d∗(xn, zn) ≤ d∗(xn, yn) + d∗(yn, zn).

If d∗(xn, yn) = 0, then lim d(xn, yn) = 0, so {xn} ∼ {yn}, and
hence xn = yn. Therefore d∗ is a metric.

Step 3. We define the isometry ϕ and show that ϕ(X) is dense
in X∗. If x ∈ X, let ϕ(x) be the equivalence class containing the
sequence (x, x, . . .), that is, the sequence where each element is x.
It is clear that this is a map from X into X∗ and that it is an
isometry.

If xn is an element of X∗ and ε > 0, then {xn} is a Cauchy
sequence in X and there exists N such that d(xn, xn′) < ε/2 if
n, n′ ≥ N . We see that

d∗(ϕ(xN ), xn) = lim
n→∞

d(xN , xn) ≤ ε/2.

Therefore the ball of radius ε about xn contains a point of ϕ(X).
Since xn and ε were arbitrary, ϕ(X) is dense in X∗.

Step 4. It remains to show that X∗ is complete. Let {zn} be a
Cauchy sequence in X∗. By Step 3, for each n there exists yn ∈
ϕ(X) such that d∗(zn, yn) < 1/n. Since

d∗(ym, yn) ≤ d∗(ym, zm) + d∗(zm, zn) + d∗(zn, yn)

≤ d∗(zm, zn) +
1

m
+

1

n
,
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we conclude that {yn} is also a Cauchy sequence in X∗.

Each element yn ∈ ϕ(X) is of the form yn = (xn, xn, . . .) for
some xn ∈ X. Because ϕ is an isometry, then {xn} is a Cauchy
sequence in X. Given ε there exists N such that d(xm, xn) < ε if
m,n ≥ N . Let x = xn ∈ X∗. We have

d∗(ym, x) = lim
n→∞

d(xm, xn) ≤ ε

if m ≥ N . Thus ym converges to x with respect to the metric d∗.
Finally,

lim sup
n→∞

d∗(zn, x) ≤ lim sup
n→∞

d∗(zn, yn) + lim sup
n→∞

d∗(yn, x) = 0,

and we conclude that zn converges to x with respect to the metric
d∗. Therefore X∗ is complete.

20.5 Separation properties

We define some types of topological spaces. Each successive defi-
nition implies the existence of a larger class of open sets and con-
sequently are spaces that can be the domain of more continuous
functions.

A topological space X is a T1 space if whenever x 6= y, there
exists an open set G such that x ∈ G and y /∈ G. X is a Hausdorff
space if whenever x 6= y, there exist open sets G and H such that
x ∈ G, y ∈ H, and G ∩H = ∅. We say that x and y are separated
by the open sets G and H.

A space X is a completely regular space if X is a T1 space and
whenever F is a closed subset of X and x /∈ F , there exists a
continuous real-valued function f taking values in [0, 1] such that
f(x) = 0 and f(y) = 1 for all y ∈ F . Finally, a space X is a normal
space if X is a T1 space and whenever E and F are disjoint closed
sets in X, there exist disjoint open sets G and H such that E ⊂ G
and F ⊂ H.

Clearly Hausdorff spaces are T1 spaces. If X is completely reg-
ular and x and y are distinct points, let F = {y}. We will see
in a moment that F is closed. Let f be a continuous function
such that f(x) = 0 and f = 1 on F , i.e., f(y) = 1. If we let
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G = f−1((−∞, 1/2)) and H = f−1((1/2,∞)), then G and H are
open sets separating x and y. Therefore, except for showing that F
is closed, we have shown that completely regular spaces are Haus-
dorff spaces. Finally, as a consequence of Urysohn’s lemma in Sec-
tion 20.6, we will see that normal spaces are completely regular
spaces.

Let us develop a few of the properties of these spaces.

Proposition 20.26 If X is a T1 space and y ∈ X, then {y} is a
closed set.

Proof. Let F = {y}. If x ∈ F c, there exists an open set G such
that x ∈ G and y /∈ G. Therefore x is not a limit point of F . This
proves F is closed.

If X is a metric space and x, y ∈ X, set r = d(x, y) and then
G = B(x, r/2) and H = B(y, r/2) are open sets separating x and
y. Therefore metric spaces are Hausdorff spaces.

Proposition 20.27 The product of a non-empty class of Haus-
dorff spaces is a Hausdorff space.

Proof. Let {Xα}, α ∈ I, be a non-empty collection of Hausdorff
spaces and let X =

∏
α∈I Xα. If x, y ∈ X are distinct points,

then πα(x) 6= πα(y) for at least one index α, where we recall that
πα is the projection of X onto Xα. Then there exist open sets
G0, H0 in Xα that separate πα(x) and πα(y). The sets π−1

α (G0)
and π−1

α (H0) are open sets in X, in fact they are subbasic open
sets, which separate x and y.

Proposition 20.28 Let X be a Hausdorff space, F a compact sub-
set of X, and x /∈ F . There exist disjoint open sets G and H such
that x ∈ G and F ⊂ H.

Proof. For each y ∈ F choose disjoint open sets Gy and Hy such
that x ∈ Gy and y ∈ Hy. The collection {Hy}, y ∈ F , is an
open cover for F . Let {Hy1 , . . . ,Hyn} be a finite subcover. Then
F ⊂ H = ∪ni=1Hyi and H is open, and x ∈ G = ∩ni=1Gyi and G is
open. Moreover G and H are disjoint.
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Corollary 20.29 Compact subsets of a Hausdorff space are closed.

Proof. If F is compact and x /∈ F , construct G and H as in
Proposition 20.28. Then G is an open set containing x disjoint
from F , hence x is not a limit point of F . It follows that F is
closed.

Finally we prove

Theorem 20.30 If X is a compact Hausdorff space, then X is a
normal space.

Proof. Let E and F be disjoint closed subsets of X. Since X
is compact, then E and F are compact. Using Proposition 20.28,
if x ∈ E, find disjoint open sets Gx and Hx such that x ∈ Gx
and F ⊂ Hx. Then {Gx}, x ∈ E, is an open cover for E. Let
{Gx1 , . . . , Gxn} be a finite subcover. Then G = ∪ni=1Gxi is an open
set containing E that is disjoint from the open set H = ∩ni=1Hxi

which contains F .

Compact Hausdorff spaces, and their close cousins locally com-
pact Hausdorff spaces, share many of the same properties as metric
spaces and are often as useful.

20.6 Urysohn’s lemma

We prove Urysohn’s lemma, which shows that normal spaces have
a plentiful supply of continuous functions. In particular, disjoint
closed subsets of compact Hausdorff spaces can be separated by
continuous functions. Another consequence is that normal spaces
are completely regular spaces.

Lemma 20.31 Let E and F be disjoint closed subsets of a nor-
mal space X. There exists a continuous real-valued function taking
values in [0, 1] such that f = 0 on E and f = 1 on F .

Proof. By the definition of normal space, there exist disjoint open
sets G and H such that E ⊂ G and F ⊂ H. Let N1/2 = G. Notice
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that no point of F is a limit point of N1/2, so N1/2 ⊂ F c. We thus
have

E ⊂ N1/2 ⊂ N1/2 ⊂ F c.

Now similarly, E and N c
1/2 are disjoint closed sets, so there

exists an open set, call it N1/4, such that

E ⊂ N1/4 ⊂ N1/4 ⊂ N1/2.

In the same way there exists an open set called N3/4 such that

N1/2 ⊂ N3/4 ⊂ N3/4 ⊂ F c.

We continue in this way, finding Nt for each dyadic rational
t (that is, each rational of the form m/2n for some n ≥ 1 and
1 ≤ m ≤ 2n − 1) such that if s < t are dyadic rationals, then

E ⊂ Ns ⊂ Ns ⊂ Nt ⊂ Nt ⊂ F c.

Define f(x) = 0 if x is in every Nt and

f(x) = sup{t ≤ 1 : t a dyadic rational, x /∈ Nt}

otherwise. Clearly f takes values in [0, 1], f is 0 on E and f is 1
on F . We need to show that f is continuous.

We show that {x : f(x) < a} = ∪t<aNt, where the union is over
the dyadic rationals. First, suppose f(x) < a. If there does not
exist a dyadic rational t less than a with x ∈ Nt, then x /∈ Nt for
all t < a and then f(x) ≥ a, a contradiction. Thus {x : f(x) < a}
is contained in ∪t<aNt. On the other hand, if x ∈ Nt for some
t < a, then f(x) ≤ t < a. We then have

f−1((−∞, a)) = {x : f(x) < a} = ∪t<aNt,

which is the union of open sets, and therefore f−1((−∞, a)) is an
open set.

If f(x) > a, then x /∈ Nt for some t > a, hence x /∈ Ns for some
s > a. If x /∈ Nt for some t > a, then x /∈ Nt, and so f(x) > a.
Therefore

f−1((a,∞)) = {x : f(x) > a} = ∪t>a(N t)
c,

which again is open.
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The collection of sets of the form (−∞, a) and (a,∞) form a
subbase for the topology of the real line. That f is continuous
follows by Proposition 20.10.

One may think of ∂Nt as being the contour line of level t for
the graph of f .

Corollary 20.32 If X is a compact Hausdorff space, K is a com-
pact subset of X, and G is an open subset of X containing K, then
there exists a continuous function f that is 1 on K and such that
the support of f is contained in G.

Recall that the support of a function f is the closure of the set
{y : f(y) 6= 0}.

Proof. K and Gc are disjoint compact subsets of X, and by
Urysohn’s lemma there exists a continuous function f0 that is 0 on
Gc and 1 on K. If we let f = 2(f0 − 1

2 )+, then f is 1 on K.

If x is in the support of f , then every neighborhood of x in-
tersects the set {y : f(y) > 0} = {y : f0(y) > 1

2}. Since f0 is
continuous, then f0(x) ≥ 1

2 , which implies x is not in Gc. Thus, if
x is in the support of f , then x ∈ G.

Remark 20.33 If we want our function to take values in [a, b] and
be equal to a on E and b on F , we just let f be the function given
by Urysohn’s lemma and then use

g(x) = (b− a)f(x) + a.

Remark 20.34 In Chapter 17 we proved the Riesz representation
theorem, which identifies the positive linear functionals on C(X).
We proved the theorem there under the assumption that X was
a compact metric space. In fact, the theorem still holds if X is
a compact Hausdorff space. We use Corollary 20.32 to guarantee
that given a compact set K contained in an open set G, there exists
a continuous function f with support in G that is equal to 1 on K.
Once we have the existence of such functions, the rest of the proof
in Chapter 17 goes through without change.
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20.7 Tietze extension theorem

Let C be the Cantor set and let A = C × C. If f is a continuous
function mapping A to [0, 1], can we extend f to a continuous
function mapping [0, 1]2 to [0, 1]? In this case, one can construct
an extension by hand, but what about similar extensions in more
abstract settings? This question arises frequently in analysis, and
the Tietze extension theorem is a result that allows one to do this
extension in many cases.

Theorem 20.35 Let X be a normal space, F a closed subspace,
and f : F → [a, b] a continuous function. There exists a continuous
function f : X → [a, b] which is an extension of f , that is, f |F = f .

Proof. The proof is trivial if a = b, and we may therefore suppose
a < b and also that [a, b] is the smallest closed interval containing
the range of f . By considering the function

2
f(x)− a
b− a

− 1,

we may without loss of generality assume a = −1 and b = 1.

We will define f as the limit of an infinite sum of functions gi.
To define the sum, let f0 = f and let A0 = {x ∈ F : f(x) ≤ −1/3},
B0 = {x ∈ F : f(x) ≥ 1/3}. Since F is closed and f is a continuous
function on F , then A0 and B0 are disjoint closed subsets of X.
By Urysohn’s lemma and Remark 20.33, there exists a continuous
function g0 : X → [−1/3, 1/3] such that g0 is equal to −1/3 on A0

and g0 is equal to 1/3 on B0.

Define f1 = f0 − g0 on F . Then f1 is continuous on F and
observe that f1 : F → [−2/3, 2/3]. Let A1 be the set {x ∈ F :
f1(x) ≤ −2/9}, let B1 = {x ∈ F : f1(x) ≥ 2/9}, and use Remark
20.33 to find g1 : X → [−2/9, 2/9] that is continuous and such that
g1 equals −2/9 on A1 and g1 equals 2/9 on B1.

Let f2 = f1 − g1 = f0 − (g0 + g1) on F . Note f2 : F →
[−4/9, 4/9]. We define A2, B2 and continue. We observe that
the function g2 we obtain from Remark 20.33 will take values in
[−4/27, 4/27]. We set f3 = f2 − g2 = f0 − (g0 + g1 + g2).

We obtain a sequence g0, g1, g2, . . . of continuous functions on
X such that |gi(x)| ≤ (1/3)(2/3)i. Therefore

∑∞
i=0 gi converges
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uniformly on X. The uniform limit of continuous functions is con-
tinuous, so the sum, which we call f , is continuous on X. Since∑∞
i=0

1
3

(
2
3

)i
= 1, f takes values in [−1, 1].

It remains to prove that f is an extension of f . We had |f1(x)| ≤
2/3, |f2(x)| ≤ 4/9, and in general |fi(x)| ≤ (2/3)i for each i and
each x ∈ F . Since

fi = f0 − (g0 + g1 + · · ·+ gi−1)

and |fi(x)| → 0 uniformly over x ∈ F , then we conclude f =∑∞
i=0 gi = f0 = f on F .

The condition that F be closed cannot be omitted. For example,
if X = [0, 1], F = (0, 1], and f(x) = sin(1/x), there is no way to
extend f continuously to X.

20.8 Urysohn embedding theorem

We alluded earlier to the fact that compact Hausdorff spaces can
sometimes substitute for metric spaces. In fact, a second countable
compact Hausdorff space can be made into a metric space. That
is the essential content of the Urysohn embedding theorem, also
known as the Urysohn metrization theorem.

Let (X, T ) be a topological space. X is metrizable if there exists
a metric d such that a set is open with respect to the metric d if
and only if it is in T . To be a bit more precise, if x ∈ G ∈ T , there
exists r such that B(x, r) ⊂ G and also B(x, r) ∈ T for each x and
r > 0.

We will embed second countable normal spaces into [0, 1]N,
where N = {1, 2, . . .}. We define a metric on [0, 1]N by

ρ(x, y) =

∞∑
i=1

2−i|xi − yi| (20.3)

if x = (x1, x2, . . .) and y = (y1, y2, . . .).

Theorem 20.36 Let X be a second countable normal space. There
exists a homeomorphism ϕ of X onto a subset of [0, 1]N. In partic-
ular, X is metrizable.
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Proof. The proof is almost trivial if X is finite; just take a fi-
nite subset of [0, 1]N . Therefore we assume X is infinite. Let
{G1, G2, . . .} be a countable base. We may assume none of these
is equal to ∅ or X. The set of pairs (Gi, Gj) such that Gi ⊂ Gj
is countably infinite, and we label these pairs P1, P2, . . .. For each
pair Pn there exists a continuous function fn taking values in [0, 1]
such that fn is 0 on Gi and 1 on Gcj ; this follows by Urysohn’s
lemma. If x ∈ X, define ϕ(x) = (f1(x), f2(x), . . .). Clearly ϕ maps
X into [0, 1]N.

If x 6= y, there exists an open set G in the countable base such
that x ∈ G and y /∈ G. Since X is normal, there exist disjoint
open sets H1 and H2 such that {x} ⊂ H1 and Gc ⊂ H2. Then
x /∈ H2 and there exists K in the countable base such that x ∈ K
and K ∩H2 = ∅. If follows that K ∩H2 = ∅, or K ⊂ Hc

2 . If z ∈ K,
then z ∈ Hc

2 = Hc
2 ⊂ G, using the fact that Hc

2 is closed. We then
have K ⊂ G, and the pair (K,G) will be a Pn for some n. Since
fn(x) = 0 and fn(y) = 1, then ϕ(x) 6= ϕ(y), or ϕ is one-to-one.

We next prove that ϕ is continuous. Let ε > 0 and let x ∈ X.
By Exercise 20.9 it suffices to prove that there exists an open set G
containing x such that if y ∈ G, then ρ(ϕ(x), ϕ(y)) < ε. Choose M
large enough so that

∑∞
n=M+1 2−n < ε/2. It therefore is enough

to find G such that |fn(x) − fn(y)| < ε/2 if n ≤ M . Each fn is
continuous, so there exists Gn open and containing x such that
|fn(x)− fn(y)| < ε/2 if y ∈ Gn. We then let G = ∩Mn=1Gn.

Finally we need to show that ϕ−1 is continuous on ϕ(X). It
suffices to show that if x ∈ X and G is an open set containing x,
there exists δ such that if ρ(ϕ(x), ϕ(y)) < δ, then y ∈ G. We may
suppose that there is a pair Pn = (Gi, Gj) such that x ∈ Gi ⊂
Gi ⊂ Gj ⊂ G. If we choose δ small enough so that 2nδ < 1/2, then
|fn(x)− fn(y)| < 1/2. Since x ∈ Gi, then fn(x) = 0. Since fn = 1
on Gcj , then we cannot have y ∈ Gcn, or else |fn(x)− fn(y)| ≥ 1/2.
Therefore y ∈ Gj ⊂ G.

Remark 20.37 Exercise 20.17 asks you to prove that the topology
on [0, 1]N arising from the metric ρ is the same as the product
topology. By the Tychonoff theorem, [0, 1]N is compact. Therefore
our proof additionally shows that we can embed X as a subset of
[0, 1]N, a compact set. This is often useful. For example, every
metric space is normal (Exercise 20.28) and every separable metric
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space is second countable, so every separable metric space can be
embedded in a compact metric space.

20.9 Locally compact Hausdorff spaces

A topological space is locally compact if each point has a neigh-
borhood with compact closure. In this section we consider locally
compact Hausdorff spaces, often abbreviated as LCH . We will show
that one can add a point at infinity to make these into compact
Hausdorff spaces. This allows one to provide more general versions
of the Riesz representation theorem, the Ascoli-Arzelà theorem,
and the Stone-Weierstrass theorem; see [4] for details as to these
applications.

Let (X, T ) be a locally compact Hausdorff space. Let∞ denote
a point not in X and let X∗ = X ∪ {∞}. Define T ∗ to consist of
X∗, all elements of T , and all sets G ⊂ X∗ such that Gc is compact
in (X, T ). We can easily check that T ∗ is a topology.

Theorem 20.38 (X∗, T ∗) is a compact Hausdorff space.

The space X∗ is known as the Alexandroff one-point compacti-
fication of X. Sometimes it is called simply the one-point compact-
ification of X. The point ∞ is referred to as the point at infinity.

Proof. First we show X∗ is compact. We make the observation
that if G is open in (X∗, T ∗), then G ∩ X is open in (X, T ). If
{Gα} is an open cover for X∗, there will be at least one β such
that ∞ ∈ Gβ . Then Gcβ will be compact with respect to (X, T ).
The collection {Gα ∩ X} will be an open cover (with respect to
(X, T )) of Gcβ , so there is a finite subcover {Gα1

∩X, . . . , Gαn ∩X}
of X. Then {Gβ , Gα1 , . . . , Gαn} is an open cover for X∗.

Secondly we show X∗ is Hausdorff. Any two points in X can
be separated by open sets in T , which are open in T ∗. Thus we
need only to show that we can separate any point x ∈ X and the
point ∞. If x ∈ X, then x has a neighborhood A whose closure
is compact. Then (A)c will be an open set in (X∗, T ∗) containing
∞ which is disjoint from A. Since A is a neighborhood of x, there
exists a set G that is open in T such that x ∈ G ⊂ A. Then (A)c

and G are open sets in T ∗ separating x and ∞.
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20.10 Stone-Čech compactification

In this section we give another, more complicated, compactifica-
tion. Given a completely regular space X, we find a compact
Hausdorff space X such that X is dense in X and every bounded
continuous function on X can be extended to a bounded continuous
function on X. The space X is called the Stone-Čech compactifi-
cation of X, and is traditionally written β(X).

This is an amazing theorem. Suppose X = (0, 1]. This is a met-
ric space, hence a normal space, hence a completely regular space.
The function f(x) = sin(1/x) cannot be extended to have domain
[0, 1], so evidently β(X) 6= [0, 1]. Yet there is a compactification of
(0, 1] for which sin(1/x) does have a continuous extension.

Here is the theorem.

Theorem 20.39 Let X be a completely regular space. There exists
a compact Hausdorff space β(X) and a homeomorphism ϕ mapping
X into a dense subset of β(X) such that if f is a bounded continu-
ous function from X to R, then f ◦ ϕ−1 has a bounded continuous
extension to β(X).

Before proving this theorem, let us sort out what the theorem
says. Let Y = ϕ(X) ⊂ β(X). Since ϕ is a homeomorphism, every
bounded continuous function f on X corresponds to a bounded
continuous function f̃ on Y . The relationship is given by f̃(y) =

f ◦ ϕ−1(y). The assertion is that f̃ has a bounded continuous
extension to β(X).

Proof. Let I be the collection of bounded continuous functions on
X and if f ∈ I, let Jf = [− infx∈X f(x), supx∈X f(x)], the range
of f . Each Jf is a finite closed interval. Let X∗ =

∏
f∈I Jf . Then

X∗ will be a compact Hausdorff space. Define ϕ : X → X∗ by
πf (ϕ(x)) = f(x); in other words, ϕ(x) is in the product space, and
its f th coordinate is f(x). Thinking through the definitions, note
that we have

πf ◦ ϕ = f.

Finally, let β(X) be the closure of ϕ(X) inX∗. SinceX∗ is compact
and β(X) is closed, then β(X) is compact. Subspaces of Hausdorff
spaces are Hausdorff.
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Now that we have defined β(X), the rest of the proof will follow
fairly easily from the definitions. First we prove that ϕ is one-to-
one. If x 6= y, then since X is completely regular, there exists f ∈ I
such that f(x) 6= f(y). This means πf (ϕ(x)) 6= πf (ϕ(y)), which
proves ϕ(x) 6= ϕ(y).

Next we show ϕ is continuous. We let G be a subbasic open set
in X∗ and prove that ϕ−1(G∩ϕ(X)) is open in X. The continuity
will then follow by Proposition 20.10. If G is a subbasic open set
in X∗, then G = π−1

f (H) for some open set in R. Note

ϕ−1(G ∩ ϕ(X)) = {x ∈ X : ϕ(x) ∈ G} = {x ∈ X : πf ◦ ϕ(x) ∈ H}
= {x ∈ X : f(x) ∈ H} = f−1(H).

However, f−1(H) is open because H is open in R and f is contin-
uous.

We show ϕ−1 is continuous on ϕ(X). Let ϕ(x) ∈ ϕ(X) and
let H be an open set in X containing x. To prove continuity, we
show there exists an open set G in X∗ such that if ϕ(y) ∈ G, then
y ∈ H. We will then apply Exercise 20.9.

Let x be a point in X and Hc a closed set in X not containing x.
Since X is completely regular, there exists f ∈ I such that f(x) = 0
and f = 1 on Hc. Let G = {z ∈ X∗ : πf (x) < 1/2}. Since the
projection πf is continuous and (−∞, 1/2) is an open set in R, then
G is open in X∗. If ϕ(y) ∈ G, then f(y) = πf ◦ ϕ(y) < 1/2. This
implies that y /∈ Hc, hence y ∈ H, which is what we wanted.

It remains to prove the assertion about the extension. We have
f = πf ◦ϕ. Therefore on ϕ(X), we have f ◦ϕ−1 = πf ◦ϕ◦ϕ−1 = πf .
Clearly πf has a bounded continuous extension to X∗, hence to
β(X).

We remark that there can only be one bounded continuous ex-
tension of each function in I because X (or more precisely, its image
ϕ(X)) is dense in β(X).

20.11 Ascoli-Arzelà theorem

Let X be a compact Hausdorff space and let C(X) be the set of
continuous functions on X. Since X is compact, f(X) is compact
and hence bounded if f ∈ C(X).
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We make C(X) into a metric space by setting

d(f, g) = sup
x∈X
|f(x)− g(x)|,

the usual supremum norm. In this section we characterize the
compact subsets of C(X).

A subset F of C(X) is equicontinuous if given ε and x there
is an open set G containing x such that if y ∈ G and f ∈ F ,
then |f(y) − f(x)| < ε. What makes equicontinuity stronger than
continuity is that the same ε works for every f ∈ F .

Here is the Ascoli-Arzelà theorem. You may have seen this in
an undergraduate analysis; the novelty here is that we allow X to
be a compact Hausdorff space and the proof avoids the use of the
“diagonalization procedure.”

Theorem 20.40 Let X be a compact Hausdorff space and let C(X)
be the set of continuous functions on X. A subset F of C(X) is
compact if and only if the following three conditions hold:
(1) F is closed;
(2) supf∈F |f(x)| <∞ for each x ∈ X;
(3) F is equicontinuous.

In (2), we require supf∈F |f(x)| to be finite, but the size can depend
on x.

Proof. First we show that if (1), (2), and (3) hold, then F is com-
pact. Since C(X) is a metric space, which is complete by Exercise
20.23, and F is a closed subset of C(X), then F is complete. We
will show F is compact by showing it is totally bounded and then
appealing to Theorem 20.23.

Let ε > 0. For each x ∈ X there is an open set Gx such that if
y ∈ Gx and f ∈ F , then |f(y)−f(x)| < ε/3. Since {Gx}, x ∈ X, is
an open cover of X and X is compact, we can cover X by a finite
subcover {Gx1

, . . . , Gxn}. Since supf∈F |f(xi)| is bounded for each
i, we can find M such that

sup
f∈F,1≤i≤n

|f(xi)| ≤M.

Let a1, . . . , ar be real numbers such that every point in [−M,M ]
is within ε/3 of one of the aj . If {aj1 , . . . , ajn} is a subset of
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{a1, . . . , ar}, let

H(aj1 , . . . , ajn) = {f ∈ F : |f(xi)− aji | < ε/3, 1 ≤ i ≤ n}.

There are at most rn sets of this form. For each one that is non-
empty, select an element gaj1 ,...,ajn ∈ H(aj1 , . . . , ajn). We claim
this collection of functions is an ε-net for F .

If f ∈ F , choose aj1 , . . . , ajn such that |aji − f(xi)| < ε/3 for
each 1 ≤ i ≤ n. The set H(aj1 , . . . , ajn) is non-empty because it
contains f . If y ∈ X, then y ∈ Gxi0 for some i0. Then

|f(y)− gaj1 ,...,ajn (y)| ≤ |f(y)− f(xi0)|+ |f(xi0)− gaj1 ,...,ajn (xi0)|
+ |gaj1 ,...,ajn (xi0)− gaj1 ,...,ajn (y)|.

The first and third terms on the right hand side of the inequality
are less than ε/3 because f and gaj1 ,...,ajn are in F and y ∈ Gxi0 .
The second term is less than ε/3 because gaj1 ,...,ajn (xi0) = aji0 and
we chose aji0 to be within ε/3 of f(xi0). This proves that

sup
y∈X
|f(y)− gaj1 ,...,ajn (y)| < ε.

Therefore {gaj1 ,...,ajn } is a finite ε-net, and hence F is totally
bounded.

Now suppose F is compact. (1) follows because C(X) is a metric
space and compact subsets of a metric space are closed. Fix x. The
map τx : C(X)→ R given by τxf = f(x) is continuous, so {f(x)},
f ∈ F , is the image under τx of F . Since F is compact and τx
is continuous, then τx(F) is compact and hence bounded, which
proves (2).

Finally, let ε > 0. Since F is a compact subset of a metric
space, there exists a finite ε/3-net: {f1, . . . , fn}. If x ∈ X, for
some i between 1 and n there exists an open set Gi such that
|fi(y) − fi(x)| < ε/3 if y ∈ Gi. Let G = ∩ni=1Gi. If y ∈ G and
g ∈ F , there exists i such that d(g, fi) < ε/3, and so

|g(y)− g(x)| ≤ |g(y)− fi(y)|+ |fi(y)− fi(x)|+ |fi(x)− g(x)| < ε.

This proves that F is equicontinuous.

The most useful consequence of the Ascoli-Arzelà theorem is
that if (2) and (3) hold for a family F , then any sequence in F has a
subsequence which converges uniformly (the limit is not necessarily
in F unless we also assume F is closed).
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20.12 Stone-Weierstrass theorems

The Stone-Weierstrass theorems are a pair of theorems, one for real-
valued functions and one for complex-valued functions, that allow
one to approximate continuous functions. They are very useful; we
have seen one application already in Section 19.4.

First we prove the Weierstrass approximation theorem, which
allows one to approximate real-valued functions on a compact in-
terval.

There are a number of different proofs. We give one that uses
some ideas from Section 15.3, although we prove what we need here
from scratch.

Theorem 20.41 Let [a, b] be a finite subinterval of R, g a contin-
uous function on [a, b], and ε > 0. Then there exists a polynomial
P (x) such that

sup
x∈[a,b]

|g(x)− P (x)| < ε.

Proof. Let

ϕβ(x) =
1√
2πβ

e−x
2/2β2

.

We saw in Exercise 11.18 that
∫
R ϕ1(x) dx = 1, and by a change of

variables,
∫
R ϕβ(x) dx = 1 for every β > 0. Also, again by a change

of variables and the dominated convergence theorem, if δ > 0,∫
[−δ,δ]c

ϕβ(x) dx =

∫
|x|>δ/β

ϕ1(x) dx→ 0

as β → 0.

Without loss of generality we may assume that g is not identi-
cally zero. Extend g to all of R by setting g(x) = 0 if x < a − 1
or x > b + 1 and letting g be linear on [a − 1, a] and on [b, b + 1].
Then g has compact support and is continuous on R.

Step 1. We prove that

g ∗ ϕβ(x) =

∫
g(x− y)ϕβ(y) dy

will be close to g(x), uniformly over x ∈ R, if β is small enough.
Let ε > 0 and choose δ such that |g(z)−g(z′)| < ε/4 if |z−z′| < δ.
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Since the integral of ϕβ is 1, we have

|g ∗ ϕβ(x)− g(x)| =
∣∣∣ ∫ [g(x− y)− g(x)]ϕβ(y) dy

∣∣∣ (20.4)

≤
∫
|y|>δ

|g(x− y)− g(x)|ϕβ(y) dy

+

∫
|y|≤δ

|g(x− y)− g(x)|ϕβ(y) dy.

The term on the second line of (20.4) is less than or equal to

2‖g‖∞
∫
|y|>δ

ϕβ(y) dy,

which will be less than ε/4 if we take β small enough. The term
on the last line of (20.4) is less than or equal to

(ε/4)

∫
|y|≤δ

ϕβ(y) dy ≤ (ε/4)

∫
R
ϕβ(y) dy = ε/4

by our choice of δ. Therefore

|g ∗ ϕβ(x)− g(x)| ≤ ε/2

uniformly over x ∈ R if we take β small enough.

Step 2. Next we approximate ϕβ(x) by a polynomial. Let N =
2[|a| + |b| + 1]. For every M > 0, the Taylor series for ex about
0 converges uniformly on [−M,M ]. To see this, we see that the
remainder term satisfies∣∣∣ ∞∑

k=n+1

xk

k!

∣∣∣ ≤ ∞∑
k=n+1

Mk

k!
→ 0

as n → ∞. Thus, by replacing x by −x2/2β2 in the Taylor series
for ex and taking n large enough, there is a polynomial Q such that

sup
−N≤x≤N

|Q(x)− ϕβ(x)| < ε

4N‖g‖∞
.

Now

|g ∗ ϕβ(x)− g ∗Q(x)| =
∣∣∣ ∫ g(x− y)[ϕβ(y)−Q(y)] dy

∣∣∣ (20.5)

≤
∫
|g(x− y)| |ϕβ(y)−Q(y)| dy.
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If x ∈ [a, b], then g(x−y) will be non-zero only if x−y ∈ [a−1, b+1],
which happens only if |y| ≤ 2[|a| + |b| + 1]. Thus the last line of
(20.5) is bounded by

‖g‖∞
∫ N

−N
|ϕβ(y)−Q(y)| dy ≤ ε/2.

Step 3. Finally, by a change of variables,

g ∗Q(x) =

∫
g(y)Q(x− y) dy.

Since Q is a polynomial, then Q(x− y) is a polynomial in x and y,
and we can write

Q(x− y) =

n∑
j=0

n∑
k=0

cjkx
jyk

for some constants cjk. Then

g ∗Q(x) =

n∑
j=0

(∫ n∑
k=0

cjky
kg(y) dy

)
xj ,

which is a polynomial. Therefore we have approximated g on [a, b]
by a polynomial g ∗Q to within ε, uniformly on the interval [a, b].

For an alternate proof, see Theorem 21.13.

Let X be a topological space and let C(X) be the set of real-
valued continuous functions on X. Let A be a subset of C(X).
We say A is an algebra of functions if f + g, cf , and fg are in A
whenever f, g ∈ A and c is a real number. We say A is a lattice
of functions if f ∧ g and f ∨ g are in A whenever f, g ∈ A. Recall
f ∧ g(x) = min(f(x), g(x)) and f ∨ g(x) = max(f(x), g(x)).

We say A separates points if whenever x 6= y are two points in
X, there exists f ∈ A (depending on x and y) such that f(x) 6=
f(y). We say A vanishes at no point of X if whenever x ∈ X, there
exists g ∈ A (depending on x) such that g(x) 6= 0.

Lemma 20.42 Suppose A is an algebra of functions in C(X) such
that A separates points and vanishes at no point. If x and y are
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two distinct points in X and a, b are two real numbers, there exists
a function f ∈ A (depending on x, y, a, b) such that f(x) = a and
f(y) = b.

Proof. Let g be a function in A such that g(x) 6= g(y). Let hx and
hy be functions in A such that hx(x) 6= 0 and hy(y) 6= 0. Define u
and v ∈ A by

u(z) = g(z)hx(z)− g(y)hx(z)

and
v(z) = g(z)hy(z)− g(x)hy(z).

Note that u(x) 6= 0, u(y) = 0, v(x) = 0, and v(y) 6= 0. Now set

f(z) =
a

u(x)
u(z) +

b

v(y)
v(z).

This f is the desired function.

Theorem 20.43 Let X be a compact Hausdorff space and let A be
a lattice of real-valued continuous functions with the property that
whenever x 6= y and a, b ∈ R, then there exists f ∈ A (depending
on x, y, a, and b) such that f(x) = a and f(y) = b. Then A is
dense in C(X).

Saying A is dense in C(X) is equivalent to saying that if ε > 0
and f ∈ C(X), there exists g ∈ A such that supx∈X |f(x)− g(x)| <
ε. Thus we can approximate any continuous function in C(X) by
an element of A.

Proof. Let ε > 0 and let f ∈ C(X). Fix x ∈ X for the moment.
If y 6= x, let hy be an element of A such that hy(x) = f(x) and
hy(y) = f(y). Choose an open set Gy containing y such that
hy(z) < f(z) + ε for all z ∈ Gy. This is possible because f and
hy are continuous; we use Exercise 20.9. The collection {Gy},
y ∈ X, is an open cover for X, hence there is a finite subcover
{Gy1 , . . . , Gyn}. Define

kx(z) = hy1(z) ∧ · · · ∧ hyn(z).

Note that kx ∈ A, kx(x) = f(x), and kx(z) < f(z) + ε for every
z ∈ X. We used the fact that A is a lattice of functions.



234 CHAPTER 20. TOPOLOGY

We construct such a function kx for each x ∈ X. Let Hx be an
open set containing x such that kx(z) > f(z)− ε for each z ∈ Hx.
This is possible because kx and f are continuous, kx(x) = f(x),
and Exercise 20.9. The collection {Hx}, x ∈ X, is an open cover
of X. Let {Hx1

, . . . ,Hxm} be a finite subcover. Let

g(z) = kx1
(z) ∨ · · · ∨ kxm(z).

Then g ∈ A and g(z) > f(z) − ε for each z. Moreover, since
kxi < f + ε for each i, then g(z) < f(z) + ε for each z. Therefore
supz∈X |g(z)− f(z)| < ε. This proves A is dense in C(X).

Here is the version of the Stone-Weierstrass theorem for real-
valued functions.

Theorem 20.44 Suppose X is a compact Hausdorff space and
A is an algebra of real-valued continuous functions that separates
points and vanishes at no point. Then A is dense in C(X).

Proof. We make the observation that if A is an algebra, then A,
the closure of A, is also an algebra. In view of Theorem 20.43, we
need only show A is also a lattice of functions. Since A is closed,
if it is dense in C(X), it must equal C(X).

Thus we need to show that if f1, f2 ∈ A, then f1∧f2 and f1∨f2

are also in A. Since

f1∧f2 = 1
2 (f1 +f2−|f1−f2|), f1∨f2 = 1

2 (f1 +f2 + |f1−f2|),

it is enough to show that if f ∈ A, then |f | ∈ A.

Let ε > 0 and suppose f ∈ A. Then there exists g ∈ A such
that supx∈X |f(x) − g(x)| < ε/4. Let M = ‖g‖∞. Since the
function x → |x| is continuous, by the Weierstrass approximation
theorem (Theorem 20.41), there exists a polynomial P such that
supy∈[−M,M ] |P (y)− |y| | < ε/4. In particular, |P (0)| < ε/4. If we
let R(y) = P (y)−P (0), then R is a polynomial with zero constant
term such that

sup
y∈[−M,M ]

|R(y)− |y| | < ε/2.

Since A is an algebra, then g, g2, g3, etc. are in A, and hence
R(g) ∈ A. Here R(g) is the function defined by R(g)(x) = R(g(x)).
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We have
sup
x∈X
|R(g)(x)− |g(x)| | < ε/2.

We know that |f(x)− g(x)| < ε/4 for all x ∈ X, hence

| |f(x)| − |g(x)| | < ε/4.

We conclude that

sup
x∈X
|R(g)(x)− |f(x)| | < ε.

We have thus found an element of A, namely, R(g), that is within
ε of |f |, uniformly over x ∈ X. Since ε is arbitrary, we conclude
that |f | ∈ A, and the proof is complete.

The above theorem has an extension to complex-valued func-
tions. Let C(X,C) be the set of complex-valued continuous func-
tions on a topological space X. As usual we use f for the complex
conjugate of f . When we say that A is an algebra of complex-
valued functions, we require that f + g, fg, and cf be in A when
f, g ∈ A and c is a complex number.

We now present the version of the Stone-Weierstrass theorem
for complex-valued functions.

Theorem 20.45 Suppose X is a compact Hausdorff space and
C(X,C) is the set of complex-valued continuous functions on X.
Let A be an algebra of continuous complex-valued functions that
separates points and vanishes at no point. Suppose in addition that
f is in A whenever f is in A. Then the closure of A is C(X,C).

Proof. Let R be the set of real-valued functions in A. Clearly R
is an algebra of continuous functions, that is, f + g, fg, and cf are
in R whenever f, g ∈ R and c is a real number. If f ∈ A, then
f ∈ A, and therefore Re f = (f + f)/2 and Im f = (f − f)/2i are
in A. Hence if f ∈ A, then the real part and imaginary parts of f
are in R.

If x ∈ X, there exists f ∈ A such that f(x) 6= 0. This means
that either Re f or Im f (or both) are non-zero, and hence R van-
ishes at no point of X. If x 6= y are two points in X, there ex-
ists a function g such that g(x) 6= g(y). Therefore at least one
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Re g(x) 6= Re g(y) or Im g(x) 6= Im g(y) (or perhaps both hold).
This implies that R separates points.

By the real-valued version of the Stone-Weierstrass theorem,
Theorem 20.44, R is dense in the collection of real-valued contin-
uous functions on X. If f ∈ C(X,C), we can approximate Re f to
within ε/

√
2 by a function k1 ∈ R and also Im f to within ε/

√
2 by

a function k2 ∈ R. Then k1 + ik2 will be in A and approximates f
to within ε.

Example 20.46 The assumption that the complex conjugate of
every function in A be in A cannot be eliminated. To see this, you
need to know the following fact from complex analysis. This can
be proved in a number of ways. Using Morera’s theorem (see, e.g.,
[8]) gives a quick proof.

If fn is a sequence of complex-valued functions that are analytic
in the open unit disk in the complex plane and continuous on the
closed unit disk and fn converges uniformly to a function f on the
closed unit disk, then f is analytic in the open unit disk as well.

To see why this example shows that the inclusion of complex
conjugates is necessary, let A be the collection of complex-valued
functions that are analytic in the open unit disk in the plane and
continuous on the closed unit disk. Since the function 1 and the
function z are in A, then A vanishes at no point and separates
points. Clearly A is an algebra of functions. The function z is
not in the closure of A because it is not analytic in the open unit
disk (or anywhere else); it doesn’t satisfy the Cauchy-Riemann
equations.

20.13 Connected sets

If X is a topological space, X is disconnected if there exist two
disjoint non-empty open sets G and H such that X = G∪H. The
space X is connected if X is not disconnected. A subset A of X
is connected if there do not exist two disjoint open sets G and H
such that A ⊂ G ∪H, A ∩G 6= ∅, and A ∩H 6= ∅.

A subset A is connected if A, viewed as a topological space with
the relative topology, is connected.
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The most obvious example of connected sets are intervals in R,
but there is something to prove. Note that J being an interval can
be characterized by the fact that if x ≤ z are in J and x ≤ y ≤ z,
then y ∈ J .

Proposition 20.47 A subset A of the real line with the usual
topology is connected if and only if A is an interval.

Proof. First we prove that if A is not an interval, then A is not
connected. If A is not an interval, there exists x < z ∈ A and
y /∈ A such that x < y < z. If we let G = (−∞, y) and H = (y,∞),
the sets G and H are our two disjoint open sets that show A is not
connected.

Now we show that if A is an interval, then A is connected.
Suppose not. Then there exist disjoint open sets G and H whose
union containsA and which each intersectA. Pick a point x ∈ A∩G
and a point y ∈ A ∩ H. We may assume x < y, for if not, we
reverse the labels of G and H. Let t = sup{s : s ∈ [x, y] ∩ G}.
Since x ≤ t ≤ y, then t ∈ A. If t ∈ G, then since G is open, there
exists a point u ∈ (t, y) that is in G. Since A is an interval and
x ≤ t < u < y, then u ∈ A. This contradicts t being an upper
bound. If t ∈ H, then since H is open, there exists ε < t− x such
that (t−ε, t] ⊂ H. This contradicts t being the least upper bound.
Therefore we have found a point t ∈ A that is not in G ∪ H, a
contradiction, and therefore A is connected.

Analogously to the situation with compact spaces, continuous
functions map connected spaces to connected spaces.

Theorem 20.48 Suppose f is a continuous function from a con-
nected topological space X onto a topological space Y . Then Y is
connected.

Proof. If Y is not connected, there exist disjoint open sets G
and H whose union is Y . Then since f is continuous, f−1(G) and
f−1(H) are disjoint open sets whose union is X, contradicting that
X is connected. Therefore Y must be connected.

A corollary of Theorem 20.48 and Proposition 20.47 is the in-
termediate value theorem.
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Corollary 20.49 Suppose f is a continuous function from a con-
nected topological space X into the reals, a < b ∈ R, and there exist
points x and y in X such that f(x) = a and f(y) = b. If a < c < b,
there exists a point z ∈ X such that f(z) = c.

Proof. By Theorem 20.48, f(X) is connected. By Proposition
20.47, f(X) must be an interval. Since a, b ∈ f(X) and a < c < b,
then c ∈ f(X).

We now prove that the product of connected topological spaces
is connected. We begin with a lemma.

Lemma 20.50 Suppose {Aα}, α ∈ I, is a non-empty collection of
connected subsets of X such that ∩α∈IAα 6= ∅. Then A = ∪α∈IAα
is connected.

Proof. If A is not connected, there exist disjoint open sets G and
H which both intersect A and whose union contains A. Let x be
any point of ∩α∈IAα. Suppose x ∈ G, the other case being similar.
If α ∈ I, then Aα is connected and x ∈ Aα ∩ G. Since Aα ⊂ A ⊂
G∪H, we must have Aα ⊂ G, or else we get a contradiction to Aα
being connected. This is true for each α ∈ I, so A = ∪α∈IAα ⊂ G.
This contradicts A having a non-empty intersection with H, and
we conclude that A is connected.

We do the case of finite products of connected topological spaces
separately; we will need this result for the general proof.

Lemma 20.51 Suppose X1, . . . , Xn are finitely many connected
topological spaces. Then X =

∏n
j=1Xj is connected.

Proof. Suppose X is not connected. Then there exist disjoint non-
empty open sets G and H whose union is X. Pick x ∈ G and y ∈ H.
For k = 0, . . . , n, let zk be the point whose first k coordinates
are the same as those of x and whose remaining coordinates are
the same as y. Thus if zk = (zk1 , . . . , z

k
n), x = (x1, . . . , xn), and

y = (y1, . . . , yn), then zki = xi if i ≤ k and zki = yi if i > k.
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Since z0 = x ∈ G and zn = y ∈ H, there exists k < n such that
zk ∈ G and zk+1 ∈ H. Let

F = {x1} × · · · × {xk} ×Xk+1 × {yk+2} × · · · × {yn}.

It is routine to check that F is homeomorphic to Xk+1, so there
exists a continuous function f such that F = f(Xk+1), and by
Theorem 20.48, F is connected. But zk ∈ F ∩G and zk+1 ∈ F ∩H,
so F ∩G and F ∩H are two non-empty disjoint relatively open sets
whose union is F , contradicting that F is connected.

Theorem 20.52 Suppose {Xα}, α ∈ I, is a non-empty collection
of connected topological spaces. Then X =

∏
α∈I Xα is connected.

Proof. The idea of the proof is to find a set E that is a connected
subset of X and such that E is equal to X.

Fix x ∈ X. Define D(x;αi1 , . . . αin) to be the set of points
y of X all of whose coordinates agree with the corresponding co-
ordinates of x except for the αi1 , . . . , αin ones. That is, if α /∈
{αi1 , . . . , αin}, then πα(x) = πα(y). Note that D(x;αi1 , . . . , αin)
is homeomorphic to (

∏n
j=1Xαj ) × (

∏
α 6=αi1 ,...,αin

Xα). As in the

proof of Lemma 20.51, D(x, αi1 , . . . , αin) is connected.

Let
En(x) = ∪αi1 ,...,αin∈ID(x;αi1 , . . . , αin).

We see that En(x) is the set of points y in X such that at most
n coordinates of y differ from the corresponding coordinates of x.
Since x is in each D(x;αi1 , . . . , αin), then by Lemma 20.50, En(x)
is connected. Let E = ∪n≥1En(x). By Lemma 20.50 again, since
x ∈ En(x) for each n, then E is connected.

We now show that E is dense in X. Let z ∈ X and let G be an
open set containing x. We must prove that G contains a point of E.
By the definition of the product topology, there exists a basic open
set H such that x ∈ H ⊂ G, where H = π−1

α1
(K1)∩ · · · ∩ π−1

αn (Kn),
n ≥ 1, each αi ∈ I, and each Ki is open in Xαi . Pick yαi ∈ Ki for
each i, and let y be the point whose αthi coordinate is yαi for i ≤ n
and all its other coordinates agree with the corresponding coordi-
nates of x. Thus παi(y) = yαi for i ≤ n and if α 6= α1, . . . , αn,
then πα(y) = πα(x). The point y is thus in En(x) and also in H,
therefore y ∈ H ⊂ G and y ∈ En(x) ⊂ E.
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We finish the proof by showing X is connected. If not, X =
G ∪H, where G and H are disjoint non-empty open subsets of X.
Since E is connected, either E∩G or E∩H is empty; let us assume
the latter. Choose x ∈ H. Then H is an open set containing x
that does not intersect G, hence x /∈ E. However E is dense in X,
a contradiction. We conclude X is connected.

20.14 Exercises

Exercise 20.1 If X is a non-empty set and T1 and T2 are two
topologies on X, prove that T1 ∩ T2 is also a topology on X.

Exercise 20.2 If G is open in a topological space X and A is
dense in X, show that G = G ∩A.

Exercise 20.3 Let X be R2 with the usual topology and say that
x ∼ y if x = Ay for some matrix A of the form

A =

(
cos θ − sin θ
sin θ cos θ

)
,

with θ ∈ R. Geometrically, x ∼ y if x can be obtained from y by a
rotation of R2 about the origin.
(1) Show that ∼ is an equivalence relationship.
(2) Show that the quotient space is homeomorphic to [0,∞) with
the usual topology.

Exercise 20.4 Prove that every metric space is first countable.

Exercise 20.5 Let X be an uncountable set of points and let T
consist of all subsets A of X such that Ac is finite and let T also
contain the empty set. Prove that X is a topological space that is
not first countable.

Exercise 20.6 Give an example of a metric space which is not
second countable.

Exercise 20.7 Prove that a subset A of X is dense if and only if
A intersects every open set.
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Exercise 20.8 Let X =
∏
α∈I Xα, where I is a non-empty index

set. Prove that a net 〈xβ〉 in X converges to x if and only if the
net 〈πα(xβ)〉 converges to πα(x) for each α ∈ I.

Exercise 20.9 Let f map a topological space X into a topological
space Y . Prove that f is continuous if and only if whenever x ∈ X
and G is an open set in Y containing f(x), there exists an open set
H is X such that f(y) ∈ G whenever y ∈ H.

Exercise 20.10 Let X and Y be topological spaces and y0 ∈ Y .
Prove that X×{y0}, with the relative topology derived from X×Y ,
is homeomorphic to X.

Exercise 20.11 Let X,Y , and Z be topological spaces. Suppose
f : X → Y and g : Y → Z are continuous functions. Prove that
g ◦ f is a continuous function from X to Z.

Exercise 20.12 Suppose that X and Y are topological spaces and
f : X → Y such that f(xn) converges to f(x) whenever xn con-
verges to x. Is f necessarily continuous? If not, give a counterex-
ample.

Exercise 20.13 Prove that f : X → Y is continuous if and only if
the net 〈f(xα)〉 converges to f(x) whenever the net 〈xα〉 converges
to x.

Exercise 20.14 Let X be the collection of Lebesgue measurable
functions on [0, 1] furnished with the topology of pointwise conver-
gence. Say that f ∼ g for f, g ∈ X if f = g a.e. Describe the
quotient topology.

Exercise 20.15 A set A has the Lindelöf property if every open
cover of A has a countable subcover. Prove that a metric space X
has the Lindelöf property if and only if X is separable.

Exercise 20.16 Find an example of a compact set that is not
closed.

Exercise 20.17 Show that the product topology on [0, 1]N and
the topology generated by the metric ρ of (20.3) in Section 20.8
are the same.
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Exercise 20.18 Let {Xα}, α ∈ I be a non-empty collection of
topological spaces and let X =

∏
α∈I Xα. A sequence {xn} in X

converges pointwise to x if πα(xn)→ πα(x) for each α ∈ I. Prove
that xn converges to x pointwise if and only if xn converges to x
with respect to the product topology of X.

Exercise 20.19 This exercise illustrates why the notion of se-
quences is not that useful for general topological spaces. Let X
be the space of real-valued bounded functions on [0, 1]. X can be
identified with R[0,1] and we furnish X with the product topology.
Let E be the set of Borel measurable functions on [0, 1].
(1) Show that E is dense in X.
(2) Let N be a set in [0, 1] that is not Borel measurable. Let
f = χN . Prove that there does not exist a sequence in E that
converges to f , but that every neighborhood of f contains points
of E.

Exercise 20.20 Prove that if I is a non-empty countable set and
each Xα, α ∈ I, is second countable, then

∏
α∈I Xα is second

countable.

Exercise 20.21 If X is a metric space, define

Aδ = {x ∈ X, d(x,A) < δ},

where d(x,A) = infy∈A d(x, y). For closed subsets of X, define

dH(E,F ) = inf{δ : E ⊂ F δ and F ⊂ Eδ}.

(1) Prove that dH is a metric. (This is called the Hausdorff metric.)

(2) Suppose X is compact. Is the set of closed subsets with metric
dH necessarily compact? Prove, or else give a counterexample.

Exercise 20.22 Prove that if {xn} is a Cauchy sequence in a met-
ric space X and a subsequence of {xn} converges to a point x, then
the full sequence converges to x.

Exercise 20.23 Prove that if X is a topological space, then C(X)
is a complete metric space.
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Exercise 20.24 Prove that a sequence {xn} converges to a point
x if and only if every subsequence {xnj} has a further subsequence
which converges to x.

Exercise 20.25 Let A be a subset of a metric space X. Prove
that if A is totally bounded, then A is also totally bounded.

Exercise 20.26 Let X be a topological set such that the set {y}
is closed for each y ∈ X. Prove that X is a T1 space.

Exercise 20.27 Find two disjoint closed subsets E and F of R
such that infx∈E,y∈F |x− y| = 0.

Exercise 20.28 Prove that every metric space is a normal space.

Exercise 20.29 Prove that a space X is a Hausdorff space if and
only if every net converges to at most one point.

Exercise 20.30 Show that a closed subspace of a normal space is
normal.

Exercise 20.31 Prove that [0, 1][0,1] with the product topology is
not metrizable.

Exercise 20.32 Prove that if X is metrizable and I is countable
and non-empty, then XI is metrizable.

Exercise 20.33 Let X be a locally compact Hausdorff space and
X∗ its one point compactification. A continuous function f map-
ping X to R is said to vanish at infinity if given ε > 0 there exists
a compact set K such that |f(x)| < ε for x /∈ K. Prove that f van-
ishes at infinity if and only if f is the restriction of a continuous
function f : X∗ → R with f(∞) = 0.

Exercise 20.34 Prove that the one-point compactification of Rn
is homeomorphic to the n-sphere {x ∈ Rn+1 : ‖x‖ = 1}.

Exercise 20.35 A sequence {fn} in C(X) is said to converge uni-
formly on compact sets to a function f ∈ C(X) if {fn} converges
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to f uniformly on K whenever K is a compact subset of X.
(1) Give an example of a sequence {fn} in C(R) that converges uni-
formly to 0 on compact sets but such that {fn} does not converge
uniformly to 0 on R.
(2) Let X be a σ-compact locally compact Hausdorff space, M > 0,
and {fn} an equicontinuous sequence in C(X) such that |fn(x)| ≤
M for all x ∈ X and all n. Prove there exists a subsequence that
converges uniformly on compact sets.

Exercise 20.36 Show that RN is not locally compact.

Exercise 20.37 Show that C([0, 1]) is not locally compact.

Exercise 20.38 Prove that if {Xα}, α ∈ I, is a non-empty col-
lection of Hausdorff spaces such that

∏
α∈I Xα is locally compact,

then each Xα is also locally compact.

Exercise 20.39 A real-valued function f on a subset X of R is
Hölder continuous of order α if there exists M such that

|f(x)− f(y)| ≤M |x− y|α

for each x, y ∈ X. Suppose 0 < α ≤ 1 and let X = [0, 1]. Prove
that{
f ∈ C([0, 1]) : sup

x∈[0,1]

|f(x)| ≤ 1, sup
x,y∈[0,1],x 6=y

|f(x)− f(y)|
|x− y|α

≤ 1
}

is compact in C([0, 1]).

Exercise 20.40 Let K : [0, 1]2 → R be continuous and let L
be the set of Lebesgue measurable functions f on [0, 1] such that

‖f‖∞ ≤ 1. For f ∈ L, define Tf(x) =
∫ 1

0
K(x, y)f(y) dy. Prove

that {Tf ; f ∈ L} is an equicontinuous family in C([0, 1]).

Exercise 20.41 Prove that if X is a compact metric space, then
C(X) is separable.

Exercise 20.42 Let X = [0,∞] be the one point compactification
of [0,∞), the non-negative real numbers with the usual metric. Let
A be the collection of all finite linear combinations

n∑
j=1

aje
−λjx,
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where the aj are real and each λj ≥ 0.
(1) Prove that A is a dense subset of C(X).
(2) Prove that if f1 and f2 are two continuous integrable functions
from [0,∞) to R that vanish at infinity and which have the same
Laplace transform, that is,

∫∞
0
e−λxf1(x) dx =

∫∞
0
e−λxf2(x) dx

for all λ ≥ 0, then f1(x) = f2(x) for all x.

Exercise 20.43 Suppose X and Y are compact Hausdorff spaces.
Let A be the collection of real-valued functions in C(X ×Y ) of the
form

n∑
i=1

aigi(x)hi(y),

where n ≥ 1, each ai ∈ R, each gi ∈ C(X), and each hi ∈ C(Y ).
Prove that A is dense in C(X × Y ).

Exercise 20.44 Let X be a compact Hausdorff space and suppose
A is an algebra of continuous functions that separates points. Prove
that either A is dense in C(X) or else there exists a point x ∈ X
such that A = {f ∈ C(X) : f(x) = 0}.

Exercise 20.45 Prove that if f : [0, 1]→ R and g : [0, 1]→ R are
continuous functions such that∫ 1

0

f(x)xn dx =

∫ 1

0

g(x)xn dx

for n = 0, 1, 2, . . ., then f = g.

Exercise 20.46 Let X be the closed unit disk in the complex
plane. A polynomial in z and z is a function of the form

P (z) =

n∑
j=0

n∑
k=0

ajkz
jzk,

where ajk are complex numbers. Prove that if f is a function in
C(X,C), then f can be uniformly approximated by polynomials in
z and z.

Exercise 20.47 Prove that if B is a Banach space, then B is con-
nected.
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Exercise 20.48 Prove that if A is a convex subset of a Banach
space, then A is connected.

Exercise 20.49 A topological space X is arcwise connected if
whenever x, y ∈ X, there exists a continuous function f from [0, 1]
into X such that f(0) = x and f(1) = y.
(1) Prove that if X is arcwise connected, then X is connected.
(2) Let A1 = {(x, y) ∈ R2 : y = sin(1/x), 0 < x ≤ 1} and
A2 = {(x, y) ∈ R2 : x = 0,−1 ≤ y ≤ 1}. Let X = A1 ∪A2 with the
relative topology derived from R2. Prove that X is connected but
not arcwise connected.

Exercise 20.50 If X is a topological space, a component of X is a
connected subset of X that is not properly contained in any other
connected subset of X. Prove that each x ∈ X is contained in a
unique component of X.

Exercise 20.51 A topological space X is totally disconnected if
the components are all single points.
(1) Prove that the Cantor set with the relative topology derived
from the real line is totally disconnected.
(2) Prove that if {Xα}, α ∈ I, is a non-empty collection of totally
disconnected spaces, then X =

∏
α∈I Xα is totally disconnected.

Exercise 20.52 Prove that a topological space X is connected if
and only if for each pair x, y ∈ X there is a connected subspace of
X containing both x and y.

Exercise 20.53 Let X be a connected space. Suppose f : X → R
is continuous and non-constant. Prove that X is uncountable.

Exercise 20.54 Suppose {Aα}, α ∈ I, is a non-empty collection of
connected subsets of a topological space X with the property that
Aα ∩Aβ 6= ∅ for each α, β ∈ I. Prove that ∪α∈IAα is connected.



Chapter 21

Probability

Although some of the terminology and concepts of probability the-
ory derive from its origins in gambling theory and statistics, the
mathematical foundations of probability are based in real analysis.
For example, a probability is just a measure with total mass one,
and one of the main theorems, the strong law of large numbers, is
an assertion about almost everywhere convergence.

In this chapter we introduce some of the major concepts of prob-
ability theory, including independence, the laws of large numbers,
conditional expectation, martingales, weak convergence, character-
istic functions, and the central limit theorem. We finish by con-
structing two different types of probabilities on infinite dimensional
spaces.

21.1 Definitions

A probability space is a triple (Ω,F ,P), where Ω is an arbitrary set,
F is a σ-field of subsets of Ω, and P is a probability on (Ω,P). A
σ-field is exactly the same thing as a σ-algebra. A probability or
probability measure is a positive measure whose total mass is 1, so
that P(Ω) = 1. Elements of F are called events. Elements of Ω are
often denoted ω.

Instead of saying a property occurs almost everywhere, we talk
about properties occurring almost surely, written a.s. Real-valued

247
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measurable functions from Ω to R are called random variables and
are usually denoted by X or Y or other capital letters. Often one
sees “random variable” abbreviated by “r.v.”

The Lebesgue integral of a random variable X with respect to
a probability measure P is called the expectation or the expected
value of X, and we write EX for

∫
X dP. The notation E [X;A]

is used for
∫
A
X dP.

The random variable 1A is the function that is one if ω ∈ A and
zero otherwise. It is called the indicator of A since the term char-
acteristic function in probability refers to the Fourier transform.
Events such as {ω : X(ω) > a} are almost always abbreviated by
(X > a). An expression such as

(X > a, Y > b)

means {ω : X(ω) > a and Y (ω) > b}; the comma means “and.”

Given a random variable X, the σ-field generated by X, denoted
σ(X) is the collection of events (X ∈ A), A a Borel subset of
R. If we have several random variables: X1, X2, . . . , Xn, we write
σ(X1, . . . , Xn) for the σ-field generated by the collection of events

{(Xi ∈ A) : A a Borel subset of R, i = 1, . . . , n.}

This definition is extended in the obvious way when there are in-
finitely many random variables Xi.

Given a random variable X, we can define a probability on
(R,B) where B is the Borel σ-field on R, by

PX(A) = P(X ∈ A), A ∈ B. (21.1)

The probability PX is called the law of X or the distribution of X.
We define FX : R→ [0, 1] by

FX(x) = PX((−∞, x]) = P(X ≤ x). (21.2)

The function FX is called the distribution function of X. Note
that FX is an increasing function whose corresponding Lebesgue-
Stieltjes measure is PX .

Proposition 21.1 The distribution function FX of a random vari-
able X satisfies:
(1) FX is increasing;
(2) FX is right continuous with limits from the left existing;
(3) limx→∞ FX(x) = 1 and limx→−∞ FX(x) = 0.
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Proof. These follow directly from elementary properties of mea-
sures. For example, if x ≤ y, then (X ≤ x) ⊂ (X ≤ y), and
(1) follows. If xn ↓ x, then (X ≤ xn) ↓ (X ≤ x), and so
FX(xn) = P(X ≤ xn)→ P(X ≤ x) = FX(x), since P(X ≤ x1) ≤ 1.
This proves that FX is right continuous. Since FX is increasing,
limy→x− FX(y) exists. This proves (2). The proof of (3) is left to
the reader.

Any function F : R → [0, 1] satisfying (1)-(3) of Proposition
21.1 is called a distribution function, whether or not it comes from
a random variable.

Proposition 21.2 Suppose F is a distribution function. There
exists a random variable X such that F = FX .

Proof. Let Ω = [0, 1], F the Borel σ-field, and P Lebesgue mea-
sure. Define X(ω) = sup{y : F (y) < ω}. If X(ω) ≤ x, then
F (y) > ω for all y > x. By right continuity, F (x) ≥ ω. On the
other hand, if ω ≤ F (x), then x /∈ {y : F (y) < ω}, so X(ω) ≤ x.
Therefore {ω : X(ω) ≤ x} = {ω : 0 ≤ ω ≤ F (x)}, and we conclude
FX(x) = F (x).

In the above proof, essentially X = F−1. However F may have
jumps or be constant over some intervals, so some care is needed
in defining X.

Certain distributions or laws appear very often. We list some
of them.

(1) Bernoulli. A random variable X is a Bernoulli random variable
with parameter p if P(X = 1) = p, P(X = 0) = 1 − p for some
p ∈ [0, 1].

(2) Binomial. A random variable X is a binomial random variable

with parameters n and p if P(X = k) =

(
n
k

)
pk(1 − p)n−k, where

n is a positive integer, 0 ≤ k ≤ n, and p ∈ [0, 1]. Here

(
n
k

)
=

n!/k!(n− k)!.

(3) Geometric. A random variable X is a geometric random vari-
able with parameter p if P(X = k) = (1 − p)pk, where p ∈ (0, 1)
and k is a non-negative integer.
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(4) Poisson. If P(X = k) = e−λλk/k! for k a non-negative inte-
ger and λ > 0, then X is called a Poisson random variable with
parameter λ.

If F is absolutely continuous, we call f = F ′ the density of F .
Some examples of distributions characterized by densities are the
following.

(5) Exponential. Let λ > 0. For x > 0 let f(x) = λe−λx. If X has
a distribution function whose density is equal to f , then X is said
to be an exponential random variable with parameter λ.

(6) Standard normal. Define f(x) = 1√
2π
e−x

2/2. If the distribu-

tion function of X has f as its density, then X is a standard normal
random variable. Thus

P(X ∈ A) = PX(A) =
1√
2π

∫
A

e−x
2/2 dx.

Exercise 11.18 shows that PX has total mass 1 and so is a proba-
bility measure.

We can use the law of a random variable to calculate expecta-
tions.

Proposition 21.3 Suppose g is Borel measurable and suppose g
is either bounded or non-negative. Then

E g(X) =

∫
g(x)PX(dx).

Proof. If g is the indicator of an event A, this is just the definition
of PX . By linearity, the result holds for simple functions g. By
approximating a non-negative measurable function from below by
simple functions and using the monotone convergence theorem, the
result holds for non-negative functions g, and by linearity again, it
holds for bounded and measurable g.

If FX has a density fX , then PX(dx) = fX(x) dx. If X is
integrable, that is, E |X| <∞, we have

EX =

∫
xfX(x) dx
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and in any case we have

EX2 =

∫
x2fX(x) dx,

although both sides of the equality might be infinite.

We define the mean of a random variable to be its expectation,
and the variance of a random variable is defined by

VarX = E (X − EX)2.

The square root of the variance of X is called the standard deviation
of X. From the definition of variance, it is clear that Var (X+c) =
VarX for any constant c.

Note

VarX = E [X2 − 2X · EX + (EX)2] = EX2 − (EX)2. (21.3)

Immediate consequences of this are that VarX ≤ EX2 and that
Var (cX) = c2VarX for any constant c.

It is an exercise in calculus to see that the mean of a standard
normal random variable is zero and its variance is one; use the fact
that xe−x

2/2 is an odd function to see that the mean is zero and
use integration by parts to calculate the variance.

An equality that is useful is the following.

Proposition 21.4 If X ≥ 0 a.s. and p > 0, then

EXp =

∫ ∞
0

pλp−1P(X > λ) dλ.

The proof will show that this equality is also valid if we replace
P(X > λ) by P(X ≥ λ).

Proof. Use the Fubini theorem and write∫ ∞
0

pλp−1P(X > λ) dλ = E
∫ ∞

0

pλp−11(λ,∞)(X) dλ

= E
∫ X

0

pλp−1 dλ = EXp.

This completes the proof.
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We have already seen the Chebyshev inequality in Lemma 10.4.
In probability notation, the Chebyshev inequality says

P(X ≥ a) ≤ EX
a

if X ≥ 0.

If we apply this to X = (Y − EY )2, we obtain

P(|Y − EY | ≥ a) = P((Y − EY )2 ≥ a2) ≤ VarY/a2. (21.4)

Remark 21.5 Observe that if g is a convex function and and x0

is in the domain of g, then there is a line through (x0, g(x0)) such
that the graph of g lies above this line. When g is differentiable at
x0, the tangent line is the one we want, but such a line exists even
at points where g is not differentiable.

This remark allows us to prove Jensen’s inequality, not to be
confused with the Jensen formula of complex analysis.

Proposition 21.6 Suppose g is convex and X and g(X) are both
integrable. Then

g(EX) ≤ E g(X).

Proof. If x0 ∈ R, we have

g(x) ≥ g(x0) + c(x− x0)

for some constant c by Remark 21.5. Set x = X(ω) and take
expectations to obtain

E g(X) ≥ g(x0) + c(EX − x0).

Now choose x0 equal to EX.

21.2 Independence

Let us say two events A and B are independent if P(A ∩ B) =
P(A)P(B). The events A1, . . . , An are independent if

P(Ai1 ∩Ai2 ∩ · · · ∩Aij ) = P(Ai1)P(Ai2) · · ·P(Aij )
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whenever 1 ≤ i1 < . . . < ij ≤ n. When n is three, for example, not
only must P(A1∩A2∩A3) factor properly, but so must P(A1∩A2),
P(A1 ∩A3), and P(A2 ∩A3).

Proposition 21.7 If A and B are independent, then Ac and B
are independent.

Proof. We write

P(Ac ∩B) = P(B)− P(A ∩B) = P(B)− P(A)P(B)

= P(B)(1− P(A)) = P(B)P(Ac),

which proves the proposition.

We say two σ-fields F and G are independent if A and B are
independent whenever A ∈ F and B ∈ G. Two random variables
X and Y are independent if the σ-field generated by X and the σ-
field generated by Y are independent. We define the independence
of n σ-fields or n random variables in the obvious way.

If we have an infinite sequence of events {An}, we say they
are independent if every finite subset of them is independent. We
define independence for an infinite sequence of random variables
similarly.

Remark 21.8 If f and g are Borel functions and X and Y are
independent, then f(X) and g(Y ) are independent. This follows
because the σ-field generated by f(X) is a sub-σ-field of the one
generated by X, and similarly for g(Y ).

If {An} is a sequence of events, define (An i.o.), read “An in-
finitely often,” by

(An i.o.) = ∩∞n=1 ∪∞i=n Ai.

This set consists of those ω that are in infinitely many of the An.

We now state one of the most useful tools in probability theory,
the Borel-Cantelli lemma. Note for the first part of the lemma that
no assumption of independence is made. Also note that we have
used the proof of the first part of the Borel-Cantelli lemma several
times already without calling it by that name; see, e.g., the proofs
of Proposition 13.2 and Theorem 15.4.
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Lemma 21.9 (Borel-Cantelli lemma) Let {An} be a sequence of
events.
(1) If

∑
n P(An) <∞, then P(An i.o.) = 0.

(2) Suppose in addition that the An are independent events. If∑
n P(An) =∞, then P(An i.o.) = 1.

Proof. (1) We have

P(An i.o.) = lim
n→∞

P(∪∞i=nAi).

However,

P(∪∞i=nAi) ≤
∞∑
i=n

P(Ai),

and the right hand side tends to zero as n→∞.

(2) Write

P(∪Ni=nAi) = 1− P(∩Ni=nAci ) = 1−
N∏
i=n

P(Aci ) = 1−
N∏
i=n

(1− P(Ai)).

By the mean value theorem, 1 − e−x ≤ x, or 1 − x ≤ e−x, so we
have that the right hand side is greater than or equal to

1− exp
(
−

N∑
i=n

P(Ai)
)
.

As N → ∞, this tends to 1, so P(∪∞i=nAi) = 1. This holds for all
n, which proves the result.

The following is known as the multiplication theorem.

Theorem 21.10 If X, Y , and XY are integrable and X and Y
are independent, then E [XY ] = (EX)(EY ).

Proof. First suppose that X and Y are both non-negative and
bounded by a positive integer M . Let

Xn =

M2n∑
k=0

k

2n
1[k/2n,(k+1)/2n)(X),
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and define Yn similarly. We see that 1[k/2n,(k+1)/2n)(X) is inde-
pendent of 1[j/2n,(j+1)/2n)(Y ) for each j and k by Remark 21.8.
Then

E [XnYn]

=

M2n∑
k=0

M2n∑
j=0

k

2n
· j

2n
E [1[k/2n,(k+1)/2n)(X)1[j/2n,(j+1)/2n)(Y )]

=

M2n∑
k=0

M2n∑
j=0

k

2n
· j

2n
P(X ∈ [k/2n, (k + 1)/2n),

Y ∈ [j/2n, (j + 1)/2n))

=

M2n∑
k=0

M2n∑
j=0

k

2n
· j

2n
P(X ∈ [k/2n, (k + 1)/2n))

× P(Y ∈ [j/2n, (j + 1)/2n))

=
(M2n∑
k=0

k

2n
E [1[k/2n,(k+1)/2n)(X)]

)

×
(M2n∑
j=0

j

2n
E [1[j/2n,(j+1)/2n)(Y )]

)
= (EXn)(EYn).

If we let n → ∞, by the dominated convergence theorem, we ob-
tain our theorem in the case when X and Y are non-negative and
bounded by M .

If X and Y are non-negative but not necessarily bounded, use
Remark 21.8 to see that X ∧M and Y ∧M are independent, so

E [(X ∧M)(Y ∧M)] = E [X ∧M ]E [Y ∧M ].

Letting M → ∞ and using the monotone convergence theorem,
we have E [XY ] = (EX)(EY ) when X and Y are non-negative.
Finally, writing X = X+ −X− and Y = Y + − Y −, we obtain the
multiplication theorem for the general case by linearity.

Remark 21.11 If X1, . . . , Xn are independent, then so are the
random variables X1 − EX1, . . . , Xn − EXn. Assuming all the
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random variables are integrable,

E [(X1 − EX1) + · · · (Xn − EXn)]2

= E (X1 − EX1)2 + · · ·+ E (Xn − EXn)2,

using the multiplication theorem to show that the expectations of
the cross product terms are zero. We have thus shown

Var (X1 + · · ·+Xn) = VarX1 + · · ·+ VarXn. (21.5)

In words, if the Xi are independent, then the variance of the sum
is equal to the sum of the variances.

21.3 Weak law of large numbers

Suppose Xn is a sequence of independent random variables. Sup-
pose also that they all have the same distribution, that is, PXn =
PX1 for all n. This situation comes up so often it has a name,
independent and identically distributed, which is abbreviated i.i.d.
In this case, P(Xn ∈ A) = P(X1 ∈ A) for all n and all Borel sets
A. We also see that EXn = EX1, VarXn = VarX1, and so on.

Define Sn =
∑n
i=1Xi. Sn is called a partial sum process. Sn/n

is the average value of the first n of the Xi’s. We say a sequence of
random variables {Yn} converges in probability to a random vari-
able Y if it converges in measure with respect to the measure P.
Recall that this means that for each ε > 0,

P(|Yn − Y | > ε)→ 0

as n→∞.

The weak law of large numbers (we will do the strong law of
large numbers in Section 21.4) is a version of the law of averages.

Theorem 21.12 Suppose the Xi are i.i.d. and EX2
1 < ∞. Then

Sn/n→ EX1 in probability.

Proof. Since the Xi are i.i.d., they all have the same expectation,
and so ESn = nEX1. Hence E (Sn/n − EX1)2 is the variance of
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Sn/n. If ε > 0, by (21.4),

P(|Sn/n− EX1| > ε) = P((Sn/n− EX1)2 > ε2) (21.6)

≤ Var (Sn/n)

ε2
.

Using Remark 21.11, the right hand side is equal to∑n
i=1 VarXi

n2ε2
=
nVarX1

n2ε2
. (21.7)

Since EX2
1 < ∞, then VarX1 < ∞, and the result follows by

letting n→∞.

A nice application of the weak law of large numbers is a proof of
the Weierstrass approximation theorem. Recall from undergradu-
ate probability that the sum of n i.i.d. Bernoulli random variables
with parameter p is a binomial random variable with parameters n
and p. To see this, if Sn is the sum of i.i.d. Bernoulli random vari-
ables X1, . . . , Xn, then Sn is the number of the Xi that are equal to
1. The probability that the first k of the Xi’s are 1 and the rest 0
is pk(1− p)n−k, using independence. The probability that the last
k of the Xi’s are 1 and the rest 0 is the same, and we get the same
probability for any configuration of k ones and n−k zeroes. There

are

(
n
k

)
such configurations, so P(Sn = k) =

(
n
k

)
pk(1 − p)n−k.

For another proof of this fact, see Remark 21.42.

An easy computation shows that VarX1 = p(1 − p), and so,
using Remark 21.11, VarSn = np(1− p).

Theorem 21.13 Suppose f is a continuous function on [0, 1] and
ε > 0. There exists a polynomial P such that

sup
x∈[0,1]

|f(x)− P (x)| < ε.

Proof. Let

Pn(x) =

n∑
k=0

f(k/n)

(
n
k

)
xk(1− x)n−k.

Clearly P is a polynomial. Since f is continuous, there exists M
such that |f(x)| ≤M for all x ∈ [0, 1] and there exists δ such that
|f(x)− f(y)| < ε/2 whenever |x− y| ≤ δ.



258 CHAPTER 21. PROBABILITY

Let Xi be i.i.d. Bernoulli random variables with parameter x.
Then Sn, the partial sum, is a binomial random variable, and hence
Pn(x) = E f(Sn/n). The mean of Sn/n is x. We have

|Pn(x)− f(x)| = |E f(Sn/n)− f(EX1)|
≤ E |f(Sn/n)− f(EX1)|
= E [ |f(Sn/n)− f(EX1)|; |Sn/n− EX1| ≤ δ]

+ E [ |f(Sn/n)− f(EX1)|; |Sn/n− EX1| > δ]

≤ ε/2 + 2MP(|Sn/n− x| > δ).

By (21.6) and (21.7) the second term on the last line will be less
than or equal to

2MVarX1/nδ
2 ≤ 2Mx(1− x)/nδ2 ≤ 2Mnδ2,

which will be less than ε/2 if n is large enough, uniformly in x.

In the next section we prove the strong law of large numbers.
There we get a stronger result than Theorem 21.12 with weaker
hypotheses. There are, however, versions of the weak law of large
numbers that have weaker hypotheses than Theorem 21.16.

21.4 Strong law of large numbers

The strong law of large numbers is the mathematical formulation
of the law of averages. If one tosses a fair coin over and over,
the proportion of heads should converge to 1/2. Mathematically,
if Xi is 1 if the ith toss turns up heads and 0 otherwise, then we
want Sn/n to converge with probability one to 1/2, where Sn =
X1 + · · ·+Xn.

Before stating and proving the strong law of large numbers, we
need three facts from calculus. First, recall that if bn → b are real
numbers, then

b1 + · · ·+ bn
n

→ b. (21.8)

Second, there exists a constant c1 such that

∞∑
k=n

1

k2
≤ c1

n
. (21.9)
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(To prove this, recall the proof of the integral test and compare the
sum to

∫∞
n−1

x−2 dx when n ≥ 2.) Third, suppose a > 1 and kn is
the largest integer less than or equal to an. Note kn ≥ an/2. Then∑

{n:kn≥j}

1

k2
n

≤
∑

{n:an≥j}

4

a2n
≤ 4

j2
· 1

1− a−2
(21.10)

by the formula for the sum of a geometric series.

We also need two probability estimates.

Lemma 21.14 If X ≥ 0 a.s. and EX <∞, then

∞∑
n=1

P(X ≥ n) <∞.

Proof. Since P(X ≥ x) increases as x decreases,

∞∑
n=1

P(X ≥ n) ≤
∞∑
n=1

∫ n

n−1

P(X ≥ x) dx

=

∫ ∞
0

P(X ≥ x) dx = EX,

which is finite.

Lemma 21.15 Let {Xn} be an i.i.d. sequence with each Xn ≥ 0
a.s. and EX1 <∞. Define

Yn = Xn1(Xn≤n).

Then
∞∑
k=1

VarYk
k2

<∞.

Proof. Since VarYk ≤ EY 2
k ,

∞∑
k=1

VarYk
k2

≤
∞∑
k=1

EY 2
k

k2
=

∞∑
k=1

1

k2
E [X2

k ;Xk ≤ k]
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=

∞∑
k=1

1

k2

∫ ∞
0

1(x≤k)2xP(Xk > x) dx

=

∫ ∞
0

∞∑
k=1

1

k2
1(x≤k)2xP(X1 > x) dx

≤ c1
∫ ∞

0

1

x
· 2xP(X1 > x) dx

= 2c1

∫ ∞
0

P(X1 > x) dx = 2c1EX1 <∞.

We used the fact that the Xk are i.i.d., the Fubini theorem, Propo-
sition 21.4, and (21.9).

We now state and prove the strong law of large numbers.

Theorem 21.16 Suppose {Xi} is an i.i.d. sequence with E |X1|
<∞. Let Sn =

∑n
i=1Xi. Then

Sn
n
→ EX1, a.s.

Proof. By writing each Xn as X+
n − X−n and considering the

positive and negative parts separately, it suffices to suppose each
Xn ≥ 0. Define Yk = Xk1(Xk≤k) and let Tn =

∑n
i=1 Yi. The main

part of the argument is to prove that Tn/n→ EX1 a.s.

Step 1. Let a > 1 and let kn be the largest integer less than or
equal to an. Let ε > 0 and let

An =
( |Tkn − ETkn |

kn
> ε
)
.

By (21.4)

P(An) ≤ Var (Tkn/kn)

ε2
=

VarTkn
k2
nε

2
=

∑kn
j=1 VarYj

k2
nε

2
.

Then

∞∑
n=1

P(An) ≤
∞∑
n=1

kn∑
j=1

VarYj
k2
nε

2



21.4. STRONG LAW OF LARGE NUMBERS 261

=
1

ε2

∞∑
j=1

∑
{n:kn≥j}

1

k2
n

VarYj

≤ 4(1− a−2)−1

ε2

∞∑
j=1

VarYj
j2

by (21.10). By Lemma 21.15,
∑∞
n=1 P(An) <∞, and by the Borel-

Cantelli lemma, P(An i.o.) = 0. This means that for each ω except
for those in a null set, there exists N(ω) such that if n ≥ N(ω), then
|Tkn(ω)−ETkn |/kn < ε. Applying this with ε = 1/m, m = 1, 2, . . .,
we conclude

Tkn − ETkn
kn

→ 0, a.s.

Step 2. Since

EYj = E [Xj ;Xj ≤ j] = E [X1;X1 ≤ j]→ EX1

by the dominated convergence theorem as j →∞, then by (21.8)

ETkn
kn

=

∑kn
j=1 EYj
kn

→ EX1.

Therefore Tkn/kn → EX1 a.s.

Step 3. If kn ≤ k ≤ kn+1, then

Tk
k
≤
Tkn+1

kn+1
· kn+1

kn

since we are assuming that the Xk are non-negative. Therefore

lim sup
k→∞

Tk
k
≤ aEX1, a.s.

Similarly, lim infk→∞ Tk/k ≥ (1/a)EX1 a.s. Since a > 1 is arbi-
trary,

Tk
k
→ EX1, a.s.

Step 4. Finally,

∞∑
n=1

P(Yn 6= Xn) =

∞∑
n=1

P(Xn > n) =

∞∑
n=1

P(X1 > n) <∞
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by Lemma 21.14. By the Borel-Cantelli lemma, P(Yn 6= Xn i.o.) =
0. In particular, Yn −Xn → 0 a.s. By (21.8) we have

Tn − Sn
n

=

n∑
i=1

(Yi −Xi)

n
→ 0, a.s.,

hence Sn/n→ EX1 a.s.

21.5 Conditional expectation

It is fairly common in probability theory for there to be more than
one σ-field present. For example, if X1, X2, . . . is a sequence of
random variables, one might let Fn = σ(X1, . . . , Xn), which means
that Fn is the σ-field generated by the collection of sets (Xi ∈ A)
for i = 1, 2, . . . , n and A a Borel subset of R.

If F ⊆ G are two σ-fields and X is an integrable G measurable
random variable, the conditional expectation of X given F , written
E [X | F ] and read as “the expectation (or expected value) of
X given F ,” is any F measurable random variable Y such that
E [Y ;A] = E [X;A] for every A ∈ F . The conditional probability
of A ∈ G given F is defined by P(A | F) = E [1A | F ]. When
F = σ(Y ), one usually writes E [X | Y ] for E [X | F ].

If Y1, Y2 are two F measurable random variables such that
E [Y1;A] = E [Y2;A] for all A ∈ F , then Y1 = Y2 a.s. by Proposi-
tion 8.1. In other words, conditional expectation is unique up to
a.s. equivalence.

In the case X is already F measurable, E [X | F ] = X. This
follows from the definition.

If X is independent of F , E [X | F ] = EX. To see this, if
A ∈ F , then 1A and X are independent, and by the multiplication
theorem

E [X;A] = E [X1A] = (EX)(E 1A) = E [EX;A].

For another example which ties this definition with the one used
in elementary probability courses, suppose {Ai} is a finite collection
of disjoint sets whose union is Ω, P(Ai) > 0 for all i, and F is the
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σ-field generated by the Ai’s. Then

P(A | F) =
∑
i

P(A ∩Ai)
P(Ai)

1Ai .

This follows since the right-hand side is F measurable and its ex-
pectation over any set Aj is P(A ∩Aj) because

E
[∑

i

P(A ∩Ai)
P(Ai)

1Ai ;Aj

]
=

P(A ∩Aj)
P(Aj)

E [1Aj ;Aj ] = P(A ∩Aj).

For a very concrete example, suppose we toss a fair coin inde-
pendently 5 times and let Xi be 1 or 0 depending whether the ith

toss was a heads or tails. Let A be the event that there were 5 heads
and let Fi = σ(X1, . . . , Xi). Then P(A) = 1/32 while P(A | F1) is
equal to 1/16 on the event (X1 = 1) and 0 on the event (X1 = 0).
P(A | F2) is equal to 1/8 on the event (X1 = 1, X2 = 1) and 0
otherwise.

Proposition 21.17 If F ⊂ G and X is integrable and G measur-
able, then

E [E [X | F ] ] = EX.

Proof. We write

E [E [X | F ] ] = E [E [X | F ]; Ω] = E [X; Ω] = EX,

using the definition of conditional expectation.

The following is easy to establish and is left to the reader.

Proposition 21.18 (1) If X ≥ Y are both integrable, then

E [X | F ] ≥ E [Y | F ], a.s.

(2) If X and Y are integrable and a ∈ R, then

E [aX + Y | F ] = aE [X | F ] + E [Y | F ], a.s.

It is easy to check that limit theorems such as the monotone con-
vergence and dominated convergence theorems have conditional ex-
pectation versions, as do inequalities like Jensen’s and Chebyshev’s
inequalities. Thus, for example, we have the following.
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Proposition 21.19 (Jensen’s inequality for conditional expecta-
tions) If g is convex and X and g(X) are integrable,

E [g(X) | F ] ≥ g(E [X | F ]), a.s.

A key fact is the following.

Proposition 21.20 If X and XY are integrable and Y is mea-
surable with respect to F , then

E [XY | F ] = Y E [X | F ]. (21.11)

Proof. If A ∈ F , then for any B ∈ F ,

E [1AE [X | F ];B] = E [E [X | F ];A ∩B] = E [X;A ∩B]

= E [1AX;B].

Since 1AE [X | F ] is F measurable, this shows that (21.11) holds
when Y = 1A and A ∈ F .

Using linearity shows that (21.11) holds whenever Y is F mea-
surable and is a simple random variable. Taking limits and using
the dominated convergence theorem, the equality holds when Y is
non-negative, F measurable, and X and XY are integrable. Fi-
nally, using linearity again, we have (21.11) when Y is F measur-
able and X and XY are integrable.

We have two other equalities.

Proposition 21.21 If E ⊂ F ⊂ G, then

E [E [X | F ] | E ] = E [X | E ] = E [E [X | E ] | F ].

Proof. The second equality holds because E [X | E ] is E measur-
able, hence F measurable. To show the first equality, let A ∈ E .
Then since A is also in F ,

E [E [E [X | F ] | E ];A] = E [E [X | F ];A] = E [X;A]

= E [E [X | E ];A].

Since both sides are E measurable, the equality follows.

To show the existence of E [X | F ], we proceed as follows.
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Proposition 21.22 If X is integrable, then E [X | F ] exists.

Proof. Using linearity, we need only consider X ≥ 0. Define a
measure Q on F by Q(A) = E [X;A] for A ∈ F . This is clearly
absolutely continuous with respect to P|F , the restriction of P to
F . Let Y = E [X | F ] be the Radon-Nikodym derivative of Q with
respect to P|F . Recalling the statement of the Radon-Nikodym the-
orem (Theorem 13.4), we see that the Radon-Nikodym derivative
of Q with respect to P|F is F measurable. Then if A ∈ F ,

E [X;A] = Q(A) =

∫
A

Y dP|F =

∫
A

Y dP = E [Y ;A].

The third equality holds because both Y and A are F measurable.
Thus Y is the desired random variable.

21.6 Martingales

In this section we consider martingales. These are a very useful
tool in probability. They also have applications to real analysis,
and they are fundamental to the theory of financial mathematics.

Let F be a σ-field and let {Fn} be an increasing sequence of
σ-fields, each of which is contained in F . That is, F1 ⊂ F2 ⊂ · · ·
and Fn ⊂ F for each n. A sequence of random variables Mn is
adapted to {Fn} if for each n, Mn is Fn measurable.

Mn is a martingale with respect to an increasing family of σ-
fields {Fn} if Mn is adapted to Fn, Mn is integrable for each n,
and

E [Mn+1 | Fn] = Mn, a.s., n = 1, 2, . . . . (21.12)

When the σ-fields are not specified and we talk about Mn being a
martingale, it is understood that Fn = σ(M1, . . . ,Mn).

If Xn is a sequence of adapted integrable random variables with

E [Xn+1 | Fn] ≥ Xn, a.s., n = 1, 2, . . . , (21.13)

we call Xn a submartingale. If instead we have

E [Xn+1 | Fn] ≤ Xn, a.s., n = 1, 2, . . . ,
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we call Xn a supermartingale.

Let us look at some examples. If Xi is a sequence of mean zero
integrable i.i.d. random variables and Sn is the partial sum process,
then Mn = Sn is a martingale, since

E [Mn+1 | Fn] = Mn + E [Mn+1 −Mn | Fn]

= Mn + E [Mn+1 −Mn] = Mn,

using independence and the fact that Sn is measurable with respect
to Fn.

If the Xi’s have variance one and Mn = S2
n − n, then

E [S2
n+1 | Fn] = E [(Sn+1 − Sn)2 | Fn] + 2SnE [Sn+1 | Fn]

− S2
n

= 1 + S2
n,

using independence. It follows that Mn is a martingale.

Another example is the following: suppose X ∈ L1 and define
Mn = E [X | Fn]. Then Mn is a martingale.

If Mn is a martingale, g is a convex function, and g(Mn) is
integrable for each n, then by Jensen’s inequality for conditional
expectations,

E [g(Mn+1) | Fn] ≥ g(E [Mn+1 | Fn]) = g(Mn),

or g(Mn) is a submartingale. Similarly if g is convex and increasing
on [0,∞) and Mn is a positive submartingale, then g(Mn) is a
submartingale because

E [g(Mn+1) | Fn] ≥ g(E [Mn+1 | Fn]) ≥ g(Mn).

We next want to talk about stopping times. Suppose we have an
increasing sequence of σ-fields {Fn} contained in a σ-field F . Let
F∞ = σ(∪∞n=1Fn). A random variable N (which is F measurable)
from Ω to {0, 1, 2, . . .} ∪ {∞} is called a stopping time if for each
finite n, (N ≤ n) ∈ Fn. A stopping time is also called an optional
time .

The intuition is that if Fn is what you know at time n, then at
each n you know whether to stop or not. For example, if X1, X2, . . .
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is a sequence of random variables adapted to the increasing family
of σ-fields Fn and A is a Borel subset of R, then

N = min{k ≥ 0 : Xk ∈ A}

is a stopping time. In words, N is the first time that one of the Xn

is in the set A. To show that N is a stopping time, we write

(N ≤ n) = ∪nk=1(Xk ∈ A).

On the other hand, if L = max{k ≤ 9 : Xk ∈ A} ∧ 9, the last
time Xk is in A up to time 9, and Fn = σ(X1, . . . , Xn), it can be
shown that L is not a stopping time. The intuition here is that one
cannot know whether (L ≤ 2) without looking into the future at
X3, . . . , X9.

Proposition 21.23 (1) Fixed times n are stopping times.
(2) If N1 and N2 are stopping times, then so are N1 ∧ N2 and
N1 ∨N2.
(3) If Nn is an increasing sequence of stopping times, then so is
N = supnNn.
(4) If Nn is a decreasing sequence of stopping times, then so is
N = infnNn.
(5) If N is a stopping time, then so is N + n.

Proof. We prove (2) and (3) and leave the remaining assertions
to the reader. Since

(N1 ∧N2 ≤ n) = (N1 ≤ n) ∪ (N2 ≤ n)

and
(N1 ∨N2 ≤ n) = (N1 ≤ n) ∩ (N2 ≤ n),

then (N1 ∧N2 ≤ n) and (N1 ∨N2 ≤ n) are in Fn for each n, and
we obtain (2). We see (3) holds because

(sup
i
Ni ≤ n) = ∩i(Ni ≤ n) ∈ Fn

for each n.

Note that if one takes expectations in (21.12), one has EMn =
EMn−1, and by induction EMn = EM0. The optional stopping
theorem of Doob says that the same is true if we replace n by a
stopping time N . When we write MN , we first evaluate N(ω), and
then we look at Mn(ω) if n = N(ω).
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Theorem 21.24 Let {Fn} be an increasing family of σ-fields, each
contained in a σ-field F . Let Mn be a martingale with respect to
{Fn} and let N be a stopping time bounded by a positive integer
K. Then EMN = EMK .

Proof. We write

EMN =

K∑
k=0

E [MN ;N = k] =

K∑
k=0

E [Mk;N = k].

Note (N = k) = (N ≤ k)− (N ≤ k − 1) is Fj measurable if j ≥ k,
so

E [Mk;N = k] = E [Mk+1;N = k]

= E [Mk+2;N = k]

= . . . = E [MK ;N = k].

Hence

EMN =

K∑
k=0

E [MK ;N = k] = EMK = EM0.

This completes the proof.

The assumption that N be bounded cannot be entirely dis-
pensed with. For example, let Mn be the partial sums of a se-
quence of i.i.d. random variable that take the values ±1, each with
probability 1

2 . If N = min{i : Mi = 1}, we will see in Remark
21.30 later on that N <∞ a.s., but EMN = 1 6= 0 = EM0.

The same proof as that in Theorem 21.24 gives the following
corollary.

Corollary 21.25 If N is bounded by K and Mn is a submartin-
gale, then EMN ≤ EMK .

The first interesting consequence of the optional stopping the-
orems is Doob’s inequality. If Mn is a martingale, denote M∗n =
maxi≤n |Mi|.

Theorem 21.26 If Mn is a martingale or a positive submartin-
gale,

P(M∗n ≥ a) ≤ E |Mn|/a.
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Proof. Let N = min{j : |Mj | ≥ a} ∧ n. Since g(x) = x is convex,
|Mn| is a submartingale. If A = (M∗n ≥ a), then by the optional
stopping theorem,

E |Mn| ≥ E |MN | ≥ E [ |MN |;A] ≥ aP(A).

Dividing both sides by a gives the desired inequality.

Note that if |Mn| is bounded by a real number K, then

|Mn−1| ≤ E [ |Mn| | Fn−1] ≤ K,

and by induction |Mj | ≤ K for each j. Hence ‖M∗n‖∞ ≤ ‖Mn‖∞.
By the Marcinkiewicz interpolation theorem (Theorem 24.1, which
we will prove in Chapter 24) and Theorem 21.26, we see that for
each p ∈ (1,∞) there exists a constant cp such that

‖M∗n‖p ≤ cp‖Mn‖p. (21.14)

This can also be proved by a variation of the proof of Theorem
21.26. The inequalities (21.14) are also referred to as Doob’s in-
equalities.

The martingale convergence theorem is another important con-
sequence of optional stopping. The main step is the upcrossing
lemma. The number of upcrossings of an interval [a, b] is the num-
ber of times a sequence of random variables crosses from below a
to above b.

To be more exact, let

S1 = min{k : Xk ≤ a}, T1 = min{k > S1 : Xk ≥ b},

and

Si+1 = min{k > Ti : Xk ≤ a}, Ti+1 = min{k > Si+1 : Xk ≥ b}.

The number of upcrossings Un before time n is

Un = max{j : Tj ≤ n}.

Lemma 21.27 (Upcrossing lemma) If Xk is a submartingale,

EUn ≤
E [(Xn − a)+]

b− a
.
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Proof. The number of upcrossings of [a, b] by Xk is the same as
the number of upcrossings of [0, b−a] by Yk = (Xk−a)+. Moreover
Yk is still a submartingale. If we obtain the inequality for the the
number of upcrossings of the interval [0, b − a] by the process Yk,
we will have the desired inequality for upcrossings of X.

Thus we may assume a = 0. Fix n and define Yn+1 = Yn. This
will still be a submartingale. Define the Si, Ti as above, and let
S′i = Si ∧ (n+ 1), T ′i = Ti ∧ (n+ 1). Since Ti+1 > Si+1 > Ti, then
T ′n+1 = n+ 1.

We write

EYn+1 = EYS′1 +

n+1∑
i=0

E [YT ′i − YS′i ] +

n+1∑
i=0

E [YS′i+1
− YT ′i ].

All the summands in the third term on the right are non-negative
since Yk is a submartingale. For the jth upcrossing, YT ′j − YS′j ≥
b−a, while YT ′j−YS′j is always greater than or equal to 0. Therefore

∞∑
i=0

(YT ′i − YS′i) ≥ (b− a)Un,

and then
EUn ≤ EYn+1/(b− a) (21.15)

as desired.

This leads to the martingale convergence theorem.

Theorem 21.28 If Xn is a submartingale such that supn EX+
n <

∞, then Xn converges a.s. as n→∞.

Proof. Let U(a, b) = limn→∞ Un. For each a, b rational, by the
monotone convergence theorem,

EU(a, b) ≤ sup
n

E (Xn − a)+/(b− a) <∞.

Thus U(a, b) <∞ a.s. If Na,b is the set of ω such that U(a, b) =∞,
then P(Na,b) = 0. Let N = ∪a,b∈Q,a<bNa,b. If ω /∈ N , then the
sequence Xn(ω) cannot have lim supXn(ω) > lim inf Xn(ω); if this
held, we could find rationals a and b such that lim inf Xn(ω) < a <
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b < lim supXn(ω), and then the number of upcrossings of [a, b]
would be infinite. Therefore Xn converges a.s., although we still
have to rule out the possibility of the limit being infinite. Since Xn

is a submartingale, EXn ≥ EX0, and thus

E |Xn| = EX+
n + EX−n = 2EX+

n − EXn ≤ 2EX+
n − EX0.

By Fatou’s lemma, E limn |Xn| ≤ supn E |Xn| < ∞, or Xn con-
verges a.s. to a finite limit.

We show how one can use martingales to find certain hitting
probabilities. If one is gambling and wins $1 with probability 1/2
and loses $1 with probability 1/2 on each play, what are the chances
that one will reach $1,000 before going broke if one starts with $10?

Proposition 21.29 Suppose the Y1, Y2, . . . are i.i.d. with

P(Y1 = 1) = 1/2, P(Y1 = −1) = 1/2,

and Sn =
∑n
i=1 Yi. Suppose a and b are positive integers. Let

N−a = min{k : Sk = −a}, Nb = min{k : Sk = b},

and N = N−a ∧Nb. Then

P(N−a < Nb) =
b

a+ b
, P(Nb < N−a) =

a

a+ b
.

In addition, EN = ab.

Proof. S2
n − n is a martingale, so

ES2
n∧N = E (n ∧N)

by the optional stopping theorem. Let n → ∞. The right hand
side converges to EN by the monotone convergence theorem. Since
Sn∧N is bounded in absolute value by a + b, the left hand side
converges by the dominated convergence theorem to ES2

N , which
is finite. It follows that EN is finite, hence N is finite almost surely.

Sn is a martingale, so ESn∧N = ES0 = 0. By the domi-
nated convergence theorem and the fact that N <∞ a.s., we have
Sn∧N → SN , and so ESN = 0, or

−aP(SN = −a) + bP(SN = b) = 0.
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We also have

P(SN = −a) + P(SN = b) = 1.

Solving these two equations for P(SN = −a) and P(SN = b) yields
our first result. Since

EN = ES2
N = a2P(SN = −a) + b2P(SN = b),

substituting gives the second result.

Remark 21.30 Based on this proposition, if we let a → ∞, we
see that P(Nb <∞) = 1 and ENb =∞.

21.7 Weak convergence

We will see in Section 21.9 that if the Xi are i.i.d. random variables
that are mean zero and have variance one and Sn =

∑n
i=1Xi, then

Sn/
√
n converges in the sense that

P(Sn/
√
n ∈ [a, b])→ P(Z ∈ [a, b]),

where Z is a standard normal random variable. We want to set up
the framework for this type of convergence.

We say distribution functions Fn converges weakly to a distribu-
tion function F if Fn(x)→ F (x) for all x at which F is continuous.
We say Xn converges weakly to X if FXn converges weakly to FX .
We sometimes say Xn converges in distribution or converges in law
to X. Probabilities µn on R with the Borel σ-field converge weakly
if their corresponding distribution functions converges, that is, if
Fµn(x) = µn(−∞, x] converges weakly. If x is a point at which F
is continuous, then x is called a continuity point of F . A warning:
weak convergence in probability is not the same as weak conver-
gence in functional analysis; see Exercise 21.28.

An example that illustrates why we restrict the convergence
to continuity points of F is the following. Let Xn = 1/n with
probability one, and X = 0 with probability one. Then FXn(x) is
0 if x < 1/n and 1 otherwise. FXn(x) converges to FX(x) for all x
except x = 0.
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Proposition 21.31 The random variables Xn converge weakly to
X if and only if E g(Xn)→ E g(X) for all g bounded and continu-
ous.

The idea that E g(Xn) converges to E g(X) for all g bounded
and continuous makes sense for any metric space and is used as
a definition of weak convergence for Xn taking values in general
metric spaces.

Proof. First suppose E g(Xn) converges to E g(X) for all bounded
and continuous g. Let x be a point where FX is continuous, let
ε > 0, and choose δ such that |F (y) − F (x)| < ε if |y − x| < δ.
Choose g continuous such that g is one on (−∞, x], takes values
between 0 and 1, and is 0 on [x+ δ,∞). Then

lim sup
n→∞

FXn(x) ≤ lim sup
n→∞

E g(Xn)

= E g(X) ≤ FX(x+ δ)

≤ F (x) + ε.

Similarly, if h is a continuous function taking values between 0
and 1 that is 1 on (−∞, x− δ] and 0 on [x,∞),

lim inf
n→∞

FXn(x) ≥ lim inf
n→∞

Eh(Xn) = Eh(X) ≥ FX(x−δ) ≥ F (x)−ε.

Since ε is arbitrary, FXn(x)→ FX(x).

Now suppose Xn converges weakly to X. If a and b are points
at which F and also each of the FXn are continuous, then

E 1(a,b](Xn) = P(a < Xn ≤ b) = P(Xn ≤ b)− P(Xn ≤ a)

= FXn(b)− FXn(a)→ F (b)− F (a)

= P(X ≤ b)− P(X ≤ a)

= P(a < X ≤ b) = E 1(a,b](X).

By taking linear combinations, we have E g(Xn)→ E g(X) for ev-
ery g which is a step function where the end points of the intervals
are continuity points for all the FXn and for FX . The set of points
that are not a continuity point for some FXn or for FX is countable.
Since we can approximate any continuous function uniformly on an
interval by step functions which jump only at points that are con-
tinuity points for all the Fn and for F , we have E g(Xn)→ E g(X)
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for all g such that the support of g is contained in a closed interval
whose endpoints are continuity points of FX and g is continuous
on its support.

Let ε > 0 and choose M large such that FX(M) > 1 − ε and
FX(−M) < ε and so that M , M + 1, −M , and −M − 1 are conti-
nuity points of FX and of the FXn . Let h be a bounded continuous
functions that agrees with g on [−M,M ], has support contained
in [−M − 1,M + 1], and ‖h‖∞ ≤ ‖g‖∞. By the above argument,
Eh(Xn) → Eh(X). The difference between Eh(X) and E g(X) is
bounded by

‖g‖∞P(X /∈ [−M,M ]) ≤ 2ε‖g‖∞.

Similarly, when X is replaced by Xn, the difference is bounded by

‖g‖∞P(Xn /∈ [−M,M ])→ ‖g‖∞P(X /∈ [−M,M ]).

So for n large, the difference between E g(Xn) and E g(X) is less
than

3ε‖g‖∞ + ε.

Since ε is arbitrary, E g(Xn)→ E g(X) whenever g is bounded and
continuous.

Let us examine the relationship between weak convergence and
convergence in probability.

Proposition 21.32 (1) If Xn converges to X in probability, then
Xn converges weakly to X.
(2) If Xn converges weakly to a constant, then Xn converges in
probability.
(3) If Xn converges weakly to X and Yn converges weakly to a
constant c, then Xn + Yn converges weakly to X + c and XnYn
converges weakly to cX.

Part (3) is known as Slutsky’s theorem.

Proof. To prove (1), let g be a bounded and continuous function.
If nj is any subsequence, then there exists a further subsequence
such that X(njk) converges almost surely to X. (We sometimes
write X(n) for Xn here.) Then by the dominated convergence
theorem, E g(X(njk)) → E g(X). That suffices to show E g(Xn)
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converges to E g(X). Hence by Proposition 21.31 we see that Xn

converges weakly to X.

For (2), if Xn converges weakly to c,

P(Xn − c > ε) = P(Xn > c+ ε) = 1− P(Xn ≤ c+ ε)

→ 1− P(c ≤ c+ ε) = 0.

We use the fact that if Y is identically equal to c, then c + ε is
a point of continuity for FY . Similarly P(Xn − c ≤ −ε) → 0, so
P(|Xn − c| > ε)→ 0.

We now prove the first part of (3), leaving the second part for
the reader. Let x be a point such that x− c is a continuity point of
FX . Choose ε so that x− c+ ε is again a continuity point. Then

P(Xn + Yn ≤ x) ≤ P(Xn + c ≤ x+ ε) + P(|Yn − c| > ε)

→ P(X ≤ x− c+ ε).

Thus lim supP(Xn + Yn ≤ x) ≤ P(X + c ≤ x+ ε). Since ε can be
as small as we like and x− c is a continuity point of FX , then

lim supP(Xn + Yn ≤ x) ≤ P(X + c ≤ x).

The lim inf is done similarly.

Example 21.33 We give an example where Xn converges weakly
but does not converge in probability. Let {Xn} be an i.i.d. sequence
of Bernoulli random variable with parameter 1/2. Clearly Xn con-
verges weakly to a Bernoulli random variable with parameter 1/2
since FXn is constant in n. If Xn converges in probability, then
there exists a subsequence {Xnj} that converges a.s by Proposi-
tion 10.2. But if Aj = (Xn2j = 0, Xn2j+1 = 1), the independence
of the Xn’s tells us that P(Aj) = 1/4 for each j. By the definition
of Aj , we see that the Aj are independent, so by the Borel-Cantelli
lemma, P(Aj i.o.) = 1. This contradicts the assertion that Xnj

converges a.s.

We say a sequence of distribution functions {Fn} is tight if
for each ε > 0 there exists M such that Fn(M) ≥ 1 − ε and
Fn(−M) ≤ ε for all n. A sequence of random variables is tight
if the corresponding distribution functions are tight; this is equiv-
alent to P(|Xn| ≥ M) ≤ ε. The following theorem is known as
Helly’s theorem.
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Theorem 21.34 Let Fn be a sequence of distribution functions
that is tight. There exists a subsequence nj and a distribution func-
tion F such that Fnj converges weakly to F .

If Xn is identically equal to n, then FXn → 0. However, the
constant function 0 is not a distribution function. This does not
contradict Helly’s theorem since the Xn are not tight.

Proof. Let qk be an enumeration of the rationals. Since Fn(qk) ∈
[0, 1], any subsequence has a further subsequence that converges.
Use Cantor’s diagonalization method (see Remark 21.35) so that
Fnj (qk) converges for each qk and call the limit F (qk). F is in-
creasing, and define F (x) = inf{k:qk≥x} F (qk). We see that F is
right continuous and increasing.

If x is a point of continuity of F and ε > 0, then there exist r
and s rational such that r < x < s and F (s)−ε < F (x) < F (r)+ε.
Then

lim inf
j→∞

Fnj (x) ≥ lim inf
j→∞

Fnj (r) = F (r) > F (x)− ε

and

lim sup
j→∞

Fnj (x) ≤ lim sup
j→∞

Fnj (s) = F (s) < F (x) + ε.

Since ε is arbitrary, Fnj (x)→ F (x).

Since the Fn are tight, there exists M such that Fn(−M) < ε.
Then F (−M) ≤ ε, which implies limx→−∞ F (x) = 0. Showing
limx→∞ F (x) = 1 is similar. Therefore F is in fact a distribution
function.

Remark 21.35 Cantor’s diagonalization method may be familiar
to you from the proof of the Ascoli-Arzelà theorem from under-
graduate analysis. In our context it works as follows. The se-
quence {Fn(q1)} is a sequence of real numbers bounded between 0
and 1, and so {Fn} has a subsequence, which we label as {F1,j},
j = 1, 2, . . ., such that F1,j(q1) converges as j →∞. Next the sub-
sequence {F1,j(q2)} is a sequence of real numbers bounded between
0 and 1, so there exists a further subsequence {F2,j}, j = 1, 2, . . .
such that F2,j(q2) converges. Since {F2,j} is a subsequence of
{F1,j}, then F1,j(q1) still converges. Take a further subsequence
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of {F2,j}, which we will call {F3,j}, such that F3,j(q3) converges.
Continue.

We note that Fm,j(qi) converges whenever i ≤ m. We now con-
sider the subsequence {Fm,m}. This is a subsequence of our original
sequence {Fn}. Furthermore, for each k, {Fm,m}, m = k, k+1, . . .,
is a subsequence of {Fk,j}. (The first k − 1 elements of {Fm,m}
might not be elements of {Fk,j}.) Therefore Fm,m(qk) converges.
We have thus found a subsequence of our original sequence {Fn}
that converges at each qk.

We conclude this section by giving an easily checked criterion
for tightness.

Proposition 21.36 Suppose there exists ϕ : [0,∞) → [0,∞) that
is increasing and ϕ(x) → ∞ as x → ∞. If supn Eϕ(|Xn|) < ∞,
then the Xn are tight.

Proof. Let ε > 0 and let c = supn Eϕ(|Xn|). Choose M such that
ϕ(x) ≥ c/ε if x > M . Then

P(|Xn| > M) ≤
∫
ϕ(|Xn|)
c/ε

1(|Xn|>M) dP ≤
ε

c
Eϕ(|Xn|) ≤ ε.

Thus the Xn are tight.

21.8 Characteristic functions

We define the characteristic function of a random variable X by
ϕX(u) = E eiux for u ∈ R.

Note that ϕX(u) =
∫
eiux PX(dx). Therefore if X and Y have

the same law, they have the same characteristic function. Also,
if the law of X has a density, that is, PX(dx) = fX(x) dx, then
ϕX(u) =

∫
eiuxfX(x) dx, so in this case the characteristic function

is the same as the Fourier transform of fX .

Proposition 21.37 ϕ(0) = 1, |ϕ(u)| ≤ 1, ϕ(−u) = ϕ(u), and ϕ
is uniformly continuous.
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Proof. Since |eiux| ≤ 1, everything follows immediately from the
definitions except the uniform continuity. For that we write

|ϕ(u+ h)− ϕ(u)| = |E ei(u+h)X − E eiuX |
≤ E |eiuX(eihX − 1)| = E |eihX − 1|.

Observe that |eihX − 1| tends to 0 almost surely as h → 0, so the
right hand side tends to 0 by the dominated convergence theorem.
Note that the right hand side is independent of u.

The definitions also imply

ϕaX(u) = ϕX(au)

and

ϕX+b(u) = eiubϕX(u).

Proposition 21.38 If X and Y are independent, then

ϕX+Y (u) = ϕX(u)ϕY (u).

Proof. We have

E eiu(X+Y ) = E [eiuXeiuY ] = (E eiuX)(E eiuY )

by the multiplication theorem.

Let us look at some examples of characteristic functions.

(1) Bernoulli : By direct computation, this is peiu + (1 − p) =
1− p(1− eiu).

(2) Poisson: Here we have

E eiuX =

∞∑
k=0

eiuke−λ
λk

k!

= e−λ
∑ (λeiu)k

k!
= e−λeλe

iu

= eλ(eiu−1).
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(3) Binomial :

E eiuX =

n∑
k=0

eiuk
(
n
k

)
pk(1− p)n−k

=

n∑
k=0

(
n
k

)
(peiu)k(1− p)n−k = (peiu + 1− p)n

by the binomial theorem.

(4) Exponential :∫ ∞
0

λeiuxe−λx dx = λ

∫ ∞
0

e(iu−λ)xdx =
λ

λ− iu
.

(5) Standard normal : We evaluated the Fourier transform of
1√
2π
e−x

2/2 in Proposition 16.5, and obtained

ϕ(u) =
1√
2π

∫ ∞
−∞

eiuxe−x
2/2 dx = e−u

2/2.

We proceed to the inversion formula, which gives a formula for
the distribution function in terms of the characteristic function.

Theorem 21.39 Let µ be a probability measure and let ϕ(u) =∫
eiuxµ(dx). If a < b, then

lim
T→∞

1

2π

∫ T

−T

e−iua − e−iub

iu
ϕ(u) du (21.16)

= µ(a, b) + 1
2µ({a}) + 1

2µ({b}).

If µ is point mass at 0, so ϕ(u) = 1, then the integrand in this
case is 2 sinu/u, which is not integrable. This shows that taking a
limit cannot be avoided.

Proof. By the Fubini theorem,∫ T

−T

e−iua − e−iub

iu
ϕ(u) du =

∫ T

−T

∫
e−iua − e−iub

iu
eiux µ(dx) du

=

∫ ∫ T

−T

e−iua − e−iub

iu
eiux duµ(dx).
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To justify this, we bound the integrand by b − a, using the mean
value theorem.

Expanding e−iub and e−iua in terms of sines and cosines using
Euler’s formula, that is, eiθ = cos θ+ i sin θ, and using the fact that
cosine is an even function and sine an odd one, we are left with∫

2
[ ∫ T

0

sin(u(x− a))

u
du−

∫ T

0

sin(u(x− b))
u

du
]
µ(dx).

By Exercise 11.12 and the dominated convergence theorem, this
tends to ∫

[π sgn (x− a)− π sgn (x− b)]µ(dx),

which is equal to the right hand side of (21.16).

A corollary to the inversion formula is the uniqueness theorem.

Corollary 21.40 If ϕX(u) = ϕY (u) for all u, then PX = PY .

Proof. If a and b are points such that PX({a}) = 0, PX({b}) =
0, and the same for PY , then the inversion formula shows that
PX((a, b]) = PY ((a, b]), which is the same as saying

FX(b)− FX(a) = FY (b)− FY (a).

Taking a limit as a→ −∞ but avoiding points that are not conti-
nuity points of both FX and FY (there are only countably many of
these), we have FX(b) = FY (b) if b is a continuity point of both FX
and FY . Since FX and FY are right continuous, given x, we can
take b decreasing to x but avoiding points that are not continuity
points of both FX and FY , and we obtain FX(x) = FY (x) for all
x. Since PX is the Lebesgue-Stieltjes measure associated with FX
and this is uniquely determined by FX , we conclude PX = PY .

A random variable X is a normal random variable with mean
µ and variance σ2 if it has the density

(2πσ2)−1/2eiµx−x
2/2σ2

.

A normal random variable is also known as a Gaussian random
variable. Some calculus shows if X is a normal random variable



21.8. CHARACTERISTIC FUNCTIONS 281

with mean µ and variance σ2, then (X−µ)/σ is a standard normal
random variable, and conversely, if Z is a standard normal random
variable, then µ + σZ is a normal random variable with mean µ
and variance σ2. If X is a normal random variable with mean µ
and variance σ2, then X has characteristic function

E eiuX = eiuµE ei(uσ)Z = eiuµ−σ
2u2/2,

where Z is a standard normal random variable.

The following proposition can be proved directly, but the proof
using characteristic functions is much easier.

Proposition 21.41 (1) If X and Y are independent, X is a nor-
mal random variable with mean a and variance b2, and Y is a
normal random variable with mean c and variance d2, then X + Y
is normal random variable with mean a+ c and variance b2 + d2.
(2) If X and Y are independent, X is a Poisson random vari-
able with parameter λ1, and Y is a Poisson random variable with
parameter λ2, then X + Y is a Poisson random variable with pa-
rameter λ1 + λ2.
(3) If X and Y are independent, X is a binomial random variable
with parameters m and p, and Y is a binomial random variable with
parameters n and p, then X+Y is a binomial random variable with
parameters m+ n and p.

Proof. For (1), using Proposition 21.38,

ϕX+Y (u) = ϕX(u)ϕY (u) = eiau−b
2u2/2eicu−c

2u2/2

= ei(a+c)u−(b2+d2)u2/2.

Now use the uniqueness theorem.

Parts (2) and (3) are proved similarly.

Remark 21.42 Since a Bernoulli random variable with parameter
p is the same as a binomial random variable with parameters 1
and p, then Proposition 21.41 and an induction argument shows
that the sum of n independent Bernoulli random variables with
parameter p is a binomial random variable with parameters n and
p.
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We will need the following result in our proof of the central limit
theorem.

Proposition 21.43 If E |X|k <∞ for an integer k, then ϕX has
a continuous derivative of order k and

ϕ(k)(u) =

∫
(ix)keiux PX(dx).

In particular,
ϕ(k)(0) = ikEXk. (21.17)

Proof. Write

ϕ(u+ h)− ϕ(u)

h
=

∫
ei(u+h)x − eiux

h
P(dx).

The integrand on the right is bounded by |x|. If
∫
|x|PX(dx) <

∞, we can use the dominated convergence theorem to obtain the
desired formula for ϕ′(u). As in the proof of Proposition 21.37, we
see ϕ′(u) is continuous. We do the case of general k by induction.
Evaluating ϕ(k) at 0 gives (21.17).

We will use the following theorem in the proof of the central
limit theorem.

Theorem 21.44 Suppose {Xn} is a tight sequence of random vari-
ables, X is another random variable, and ϕXn(u)→ ϕX(u) for each
u ∈ R as n→∞. Then Xn converges weakly to X.

Proof. If Xn does not converge weakly to X, there is a con-
tinuity point x for FX such that FXn(x) does not converge to
FX(x). Helly’s theorem, Theorem 21.34, shows there is subse-
quence {Xnj} which converges weakly, say to the random vari-
able Y . By Proposition 21.31, ϕXnj (u) = E exp(iuXnj ) converges

to E exp(iuY ) = ϕY (u) for each u. Therefore ϕY (u) = ϕX(u)
for all u, and by the uniqueness theorem, FY = FX . But then
FXnj (x)→ FX(x), a contradiction.

An n-dimensional vector X = (X1, . . . , Xn) is a random vec-
tor if X : Ω → Rn is a measurable map. Here this means that
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X−1(A) ∈ F whenever A ∈ Bn, where Bn is the Borel σ-field of
Rn. The joint law or joint distribution is the probability PX on
(Rn,Bn) given by PX(A) = P(X ∈ A) for A ∈ Bn. As in Proposi-
tion 21.31, we have

E g(X) =

∫
Rn
g(x)PX(dx)

whenever g is measurable and either non-negative or bounded.

If X is a random vector, ϕX(u) = E eiu·X for u ∈ Rn is called
the joint characteristic function of X, where x ·y denotes the usual
inner product in Rn.

If Xk is an n-dimensional random vector for each k and each
coordinate Xk

i of Xk converges to Yi in probability, then the dom-
inated convergence theorem shows that

ϕXk(u) = E eiu·X
k

→ E eiu·Y = ϕY (u) (21.18)

for each u, where Y = (Y1, . . . , Yn).

Proposition 21.45 Suppose that X = (X1, . . . , Xn) is an n-dim-
ensional random vector. Then

ϕX(u) =

n∏
j=1

ϕXj (uj), u = (u1, . . . , un), (21.19)

for all u ∈ Rn if and only if the Xi are independent.

Proof. If the Xi are independent, then we see that the characteris-
tic function of X factors into the product of characteristic functions
by using the multiplication theorem and writing

ϕX(u) = E eiu·X = E ei
∑n
j=1 ujXj = E

[ n∏
j=1

eiujXj
]

(21.20)

=

n∏
j=1

E eiujXj =

n∏
j=1

ϕXj (uj).

Suppose (21.19) holds for all u. Let Y1, . . . , Yn be independent
random variables such that Yi has the same law as Xi for each i; see
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Exercise 21.39 for how to construct such Yi. Let Y = (Y1, . . . , Yn).
Then using the independence as in (21.20) we have

ϕY (u) =

n∏
j=1

ϕYj (uj).

Since Yj has the same law asXj , then this is equal to
∏n
j=1 ϕXj (uj).

By (21.19) this in turn is equal to ϕX(u). Therefore ϕY (u) =
ϕX(u) for all u.

If f is a C∞ function with compact support, then f̂ , the Fourier
transform of f , will be integrable by Exercise 16.5. By the Fubini
theorem,

E f(X) = (2π)−n
∫
Rn
f̂(u)E e−iu·X du

= (2π)−n
∫
Rn
f̂(u)ϕX(−u) du

= (2π)−n
∫
Rn
f̂(u)ϕY (−u) du

= (2π)−n
∫
Rn
f̂(u)E e−iu·Y du = E f(Y ).

By a limit argument, P(X ∈ A) = E 1A(X) = E 1A(Y ) = P(Y ∈ A)
when A is a rectangle of the form (a1, b1) × · · · × (an, bn). The
collection of sets A for which P(X ∈ A) = P(Y ∈ A) is easily seen
to be a σ-field, and since it contains rectangles of the above form,
it contains all Borel subsets of Rn. Thus X and Y have the same
law. In particular, the Xi are independent because the Yi are.

A collection {X1, . . . , Xn} of random variables is called jointly
normal or jointly Gaussian if there exist i.i.d. standard normal
random variables Z1, . . . , Zm and real numbers bij and ai such that

Xi =

m∑
j=1

bijZj + ai, i = 1, 2, . . . , n.

Given two random variables X and Y , the covariance of X and
Y is defined by

Cov (X,Y ) = E [(X − EX)(Y − EY )].
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In the case of a random vector X, we define the covariance matrix
Σ by letting Σ be the matrix whose (i, j) entry is Cov (Xi, Xj). In
the case of jointly normal random variables,

Cov (Xi, Xj) = E
[ m∑
k=1

m∑
`=1

bikbj`ZkZ`

]
=

m∑
k=1

bikbjk,

using the fact that EZkZ` is zero unless k = `, in which case it is
one. If we let B be the matrix whose (i, j) entry is bij and use CT

to denote the transpose of a matrix C, we obtain

Σ = BBT .

Let us compute the characteristic function of a jointly normal
random vector when all the ai are zero. If Z = (Z1, . . . , Zm) are
i.i.d. standard normal random variables, then

ϕZ(u) =

m∏
j=1

ϕZj (uj) =

m∏
j=1

e−u
2
j/2 = e−|u|

2/2,

where u = (u1, . . . , um) and |u| = (
∑m
j=1 u

2
j )

1/2. When all the ai
are 0, we then have

ϕX(u) = E eiu·BZ = E ei
∑n
j=1

∑m
k=1 ujbjkZk (21.21)

= E ei(uB)·Z = ϕZ(uB) = e−uBB
TuT /2.

21.9 Central limit theorem

The simplest case of the central limit theorem (CLT ) is the case
when the Xi are i.i.d. random variables with mean zero and vari-
ance one, and then the central limit theorem says that Sn/

√
n

converges weakly to a standard normal. We prove this case. The
more complicated cases consider when the random variables are no
longer identically distributed or independent.

We need the fact that if cn are complex numbers converging
to c, then (1 + (cn/n))n → ec. We leave the proof of this to the
reader, with the warning that any proof using logarithms needs to
be done with some care, since log z is a multi-valued function when
z is complex.
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We also use the fact that if f : R → R is twice continuously
differentiable, then

f(x)− f(a)− f ′(a)(x− a)− f ′′(a)(x− a)2/2

(x− a)2
→ 0 (21.22)

as x → a. This follows, for example, by applying l’Hôpital’s rule
twice.

Theorem 21.46 Suppose the Xi are i.i.d. random variables with
mean zero and variance one and Sn =

∑n
i=1Xi. Then Sn/

√
n

converges weakly to a standard normal random variable.

Proof. Since X1 has finite second moment, then ϕX1 has a con-
tinuous second derivative by Proposition 21.43. By (21.22),

ϕX1
(u) = ϕX1

(0) + ϕ′X1
(0)u+ ϕ′′X1

(0)u2/2 +R(u),

where |R(u)|/u2 → 0 as |u| → 0. Hence using (21.22)

ϕX1
(u) = 1− u2/2 +R(u).

Then

ϕSn/
√
n(u) = E eiuSn/

√
n = ϕSn(u/

√
n) = (ϕX1

(u/
√
n))n

=
[
1− u2

2n
+R(u/

√
n)
]n
,

where we used (21.17). Since u/
√
n converges to zero as n → ∞,

we have
ϕSn/

√
n(u)→ e−u

2/2.

Now apply Theorem 21.44.

If the Xi are i.i.d., but don’t necessarily have mean 0 with
variance 1, we have

Sn − ESn√
VarX1

√
n

converges weakly to a standard normal random variable. This
follows from Theorem 21.46 by looking at the random variables
(Xi − EX1)/

√
VarX1.

We give another example of the use of characteristic functions
to obtain a limit theorem.
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Proposition 21.47 Suppose that {Xn} is a sequence of indepen-
dent random variables such that Xn is a binomial random variable
with parameters n and pn. If npn → λ, then Xn converges weakly
to a Poisson random variable with parameter λ.

Proof. We write

ϕXn(u) =
(

1 + pn(eiu − 1)
)n

=
(

1 +
npn
n

(eiu − 1)
)n
→ eλ(eiu−1).

Now apply Theorem 21.44.

21.10 Kolmogorov extension theorem

The goal of this section is to show how to construct probability mea-
sures on RN = R×R×· · · . We may view RN as the set of sequences
(x1, x2, . . .) of elements of R. Given an element x = (x1, x2, . . .) of
RN, we define τn(x) = (x1, . . . , xn) ∈ Rn. A cylindrical set in RN

is a set of the form A × RN, where A is a Borel subset of Rn for
some n ≥ 1. Another way of phrasing this is to say a cylindrical
set is one of the form τ−1

n (A), where n ≥ 1 and A is a Borel sub-
set of Rn. We furnish Rn with the product topology; see Section
20.1. Recall that this means we take the smallest topology that
contains all cylindrical sets. We use the σ-field on RN generated
by the cylindrical sets. Thus the σ-field we use is the same as the
Borel σ-field on RN. We use Bn to denote the Borel σ-field on Rn.

We suppose that for each n we have a probability measure µn
defined on (Rn,Bn). The µn are consistent if µn+1(A × R) =
µn(A) whenever A ∈ Bn. The Kolmogorov extension theorem is
the following.

Theorem 21.48 Suppose for each n we have a probability measure
µn on (Rn,Bn). Suppose the µn are consistent. Then there exists
a probability measure µ on RN such that µ(A × RN) = µn(A) for
all A ∈ Bn.

Proof. Define µ on cylindrical sets by µ(A × RN) = µm(A) if
A ∈ Bm. By the consistency assumption, µ is well defined. If
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A0 is the collection of cylindrical sets, it is easy to see that A0 is
an algebra of sets and that µ is finitely additive on A0. If we can
show that µ is countably additive on A0, then by the Carathéodory
extension theorem, Theorem 4.16, we can extend µ to the σ-field
generated by the cylindrical sets. By Exercise 3.2 it suffices to show
that whenever An ↓ ∅ with An ∈ A0, then µ(An)→ 0.

Suppose that An are cylindrical sets decreasing to ∅ but µ(An)
does not tend to 0; by taking a subsequence we may assume without
loss of generality that there exists ε > 0 such that µ(An) ≥ ε for
all n. We will obtain a contradiction.

It is possible that An might depend on fewer or more than n
coordinates. It will be more convenient if we arrange things so that
An depends on exactly n coordinates. We want An = τ−1

n (Ãn) for

some Ãn a Borel subset of Rn. Suppose An is of the form

An = τ−1
jn

(Dn)

for some Dn ⊂ Rjn ; in other words, An depends on jn coordi-
nates. By letting A0 = RN and replacing our original sequence by
A0, . . . , A0, A1, . . . , A1, A2, . . . , A2, . . ., where we repeat each Ai
sufficiently many times, we may without loss of generality suppose
that jn ≤ n. On the other hand, if jn < n and An = τ−1

jn
(Dn), we

may write An = τ−1
n (D̂n) with D̂n = Dn × Rn−jn . Thus we may

without loss of generality suppose that An depends on exactly n
coordinates.

We set Ãn = τn(An). For each n, choose B̃n ⊂ Ãn so that

B̃n is compact and µ(Ãn − B̃n) ≤ ε/2n+1. To do this, first we
choose M such that µn(([−M,M ]n)c) < ε/2n+2, and then we use

Proposition 17.6 to find a compact subset B̃n of Ãn ∩ [−M,M ]n

such that µ(Ãn ∩ [−M,M ]n − B̃n) ≤ ε/2n+2. Let Bn = τ−1
n (B̃n)

and let Cn = B1 ∩ . . . ∩ Bn. Hence Cn ⊂ Bn ⊂ An, and Cn ↓ ∅,
but

µ(Cn) ≥ µ(An)−
n∑
i=1

µ(Ai −Bi) ≥ ε/2,

and C̃n = τn(Cn), the projection of Cn onto Rn, is compact.

We will find x = (x1, . . . , xn, . . . ) ∈ ∩nCn and obtain our con-
tradiction. For each n choose a point y(n) ∈ Cn. The first co-
ordinates of {y(n)}, namely, {y1(n)}, form a sequence contained

in C̃1, which is compact, hence there is a convergent subsequence
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{y1(nk)}. Let x1 be the limit point. The first and second coordi-

nates of {y(nk)} form a sequence contained in the compact set C̃2,
so a further subsequence {(y1(nkj ), y2(nkj ))} converges to a point

in C̃2. Since {nkj} is is a subsequence of {nk}, the first coordinate
of the limit is x1. Therefore the limit point of {(y1(nkj ), y2(nkj ))}
is of the form (x1, x2), and this point is in C̃2. We continue this
procedure to obtain x = (x1, x2, . . . , xn, . . .). By our construction,

(x1, . . . , xn) ∈ C̃n for each n, hence x ∈ Cn for each n, or x ∈ ∩nCn,
a contradiction.

A typical application of this theorem is to construct a count-
able sequence of independent random variables. We construct
X1, . . . , Xn to be an independent collection of n independent ran-
dom variables using Exercise 21.39. Let µn be the joint law of
(X1, . . . , Xn); it is easy to check that the µn form a consistent
family. We use Theorem 21.48 to obtain a probability measure µ
on RN. To get random variables out of this, we let Xi(ω) = ωi if
ω = (ω1, ω2, . . .).

21.11 Brownian motion

In this section we construct Brownian motion and define Wiener
measure.

Let (Ω,F ,P) be a probability space and let B be the Borel σ-
field on [0,∞). A stochastic process, denoted X(t, ω) or Xt(ω) or
just Xt, is a map from [0,∞) × Ω to R that is measurable with
respect to the product σ-field of B and F .

Definition 21.49 A stochastic process Xt is a one-dimensional
Brownian motion started at 0 if
(1) X0 = 0 a.s.;
(2) for all s ≤ t, Xt −Xs is a mean zero normal random variable
with variance t− s;
(3) the random variables Xri−Xri−1

, i = 1, . . . , n, are independent
whenever 0 ≤ r0 ≤ r1 ≤ · · · ≤ rn;
(4) there exists a null set N such that if ω /∈ N , then the map
t→ Xt(ω) is continuous.

Let us show that there exists a Brownian motion. We give the
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Haar function construction, which is one of the quickest ways to
the construction of Brownian motion.

For i = 1, 2, . . ., j = 1, 2, . . . , 2i−1, let ϕij be the function on
[0, 1] defined by

ϕij =


2(i−1)/2, x ∈

[
2j−2

2i , 2j−1
2i

)
;

−2(i−1)/2, x ∈
[

2j−1
2i , 2j

2i

)
;

0, otherwise.

Let ϕ00 be the function that is identically 1. The ϕij are called
the Haar functions. If 〈·, ·〉 denotes the inner product in L2([0, 1]),

that is, 〈f, g〉 =
∫ 1

0
f(x)g(x)dx, note the ϕij are orthogonal and

have norm 1. It is also easy to see that they form a complete
orthonormal system for L2: ϕ00 ≡ 1; 1[0,1/2) and 1[1/2,1) are both
linear combinations of ϕ00 and ϕ11; 1[0,1/4) and 1[1/4,1/2) are both
linear combinations of 1[0,1/2), ϕ21, and ϕ22. Continuing in this
way, we see that 1[k/2n,(k+1)/2n) is a linear combination of the ϕij
for each n and each k ≤ 2n. Since any continuous function can
be uniformly approximated by step functions whose jumps are at
the dyadic rationals, linear combinations of the Haar functions are
dense in the set of continuous functions, which in turn is dense in
L2([0, 1]).

Let ψij(t) =
∫ t

0
ϕij(r) dr. Let Yij be a sequence of independent

identically distributed standard normal random variables. Set

V0(t) = Y00ψ00(t), Vi(t) =

2i−1∑
j=1

Yijψij(t), i ≥ 1.

We need one more preliminary. If Z is a standard normal ran-
dom variable, then Z has density (2π)−1/2e−x

2/2. Since∫
x4e−x

2/2 dx <∞,

then EZ4 <∞. We then have

P(|Z| > λ) = P(Z4 > λ4) ≤ EZ4

λ4
. (21.23)

Theorem 21.50
∑∞
i=0 Vi(t) converges uniformly in t a.s. If we

call the sum Xt, then Xt is a Brownian motion started at 0.
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Proof. Step 1. We first prove convergence of the series. Let

Ai = (|Vi(t)| > i−2 for some t ∈ [0, 1]).

We will show
∑∞
i=1 P(Ai) <∞. Then by the Borel–Cantelli lemma,

except for ω in a null set, there exists i0(ω) such that if i ≥ i0(ω), we

have supt |Vi(t)(ω)| ≤ i−2. This will show
∑I
i=0 Vi(t)(ω) converges

as I →∞, uniformly over t ∈ [0, 1]. Moreover, since each ψij(t) is
continuous in t, then so is each Vi(t)(ω), and we thus deduce that
Xt(ω) is continuous in t.

Now for i ≥ 1 and j1 6= j2, for each t at least one of ψij1(t) and
ψij2(t) is zero. Also, the maximum value of ψij is 2−(i+1)/2. Hence

P(|Vi(t)| > i−2 for some t ∈ [0, 1])

≤ P(|Yij |ψij(t) > i−2 for some t ∈ [0, 1], some 0 ≤ j ≤ 2i−1)

≤ P(|Yij |2−(i+1)/2 > i−2 for some 0 ≤ j ≤ 2i−1)

≤
2i−1∑
j=0

P(|Yij |2−(i+1)/2 > i−2)

= (2i−1 + 1)P(|Z| > 2(i+1)/2i−2)

where Z is a standard normal random variable. Using (21.23), we
conclude P(Ai) is summable in i.

Step 2. Next we show that the limit, Xt, satisfies the definition of
Brownian motion. It is obvious that each Xt has mean zero and
that X0 = 0. In this step we show that Xt − Xs is a mean zero
normal random variable with variance t− s.

If f ∈ L2([0, 1]), Parseval’s identity says that

〈f, f〉 =
∑
i,j

〈ϕij , f〉2.

Let

W k
t =

k∑
i=0

Vi(t).

Fix s < t and set d2
k = Var (W k

t −W k
s ). We will use the notation∑k

i=0

∑
j to mean that the sum over j is from 1 to 2i−1 when i > 0

and the sum over j is from 0 to 0, i.e., a single summand with
j = 0, when i = 0. Since

ψij(t)− ψij(s) = 〈ϕij , 1[s,t]〉,
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then

W k
t −W k

s =

k∑
i=0

∑
j

Yij〈ϕij , 1[s,t]〉.

Since the Yij are independent with mean zero and variance one,
E [YijY`m] = 1 if i = ` and j = m and otherwise is equal to 0.
Thus

d2
k = E (W k

t −W k
s )2 (21.24)

= E
[ k∑
i=0

∑
j

Yij〈ϕij , 1[s,t]〉
k∑
`=0

∑
m

Y`m〈ϕ`m, 1[s,t]〉
]

=

k∑
i=0

∑
j

〈ϕij , 1[s,t]〉
2 →

∞∑
i=0

∑
j

〈ϕij , 1[s,t]〉
2

= 〈1[s,t], 1[s,t]〉 = t− s.

Since W k
t −W k

s is a finite linear combination of standard normal
random variables, it is normal random variable with mean zero and
variance d2

k, and therefore its characteristic function is e−d
2
ku

2/2.
Since W k

t −W k
s → Xt −Xs a.s. and d2

k → t − s, then by (21.18),

the characteristic function of Xt − Xs is e−(t−s)u2/2. This proves
that Xt − Xs is a normal random variable with mean zero and
variance t− s.

Step 3. We prove that if 0 ≤ r0 < r1 < · · · < rn, then the random
variables Xr1 −Xr0 , . . . , Xrn −Xrn−1 are independent.

For f, g ∈ L2([0, 1]) we have f =
∑
i,j〈ϕij , f〉ϕij and g =∑

i,j 〈ϕij , g〉ϕij , hence

〈f, g〉 =
∑
i,j

〈ϕij , f〉〈ϕij , g〉.

Therefore for 1 ≤ I, J ≤ n,

E [XrI−XrI−1
)(XrJ −XrJ−1

)]

= E
[(∑

i,j

Yij〈ϕij , 1[rI−1,rI ]〉
)(∑

k,`

Yk`〈ϕk`, 1[rJ−1,rJ ]〉
)]

=
∑
i,j

〈ϕij , 1[rI−1,rI ]〉〈ϕij , 1[rJ−1,rJ ]〉

= 〈1[rI−1,rI ], 1[rJ−1,rJ ]〉.
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This last inner product is 0, and the covariance of XrI −XrI−1
and

XrJ −XrJ−1
is zero, unless I = J , in which case the covariance is

the same as the variance and is equal to rI − rI−1.

Let Uk = (W k
r1 −W

k
r0 , . . . ,W

k
rn −W

k
rn−1

). This is a collection
of jointly normal random variables, each with mean zero. Its joint
characteristic function will be

ϕUk(u) = e−u
TΣku/2,

where Σk is the covariance matrix for Uk. As in Step 2, we see
that Σk → Σ, where Σ is a diagonal matrix whose (j, j) entry is
rj − rj−1. Since Uk converges almost surely to

U = (Xr1 −Xr0 , . . . , Xrn −Xrn−1),

then the joint characteristic function of U is

ϕU (u) = e−u
TΣu/2.

Since ϕU (u) factors as
∏n
j=1 ϕXrj−Xrj−1

(uj), then the components

of U are independent by Proposition 21.45.

The stochastic process Xt induces a measure on C([0, 1]). We
say A ⊂ C([0, 1]) is a cylindrical set if

A = {f ∈ C([0, 1]) : (f(r1), . . . , f(rn)) ∈ B}

for some n ≥ 1, r1 ≤ · · · ≤ rn, and B a Borel subset of Rn. For
A a cylindrical set, define µ(A) = P({X·(ω) ∈ A}, where X is a
Brownian motion and X·(ω) is the function t→ Xt(ω). We extend
µ to the σ-field generated by the cylindrical sets. If B is in this
σ-field, then µ(B) = P(X· ∈ B). The probability measure µ is
called Wiener measure.

We defined Brownian motion for t ∈ [0, 1]. To define Brownian
motion for t ∈ [0,∞), take a sequence {Xn

t } of independent Brow-
nian motions on [0, 1] and piece them together as follows. Define
Xt = X1

t for 0 ≤ t ≤ 1. For 1 < t ≤ 2, define Xt = X1 +X2
t−1. For

2 < t ≤ 3, let Xt = X2 +X3
t−2, and so on.

21.12 Exercises

Exercise 21.1 Show that if X has a continuous distribution func-
tion FX and Y = FX(X), then Y has a density fY (x) = 1[0,1](x).
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Exercise 21.2 Find an example of a probability space and three
events A, B, and C such that P(A∩B ∩C) = P(A)P(B)P(C), but
A,B, and C are not independent events.

Exercise 21.3 Suppose that

P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y)

for all x, y ∈ R. Prove that X and Y are independent random
variables.

Exercise 21.4 Find a sequence of events {An} such that

∞∑
n=1

P(An) =∞

but P(An i.o.) = 0.

Exercise 21.5 A random vector X = (X1, . . . , Xn) has a joint
density fX if P(X ∈ A) =

∫
A
fX(x) dx for all Borel subsets A of

Rn. Here the integral is with respect to n dimensional Lebesgue
measure.
(1) Prove that if the joint density of X factors into the product of
densities of the Xj , i.e., fX(x) =

∏n
j=1 fXj (xj), for almost every

x = (x1, . . . , xn), then the Xj are independent.
(2) Prove that if X has a joint density and the Xj are independent,
then each Xj has a density and the joint density of X factors into
the product of the densities of the Xj .

Exercise 21.6 Suppose {An} is a sequence of events, not necessar-
ily independent, such that

∑∞
n=1 P(An) =∞. Suppose in addition

that there exists a constant c such that for each N ≥ 1,

N∑
i,j=1

P(Ai ∩Aj) ≤ c
( N∑
i=1

P(Ai)
)2

.

Prove that P(An i.o.) > 0.

Exercise 21.7 Suppose X and Y are independent, E |X|p < ∞
for some p ∈ [1,∞), E |Y | <∞, and EY = 0. Prove that

E (|X + Y |p) ≥ E |X|p.
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Exercise 21.8 Suppose that Xi are independent random variables
such that VarXi/i → 0 as i → ∞. Suppose also that EXi →
a. Prove that Sn/n converges in probability to a, where Sn =∑n
i=1Xi. We do not assume that the Xi are identically distributed.

Exercise 21.9 Suppose {Xi} is a sequence of independent mean
zero random variables, not necessarily identically distributed. Sup-
pose that supi EX4

i <∞.
(1) If Sn =

∑n
i=1Xi, prove there is a constant c such that ES4

n ≤
cn2.
(2) Prove that Sn/n→ 0 a.s.

Exercise 21.10 Suppose {Xi} is an i.i.d. sequence of random vari-
ables such that Sn/n converges a.s., where Sn =

∑n
i=1Xi.

(1) Prove that Xn/n→ 0 a.s.
(2) Prove that

∑
n P(|Xn| > n) <∞.

(3) Prove that E |X1| <∞.

Exercise 21.11 Suppose {Xi} is an i.i.d. sequence of random vari-
ables with E |X1| < ∞. Prove that the sequence {Sn/n} is uni-
formly integrable; see Exercise 7.16 for the definition of uniformly
integrable. Conclude by Theorem 7.17 that ESn/n converges to
EX1.

Exercise 21.12 Suppose {Xi} is an i.i.d. sequence of random vari-
ables with E |X1| <∞ and EX1 = 0. Prove that

max1≤k≤n |Sk|
n

→ 0, a.s.

Exercise 21.13 Suppose that {Xi} is a sequence of independent
random variables with mean zero such that

∑
i VarXi <∞. Prove

that Sn converges a.s. as n→∞, where Sn =
∑n
i=1Xi.

Exercise 21.14 Let {Xi} be a sequence of random variables. The
tail σ-field is defined to be T = ∩n≥1σ(Xn, Xn+1, . . .). Let Sn =∑n
i=1Xi.

(1) Prove that the event (Sn converges) is in T .
(2) Prove that the event (Sn/n > a) is in T for each real number
a.
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Exercise 21.15 Let {Xi} be a sequence of independent random
variables and let T be the tail σ-field.
(1) Prove that if A ∈ T , then A is independent of σ(X1, . . . , Xn)
for each n.
(2) Prove that if A ∈ T , then A is independent of itself, and hence
P(A) is either 0 or 1. This is known as the Kolmogorov 0-1 law.

Exercise 21.16 Let {Xi} be an i.i.d. sequence. Prove that if
EX+

1 = ∞ and EX−1 < ∞, then Sn/n → +∞ a.s., where Sn =∑n
i=1Xi.

Exercise 21.17 Let F ⊂ G be two σ-fields. Let H be the Hilbert
space of G measurable random variables Y such that EY 2 < ∞
and let M be the subspace of H consisting of the F measurable
random variables. Prove that if Y ∈ H, then E [Y | F ] is equal to
the projection of Y onto the subspace M .

Exercise 21.18 Suppose F ⊂ G are two σ-fields and X and Y are
bounded G measurable random variables. Prove that

E [XE [Y | F ] ] = E [Y E [X | F ] ].

Exercise 21.19 Let F ⊂ G be two σ-fields and letX be a bounded
G measurable random variable. Prove that if

E [XY ] = E [XE [Y | F ] ]

for all bounded G measurable random variables Y , then X is F
measurable.

Exercise 21.20 Suppose F ⊂ G are two σ-fields and that X is
G measurable with EX2 < ∞. Set Y = E [X | F ]. Prove that if
EX2 = EY 2, then X = Y a.s.

Exercise 21.21 Suppose F1 ⊂ F2 ⊂ · · · ⊂ FN are σ-fields. Sup-
pose Ai is a sequence of random variables adapted to {Fi} such
that A1 ≤ A2 ≤ · · · and Ai+1 − Ai ≤ 1 a.s. for each i. Prove that
if E [AN −Ai | Fi] ≤ 1 a.s. for each i, then EA2

N <∞.

Exercise 21.22 Let {Xi} be an i.i.d. sequence of random variables
with P(X1 = 1) = P(X1 = −1) = 1

2 . Let Sn =
∑n
i=1Xi. The

sequence {Sn} is called a simple random walk. Let

L = max{k ≤ 9 : Sk = 1} ∧ 9.
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Prove that L is not a stopping time with respect to the family of
σ-fields Fn = σ(S1, . . . , Sn).

Exercise 21.23 Let F1 ⊂ F2 ⊂ · · · be an increasing family of
σ-fields and let F∞ = σ(∪∞n=1Fn). If N is a stopping time, define

FN = {A ∈ F∞ : A ∩ (N ≤ n) ∈ Fn for all n}.

(1) Prove that FN is a σ-field.
(2) If M is another stopping time with M ≤ N a.s., and we define
FM analogously, prove that FM ⊂ FN .
(3) If Xn is a martingale with respect to {Fn} and N is a stopping
time bounded by the real number K, prove that E [Xn | FN ] = XN .

Exercise 21.24 Let {Xi} be a sequence of bounded i.i.d. random
variables with mean 0. Let Sn =

∑n
i=1Xi.

(1) Prove that there exists a constant c1 such that Mn = eSn−c1n

is a martingale.
(2) Show there exists a constant c2 such that

P( max
1≤k≤n

Sn > λ) ≤ 2e−c2λ
2/n

for all λ > 0.

Exercise 21.25 Let {Xi} be a sequence of i.i.d. standard normal
random variables. Let Sn =

∑n
i=1Xi.

(1) Prove that for each a > 0, Mn = eaSn−a
2n/2 is a martingale.

(2) Show

P( max
1≤k≤n

Sn > λ) ≤ e−λ
2/2n

for all λ > 0.

Exercise 21.26 Let {Xn} be a submartingale. Let

An =

n∑
i=2

(Xi − E [Xi | Fi−1]).

Prove that Mn = Xn − An is a martingale. This is known as the
Doob decomposition of a submartingale.
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Exercise 21.27 Suppose Mn is a martingale. Prove that if

sup
n

EM2
n <∞,

then Mn converges a.s. and also in L2.

Exercise 21.28 Set (Ω,F ,P) equal to ([0, 1],B,m), where B is the
Borel σ-field on [0, 1] and m is Lebesgue measure. Define

Xn(ω) =


1, ω ∈

[
2k
2n ,

2k+1
2n

)
for some k ≤ 2n−1;

−1, ω ∈
[

2k+1
2n , 2k+2

2n

)
for some k ≤ 2n−1.

(1) Prove that Xn converges weakly (in the probabilistic sense) to
a non-zero random variable.
(2) Prove that Xn converges to 0 with respect to weak convergence
in L2(m), that is, E [XnY ]→ 0 for all Y ∈ L2.

Exercise 21.29 Suppose Xn is a sequence of random variables
that converges weakly to a random variable X. Prove that the
sequence {Xn} is tight.

Exercise 21.30 Suppose Xn → X weakly and Yn → 0 in proba-
bility. Prove that XnYn → 0 in probability.

Exercise 21.31 Given two probability measures P and Q on [0, 1]
with the Borel σ-field, define

d(P,Q) = inf{
∣∣∣ ∫ f dP−

∫
f dQ

∣∣∣ : f ∈ C1, ‖f‖∞ ≤ 1, ‖f ′‖∞ ≤ 1}.

Here C1 is the collection of continuously differentiable functions
and f ′ is the derivative of f .
(1) Prove that d is a metric.
(2) Prove that Pn → P weakly if and only if d(Pn,P)→ 0.
This metric makes sense only for probabilities defined on [0, 1].
There are other metrics for weak convergence that work in more
general situations.

Exercise 21.32 Suppose Fn → F weakly and every point of F is
a continuity point. Prove that Fn converges to F uniformly over
x ∈ R:

sup
x∈R
|Fn(x)− F (x)| → 0.
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Exercise 21.33 Suppose Xn → X weakly. Prove that ϕXn con-
verges uniformly to ϕX on each bounded interval.

Exercise 21.34 Suppose {Xn} is a collection of random variables
that is tight. Prove that {ϕXn} is equicontinuous on R.

Exercise 21.35 Suppose Xn → X weakly, Yn → Y weakly, and
Xn and Yn are independent for each n. Prove thatXn+Yn → X+Y
weakly.

Exercise 21.36 X is said to be a gamma random variable with
parameters λ and t if X has density

1

Γ(t)
λtxt−1e−λx 1(0,∞)(x),

where Γ(t) =
∫∞

0
yt−1e−y dy is the Gamma function.

(1) Prove that an exponential random variable with parameter λ
is also a gamma random variable with parameters 1 and λ.
(2) Prove that if X is a standard normal random variable, then X2

is a gamma random variable with parameters 1/2 and 1/2.
(3) Find the characteristic function of a gamma random variable.
(4) Prove that if X is a gamma random variable with parameters
s and λ, Y is a gamma random variable with parameters t and λ,
and X and Y are independent, then X+Y is also a gamma random
variable; determine the parameters of X + Y .

Exercise 21.37 Suppose Xn is a sequence of independent ran-
dom variables, not necessarily independent, with supn E |Xn|3 <∞
and EXn = 0 and VarXn = 1 for each n. Prove that Sn/

√
n

converges weakly to a standard normal random variable, where
Sn =

∑n
i=1Xi.

Exercise 21.38 Suppose that Xn a Poisson random variable with
parameter n for each n. Prove that (Xn−n)/

√
n converges weakly

to a standard normal random variable as n→∞.

Exercise 21.39 In this exercise we show how to construct a ran-
dom vector whose law is a given probability measure on Rn.
(1) Let P be a probability measure on the Borel subsets of Rn. If
ω = (ω1, . . . , ωn) ∈ Rn, define Xn(ω) = ωn. Let X = (X1, . . . , Xn).
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Prove that the law PX of X is equal to P.
(2) If P is a product measure, prove that the components of X are
independent.

Exercise 21.40 Prove that if Xt is a Brownian motion and a is a
non-zero real number, then Yt = aXa2t is also a Brownian motion.

Exercise 21.41 Let Xt be a Brownian motion. Let n ≥ 1 and let
Mk = Xk/2n .
(1) Prove that Mk is a martingale.

(2) Prove that if a ∈ R, then eaMk−a2(k/2n)/2 is a martingale.
(3) Prove that

P(sup
t≤r

Xt ≥ λ) ≤ e−λ
2/2r.

Exercise 21.42 Let Xt be a Brownian motion. Let

An = ( sup
t≤2n+1

Xt >
√

4 · 2n log log 2n).

(1) Prove that
∑∞
n=1 P(An) <∞.

(2) Prove that

lim sup
t→∞

Xt√
t log log t

<∞, a.s.

This is part of what is known as the law of the iterated logarithm
or LIL for Brownian motion.

Exercise 21.43 Let Xt be a Brownian motion. Let M > 0, t0 >
0, and

Bn = (Xt0+2−n −Xt0+2−n−1 > M2−n−1).

(1) Prove that
∑∞
n=1 P(Bn) =∞.

(2) Prove that the function t→ Xt(ω) is not differentiable at t = t0.
(3) Prove that except for ω in a null set, the function t → Xt(ω)
is not differentiable at almost every t (with respect to Lebesgue
measure on [0,∞).)
This can actually be strengthened, via a different proof, to the fact
that except for a set of ω in a null set, the function t → Xt(ω) is
nowhere differentiable.
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Exercise 21.44 Let Xt be a Brownian motion and let h > 0.
Prove that except for ω in a null set, there are times t ∈ (0, h)
for which Xt(ω) > 0. (The times will depend on ω.) This says
that Brownian motion started at 0 cannot stay negative for a time.
Similarly it cannot stay positive for a time; the path of Xt must
oscillate quite a bit near 0.

Exercise 21.45 Let Xt be a Brownian motion on [0, 1]. Prove
that Yt = X1 −X1−t is also a Brownian motion.
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Chapter 22

Harmonic functions

Harmonic functions are important in complex analysis, partial dif-
ferential equations, mathematical physics, and probability theory,
as well as in real analysis. In this chapter we present some of their
basic properties.

22.1 Definitions

Recall that a C2 function is one whose second partial derivatives
are continuous and a domain is an open set in Rn. If f is a C2

function in a domain D, the Laplacian of f , written ∆f , is the
function

∆f(x) =

n∑
i=1

∂2f

∂x2
i

(x), x ∈ D.

A real-valued function h is harmonic on a domain D if h is C2 in
D and ∆h(x) = 0 for all x ∈ D.

In one dimension, the linear functions h(x) = ax + b are har-
monic in any interval, and any harmonic function is linear in each
open interval on which it is defined, since h′′(x) = 0.

When we turn to two dimensions, we can identity R2 with the
complex plane C. If D is a domain in C and f is analytic in D,
that is, f is differentiable at each point of D, then the real and
imaginary parts of f are harmonic in D. This is a consequence of

303
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the Cauchy-Riemann equations. If f = u + iv, then the Cauchy-
Riemann equations from complex analysis say that ∂u/∂x = ∂v/∂y
and ∂u/∂y = −∂v/∂x. Since an analytic function is infinitely
differentiable, it follows that

∆u =
∂2u

∂x2
+
∂2u

∂y2
=

∂2v

∂x∂y
− ∂2v

∂y∂x
= 0,

and similarly ∆v(x) = 0.

In particular, the real part of the logarithm function is harmonic
as long as we are not at 0. If z = reiθ ∈ C − {0}, then log z =
log r + iθ, so the real part of f(z) = log z is u(z) = log r = log |z|.
We conclude that the function f(x) = log |x| is harmonic for x ∈
R2 − {0}, where |x| = (x2

1 + x2
2)1/2. Alternatively, this can be

verified by computing the Laplacian of log |x|.

When the dimension n is greater than or equal to 3, the function
h(x) = |x|2−n is seen by a direct calculation of the partial deriva-
tives to be harmonic in Rn − {0}, where |x| = (x2

1 + · · · + x2
n)1/2.

When doing the calculation, it is helpful to write

∂

∂xi
|x| = ∂

∂xi
(x2

1 + · · ·+ x2
n)1/2 =

2xi
2(x2

1 + · · ·+ x2
n)1/2

=
xi
|x|
.

22.2 The averaging property

Recall the divergence theorem from undergraduate analysis: if D
is a nice domain such as a ball, then∫

D

divF (x) dx =

∫
∂D

F · n(y)σ(dy), (22.1)

where F = (F1, . . . , Fn) : Rn → Rn is a vector field, divF =∑n
i=1 ∂Fi/∂xi is the divergence of F , ∂D is the boundary of D,

n(y) is the outward pointing unit normal vector at y, and σ(dy) is
surface measure on ∂D.

If u and v are two real-valued functions on Rn and we let F =
u∇v, where ∇v is the gradient of v, then

divF =

n∑
i=1

∂

∂xi

(
u
∂v

∂xi

)
= u

n∑
i=1

∂2v

∂xi2
+

n∑
i=1

∂u

∂xi

∂v

∂xi

= u∆v +∇u · ∇v
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and

F · n = u
∂v

∂n
,

where ∂v/∂n is the normal derivative. Substituting into the diver-
gence theorem we get Green’s first identity :∫

D

u∆v dx+

∫
D

∇u · ∇v dx =

∫
∂D

u
∂v

∂n
dσ. (22.2)

If we reverse the roles of u and v in Green’s first identity and
take the difference, we get Green’s second identity :∫

D

(u∆v − v∆u) dx =

∫
∂D

(
u
∂v

∂n
− v ∂u

∂n

)
dσ. (22.3)

Each of the two following theorems are known as the mean value
property or the averaging property of harmonic functions.

Theorem 22.1 Suppose h is harmonic in a domain D, x0 ∈ D,
and r < dist (x0, D

c). Then

h(x0) =

∫
∂B(x0,r)

h(y)σ(dy), (22.4)

where σ is surface measure on ∂B(x0, r).

Proof. By looking instead at h(x− x0)− h(x0), we may suppose
without loss of generality that x0 = 0 and h(x0) = 0.

If s ≤ r and we apply Green’s first identity with v = h and u
identically equal to one, we see that∫

∂B(0,s)

∂h

∂n
(y)σ(dy) = 0, (22.5)

since ∇u = 0 and ∆v = 0 in B(0, s).

Now let ε > 0 and choose δ such that |h(x)| < ε if |x| ≤ δ.
This can be done because h is continuous at 0 and h(0) = 0. If
n ≥ 3, let v be a C2 function on Rn such that v(x) = |x|2−n if
|x| ≥ δ/2. If n = 2, let v be a C2 function such that v(x) = log |x|
if |x| ≥ δ/2. We now apply Green’s second identity with u = h
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and v as just described in each of the balls B(0, r) and B(0, δ) and
take the difference:

0 =

∫
B(0,r)−B(0,δ)

(u∆v − v∆u)

=

∫
∂B(0,r)

u(y)
∂v

∂n
(y)σ(dy)−

∫
∂B(0,r)

v(y)
∂u

∂n
(y) dy

−
∫
∂B(0,δ)

u(y)
∂v

∂n
(y)σ(dy) +

∫
∂B(0,δ)

v(y)
∂u

∂n
(y)σ(dy)

= I1 − I2 − I3 + I4.

We used that ∆u = 0 and ∆v = 0 in B(0, r) − B(0, δ). We then
have

I1 = I2 + I3 − I4.

For y ∈ ∂B(0, r) and for y ∈ ∂B(0, δ), we see that n(y) = y/|y|.
A calculation shows that ∇v(y) = c1y/|y|n for y on the boundary
of either of those sets, where c1 is a constant depending only on
the dimension n, and we conclude

∂v

∂n
(y) =

c1
|y|n−1

on the boundary of either of those sets. Therefore

I1 =
c2
rn−1

∫
∂B(0,r)

u(y)σ(dy)

is equal to a constant times the right hand side of (22.4). We also
have

|I3| ≤ sup
y∈∂B(0,δ)

|u(y)| c2
δn−1

σ(∂B(0, δ)) ≤ c3ε.

I2 and I4 are both zero by (22.5) and the fact that v is constant
on ∂B(0, r) and is constant on ∂B(0, δ). We conclude that the right
hand side of (22.4) is bounded in absolute value by a constant times
ε. Since ε is arbitrary, this proves that

∫
∂B(0,r)

h(y)σ(dy) = 0,

which yields the theorem.

The previous theorem says that the value of a harmonic function
at the center of a ball contained in the domain is equal to the
average of the values of the harmonic function on the boundary
of the ball. The next theorem says that the value at the center is
equal to the average of the values inside the ball.
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Theorem 22.2 Suppose h is harmonic in D, x0 ∈ D, and r <
dist (x0, D

c). Then

h(x0) =
1

m(B(0, r))

∫
B(x0,r)

h(y) dy, (22.6)

where m is Lebesgue measure.

Proof. This result follows easily from Theorem 22.1 by changing to
polar coordinates. Again we may suppose x0 = 0. If y ∈ B(0, r), we
may write y = sv, where s = |y| ∈ (0, r) and v = y/|y| ∈ ∂B(0, 1).
If σs(dy) is surface measure on ∂B(0, s), then∫

B(x0,r)

h(y) dy =

∫ r

0

∫
∂B(0,s)

h(vs)σs(dv) ds

=

∫ r

0

h(0)σs(∂B(0, s)) ds

= h(0)m(B(0, r)),

where we used Theorem 22.1 for the second equality.

22.3 Maximum principle

The following theorem is known as the maximum principle for har-
monic functions.

Theorem 22.3 Suppose D is a connected domain and h is har-
monic in D. If h takes its maximum inside D, then h is constant
in D.

Proof. Let M = supx∈D h(x). Suppose h(x0) = M for some
x0 ∈ D and let r < dist (x,Dc). If h(x) < M for some x ∈ B(x0, r),
then by the continuity of h, we see that h < M for a ball contained
in B(x0, r). Then

h(x0) = M >
1

m(B(x0, r))

∫
B(x0,r)

h(y) dy = h(x0),

a contradiction. Therefore h is identically equal to M on B(x0, r)
if h(x0) = M and B(x0, r) ⊂ D. Thus {y ∈ D : h(y) = M} is
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open. Since h is continuous, then {y ∈ D : h(y) < M} is also open.
Since D is connected, either {y ∈ D : h(y) = M} must be empty
or must be equal to D.

If D is a bounded connected domain, h is harmonic in D, and
h is continuous on D, then Theorem 22.3 says that h takes its
maximum on ∂D. The hypothesis that D be bounded is essential.
If we consider

D = {(x, y) ∈ R2 : y > 0}

and let h(x, y) = y, then h is harmonic, but does not takes its
maximum on ∂D.

22.4 Smoothness of harmonic functions

In this section we prove that harmonic functions are C∞ in the
domain in which they are defined, and then show that functions
satisfying the averaging property are harmonic.

Theorem 22.4 Suppose D is a domain and h is bounded on D
and satisfies the averaging property (22.6) for each x0 ∈ D and
each r < dist (x0, D

c). Then h is C∞ in D.

Remark 22.5 Suppose for each x ∈ D there is an open subset Nx
of D containing x on which h is bounded. We can apply the above
theorem to Nx and conclude that h is C∞ on each set Nx, and
hence is C∞ on D.

Since harmonic functions are C2 functions and satisfy the aver-
aging property, they are C∞ in their domain.

Proof. Suppose z0 ∈ D, 8r < dist (z0, D
c), x ∈ B(z0, 2r), x

′ ∈
B(z0, 3r), and r > |ε| > |x − x′|. Suppose |h| is bounded by M .
Applying the averaging property,

h(x) =
1

m(B(0, r))

∫
B(x,r)

h(y) dy
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and similarly with x replaced by x′. Taking the difference,

|h(x)− h(x′)| ≤ 1

m(B(0, r))

∫
B(x,r)4B(x′,r)

|h(y)| dy

≤ c1M

rn
m(B(x, r)4B(x′, r)),

where A4B = (A−B)∪ (B−A). Some easy geometry shows that

B(x, r)4B(x′, r) ⊂ B(x, r + ε)−B(x, r − ε),

so

|h(x)− h(x′)| ≤ c1Mr−nm(B(x, r + ε)−B(x, r − ε))
= c2Mr−n[(r + ε)n − (r − ε)n],

which in turn is bounded by

c3Mr−n(rn−1ε).

We used here the inequality

(a− b)n = (a− b)(an−1 + an−2b+ · · ·+ abn−2 + bn−1)

≤ n(a− b)(a ∨ b)n−1.

This is true for each |ε| > |x− x′|, and therefore

|h(x)− h(x′)|
|x− x′|

≤ c3
M

r
. (22.7)

One conclusion we draw from this is that h is continuous.

Now let e1 = (1, 0, . . . , 0) be the unit vector in the x1 direction.
Let

Fε(x) =
h(x+ εe1)− h(x)

ε
.

We have seen that |Fε(x)| is bounded by c3M/r if x ∈ B(z0, 2r) and
|ε| < r. Applying the averaging property and doing some algebra,

Fε(x) =
1

m(B(0, r))

∫
B(x,r)

Fε(y) dy. (22.8)

Just as in the derivation of (22.7),

|Fε(x)− Fε(x′)| ≤ c4
M

r
|x− x′|.
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This implies that {Fε(x)} is an equicontinuous family of functions
of x on B(z0, r).

Fix x2, . . . , xn. In view of (22.7),

H(x1) = h(x1, . . . , xn)

is of bounded variation in the x1 variable, and hence is differentiable
for almost every x1. Therefore Gε(x1) = Fε(x1, . . . , xn) has a limit
as ε→ 0 for almost every x1 such that (x1, . . . , xn) ∈ B(z0, r). This
and the equicontinuity of the family {Fε} imply that Gε(x1) has
a limit for every such x1. Thus, for each (x1, . . . , xn) ∈ B(z0, r),
the partial derivative of h with respect to x1 exists. Moreover,
∂h/∂x1 is bounded in B(z0, r). Since z0 ∈ D is arbitrary, we see
that ∂h/∂x1 exists at each point of D and a compactness argument
shows that it is bounded on each bounded subdomain D′ of D such
that D′ ⊂ D.

Passing to the limit in (22.8), we obtain

∂h

∂x1
(x) =

1

m(B(0, r))

∫
B(x,r)

∂f

∂x1
(y) dy.

Thus ∂h/∂x1 also satisfies the averaging property and is bounded
in each bounded subdomain D′ of D such that D′ ⊂ D. Hence
it is continuous. These facts also apply to each of the first partial
derivatives of h.

Repeating the argument and using Remark 22.5, we see each
second partial derivative ∂2h/∂xi ∂xj satisfies the averaging prop-
erty, hence is continuous, and so on. Therefore h is a C∞ function
in D.

We now have the following converse of the averaging property.

Theorem 22.6 If D is a domain and h is bounded on D and sat-
isfies (22.6), then h is harmonic in D.

Proof. Let x0 ∈ D. We may take x0 = 0 and h(0) = 0 without
loss of generality. By Taylor’s theorem,

h(y) = h(0) +

n∑
i=1

∂h

∂xi
(0)yi + 1

2

n∑
i,j=1

∂2h

∂xi∂xj
(0)yiyj +R(y),
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where the remainder R satisfies |R(y)|/|y|2 → 0 as |y| → 0. Inte-
grating over B(0, r) and using that the integrals of yi and of yiyj
over B(0, r) are zero unless i = j, we obtain

0 = h(0) =

n∑
i=1

∫
B(0,r)

∂2h

∂x2
i

(0)y2
i dy +

∫
B(0,r)

R(y) dy.

Therefore given ε,

c1r
3|∆h(0)| ≤ ε

∫
B(0,r)

|y|2 dy

if r is small enough. Dividing both sides by r3, we have

|∆h(0)| ≤ c2ε,

and since ε is arbitrary, then ∆h(0) = 0.

Now that we know that harmonic functions are C∞ in their
domain, then ∂h/∂xi ∈ C2 and

∆
( ∂h
∂xi

)
(x) =

∂(∆h)

∂xi
(x) = 0,

so ∂h/∂xi is also harmonic. This could also be deduced from the
fact that ∂h/∂xi satisfies the averaging property by the proof of
Theorem 22.4.

22.5 Poisson kernels

Let H ⊂ Rn+1 be defined by H = Rn × (0,∞) and denote points
of H by (x, y). Define

P (x, y) =
cy

(|x|2 + y2)(n+1)/2
,

where

cn =
Γ((n+ 1)/2)

π(n+1)/2

and Γ is the Gamma function:

Γ(x) =

∫ ∞
0

tx−1e−t dt.

P (x, y) is called the Poisson kernel for the half space H.
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Proposition 22.7 The function (x, y) → P (x, y) is harmonic in
H. Moreover, for each y,∫

Rn
P (x, y) dx = 1.

Proof. This is just calculus. Calculating derivatives shows that
the Laplacian is zero. A trigonometric substitution shows that the
integral is equal to one.

If 1 ≤ p ≤ ∞ and f ∈ Lp(Rn), define

u(x, y) =

∫
P (x− t, y)f(t) dt.

u is called the Poisson integral of f and also the harmonic extension
of f .

Proposition 22.8 (1) If 1 ≤ p ≤ ∞ and f ∈ Lp(Rn), then the
harmonic extension of f in H is harmonic.
(2) If f is bounded and continuous, then

lim
y→0

u(x0, y) = f(x0)

for each x0 ∈ Rn.

Proof. The first follows from Proposition 22.7 and the dominated
convergence theorem. To prove (2), by looking at f(x−x0)−f(x0)
and using the fact that

∫
P (x, y) dx = 1, it suffices to prove this

when x0 = 0 and f(0) = 0.

Given ε, choose δ such that |f(x)| ≤ ε if |x| ≤ δ. We have

u(0, y) =

∫
|t|≤δ

P (t, y)f(t) dt+

∫
|t|>δ

P (t, y)f(t) dt.

The first integral on the right is bounded in absolute value by

ε

∫
P (t, y) dt = ε.

The second integral on the right is bounded in absolute value by

sup
t∈Rn

|f(t)|
∫
|t|>δ

P (t, y) dt.
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By a change of variables,∫
|t|>δ

P (t, y) dt =

∫
|t|>δ/y

c

(1 + t2)(n+1)/2
dt,

which tends to 0 as y → 0 by the dominated convergence theorem.
Since ε is arbitrary,

lim sup
y→0

|u(0, y)| = 0,

which proves (2).

If D = B(0, r), the Poisson kernel for the ball D is given by

Pr(x, y) = c
r2 − |x|2

r|x− y|n
, x ∈ D, y ∈ ∂D,

where c = 1/σ(∂B(0, 1)) and σ(dy) is surface area on ∂D.

If f is a continuous function on ∂B(0, r), then

u(x) =

∫
Pr(x, y)f(y)σ(dy)

is harmonic in D, u has a continuous extension to B(0, r) and

lim
x→y,u∈D

u(x) = f(y), y ∈ ∂B(0, r).

These facts can be shown by some not-so-easy calculus, and an
argument similar to the proof of (2) of Proposition 22.8.

How does one arrive at the formula for the Poisson kernel for
the ball? If you are good at calculations, you can show by tedious
calculations that if h is harmonic in a domain E not containing zero,
then |x|2−nh(x/|x|2) is harmonic in the domain {y ∈ Rn : y/|y|2 ∈
E}. The Poisson kernel formula is obvious when x = 0 and r = 1.
By a simple change of variables, one can get the Poisson kernel for
E = B(e1, 1), where e1 is the unit vector in the x1 direction. We
then apply the transformation y → y/|y|2 to get the Poisson kernel
for the half space H ′ = {y : y1 > 1/2} with x = e1. By another
simple change of variables we get the Poisson kernel for H ′ with x
any point of H ′. Finally we do another inversion x→ x/|x|2 to get
the Poisson kernel for the unit ball, and do yet another change of
variables to get the Poisson kernel for the ball of radius r. See [2]
or [3] for details.
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Remark 22.9 The Dirichlet problem for a ball D = B(0, r) from
partial differential equations is the following: given a continuous
function f on the boundary of the ball, find a function u that is
C2 in D and continuous on D such that ∆u(x) = 0 for x ∈ D and
u(x) = f(x) for x ∈ ∂D. By the above,

u(x) =

∫
∂B(0,r)

Pr(x, y)f(y)σ(dy)

provides the solution.

22.6 Harnack inequality

The following theorem is known as the Harnack inequality.

Theorem 22.10 Suppose h ≥ 0 is harmonic in B(0, R) and r <
R. There exists a constant c1 depending only on r and R such that

h(x) ≤ c1h(x′), x, x′ ∈ B(0, r).

Proof. If ε < R− r, then

g(x) =

∫
∂B(0,R−ε)

PR−ε(x, y)h(y)σ(dy)

is harmonic in B(0, R − ε), agrees with h on ∂B(0, R − ε), and so
g−h is harmonic in B(0, R− ε) and equal to 0 on the boundary of
B(0, R−ε). By the maximum principle, g is identically equal to h.

If x, x′ ∈ B(0, r) and y ∈ ∂B(0, s) with s > r, then

c2(r, s)Ps(x, y) ≤ Ps(x′, y) ≤ c3(r, s)Ps(x, y)

with

c2(r, s) =
s2 − r2

s(s+ r)n
, c3(r, s) =

s2

s(s− r)n
.

Setting s = R − ε, multiplying the Poisson kernel by h(y), and
integrating over y ∈ ∂B(0, R − ε) proves our result for the balls
B(0, r) and B(0, R−ε). Letting ε→ 0 yields our inequality for the
balls B(0, r) and B(0, R).
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22.7 Exercises

Exercise 22.1 Suppose h is harmonic in a domain and g(x) =
x · ∇h(x). Prove that g is harmonic in the domain.

Exercise 22.2 Prove that if u, v are harmonic in a domain D,
then uv is harmonic in D if and only ∇u(x) · ∇v(x) = 0 in D.

Exercise 22.3 Suppose D connected and h and h2 are harmonic
in D. Prove that h is constant in D.

Exercise 22.4 Let D be a bounded connected domain. Suppose
that h is harmonic in D and C1 in D. Prove that if ∂h/∂n = 0
everywhere on the boundary of D, then h is constant.

Exercise 22.5 Suppose that h is bounded and harmonic in a do-
main D, x0 ∈ D, and r > dist (x0, D

c). Prove there exists a
constant ck depending only on k such that if g is any of the kth

partial derivatives of h, then

|g(x0)| ≤ ck
rk

sup
x∈D
|h(x)|.

Exercise 22.6 Prove that if h is harmonic in a domain D not
containing 0 and

g(x) = |x|2−nh(x/|x|2),

then g is harmonic in {y : y/|y|2 ∈ D}.

Exercise 22.7 Prove that if f is continuous on ∂B(0, r) and

h(x) =

∫
∂B(0,r)

Pr(x, y)f(y)σ(dy),

where Pr(x, y) is the Poisson kernel for the ball, then

lim
x→z,x∈B(0,r)

h(x) = f(z), z ∈ ∂B(0, r).

Exercise 22.8 Prove that if h is harmonic in Rn, then h has a
Taylor series that converges everywhere.
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Exercise 22.9 Suppose that D is a bounded connected domain,
x0 ∈ D, and that h and all of its partial derivatives are equal to 0
at x0. Prove that h is identically zero.

Exercise 22.10 (1) Show that the constant c1 in Theorem 22.10
can be taken to be equal to

c1 =
R2

R2 − r2

(R+ r

R− r

)n
.

(2) Prove Liouville’s theorem: if h is harmonic and non-negative
in Rn, then h is constant.



Chapter 23

Sobolev spaces

For some purposes, particularly when studying partial differential
equations, one wants to study functions which only have a deriva-
tive in the weak sense. We look at spaces of such functions in this
chapter, and prove the important Sobolev inequalities.

23.1 Weak derivatives

Let C∞K be the set of functions on Rn that have compact support
and have partial derivatives of all orders. For j = (j1, . . . , jn), write

Djf =
∂j1+···+jnf

∂j1x1 · · · ∂
jn
xn

,

and set |j| = j1 + · · ·+ jn. We use the convention that ∂0f/∂x0
i is

the same as f .

Let f, g be locally integrable. We say that Djf = g in the weak
sense or g is the weak jth order partial derivative of f if∫

f(x)Djϕ(x) dx = (−1)|j|
∫
g(x)ϕ(x) dx

for all ϕ ∈ C∞K . Note that if g = Djf in the usual sense, then
integration by parts shows that g is also the weak derivative of f .

Let

W k,p(Rn) = {f : f ∈ Lp, Djf ∈ Lp for each j such that |j| ≤ k}.

317
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Set
‖f‖Wk,p =

∑
{j:0≤|j|≤k}

‖Djf‖p,

where we set D0f = f .

Theorem 23.1 The space W k,p is complete.

Proof. Let fm be a Cauchy sequence in W k,p. For each j such
that |j| ≤ k, we see that Djfm is a Cauchy sequence in Lp. Let gj
be the Lp limit of Djfm. Let f be the Lp limit of fm. Then∫

fmD
jϕ = (−1)|j|

∫
(Djfm)ϕ→ (−1)|j|

∫
gjϕ

for all ϕ ∈ C∞K . On the other hand,
∫
fmD

jϕ→
∫
f Djϕ. There-

fore

(−1)|j|
∫
gjϕ =

∫
f Djϕ

for all ϕ ∈ C∞K . We conclude that gj = Djf a.e. for each j such
that |j| ≤ k. We have thus proved that Djfm converges to Djf
in Lp for each j such that |j| ≤ k, and that suffices to prove the
theorem.

23.2 Sobolev inequalities

Lemma 23.2 If k ≥ 1 and f1, . . . , fk ≥ 0, then∫
f

1/k
1 · · · f1/k

k ≤
(∫

f1

)1/k

· · ·
(∫

fk

)1/k

.

Proof. We will prove(∫
f

1/k
1 · · · f1/k

k

)k
≤
(∫

f1

)
· · ·
(∫

fk

)
. (23.1)

We will use induction. The case k = 1 is obvious. Suppose (23.1)
holds when k is replaced by k − 1 so that(∫

f
1/(k−1)
1 · · · f1/(k−1)

k−1

)k−1

≤
(∫

f1

)
· · ·
(∫

fk−1

)
. (23.2)
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Let p = k/(k− 1) and q = k so that p−1 + q−1 = 1. Using Hölder’s
inequality,∫

(f
1/k
1 · · ·f1/k

k−1)f
1/k
k

≤
(∫

f
1/(k−1)
1 · · · f1/(k−1)

k−1

)(k−1)/k(∫
fk

)1/k

.

Taking both sides to the kth power, we obtain(∫
(f

1/k
1 · · ·f1/k

k−1)f
1/k
k

)k
≤
(∫

f
1/(k−1)
1 · · · f1/(k−1)

k−1

)(k−1)(∫
fk

)
.

Using (23.2), we obtain (23.1). Therefore our result follows by
induction.

Let C1
K be the continuously differentiable functions with com-

pact support. The following theorem is sometimes known as the
Gagliardo-Nirenberg inequality.

Theorem 23.3 There exists a constant c1 depending only on n
such that if u ∈ C1

K , then

‖u‖n/(n−1) ≤ c1‖ |∇u| ‖1.

We observe that u having compact support is essential; oth-
erwise we could just let u be identically equal to one and get a
contradiction. On the other hand, the constant c1 does not depend
on the support of u.

Proof. For simplicity of notation, set s = 1/(n− 1). Let Kj1···jm
be the integral of |∇u(x1, . . . , xn)| with respect to the variables
xj1 , . . . , xjm . Thus

K1 =

∫
|∇u(x1, . . . , xn)| dx1

and

K23 =

∫ ∫
|∇u(x1, . . . , xn)| dx2 dx3.
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Note K1 is a function of (x2, . . . , xn) and K23 is a function of
(x1, x4, . . . , xn).

If x = (x1, . . . , xn) ∈ Rn, then since u has compact support,

|u(x)| =
∣∣∣ ∫ x1

−∞

∂u

∂x1
(y1, x2, . . . , xn) dy1

∣∣∣
≤
∫
R
|∇u(y1, x2, . . . , xn)| dy1

= K1.

The same argument shows that |u(x)| ≤ Ki for each i, so that

|u(x)|n/(n−1) = |u(x)|ns ≤ Ks
1K

s
2 · · ·Ks

n.

Since K1 does not depend on x1, Lemma 23.2 shows that∫
|u(x)|ns dx1 ≤ Ks

1

∫
Ks

2 · · ·Ks
n dx1

≤ Ks
1

(∫
K2 dx1

)s
· · ·
(∫

Kn dx1

)s
.

Note that∫
K2 dx1 =

∫ (∫
|∇u(x1, . . . , xn)| dx2

)
dx1 = K12,

and similarly for the other integrals. Hence∫
|u|ns dx1 ≤ Ks

1K
s
12 · · ·Ks

1n.

Next, since K12 does not depend on x2,∫
|u(x)|ns dx1 dx2 ≤ Ks

12

∫
Ks

1K
s
13 · · ·Ks

1n dx2

≤ Ks
12

(∫
K1 dx2

)s(∫
K13 dx2

)s
· · ·
(∫

K1n dx2

)s
= Ks

12K
s
12K

s
123 · · ·Ks

12n.

We continue, and get∫
|u(x)|ns dx1 dx2 dx3 ≤ Ks

123K
s
123K

s
123K

s
1234 · · ·Ks

123n
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and so on, until finally we arrive at∫
|u(x)|ns dx1 · · · dxn ≤

(
Ks

12···n

)n
= Kns

12···n.

If we then take the ns = n/(n− 1) roots of both sides, we get the
inequality we wanted.

From this we can get the Sobolev inequalities.

Theorem 23.4 Suppose 1 ≤ p < n and u ∈ C1
K . Then there exists

a constant c1 depending only on n such that

‖u‖np/(n−p) ≤ c1‖ |∇u| ‖p.

Proof. The case p = 1 is the case above, so we assume p > 1. The
case when u is identically equal to 0 is obvious, so we rule that case
out. Let

r =
p(n− 1)

n− p
,

and note that r > 1 and

r − 1 =
np− n
n− p

.

Let w = |u|r. Since r > 1, then x → |x|r is continuously differen-
tiable, and so w ∈ C1

K . We observe that

|∇w| ≤ c2|u|r−1|∇u|.

Applying Theorem 23.3 to w and using Hölder’s inequality with
q = p

p−1 , we obtain(∫
|w|n/(n−1)

)n−1
n ≤ c3

∫
|∇w|

≤ c4
∫
|u|(np−n)/(n−p)|∇u|

≤ c5
(∫
|u|np/(n−p)

) p−1
p
(∫
|∇u|p

)1/p

.

The left hand side is equal to(∫
|u|np/(n−p)

)n−1
n

.
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Divide both sides by (∫
|u|np/(n−p)

) p−1
p

.

Since
n− 1

n
− p− 1

p
=

1

p
− 1

n
=
n− p
pn

,

we get our result.

We can iterate to get results on the Lp norm of f in terms of the
Lq norm of Dkf when k > 1. The proof of the following theorem
is left as Exercise 23.8.

Theorem 23.5 Suppose k ≥ 1. Suppose p < n/k and we define q
by 1

q = 1
p −

k
n . Then there exists c1 such that

‖f‖q ≤ c
∥∥∥ ∑
{j:|j|=k}

|Dkf |
∥∥∥
p
.

Remark 23.6 It is possible to show that if p > n/k, then f is
Hölder continuous.

23.3 Exercises

Exercise 23.1 Prove that if p1, . . . , pn > 1,

n∑
i=1

1

pi
= 1,

and µ is a σ-finite measure, then∫
|f1 . . . fn| dµ ≤ ‖f1‖p1 · · · ‖fn‖pn .

This is known as the generalized Hölder inequality.

Exercise 23.2 Suppose 1 ≤ p < ∞. Prove that if there exist fm
such that
(1) fm ∈ C∞K ;
(2) ‖f − fm‖p → 0;
(3) for all |j| ≤ k, Djfm converges in Lp,
then f ∈W k,p.
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Exercise 23.3 Suppose 1 ≤ p <∞. Prove that if f ∈W k,p, then
there exist fm such that
(1) fm ∈ C∞K ;
(2) ‖f − fm‖p → 0;
(3) for all |j| ≤ k, Djfm converges in Lp.

Exercise 23.4 Suppose 1
r = 1

p + 1
q − 1. Prove that

‖f ∗ g‖r ≤ ‖f‖p‖g‖q.

This is known as Young’s inequality.

Exercise 23.5 (1) Prove that W k,2 can be regarded as a Hilbert
space. (It is common to write Hk for W k,2.)
(2) Suppose k ≥ 1. Prove that f ∈W k,2 if and only if∫

(1 + |u|2)k|f̂(u)|2 du <∞.

Exercise 23.6 If s is a real number, define

Hs =
{
f :

∫
(1 + |u|2)s|f̂(u)|2 du <∞

}
.

Prove that if s > n/2, then f̂ is in L1. Conclude that f is contin-
uous.

Exercise 23.7 Does the product formula hold for weak deriva-
tives? That is, if p ≥ 2 and f, g ∈ W 1,p, is fg ∈ W 1,p/2 with
D(fg) = f(Dg) + (Df)g? Prove or give a counterexample.

Exercise 23.8 Prove Theorem 23.5.

Exercise 23.9 Let ψ be a C1
K function on R2 that is equal to one

on B(0, 1) and let

f(x1, x2) = ψ(x1, x2)
x2

1

x2
1 + x2

2

.

Prove that f ∈ W 1,p(R2) for 1 ≤ p < 2, but that f is not con-
tinuous. (The function ψ is introduced only to make sure f has
compact support.)
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Exercise 23.10 Suppose the dimension n = 1.
(1) Prove that if f ∈W 1,1(R), then f is continuous.
(2) Prove that if f ∈ W 1,p(R) for some p > 1, then f is Hölder
continuous, that is, there exist c1 > 0 and α ∈ (0, 1) such that
|f(x)− f(y)| ≤ c1|x− y|α for all x and y.

Exercise 23.11 Prove that if f ∈ C1
K , then

f(x) = c1

n∑
j=1

∫
∂f

∂xj
(x− y)

yj
|y|n

dy,

where c−1
1 is equal to the surface measure of ∂B(0, 1).

Exercise 23.12 Suppose n ≥ 3. Prove the Nash inequality :(∫
|f |2

)1+2/n

≤ c1
(∫
|∇f |2

)(∫
|f |
)4/n

if f ∈ C1
K(Rn), where the constant c1 depends only on n. (The

Nash inequality is also true when n = 2.)



Chapter 24

Singular integrals

This chapter is concerned with the Hilbert transform, which is the
prototype for more general singular integrals. The Hilbert trans-
form of a function f is defined by

Hf(x) = lim
ε→0,N→∞

1

π

∫
ε<|y|<N

f(x− y)

y
dy,

and is thus a principal value integral. Remarkably, H is a bounded
operator on Lp(R) for 1 < p <∞.

In preparation for the study of the Hilbert transform, we also in-
vestigate the Marcinkiewicz interpolation theorem and delve more
deeply into properties of the maximal function, which was defined
in Chapter 14.

24.1 Marcinkiewicz interpolation theo-
rem

Let (X,A, µ) be a measure space. An operator T mapping a col-
lection of real-valued measurable functions on X to real-valued
measurable functions on X is sublinear if

|T (f + g)(x)| ≤ |Tf(x)|+ |Tg(x)|

325
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for all x ∈ X and for all measurable functions f and g in the
collection. Recall that the Lp norm of a function is given by

‖f‖p =
(∫

X

|f(x)|p µ(dx)
)1/p

if 1 ≤ p < ∞. We say that an operator T is bounded on Lp or is
of strong-type p-p if there exists a constant c1 such that

‖Tf‖p ≤ c1‖f‖p

for every f ∈ Lp. We say that an operator T is of weak-type p-p if
there exists a constant c2 such that

µ({x : |Tf(x)| ≥ λ}) ≤ c2
‖f‖pp
λp

for all λ > 0. An operator that is bounded on Lp is automatically
of weak-type p-p. This follows by Chebyshev’s inequality (Lemma
10.4):

µ({x : |Tf(x)| > λ}) = µ({x : |Tf(x)|p > λp})

≤ 1

λp

∫
|Tf(x)|p µ(dx)

=
1

λp
‖Tf‖pp ≤

cp1
λp
‖f‖pp.

The Marcinkiewicz interpolation theorem says that if 1 ≤ p <
r < q ≤ ∞ and a sublinear operator T is of weak-type p-p and of
weak-type q-q, then T is a bounded operator on Lr. A more general
version considers operators that are what are known as weak-type
p-q, but we do not need this much generality.

Theorem 24.1 Suppose 1 ≤ p < r < q ≤ ∞. Let T be a sublinear
operator defined on {f : f = f1 + f2, f1 ∈ Lp, f2 ∈ Lq}.
(1) If T is of weak-type p-p and T is a bounded operator on L∞,
then T is a bounded operator on Lr.
(2) If q < ∞, T is of weak-type p-p, and T is of weak-type q-q,
then T is a bounded operator on Lr.

Proof. (1) Suppose ‖Tg‖∞ ≤ c1‖g‖∞ if g ∈ L∞. Let f ∈ Lr

and define f1(x) = f(x) if |f(x)| > λ/(2c1) and 0 otherwise. Let
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f2 = f − f1. This implies that |f2(x)| is bounded by λ/2c1 and∫
|f1(x)|p dx =

∫
|f(x)|>λ/2c1

|f(x)|p dx

≤
( λ

2c1

)r−p ∫
|f(x)|r dx <∞.

Because T is a bounded operator on L∞, then |Tf2(x)| is bounded
by λ/2. By the sublinearity of T ,

|Tf(x)| ≤ |Tf1(x)|+ |Tf2(x)| ≤ |Tf1(x)|+ λ/2,

and hence

{x : |Tf(x)| > λ} ⊂ {x : |Tf1(x)| > λ/2}.

We therefore have

µ({x : |Tf(x)| > λ}) ≤ µ({x : |Tf1(x)| > λ/2}).

Since T is of weak-type p-p, there exists a constant c2 not depending
on f such that the right hand side is bounded by

c2
‖f1‖pp
(λ/2)p

=
c22p

λp

∫
|f1(x)|p µ(dx) =

c22p

λp

∫
|f |>λ/2c1

|f(x)|p µ(dx).

We then write, using Exercise 15.3 and the Fubini theorem,∫
|Tf(x)|r µ(dx) =

∫ ∞
0

rλr−1µ({x : |Tf(x)| > λ}) dλ

≤
∫ ∞

0

rλr−1 c22p

λp

∫
|f |>λ/(2c1)

|f(x)|p µ(dx) dλ

= c22pr

∫ ∞
0

∫
λr−p−1χ(|f |>λ/2c1)(x)|f(x)|p µ(dx) dλ

= c22pr

∫ ∫ 2c1|f(x)|

0

λr−p−1 dλ |f(x)|p µ(dx)

= c2
2pr

r − p

∫
|f(x)|r−p|f(x)|p µ(dx)

= c2
2pr

r − p

∫
|f(x)|r µ(dx).

This is exactly what we want.
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(2) Let λ > 0, let f ∈ Lr, and let f1 = f(x) if |f(x)| > λ
and 0 otherwise, and let f2(x) = f(x) − f1(x). Since |Tf(x)| ≤
|Tf1(x)|+ |Tf2(x)|, we have

{|Tf(x)| > λ} ⊂ {|Tf1(x)| > λ/2} ∪ {|Tf2(x)| > λ/2}.

Since T is of weak-type p-p and weak-type q-q, there exist constants
c3 and c4 so that

µ({|Tf(x)| > λ}) ≤ µ({|Tf1(x)| > λ/2}) + µ({|Tf2(x)| > λ/2})

≤ c3
(λ/2)p

∫
|f1|p +

c4
(λ/2)q

∫
|f2|q

= c32pλ−p
∫
|f |>λ

|f |p + c42qλ−q
∫
|f |≤λ

|f |q.

Therefore∫
|Tf(x)|r µ(dx) =

∫ ∞
0

rλr−1µ({|Tf(x)| > λ}) dλ

≤ c32pr

∫ ∞
0

λr−p−1

∫
|f |>λ

|f |p µ(dx) dλ

+ c42qr

∫ ∞
0

λr−q−1

∫
|f |≤λ

|f |q µ(dx) dλ

= c32pr

∫
|f |p

∫ |f(x)|

0

λr−p−1 dλµ(dx)

+ c42qr

∫
|f |q

∫ ∞
|f(x)|

λr−q−1 dλµ(dx)

≤ c3
2pr

r − p

∫
|f |p|f |r−p µ(dx) + c4

2qr

q − r

∫
|f |q|f |r−q µ(dx)

= c5

∫
|f |r µ(dx),

where c5 = c32pr/(r − p) + c42qr/(q − r).

An application of the Marcinkiewicz interpolation theorem is
the following, although a proof using Hölder’s inequality is also
possible; cf. Exercise 15.11.

Theorem 24.2 Suppose 1 ≤ p ≤ ∞. There exists a constant c
such that if g ∈ L1 and f ∈ Lp, then f ∗ g ∈ Lp and ‖f ∗ g‖p ≤
c‖f‖p‖g‖1.
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Proof. By linearity we may suppose ‖g‖1 = 1. The case p = 1 is
Proposition 15.7. If f ∈ L∞, then

|f ∗ g(x)| ≤
∫
|f(x− y)| |g(y)| dy ≤ ‖f‖∞

∫
|g(y)| dy = ‖f‖∞‖g‖1,

which takes care of the case p = ∞. If we define the operator
Tf = f ∗ g, then we have shown T is a bounded operator on
L1 and on L∞. Therefore it is a bounded operator on Lp for all
1 < p <∞ by the Marcinkiewicz interpolation theorem.

24.2 Maximal functions

In Chapter 14 we defined

Mf(x) = sup
r>0

1

m(B(x, r))

∫
B(x,r)

|f(y)| dy (24.1)

for locally integrable functions on Rn and called Mf the maximal
function of f . Here m is n-dimensional Lebesgue measure. Note
Mf ≥ 0 and Mf(x) might be infinite.

The main goal in this section is to relate the size of Mf as
measured by the Lp norm to the size of f .

Theorem 24.3 The operator M is of weak-type 1-1 and bounded
on Lp for 1 < p ≤ ∞. More precisely,
(1) m({x : Mf(x) > λ}) ≤ c1‖f‖1/λ for λ > 0 and f ∈ L1. The
constant c1 depends only on the dimension n.
(2) If 1 < p ≤ ∞, then ‖Mf‖p ≤ c2‖f‖p. The constant c2 depends
only on p and the dimension n.

In this theorem and the others that we will consider, it is im-
portant to pay attention to the range of p for which it holds. Fre-
quently theorems hold only for 1 < p < ∞. In this theorem, we
have boundedness on Lp for p > 1 and including p = ∞. For the
p = 1 case we only have a weak-type 1-1 estimate.

In the course of the proof of Theorem 24.3 we will show that
Mf(x) exists for almost every x if f ∈ Lp for some 1 ≤ p ≤ ∞.

Recall from Section 14.1 that M is not a bounded operator on
L1.



330 CHAPTER 24. SINGULAR INTEGRALS

Proof. (1) This is just Theorem 14.2.

(2) It is obvious from the definition that Mf(x) ≤ ‖f‖∞, and
so M is a bounded operator on L∞. It is clear that M is sublinear.
If we write f ∈ Lp as fχ(|f |>1) +fχ(|f |≤1), then the first summand
is in L1 and the second is in L∞; the sublinearity then shows that
Mf is finite almost everywhere.

By Theorem 24.1(1), assertion (2) follows.

24.3 Approximations to the identity

Let ϕ be integrable on Rn and let ϕr(x) = r−dϕ(x/r). Let ψ :
[0,∞)→ [0,∞) be a decreasing function and suppose

c1 =

∫
Rn
ψ(|x|) dx <∞.

Suppose also that |ϕ(x)| ≤ ψ(|x|) for all x. Recall that the convo-
lution of f and g is defined by f ∗ g(x) =

∫
f(x − y)g(y) dy. We

continue to let m be n-dimensional Lebesgue measure.

Theorem 24.4 (Approximation to the identity) (1) If f ∈ Lp,
1 ≤ p ≤ ∞, then

sup
r>0
|f ∗ ϕr(x)| ≤ c1Mf(x).

(2) If f ∈ Lp, 1 ≤ p <∞, and
∫
ϕ(x) dx = 1, then ‖f∗ϕr−f‖p → 0

as r → 0.
(3) If f ∈ Lp, 1 ≤ p ≤ ∞ and

∫
ϕ(x) dx = 1, then

lim
r→0

(f ∗ ϕr)(x) = f(x), a.e.

Proof. In proving (1), by a change of variables, we need only show
that |f ∗ ϕ(0)| ≤ c1Mf(0). First suppose ψ is piecewise constant:
there exist a1 ≤ a2 ≤ . . . ≤ ak and A1 ≥ A2 ≥ . . . ≥ Ak such
that ψ(y) = A1 for y ∈ [0, a1], ψ(y) = Ai for y ∈ (ai−1, ai], and
ψ(y) = 0 for |x| > ak. Then

|f∗ϕ(0)| =
∣∣∣ ∫ f(x)ϕ(−x) dx

∣∣∣
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≤
∫
|f(x)|ψ(|x|) dx

= A1

∫
B(0,a1)

|f |+A2

∫
B(0,a2)−B(0,a1)

|f |+ · · ·

+Ak

∫
B(0,ak)−B(0,ak−1)

|f |

= A1

∫
B(0,a1)

|f |+
[
A2

∫
B(0,a2)

|f | −A2

∫
B(0,a1)

|f |
]

+ · · ·+
[
Ak

∫
B(0,ak)

|f | −Ak
∫
B(0,ak−1)

|f |
]

= (A1 −A2)

∫
B(0,a1)

|f |+ (A2 −A3)

∫
B(0,a2)

|f |

+ · · ·+ (Ak−1 −Ak)

∫
B(0,ak−1)

|f |+Ak

∫
B(0,ak)

|f |

≤
[
(A1 −A2)m(B(0, a1)) + · · ·+ (Ak−1 −Ak)m(B(0, ak−1))

+Akm(B(0, ak))
]
Mf(0)

=
[
A1m(B(0, a1)) +A2m(B(0, a2)−B(0, a1)) + · · ·

+Akm(B(0, ak)−B(0, ak−1))
]
Mf(0).

Observe that the coefficient of Mf(0) in the last expression is just∫
ψ(|x|) dx. To handle the general case where ψ is not piecewise

constant, we approximate ψ by piecewise constant ψj of the above
form and take a limit.

Turning to (2), by a change of variables

f ∗ ϕr(x)− f(x) =

∫
[f(x− y)− f(x)]ϕr(y) dy, (24.2)

=

∫
[f(x− ry)− f(x)]ϕ(y) dy.

Let ε > 0 and write f = g + h where g is continuous with com-
pact support and ‖h‖p < ε. By (24.2) with f replaced by g,
g ∗ ϕr(x) − g(x) → 0 as r → 0 by the dominated convergence
theorem. Using that g is bounded with compact support and the
dominated convergence theorem again, ‖g ∗ ϕr − g‖p → 0. By
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Theorem 24.2

‖h ∗ ϕr − h‖p ≤ ‖h‖p‖ϕr‖1 + ‖h‖p
= ‖h‖p‖ϕ‖1 + ‖h‖p
≤ ε(1 + c1).

Therefore
lim sup
r→0

‖f ∗ ϕr − f‖p ≤ ε(1 + c1).

Since ε is arbitrary, (2) follows.

Finally we prove (3). If p < ∞, we proceed exactly as in the
proof of Theorem 14.3, using part (1). We let β > 0 and let ε > 0.
We write f = g + h, where g is continuous with compact support
and ‖h‖p < ε. As in the proof of (2), g ∗ ϕr(x) − g(x) → 0. For
each r we have

sup
r
|h ∗ϕr(x)−h(x)| ≤ sup

r
|h ∗ϕr(x)|+ |h(x)| ≤ c1Mh(x) + |h(x)|

by (1). Therefore by Theorem 14.2 and Chebyshev’s inequality
(Lemma 10.4),

m({x : lim sup
r→0

|h ∗ ϕr(x)− h(x)| > β})

≤ m({x : c1Mh(x) > β/2}) +m({x : |h(x)| > β/2})

≤ c1c2
‖h‖1
β/2

+
‖h‖1
β/2

≤ (2c1c2 + 2)ε/β,

where c2 is a constant depending only on the dimension n. Since

lim sup
r→0

|f ∗ ϕr(x)− f(x)| ≤ lim sup
r→0

|h ∗ ϕr(x)− h(x)|

and ε is arbitrary, then lim supr→0 |f ∗ϕr(x)−f(x)| ≤ β for almost
every x. Since β is arbitrary, we conclude f ∗ ϕr(x)→ f(x) a.e.

There remains the case p =∞. It suffices to let R be arbitrary
and to show that f ∗ ϕr(x) → f(x) a.e. for x ∈ B(0, R). Write
f = fχB(0,2R) + fχB(0,2R)c . Since f is bounded, fχB(0,2R) is in L1

and we obtain our result for this function by the p = 1 result. Set
h = fχB(0,2R)c . If x ∈ B(0, R), then h(x) = 0, and

|h ∗ ϕr(x)| =
∣∣∣∫ h(x− y)ϕr(y) dy

∣∣∣ ≤ ∫
|y|≥R

ϕr(y) dy ‖h‖∞,
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since h(x − y) = 0 if x ∈ B(0, R) and |y| < R. Note now that
‖h‖∞ ≤ ‖f‖∞ and∫

|y|≥R
ϕr(y) dy =

∫
|y|≥R/r

ϕ(y) dy → 0

as r → 0 by the dominated convergence theorem.

We will need the following in Section 24.4.

For each integer k, let Rk be the collection of closed cubes
with side length 2−k such that each coordinate of each vertex is an
integer multiple of 2−k. If x ∈ Rn, x = (x1, . . . , xn), and ji/2

k ≤
xi < (ji + 1)/2k for each i, let

Sk(x) = [j1/2
k, (j + 1)/2k]× · · · [jn/2k, (jn + 1)/2k].

Thus Sk(x) is an element of Rk containing x.

Theorem 24.5 If f ∈ L1, then

1

m(Sk(x))

∫
Sk(x)

f(y) dy → f(x)

as k →∞ for a.e. x.

Proof. The proof is similar to that of Theorems 14.3 and 24.4.
First we show that there exists c1 not depending on f such that

1

m(Sk(x))

∫
Sk(x)

|f(y)| dy ≤ c1Mf(x). (24.3)

Note Sk(x) ⊂ B(x, 2−k
√
n). Hence the left hand side of (24.3)

is bounded by

m(B(x, 2−k
√
n))

m(Sk(x))
· 1

m(B(x, 2−k
√
n))

∫
B(x,2−k

√
n)

|f(y)| dy

≤ c1Mf(x),

where c1 = m(B(x, 2−k
√
n))/m(Sk(x)) does not depend on x or k.

Once we have (24.3), we proceed as in Theorems 14.3 and 24.4.
We let β > 0 and ε > 0 and we write f = g + h, where g is
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continuous with compact support and ‖h‖1 < ε. The average of
g over Sk(x) converges to g(x) since g is continuous, while (24.3)
guarantees that the averages of h are small. Since the proof is so
similar to those of Theorems 14.3 and 24.4 we leave the details to
the reader.

Here is an important application of Theorem 24.4. Recall from
Chapter 22 that for x ∈ Rn and y > 0, we defined

P (x, y) = cn
y

(|x|2 + y2)(n+1)/2
, cn =

Γ((n+ 1)/2)

π(n+1)/2
. (24.4)

We will also write Py(x) for P (x, y). We called Py the Poisson
kernel. If f ∈ Lp for some 1 ≤ p ≤ ∞, define

u(x, y) =

∫
Rn
Py(t)f(x− t) dt.

u is called the Poisson integral of f and is sometime denoted by

Pyf(x).

u is also sometimes called the harmonic extension of f .

Obviously P1(x) as a function of x is radially symmetric, de-
creasing as a function of |x|, and Py(x) = y−dP1(x/y). Therefore
by Theorem 24.4 we see that Pyf(x)→ f(x) a.e. if x ∈ Lp for some
1 ≤ p ≤ ∞.

24.4 The Calderon-Zygmund lemma

The following theorem, known as the Calderon-Zygmund lemma, is
very important to the theory of singular integrals.

Theorem 24.6 Suppose f ≥ 0, f is integrable, and λ > 0. There
exists a closed set F such that
(1) f(x) ≤ λ almost everywhere on F .
(2) F c is the union of open disjoint cubes {Qj} such that for each
j,

λ <
1

m(Qj)

∫
Qj

f(x) dx ≤ 2nλ. (24.5)

(3) m(F c) ≤ ‖f‖1/λ.
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Proof. Let Rk be defined as in Section 24.3. Choose k0 to be a
negative integer such that ‖f‖12nk0 ≤ λ. Then if Q ∈ Rk0 ,

1

m(Q)

∫
Q

f ≤ ‖f‖1
m(Q)

≤ λ.

The idea is that we look at each cube in Rk0 and divide it into
2n equal subcubes. If the average of f over a subcube is greater
than λ, then we include that subcube in our collection {Qj}. If
the average of a subcube is less than or equal to λ, we divide that
subcube into 2n further subcubes and look at the averages over
these smaller subcubes.

To be precise, we proceed as follows. Let Qk0 = ∅. For k > k0

we define Qk inductively. Suppose we have defined Qk0 , . . . ,Qk−1.
We let Qk consist of those cubes R in Rk such that
(1) the average of f over R is greater than λ:

1

m(R)

∫
R

f > λ;

(2) R is not contained in any element of Qk0 ,Qk0+1, . . . ,Qk−1.

We then let {Qj} consist of the interiors of the cubes that are
in ∪k≥k0Qk. The Qj are open cubes. For each k the interiors of
the cubes in Rk are disjoint, while two cubes, one in Rk and the
other in Rk′ with k 6= k′, either have disjoint interiors or else one
is contained in the other. The fact that we never chose a cube R
in Rk that was contained in any of the cubes in ∪k−1

i=k0
Qi implies

that the Qj are disjoint.

Suppose R is one of the Qj and its closure is in Rk. Let S be
the cube in Rk−1 that contains R. Since R is one of the Qj , then

1

m(R)

∫
R

f > λ.

Since S is not one of the Qj (otherwise we would not have chosen
R), then

1

m(S)

∫
S

f ≤ λ.

From this we deduce

1

m(R)

∫
R

f =
m(S)

m(R)
· 1

m(S)

∫
S

f ≤ 2nλ.
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Consequently (24.5) holds.

Let G be the union of the Qj ’s and let F = Gc. G is open, so
F is closed. If x ∈ F and x is not on the boundary of any of the
cubes in any of the Rk, then there exists a sequence of cubes Si(x)
decreasing to x with Si(x) ∈ Ri for which 1

m(Si(x))

∫
Si(x)

f ≤ λ. By

Theorem 24.5, for almost every such x we have

f(x) = lim
i→∞

1

Si(x)

∫
Si(x)

f(y) dy ≤ λ.

Since the union of the boundaries of all the cubes has Lebesgue
measure 0, (2) is proved.

We have
∫
Qj
f/m(Qj) > λ for each j, hence

m(Qj) <
1

λ

∫
Qj

f.

Since the Qj are disjoint, then

m(F c) =
∑
j

m(Qj) ≤
1

λ

∫
∪jQj

f ≤ ‖f‖1
λ

.

This proves (3).

24.5 Hilbert transform

A function is in C1 if it has a continuous derivative. If in addition
f has compact support, we say that f ∈ C1

K .

The Hilbert transform is an operator on functions defined by

Hf(x) = lim
ε→0,N→∞

1

π

∫
N>|y|>ε

f(x− y)

y
dy. (24.6)

Of course, 1/y is not absolutely integrable, so even when f is iden-
tically constant,

∫
N1>y>ε1

dy/y will not have a limit as ε1 → 0 or
N1 → ∞. It is important, therefore, to take integrals over sym-
metric intervals. Let us show the limit exists for each x if f ∈ C1

K .
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Proposition 24.7 If f ∈ C1
K ,

lim
ε→0,N→∞

∫
N>|y|>ε

f(x− y)

y
dy

exists for every x.

Proof. Fix x. Since f has compact support, f(x− y) will be 0 if
|y| is large enough. Hence for each fixed ε we see that

lim
N→∞

∫
N>|y|>ε

f(x− y)/y dy

exists. We now consider

lim
ε→0

∫
|y|>ε

f(x− y)

y
dy. (24.7)

Observe that if ε1 < ε2, then∫
ε2≥|y|>ε1

f(x− y)

y
dy =

∫
ε2≥|y|>ε1

f(x− y)− f(x)

y
dy,

using the fact that
∫
ε2≥|y|>ε1 dy/y = 0 because 1/y is an odd func-

tion. By the mean value theorem, |f(x − y) − f(x)| ≤ ‖f ′‖∞|y|,
and so∣∣∣∫

|y|>ε1

f(x− y)

y
dy −

∫
|y|>ε2

f(x− y)

y
dy
∣∣∣

≤
∫
ε2≥|y|>ε1

|f(x− y)− f(x)|
|y|

dy

≤ ‖f ′‖∞
∫
ε2≥|y|>ε1

dy

≤ 2|ε2 − ε1| ‖f ′‖∞.

Hence
∫
|y|>ε f(x− y)/y dy is a Cauchy sequence in ε. This implies

that the limit in (24.7) exists.

The Hilbert transform turns out to be related to conjugate har-
monic functions. To see the connection, let us first calculate the
Fourier transform of Hf .
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Remark 24.8 We will need the fact that the absolute value of∫ b
a

sin x
x dx is bounded uniformly over 0 ≤ a < b < ∞. To see this,

since sinx/x→ 1 as x→ 0, there is no difficulty as a→ 0 and it is
enough to bound ∣∣∣ ∫ b

0

sinx

x
dx
∣∣∣.

If Ak =
∫ (k+1)π

kπ
sin x
x dx, then

∑
k Ak is an alternating series with

Ak → 0 as k → ∞, hence the series converges. This implies∑N
k=1Ak is bounded in absolute value independently of N . Now if

N is the largest integer less than or equal to b/π, write∫ b

0

sinx

x
dx =

N−1∑
k=1

Ak +

∫ b

(N−1)π

sinx

x
dx.

The last term is bounded in absolute value by AN , and this proves
the assertion.

Proposition 24.9 If f ∈ C1
K , then

Ĥf(u) = i sgn (u)f̂(u).

Proof. Let

HεN (x) =
1

πx
χ(N>|x|>ε). (24.8)

and let us look at ĤεN . Since 1/x is an odd function,∫
N>|x|>ε

eiux

x
dx = 2i

∫
N>x>ε

sin(ux)

x
dx.

This is 0 if u is 0, and is equal to −2i
∫
N>x>ε

sin(|u|x)/x dx if u < 0.
Also ∫

N>x>ε

sin(|u|x)

x
dx =

∫
|u|N>x>|u|ε

sinx

x
dx.

This converges to the value π/2 as N →∞ and ε→ 0; see Exercise
11.12. Moreover,

sup
ε,N

∣∣∣ ∫
N>|x|>ε

sin(|u|x)

x
dx
∣∣∣ <∞

by Remark 24.8. Therefore ĤεN (u) → i sgn (u) pointwise and
boundedly.
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By the Plancherel theorem, Theorem 16.8,

‖Hε1N1
f−Hε2N2

f‖22 = (2π)−1

∫
|Ĥε1N1

(u)−Ĥε2N2
(u)|2|f̂(u)|2du.

This tends to 0 as ε1, ε2 → 0 and N1, N2 → ∞ by the dominated
convergence theorem and the fact that ‖f̂‖2 = (2π)1/2‖f‖2 < ∞.
ThereforeHεNf converges in L2 as ε→ 0 andN →∞. SinceHεNf
converges pointwise to Hf by Proposition 24.7, it converges to Hf
in L2. By the Plancherel theorem again, the Fourier transform of
HεNf converges in L2 to the Fourier transform of Hf . The Fourier
transform of HεNf is ĤεN (u)f̂(u), which converges pointwise to

i sgn (u)f̂(u).

Proposition 24.10 Suppose f ∈ C1
K . Let U be the harmonic ex-

tension of f and let V be the harmonic extension of Hf . Then U
and V are conjugate harmonic functions.

Proof. We will show that U and V satisfy the Cauchy-Riemann
conditions by looking at their Fourier transforms. By Exercise 24.4,
P̂y(u), the Fourier transform of the Poisson kernel in x with y held
fixed, is e−y|u|.

In each of the formulas below the Fourier transform is in the
x variable only, with y considered to be fixed. We have U(x, y) =
(Pyf)(x). Then the Fourier transform of U is

Û(u, y) = P̂y(u)f̂(u) = e−y|u|f̂(u). (24.9)

Also, by Exercise 16.4,

∂̂U

∂x
(u, y) = iuÛ(u, y) = iue−y|u|f̂(u) (24.10)

and
∂̂U

∂y
(u, y) = −|u|e−y|u|f̂(u). (24.11)

We obtain (24.11) by differentiating (24.9). Similarly,

V̂ (u, y) = e−y|u|Ĥf(u) = i sgn (u)e−y|u|f̂(u),

hence
∂̂V

∂x
(u, y) = iue−y|u|i sgn (u)f̂(u) (24.12)
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and

∂̂V

∂y
(u, y) = −|u|e−y|u|i sgn (u)f̂(u) (24.13)

Comparing (24.10) with (24.13) and (24.10) with (24.12) and
using the inversion theorem for Fourier transforms (Theorem 16.7),
we see that the Cauchy-Riemann equations hold for almost all pairs
(x, y). Since Py(x) is continuous in x and y for y > 0, then U and
V are both continuous, and hence the Cauchy-Riemann equations
hold everywhere.

24.6 Lp boundedness

Throughout this section we let m be one-dimensional Lebesgue
measure. We say a function K satisfies the Hörmander condition
if ∫

|x|≥2|y|
|K(x− y)−K(x)| dx ≤ c1, |y| > 0,

where c1 does not depend on y.

As an example, consider the Hilbert transform. Here K(x) =
1/πx, and

|K(x− y)−K(x)| = 1

π

∣∣∣ 1

x− y
− 1

x

∣∣∣ =
1

π

∣∣∣ y

x(x− y)

∣∣∣.
If |x| > 2|y|, then |x−y| ≥ |x|/2, so the right hand side is bounded
by 2|y|/π|x|2. Then∫

|x|≥2|y|
|K(x− y)−K(x)| dx ≤ 2

π
|y|
∫
|x|>2|y|

1

|x|2
dx ≤ 2

π
.

Theorem 24.11 Define Hf(x) by (24.6) when f ∈ C1
K . If 1 <

p <∞, then there exists a constant cp such that

‖Hf‖p ≤ cp‖f‖p

for f ∈ C1
K .
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Since the C1
K functions are dense in Lp, we can use this theorem

to extend the definition of H to all of Lp as follows. If f ∈ Lp,
choose fm ∈ C1

K such that ‖f − fm‖p → 0. Then

‖Hfm −Hfk‖p ≤ cp‖fm − fk‖p → 0,

and we let Hf be the limit of the Cauchy sequence Hfm. If {fm}
and {gm} are two sequences of C1

K functions converging to f in Lp,
then

‖Hfm −Hgm‖p ≤ cp‖fm − gm‖p → 0.

Thus the definition of Hf is independent of which sequence we
choose to approximate f by.

This theorem is not true for p =∞. Let f = χ[0,1]. If x < 0,∫
f(x− y)

y
dy =

∫ x

x−1

dy

y
= log

∣∣∣ x

x− 1

∣∣∣,
which is not bounded on [−1, 0). Exercise 24.6 shows that the
theorem is not true for p = 1 either.

Proof. Step 1: p = 2. Let

K(x) =
1

πx
χ(N>|x|>ε)

and define Tf(x) =
∫
K(x−y)f(y) dy. By the proof of Proposition

24.9 we saw that K̂ is bounded in absolute value by a constant c1
not depending on N or ε. Moreover, Exercise 24.8 asks you to
show that K satisfies Hörmander’s condition with a constant c2
not depending on ε or N . By the Plancherel theorem, Theorem
16.8,

‖Tf‖2 = (2π)−1/2‖T̂ f‖2 = (2π)−1/2‖K̂f̂‖2
≤ c1(2π)−1/2‖f̂‖2 = c1‖f‖2.

Step 2: p = 1. We want to show that T is of weak-type 1-1. Fix
λ and use the Calderon-Zygmund lemma for |f |. We thus have
disjoint open intervals Qj with G = ∪jQj and a closed set F = Gc

on which |f | ≤ λ a.e. Also, m(G) ≤ ‖f‖1/λ.

Define

g(x) =

{
f(x), x ∈ F ;

1
m(Qj)

∫
Qj
f(x) dx, x ∈ Qj .
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Note |g(x)| ≤ λ a.e. on F and

|g(x)| ≤ 1

m(Qj)

∫
Qj

|f(y)| dy ≤ 2λ

on Qj . Let h = f − g. Then h(x) = 0 on F and∫
Qj

h(x) dx =

∫
Qj

f(x) dx−
∫
Qj

[ 1

m(Qj)

∫
Qj

f(y) dy
]
dx = 0

for each Qj .

We have Tf = Tg + Th, so

m({x : |Tf(x)| > λ}) ≤ m({x : |Tg(x)| > λ/2})
+m({x : |Th(x)| > λ/2}).

If we show

m({x : |Tg(x)| > λ/2}) ≤ c3
λ
‖f‖1

for some constant c3 with a similar estimate for Th, then we will
have that T is of weak-type 1-1.

Step 3. We look at Tg. Since |g| = |f | ≤ λ on F and

1

m(Qj)

∫
Qj

|f(x)| dx ≤ 2λ

by Theorem 24.6, we have

‖g‖22 =

∫
F

g2 +

∫
G

g2

=

∫
F

f2 +
∑
j

∫
Qj

[ 1

m(Qj)

∫
Qj

f(y) dy
]2
dx

≤ λ
∫
F

|f(x)| dx+ 4
∑
j

m(Qj)λ
2

≤ λ‖f‖1 + 4λ2m(G)

≤
(
λ+ 4λ2 1

λ

)
‖f‖1

= 5λ‖f‖1.
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Therefore

m({x : |Tg(x)| > λ/2}) ≤ m({x : |Tg(x)|2 > λ2/4})

≤ 4

λ2
‖Tg‖22 ≤

c1
λ2
‖g‖22

≤ c2λ

λ2
‖f‖1 =

c2‖f‖1
λ

for some constants c1, c2. This provides the required inequality for
Tg.

Step 4. We now turn to Th. Define hj(x) to be equal to h(x) if
x ∈ Qj and to be zero otherwise. Let Q∗j be the interval with the
same center as Qj but with length twice as long. Let G∗ = ∪jQ∗j
and F ∗ = (G∗)c. Note that

m(G∗) ≤
∑
j

m(Q∗j ) = 2
∑
j

m(Qj) = 2m(G).

If yj is the center of Qj , rj is the length of Qj , x /∈ Q∗j , and y ∈ Qj ,
then

|x− yj | ≥ rj ≥ 2|y − yj |.

Since
∫
hj(y) dy =

∫
Qj
h(y) dy = 0,

|Thj(x)| =
∣∣∣∫ K(x− y)hj(y) dy

∣∣∣
=
∣∣∣∫ [K(x− y)−K(x− yj)]hj(y) dy

∣∣∣
≤
∫
Qj

|K(x− y)−K(x− yj)| |hj(y)| dy.

Therefore, since F ∗ = (G∗)c = ∩j(Q∗j )c ⊂ (Q∗j )
c for each j,∫

F∗
|Th(x)| dx ≤

∑
j

∫
F∗
|Thj(x)| dx

≤
∑
j

∫
(Q∗j )c

|Thj(x)| dx

≤
∑
j

∫
(Q∗j )c

∫
Qj

|K(x− y)−K(x− yj)| |hj(y)| dy dx

=
∑
j

∫
Qj

∫
(Q∗j )c

|K(x− y)−K(x− yj)| dx |hj(y)| dy
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≤
∑
j

∫
Qj

∫
|x′|≥2|y−yj |

|K(x′ − (y − yj))−K(x′)| dx′|hj(y)| dy

≤ c2
∑
j

∫
Qj

|hj(y)| dy.

In the next to the last inequality we made the substitution x′ =
x − yj and in the last inequality we used the fact that K satisfies
Hörmander’s condition.

Now h = hj on Qj and h = f − g, so∫
Qj

|h(y)| dy ≤
∫
Qj

|f(y)| dy +

∫
Qj

[ 1

m(Qj)

∫
Qj

|f(x)| dx
]
dy

= 2

∫
Qj

|f(y)| dy.

We therefore conclude∫
F∗
|Th(x)| ≤ 2c2

∑
j

∫
Qj

|f(y)|dy ≤ 2c2‖f‖1.

By the Chebyshev inequality,

m({x ∈ F ∗ : |Th(x)| > λ/2}) = m({x : |Th(x)|χF∗(x) > λ/2})

≤
∫
|Th(x)|χF∗(x) dx

λ/2

=
2

λ

∫
F∗
|Th(x)| dx

≤ 2c2
λ
‖f‖1.

We also have

m({x ∈ G∗ : |Th(x)| > λ/2}) ≤ m(G∗) ≤ 2m(G) ≤ 2

λ
‖f‖1.

Combining gives the required inequality for Th.

Step 5: 1 < p < 2. The operator T is linear, is of weak-type 1-1 and
is bounded on L2. By the Marcinkiewicz interpolation theorem, T
is bounded on L1 ∩ Lp for 1 < p < 2.

Step 6: 2 < p < ∞. We obtain the boundedness of T on Lp for
p > 2 by a duality argument. Suppose p > 2 and choose q so that



24.6. LP BOUNDEDNESS 345

p−1 + q−1 = 1. If f ∈ L1 ∩ Lp,

‖Tf‖p = sup
{∫

g(y)(Tf)(y) dy : ‖g‖q, g ∈ C1
K

}
since the C1

K functions are dense in Lq. But∫
g(Tf)dy =

∫
g(y)K(y − x)f(x) dx dy = −

∫
f(x)(Tg)(x) dx.

By Hölder’s inequality, the absolute value of the last integral is less
than or equal to

‖f‖p‖Tg‖q ≤ c4‖f‖p‖g‖q

for a constant c4. The inequality here follows from Step 5 since
1 < q < 2. Taking the supremum over g ∈ Lq ∩C1

K with ‖g‖q ≤ 1,
we obtain by the duality of Lp and Lq that

‖Tf‖p ≤ c4‖f‖p.

Step 7. We have proved the boundedness of Tf where we chose ε
and N and then left them fixed, and obtained

‖Tf‖p ≤ cp‖f‖p, (24.14)

where cp does not depend on ε or N . If we apply (24.14) for f ∈ C1
K

and let ε→ 0 and N →∞, we obtain by Fatou’s lemma that

‖Hf‖p ≤ cp‖f‖p.

This is what we were required to prove.

Remark 24.12 An examination of the proof shows that the es-
sential properties of the Hilbert transform that were used are that
its Fourier transform is bounded, that it satisfies Hörmander’s con-
dition, and that Hf exists for a sufficiently large class of functions.
Almost the same proof shows Lp boundedness for a much larger
class of operators. See [9] for an exposition of further results in
this theory.
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24.7 Exercises

Exercise 24.1 Let f ∈ Lp(Rn) for some 1 ≤ p ≤ ∞. Define Γ(x)
to be the cone in Rn × [0,∞) defined by

Γ(x) = {(z, y) : z ∈ Rn, y ∈ (0,∞), |z − x| < y}.

(1) Prove that there exists a constant c1 such that

sup
(z,y)∈Γ(x)

|Pyf(x)| ≤ c1Mf(x).

(2) Prove that

lim
(z,y)∈Γ(x),(z,y)→x

Pyf(x) = f(x), a.e.

The assertion in (2) is known as Fatou’s theorem and the conver-
gence is called nontangential convergence.

Exercise 24.2 Let A be a bounded open set in Rn and let rA+x =
{ry + x : y ∈ A} for r > 0 and x ∈ Rn. Suppose f is an integrable
function on Rn and m is Lebesgue measure. Prove that

lim
r→0

1

m(rA)

∫
rA+x

f(y) dy = f(x), a.e.

Exercise 24.3 Suppose f is in Lp(R2) for 1 < p < ∞. Let Rhk
be a rectangle whose sides are parallel to the x and y axes, whose
base is h, and whose height is h. Prove that

lim
h,k→0

1

hk

∫
Rhk+x

f(y) dy = f(x), a.e.,

where Rhk + x = {y + x : y ∈ Rhk}.

Exercise 24.4 Let Py be defined by (24.4) where we take the di-
mension n to be 1.
(1) Prove that the Fourier transform of e−|x| is a constant times
1/(1 + u2).
(2) Fix y > 0. Prove that the Fourier transform of h(x) = P (x, y)
is e−|u|y.
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Exercise 24.5 Prove that if y1, y2 > 0 and f ∈ Lp for some 1 ≤
p ≤ ∞, then Py1(Py2f) = Py1+y2f . This shows that the family
{Py} is an example of what is known as a semigroup of operators.

Exercise 24.6 Let Py be defined by (24.4) where we take the di-
mension n to be 1.
(1) Prove that the Hilbert transform of Py is equal to the function
x/(x2 + y2).
(2) Conclude that the Hilbert transform is not a bounded operator
on L1(R).

Exercise 24.7 Suppose that f ∈ C1
K and f ≥ 0. Prove that the

Hilbert transform of f is not in L1(R).

Exercise 24.8 Let HεN be defined by (24.8). Prove that HεN

satisfies Hörmander’s condition with a constant not depending on
ε or N .

Exercise 24.9 Let f be a C1
K function on Rn and for 1 ≤ j ≤ n

prove that the limit

Rjf = lim
ε→0,N→∞

∫
ε<|x|<N

yj
|y|n+1

f(x− y) dy

exists. Rj is a constant multiple of the jth Riesz transform.

Exercise 24.10 Show that the Fourier transform of Rj defined in
Exercise 24.9 is a constant multiple of uj/|u|.

Exercise 24.11 Prove that Rj defined in Exercise 24.9 satisfies

‖Rf‖p ≤ cp‖f‖p

for all C1
K functions f , where 1 ≤ j ≤ n, 1 < p < ∞, and cp

depends only on n and p.

Exercise 24.12 Suppose 1 < p <∞ and 1 ≤ i, j ≤ n.
(1) Prove there exists a constant c0 such that if f is C∞ with
compact support, then

∂2f

∂xi∂xj
= c0RiRj∆f,
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where Ri and Rj are Riesz transforms, and ∆f =
∑d
k=1

∂2f
∂x2
k

is the

Laplacian.
(2) Prove there exists a constant cp such that∥∥∥ ∂2f

∂xi∂xj

∥∥∥
p
≤ cp‖∆f‖p

for f ∈ C2 with compact support.

Exercise 24.13 Suppose K is an odd function, K ∈ L2(R), we
have |K(x)| ≤ 1/|x| for each x 6= 0, and K satisfies Hörmander’s

condition. Prove that K̂ is bounded.

Exercise 24.14 Let f ∈ L2(R) and set u(x, y) = Pyf(x), where
Pyf is the Poisson integral of f . Define

g(f)(x) =
(∫ ∞

0

y|∇u(x, y)|2 dy
)1/2

.

Here

|∇u|2 =
∣∣∣∂u
∂y

∣∣∣2 +

n∑
k=1

∣∣∣ ∂u
∂xk

∣∣∣2.
g(f) is one of a class of functions known as Littlewood-Paley func-
tions. Prove there exists a constant c1 such that

‖f‖2 = c1‖g(f)‖2.



Chapter 25

Spectral theory

An important theorem from undergraduate linear algebra says that
a symmetric matrix is diagonalizable. Our goal in this chapter is
to give the infinite dimensional analog of this theorem.

We first consider compact symmetric operators on a Hilbert
space. We prove in this case that there is an orthonormal basis of
eigenvectors. We apply this to an example that arises from partial
and ordinary differential equations.

We then turn to general bounded symmetric operators on a
Hilbert space. We derive some properties of the spectrum of such
operators, give the spectral resolution, and prove the spectral the-
orem.

Throughout this chapter we assume our Hilbert space is sepa-
rable, that is, there exists a countable dense subset. We also only
consider Hilbert spaces whose scalar field is the complex numbers.

25.1 Bounded linear operators

Let H be a Hilbert space over the complex numbers. Recall that
a linear operator A : H → H is bounded if

‖A‖ = sup{‖Ax‖ : ‖x‖ ≤ 1}

is finite. Given two linear operators A andB and a complex number
c, we define (A+B)(x) = Ax+Bx and (cA)(x) = cA(x). The set

349
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L of all bounded linear operators from H into H is a linear space,
and by Exercise 18.7, this linear space is a Banach space. We can
define the composition of two operators A and B by

(AB)(x) = A(Bx).

Note that

‖(AB)(x)‖ = ‖A(Bx)‖ ≤ ‖A‖ ‖Bx‖ ≤ ‖A‖ ‖B‖ ‖x‖,

and we conclude that

‖AB‖ ≤ ‖A‖ ‖B‖. (25.1)

In particular, ‖A2‖ ≤ (‖A‖)2 and ‖Ai‖ ≤ (‖A‖)i.

The operator of composition is not necessarily commutative
(think of the case where H is Cn and A acts by matrix multi-
plication), but it is associative and the distributive laws hold; see
Exercise 25.1. The space of bounded linear operators from a Ba-
nach space to itself is an example of what is known as a Banach
algebra, but that is not important for what follows.

Let A be a bounded linear operator. If z is a complex number
and I is the identity operator, then zI − A is a bounded linear
operator on H which might or might not be invertible. We define
the spectrum of A by

σ(A) = {z ∈ C : zI −A is not invertible}.

We sometimes write z − A for zI − A. The resolvent set for A is
the set of complex numbers z such that z − A is invertible. We
define the spectral radius of A by

r(A) = sup{|z| : z ∈ σ(A)}.

We say x ∈ H with x 6= 0 is an eigenvector corresponding to an
eigenvalue λ ∈ C if Ax = λx. If λ is an eigenvalue, then λ ∈ σ(A).
This follows since (λ − A)x = 0 while x 6= 0, so λ − A is not
one-to-one.

The converse is not true, that is, not every element of the spec-
trum is necessarily an eigenvalue.
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Example 25.1 Let H = `2 and let en be the sequence in `2 which
has all coordinates equal to 0 except for the nth one, where the
coordinate is equal to 1. Define

A(a1, a2, a3, . . .) = (a1, a2/2, a3/3, . . .).

Clearly A is a bounded operator. On the one hand, A does not
have an inverse, for if it did, then A−1en = nen, and A−1 would
not be a bounded operator. Therefore 0I − A is not invertible, or
0 is in the spectrum. On the other hand, we do not have Ax = 0x
for any non-zero x, so 0 is not an eigenvalue.

Proposition 25.2 If B is a bounded linear operator from H to H
with ‖B‖ < 1, then I −B is invertible and

(I −B)−1 =

∞∑
i=0

Bi, (25.2)

with the convention that B0 = I.

Proof. If ‖B‖ < 1, then∥∥∥ n∑
i=m

Bi
∥∥∥ ≤ n∑

i=m

‖Bi‖ ≤
n∑

i=m

‖B‖i,

which shows that Sn =
∑n
i=0B

i is a Cauchy sequence in the Ba-
nach space L of linear operators from H to H. By the complete-
ness of this space, Sn converges to S =

∑∞
i=0B

i. We see that
BS =

∑∞
i=1B

i = S − I, so (I − B)S = I. Similarly we show that
S(I −B) = I.

Proposition 25.3 If A is an invertible bounded linear operator
from H to H and B is a bounded linear operator from H to H with
‖B‖ < 1/‖A−1‖, then A−B is invertible.

Proof. We have ‖A−1B‖ ≤ ‖A−1‖ ‖B‖ < 1, so by Proposition
25.2 we know that I−A−1B is invertible. IfM andN are invertible,
then

(N−1M−1)(MN) = I = (MN)(N−1M−1),

so MN is invertible. We set M = A and N = I − A−1B, and
conclude that A−B is invertible.
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Proposition 25.4 If A is a bounded linear operator from H into
H, then σ(A) is a closed and bounded subset of C and r(A) ≤ ‖A‖.

Proof. If z /∈ σ(A), then zI−A is invertible. By Proposition 25.3,
if |w − z| is small enough, then

wI −A = (zI −A)− (z − w)I

will be invertible, and hence w /∈ σ(A). This proves that σ(A)c is
open, and we conclude that σ(A) is closed.

We know from (25.2) that

(zI −A)−1 = z−1(I −Az−1)−1 =

∞∑
n=0

Anz−n−1

converges if ‖Az−1‖ < 1, or equivalently, |z| > ‖A‖. In other
words, if |z| > ‖A‖, then z /∈ σ(A). Hence the spectrum is con-
tained in the closed ball in H of radius ‖A‖ centered at 0.

If A is a bounded operator on H, the adjoint of A, denoted A∗,
is the operator on H such that 〈Ax, y〉 = 〈x,A∗y〉 for all x and y.

It follows from the definition that the adjoint of cA is cA∗ and
the adjoint of An is (A∗)n. If P (x) =

∑n
j=0 ajx

j is a polynomial,

the adjoint of P (A) =
∑n
j=0 ajA

j will be

P (A∗) =

n∑
j=0

ajP (A∗).

The adjoint operator always exists.

Proposition 25.5 If A is a bounded operator on H, there exists
a unique operator A∗ such that 〈Ax, y〉 = 〈x,A∗y〉 for all x and y.

Proof. Fix y for the moment. The function f(x) = 〈Ax, y〉 is a
linear functional on H. By the Riesz representation theorem for
Hilbert space, Theorem 19.10, there exists zy such that 〈Ax, y〉 =
〈x, zy〉 for all x. Since

〈x, zy1+y2〉 = 〈Ax, y1 + y2〉 = 〈Ax, y1〉+〈Ax, y2〉 = 〈x, zy1〉+〈x, zy2〉
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for all x, then zy1+y2 = zy1 + zy2 and similarly zcy = czy. If we
define A∗y = zy, this will be the operator we seek.

If A1 and A2 are two operators such that 〈x,A1y〉 = 〈Ax, y〉 =
〈x,A2y〉 for all x and y, then A1y = A2y for all y, so A1 = A2.
Thus the uniqueness assertion is proved.

25.2 Symmetric operators

A bounded linear operator AmappingH intoH is called symmetric
if

〈Ax, y〉 = 〈x,Ay〉 (25.3)

for all x and y in H. Other names for symmetric are Hermitian or
self-adjoint. When A is symmetric, then A∗ = A, which explains
the name “self-adjoint.”

Example 25.6 For an example of a symmetric bounded linear op-
erator, let (X,A, µ) be a measure space with µ a σ-finite measure,
let H = L2(X), and let F (x, y) be a jointly measurable function
from X ×X into C such that F (y, x) = F (x, y) and∫ ∫

F (x, y)2 µ(dx)µ(dy) <∞. (25.4)

Define A : H → H by

Af(x) =

∫
F (x, y)f(y)µ(dy). (25.5)

Exercise 25.4 asks you to verify that A is a bounded symmetric
operator.

We have the following proposition.

Proposition 25.7 Suppose A is a bounded symmetric operator.
(1) (Ax, x) is real for all x ∈ H.
(2) The function x→ 〈Ax, x〉 is not identically 0 unless A = 0.
(3) ‖A‖ = sup‖x‖=1 |〈Ax, x〉|.
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Proof. (1) This one is easy since

〈Ax, x〉 = 〈x,Ax〉 = 〈Ax, x〉,

where we use z for the complex conjugate of z.

(2) If 〈Ax, x〉 = 0 for all x, then

0 = 〈A(x+ y), x+ y〉 = 〈Ax, x〉+ 〈Ay, y〉+ 〈Ax, y〉+ 〈Ay, x〉

= 〈Ax, y〉+ 〈y,Ax〉 = 〈Ax, y〉+ 〈Ax, y〉.

Hence Re 〈Ax, y〉 = 0. Replacing x by ix and using linearity,

Im (〈Ax, y〉) = −Re (i〈Ax, y〉) = −Re (〈A(ix), y〉) = 0.

Therefore 〈Ax, y〉 = 0 for all x and y. We conclude Ax = 0 for all
x, and thus A = 0.

(3) Let β = sup‖x‖=1 |〈Ax, x〉|. By the Cauchy-Schwarz inequal-
ity,

|〈Ax, x〉| ≤ ‖Ax‖ ‖x‖ ≤ ‖A‖ ‖x‖2,

so β ≤ ‖A‖.

To get the other direction, let ‖x‖ = 1 and let y ∈ H such that
‖y‖ = 1 and 〈y,Ax〉 is real. Then

〈y,Ax〉 = 1
4 (〈x+ y,A(x+ y)〉 − 〈x− y,A(x− y)〉).

We used that 〈y,Ax〉 = 〈Ay, x〉 = 〈Ax, y〉 = 〈x,Ay〉 since 〈y,Ax〉
is real and A is symmetric. Then

16|〈y,Ax〉|2 ≤ β2(‖x+ y‖2 + ‖x− y‖2)2

= 4β2(‖x‖2 + ‖y‖2)2

= 16β2.

We used the parallelogram law (equation (19.1)) in the first equal-
ity. We conclude |〈y,Ax〉| ≤ β.

If ‖y‖ = 1 but 〈y,Ax〉 = reiθ is not real, let y′ = e−iθy and
apply the above with y′ instead of y. We then have

|〈y,Ax〉| = |〈y′, Ax〉| ≤ β.

Setting y = Ax/‖Ax‖, we have ‖Ax‖ ≤ β. Taking the supremum
over x with ‖x‖ = 1, we conclude ‖A‖ ≤ β.
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25.3 Compact symmetric operators

Let H be a separable Hilbert space over the complex numbers and
let B1 be the open unit ball in H. We say that K is a compact
operator from H to itself if the closure of K(B1) is compact in H.

Example 25.8 The identity operator on H = `2 is not compact;
see Exercise 19.5.

Example 25.9 Let H = `2, let n > 0, let λ1, . . . , λn be complex
numbers, and define

K(a1, a2, . . . , ) = (λ1a1, λ2a2, . . . , λnan, 0, 0, . . .).

Then K(B1) is contained in F = E × {(0, 0, . . .)}, where E =∏n
i=1B(0, λi). The set F is homeomorphic (in the topological

sense) to E, which is a closed and bounded subset of Cn. Since
Cn is topologically the same as R2n, the Heine-Borel theorem says
that E is compact, hence F is also. Closed subsets of compact sets
are compact, so the closure of K(B1) is compact.

Before we can give other examples of compact operators, we
need a few facts.

Proposition 25.10 (1) If K1 and K2 are compact operators and
c is a complex number, then cK1 +K2 is a compact operator.
(2) If L is a bounded linear operator from H to H and K is a
compact operator, then KL and LK are compact operators.
(3) If Kn are compact operators and limn→∞ ‖Kn −K‖ = 0, then
K is a compact operator.

Proof. (1) Since (K1 +K2)(B1) ⊂ K1(B1) +K2(B1), (1) follows
by Exercise 25.5. The proof for cK1 is even easier.

(2) The closure of ML(B1) will be compact because the closure
of L(B1) is compact and M is a continuous function, hence M
maps compact sets into compact sets.

L(B1) will be contained in the ball B(0, ‖L‖). Then ML(B1)
will be contained in ‖L‖M(B1), and the closure of this set is com-
pact.
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(3) Recall from Theorem 20.23 that a subset A of a metric space
is compact if and only if it complete and totally bounded. Saying
A is totally bounded means that given ε > 0, A can be covered
by finitely many balls of radius ε. Let ε > 0. Choose n such that
‖Kn −K‖ < ε/2. Since Kn is compact, the closure of Kn(B1) can
be covered by finitely many balls of radius ε/2. Hence the closure of
K(B1) can be covered by the set of balls with the same centers but
with radius ε. Therefore the closure of K(B1) is totally bounded.
Since H is a Hilbert space, it is complete. We know that closed
subsets of complete metric spaces are complete. Hence the closure
of K(B1) is complete and totally bounded, so is compact.

We now give an example of a non-trivial compact operator.

Example 25.11 Let H = `2 and let

K(a1, a2, a3, . . .) = (a1/2, a2/2
2, a3/2

3, . . .).

Note K is the limit in norm of Kn, where

Kn(a1, a2, . . .) = (a1/2, a2/2
2, . . . , an/2

n, 0, 0, . . .).

Each Kn is compact by Example 25.9. By Proposition 25.10, K is
a compact operator.

Here is another interesting example of a compact symmetric
operator.

Example 25.12 Let H = L2([0, 1]) and let F : [0, 1]2 → R be a
continuous function with F (x, y) = F (y, x) for all x and y. Define
K : H → H by

Kf(x) =

∫ 1

0

F (x, y)f(y) dy.

We discussed in Example 25.6 the fact that K is a bounded sym-
metric operator. Let us show that it is compact.

If f ∈ L2([0, 1]) with ‖f‖ ≤ 1, then

|Kf(x)−Kf(x′)| =
∣∣∣ ∫ 1

0

[F (x, y)− F (x′, y)]f(y) dy
∣∣∣

≤
(∫ 1

0

|F (x, y)− F (x′, y)|2 dy
)1/2

‖f‖,
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using the Cauchy-Schwarz inequality. Since F is continuous on
[0, 1]2, which is a compact set, then it is uniformly continuous there.
Let ε > 0. There exists δ such that

sup
|x−x′|<δ

sup
y
|F (x, y)− F (x′, y)| < ε.

Hence if |x− x′| < δ, then |Kf(x)−Kf(x′)| < ε for every f with
‖f‖ ≤ 1. In other words, {Kf : ‖f‖ ≤ 1} is an equicontinuous
family.

Since F is continuous, it is bounded, say by N , and therefore

|Kf(x)| ≤
∫ 1

0

N |f(y)| dy ≤ N‖f‖,

again using the Cauchy-Schwarz inequality. If Kfn is a sequence
in K(B1), then {Kfn} is a bounded equicontinuous family of func-
tions on [0, 1], and by the Ascoli-Arzelà theorem, there is a sub-
sequence which converges uniformly on [0, 1]. It follows that this
subsequence also converges with respect to the L2 norm. Since
every sequence in K(B1) has a subsequence which converges, the
closure of K(B1) is compact. Thus K is a compact operator.

We will use the following easy lemma repeatedly.

Lemma 25.13 If K is a compact operator and {xn} is a sequence
with ‖xn‖ ≤ 1 for each n, then {Kxn} has a convergent subse-
quence.

Proof. Since ‖xn‖ ≤ 1, then { 1
2xn} ⊂ B1. Hence { 1

2Kxn} =

{K( 1
2xn)} is a sequence contained in K(B1), a compact set and

therefore has a convergent subsequence.

We now prove the spectral theorem for compact symmetric op-
erators.

Theorem 25.14 Suppose H is a separable Hilbert space over the
complex numbers and K is a compact symmetric linear operator.
There exist a sequence {zn} in H and a sequence {λn} in R such
that
(1) {zn} is an orthonormal basis for H,
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(2) each zn is an eigenvector with eigenvalue λn, that is, Kzn =
λnzn,
(3) for each λn 6= 0, the dimension of the linear space {x ∈ H :
Kx = λnx} is finite,
(4) the only limit point, if any, of {λn} is 0; if there are infinitely
many distinct eigenvalues, then 0 is a limit point of {λn}.

Note that part of the assertion of the theorem is that the eigenval-
ues are real. (3) is usually phrased as saying the non-zero eigen-
values have finite multiplicity.

Proof. If K = 0, any orthonormal basis will do for {zn} and all
the λn are zero, so we suppose K 6= 0. We first show that the
eigenvalues are real, that eigenvectors corresponding to distinct
eigenvalues are orthogonal, the multiplicity of non-zero eigenvalues
is finite, and that 0 is the only limit point of the set of eigenvalues.
We then show how to sequentially construct a set of eigenvectors
and that this construction yields a basis.

If λn is an eigenvalue corresponding to a eigenvector zn 6= 0, we
see that

λn〈zn, zn〉 = 〈λnzn, zn〉 = 〈Kzn, zn〉 = 〈zn,Kzn〉
= 〈zn, λnzn〉 = λn〈zn, zn〉,

which proves that λn is real.

If λn 6= λm are two distinct eigenvalues corresponding to the
eigenvectors zn and zm, we observe that

λn〈zn, zm〉 = 〈λnzn, zm〉 = 〈Kzn, zm〉 = 〈zn,Kzm〉
= 〈zn, λmzm〉 = λm〈zn, zm〉,

using that λm is real. Since λn 6= λm, we conclude 〈zn, zm〉 = 0.

Suppose λn 6= 0 and that there are infinitely many orthonormal
vectors xk such that Kxk = λnxk. Then

‖xk − xj‖2 = 〈xk − xj , xk − xj〉 = ‖xk‖2 − 2〈xk, xj〉+ ‖xj‖2 = 2

if j 6= k. But then no subsequence of λnxk = Kxk can converge, a
contradiction to Lemma 25.13. Therefore the multiplicity of λn is
finite.

Suppose we have a sequence of distinct non-zero eigenvalues
converging to a real number λ 6= 0 and a corresponding sequence
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of eigenvectors each with norm one. Since K is compact, there is
a subsequence {nj} such that Kznj converges to a point in H, say
w. Then

znj =
1

λnj
Kznj →

1

λ
w,

or {znj} is an orthonormal sequence of vectors converging to λ−1w.
But as in the preceding paragraph, we cannot have such a sequence.

Since {λn} ⊂ B(0, r(K)), a bounded subset of the complex
plane, if the set {λn} is infinite, there will be a subsequence which
converges. By the preceding paragraph, 0 must be a limit point of
the subsequence.

We now turn to constructing eigenvectors. By Lemma 25.7(3),
we have

‖K‖ = sup
‖x‖=1

|〈Kx, x〉|.

We claim the maximum is attained. If sup‖x‖=1 〈Kx, x〉 = ‖K‖,
let λ = ‖K‖; otherwise let λ = −‖K‖. Choose xn with ‖xn‖ = 1
such that 〈Kxn, xn〉 converges to λ. There exists a subsequence
{nj} such that Kxnj converges, say to z. Since λ 6= 0, then z 6= 0,
for otherwise λ = limj→∞ 〈Kxnj , xnj 〉 = 0. Now

‖(K − λI)z‖2 = lim
j→∞

‖(K − λI)Kxnj‖2

≤ ‖K‖2 lim
j→∞

‖(K − λI)xnj‖2

and

‖(K − λI)xnj‖2 = ‖Kxnj‖2 + λ2‖xnj‖2 − 2λ〈xnj ,Kxnj 〉
≤ ‖K‖2 + λ2 − 2λ〈xnj ,Kxnj 〉
→ λ2 + λ2 − 2λ2 = 0.

Therefore (K − λI)z = 0, or z is an eigenvector for K with corre-
sponding eigenvalue λ.

Suppose we have found eigenvectors z1, z2, . . . , zn with corre-
sponding eigenvalues λ1, . . . , λn. Let Xn be the linear subspace
spanned by {z1, . . . , zn} and let Y = X⊥n be the orthogonal com-
plement of Xn, that is, the set of all vectors orthogonal to every
vector in Xn. If x ∈ Y and k ≤ n, then

〈Kx, zk〉 = 〈x,Kzk〉 = λk〈x, zk〉 = 0,
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or Kx ∈ Y . Hence K maps Y into Y . By Exercise 25.6, K|Y is a
compact symmetric operator. If Y is non-zero, we can then look
at K|Y , and find a new eigenvector zn+1.

It remains to prove that the set of eigenvectors forms a basis.
Suppose y is orthogonal to every eigenvector. Then

〈Ky, zk〉 = 〈y,Kzk〉 = 〈y, λkzk〉 = 0

if zk is an eigenvector with eigenvalue λk, so Ky is also orthogonal
to every eigenvector. Suppose X is the closure of the linear sub-
space spanned by {zk}, Y = X⊥, and Y 6= {0}. If y ∈ Y , then
〈Ky, zk〉 = 0 for each eigenvector zk, hence 〈Ky, z〉 = 0 for every
z ∈ X, or K : Y → Y . Thus K|Y is a compact symmetric opera-
tor, and by the argument already given, there exists an eigenvector
for K|Y . This is a contradiction since Y is orthogonal to every
eigenvector.

Remark 25.15 If {zn} is an orthonormal basis of eigenvectors for
K with corresponding eigenvalues λn, let En be the projection onto
the subspace spanned by zn, that is, Enx = 〈x, zn〉zn. A vector x
can be written as

∑
n 〈x, zn〉zn, thus Kx =

∑
n λn〈x, zn〉zn. We

can then write

K =
∑
n

λnEn.

For general bounded symmetric operators there is a related expan-
sion where the sum gets replaced by an integral; see Section 25.6.

Remark 25.16 If zn is an eigenvector for K with corresponding
eigenvalue λn, then Kzn = λnzn, so

K2zn = K(Kzn) = K(λnzn) = λnKzn = (λn)2zn.

More generally, Kjzn = (λn)jzn. Using the notation of Remark
25.15, we can write

Kj =
∑
n

(λn)jEn.

If Q is any polynomial, we can then use linearity to write

Q(K) =
∑
n

Q(λn)En.
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It is a small step from here to make the definition

f(K) =
∑
n

f(λn)En

for any bounded and Borel measurable function f .

25.4 An application

Consider the ordinary differential equation

−f ′′(x) = g(x) (25.6)

with boundary conditions f(0) = 0, f(2π) = 0. We put the minus
sign in front of f ′′ so that later some eigenvalues will be positive.

When g is continuous, we can give an explicit solution as follows.
Let

G(x, y) =

{
x(2π − y)/2π, 0 ≤ x ≤ y ≤ 2π;

y(2π − x)/2π, 0 ≤ y ≤ x ≤ 2π.
(25.7)

Recall that a function is in C2 if it has a continuous second
derivative. We then have

Proposition 25.17 If g is continuous on [0, 2π], then

f(x) =

∫ 2π

0

G(x, y)g(y) dy

is a C2 function, f(0) = f(2π) = 0, and −f ′′(x) = g(x).

Proof. Clearly f(0) = f(2π) = 0 by the formula for G. We see
that

f(x+ h)− f(x)

h
=

∫ 2π

0

G(x+ h, y)−G(x, y)

h
g(y) dy

→
∫ 2π

0

H(x, y) dy
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as h→ 0 by the dominated convergence theorem, where

H(x, y) =

{
(2π − y)/2π, x ≤ y;

−y/2π, x > y.

Thus

f ′(x) =

∫ x

0

−y
2π

g(y) dy +

∫ 2π

x

2π − y
2π

g(y) dy.

By the fundamental theorem of calculus, f ′ is differentiable and

f ′′(x) =
−x
2π

g(x)− 2π − x
2π

g(x) = −g(x)

as required.

The function G is called the Green’s function for the operator
Lf = f ′′. The phrase “the Green’s function” is awkward English,
but is nevertheless what people use.

By Examples 25.6 and 25.12 the operator

Kf(x) =

∫
G(x, y)f(y) dy

is a bounded compact symmetric operator on L2([0, 2π]), so there
exists an orthonormal basis of eigenvectors {zn} with corresponding
eigenvalues {λn}. If λn = 0, then zn = λ−1

n Kzn is continuous since
K maps L2 functions to continuous ones. By Proposition 25.17
we can say more, namely that zn ∈ C2, zn(0) = zn(2π) = 0,
and −z′′n = λ−1

n zn. The solutions to this differential equation,
or equivalently z′′n + λ−1

n zn = 0, with zn(0) = zn(2π), are zn =
π−1/2 sin(nx/2) with λn = 4/n2.

We note that 0 is not an eigenvalue for K because if Kz =
0, then z is equal to the second derivative of the function that
is identically 0, hence z is identically 0. Therefore z is not an
eigenvector.

A function f ∈ L2([0, 2π]) can be written as

f =

∞∑
n=1

〈f, zn〉zn,

where zn(x) = π−1/2 sin(nx/2) and the sum converges in L2. This
is called a Fourier sine series.
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We can use the above expansion to solve the partial differential
equation

∂u

∂t
(t, x) =

∂2u

∂x2
(t, x)

with u(t, 0) = u(t, 2π) = 0 for all t and u(0, x) = f(x) for all
x ∈ [0, 2π], where f ∈ L2([0, 2π]). This partial differential equation
is known as the heat equation. Write f =

∑∞
n=1 〈f, zn〉zn. It is then

a routine matter to show that the solution is

u(t, x) =

∞∑
n=1

〈f, zn〉e−t/λnzn.

This formula may look slightly different from other formulas you
may have seen. The reason is that we are using λn for the eigenval-
ues ofK; {1/λn} will be the eigenvalues for the operator Lf = −f ′′.

25.5 Spectra of symmetric operators

When we move away from compact operators, the spectrum can
become much more complicated. Let us look at an instructive
example.

Example 25.18 Let H = L2([0, 1]) and define A : H → H by
Af(x) = xf(x). There is no difficulty seeing that A is bounded
and symmetric.

We first show that no point in [0, 1]c is in the spectrum of A. If z
is a fixed complex number and either has a non-zero imaginary part
or has a real part that is not in [0, 1], then z − A has the inverse
Bf(x) = 1

z−xf(x). It is obvious that B is in fact the inverse of
z − A and it is a bounded operator because 1/|z − x| is bounded
on x ∈ [0, 1].

If z ∈ [0, 1], we claim z − A does not have a bounded inverse.
The function that is identically equal to 1 is in L2([0, 1]). The only
function g that satisfies (z−A)g = 1 is g = 1/(z− x), but g is not
in L2([0, 1]), hence the range of z −A is not all of H.

We conclude that σ(A) = [0, 1]. We show now, however, that no
point in [0, 1] is an eigenvalue for A. If z ∈ [0, 1] were an eigenvalue,
then there would exist a non-zero f such that (z −A)f = 0. Since
our Hilbert space is L2, saying f is non-zero means that the set of
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x where f(x) 6= 0 has positive Lebesgue measure. But (z−A)f = 0
implies that (z − x)f(x) = 0 a.e., which forces f = 0 a.e. Thus A
has no eigenvalues.

We have shown that the spectrum of a bounded symmetric op-
erator is closed and bounded. A bit more difficult is the fact that
the spectrum is never empty.

Proposition 25.19 If A is a bounded symmetric operator, then
σ(A) contains at least one point.

Proof. Suppose not. Then for each z ∈ C, the inverse of the
operator z−A exists. Let us denote the inverse by Rz. Since z−A
has an inverse, then z−A is one-to-one and onto, and by the open
mapping theorem, z − A is an open map. This translates to Rz
being a continuous operator, hence a bounded operator.

Let x, y ∈ H and define f(z) = 〈Rzx, y〉 for z ∈ H. We want to
show that f is an analytic function of z. If w 6= z,

w −A = (z −A)− (z − w)I = (z −A)(I − (z − w)Rz).

If |z − w| < 1/‖Rz‖, then

Rw = (w −A)−1 = Rz

( ∞∑
i=0

((z − w)Rz)
i
)
.

Therefore

lim
w→z

Rw −Rz
w − z

= −R2
z. (25.8)

It follows that

lim
w→z

f(w)− f(z)

w − z
= −〈R2

zx, y〉,

which proves that f has a derivative at z, and so is analytic.

For z > ‖A‖ we have

Rz = (z −A)−1 = z−1(I − z−1A)−1,

and using Proposition 25.2, we conclude that f(z) = 〈Rzx, y〉 → 0
as |z| → ∞.
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We thus know that f is analytic on C, i.e., it is an entire func-
tion, and that f(z) tends to 0 as |z| → ∞. Therefore f is a bounded
entire function. By Liouville’s theorem from complex analysis (see
[1] or [8]), f must be constant. Since f tends to 0 as |z| tends
to infinity, that constant must be 0. This holds for all y, so Rzx
must be equal to 0 for all x and z. But then for each x we have
x = (z −A)Rzx = 0, a contradiction.

Before proceeding, we need an elementary lemma.

Lemma 25.20 If M and N are operators on H that commute and
MN is invertible, then both M and N are also invertible.

Proof. If M has a left inverse A and a right inverse B, that is,
AM = I and MB = I, then A = A(MB) = (AM)B = B and so
M has an inverse. It therefore suffices to prove that M has both a
left and right inverse, and then to apply the same argument to N .

Let L = (MN)−1. Then M(NL) = (MN)L = I and M has a
right inverse. Using the commutativity, (LN)M = L(MN) = I,
and so M has a left inverse. Now use the preceding paragraph.

Here is the spectral mapping theorem for polynomials.

Theorem 25.21 Suppose A is a bounded linear operator and P is
a polynomial. Then σ(P (A)) = P (σ(A)).

By P (σ(A)) we mean the set {P (λ) : λ ∈ σ(A)}.

Proof. We first suppose λ ∈ σ(P (A)) and prove that λ ∈ P (σ(A)).
Factor

λ− P (x) = c(x− a1) · · · (x− an).

Since λ ∈ σ(P (A)), then λ−P (A) is not invertible, and therefore for
at least one i we must have that A−ai is not invertible. That means
that ai ∈ σ(A). Since ai is a root of the equation λ − P (x) = 0,
then λ = P (ai), which means that λ ∈ P (σ(A)).

Now suppose λ ∈ P (σ(A)). Then λ = P (a) for some a ∈ σ(A).
We can write

P (x) =

n∑
i=0

bix
i
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for some coefficients bi, and then

P (x)− P (a) =

n∑
i=1

bi(x
i − ai) = (x− a)Q(x)

for some polynomial Q, since x − a divides xi − ai for each i ≥ 1.
We then have

P (A)− λ = P (A)− P (a) = (A− a)Q(A).

If P (A) − λ were invertible, then by Lemma 25.20 we would have
that A−a is invertible, a contradiction. Therefore P (A)−λ is not
invertible, i.e., λ ∈ σ(P (A)).

A key result is the spectral radius formula. First we need a
consequence of the uniform boundedness principle.

Lemma 25.22 If B is a Banach space and {xn} a subset of B
such that supn |f(xn)| is finite for each bounded linear functional
f , then supn ‖xn‖ is finite.

Proof. For each x ∈ B, define a linear functional Lx on B∗, the
dual space of B, by

Lx(f) = f(x), f ∈ B∗.

Note |Lx(f)| = |f(x)| ≤ ‖f‖ ‖x‖, so ‖Lx‖ ≤ ‖x‖.

To show equality, let M = {cx : c ∈ C} and define f(cx) =
c‖x‖. We observe that f is a linear functional on the subspace M ,
|f(x)| = ‖x‖, and ‖f‖ = 1. We use the Hahn-Banach theorem,
Theorem 18.6, to extend f to a bounded linear functional on B,
also denoted by f , with ‖f‖ = 1. Then |Lx(f)| = |f(x)| = ‖x‖, so
‖Lx‖ ≥ ‖x‖. We conclude ‖Lx‖ = ‖x‖.

Since supn |Lxn(f)| = supn |f(xn)| is finite for each f ∈ B∗, by
the uniform boundedness principle (Theorem 18.8),

sup
n
‖Lxn‖ <∞.

Since ‖Lxn‖ = ‖xn‖, we obtain our result.

Here is the spectral radius formula.
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Theorem 25.23 If A is a bounded linear operator on H, then

r(A) = lim
n→∞

‖An‖1/n.

Proof. By Theorem 25.21 with the polynomial P (z) = zn, we
have (σ(A))n = σ(An). Then

(r(A))n = ( sup
z∈σ(A)

|z|)n = sup
z∈σ(A)

|zn|

= sup
w∈σ(An)

|w| = r(An) ≤ ‖An‖ ≤ ‖A‖n.

We conclude

r(A) ≤ lim inf
n→∞

‖An‖1/n.

For the other direction, if z ∈ C with |z| < 1/r(A), then |1/z| >
r(A), and thus 1/z /∈ σ(A) by the definition of r(A). Hence I −
zA = z(z−1I−A) if invertible if z 6= 0. Clearly I− zA is invertible
when z = 0 as well.

Suppose B is the set of bounded linear operators on H and f
a linear functional on B. The function F (z) = f((I − zA)−1) is
analytic in B(0, 1/r(A)) ⊂ C by an argument similar to that in
deriving (25.8). We know from complex analysis that a function
has a Taylor series that converges absolutely in any disk on which
the function is analytic. Therefore F has a Taylor series which
converges absolutely at each point of B(0, 1/r(A)).

Let us identify the coefficients of the Taylor series. If |z| <
1/‖A‖, then using (25.2) we see that

F (z) = f
( ∞∑
n=0

znAn
)

=

∞∑
n=0

f(An)zn. (25.9)

Therefore F (n)(0) = n!f(An), where F (n) is the nth derivative of
F . We conclude that the Taylor series for F in B(0, 1/r(A)) is

F (z) =

∞∑
n=0

f(An)zn. (25.10)

The difference between (25.9) and (25.10) is that the former is valid
in the ball B(0, 1/‖A‖) while the latter is valid in B(0, 1/r(A)).
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It follows that
∑∞
n=0 f(znAn) converges absolutely for z in the

ball B(0, 1/r(A)), and consequently

lim
n→∞

|f(znAn)| = 0

if |z| < 1/r(A). By Lemma 25.22 there exists a real number K
such that

sup
n
‖znAn‖ ≤ K

for all n ≥ 1 and all z ∈ B(0, 1/r(A)). This implies that

|z| ‖An‖1/n ≤ K1/n,

and hence
|z| lim sup

n→∞
‖An‖1/n ≤ 1

if |z| < 1/r(A). Thus

lim sup
n→∞

‖An‖1/n ≤ r(A),

which completes the proof.

We have the following important corollary.

Corollary 25.24 If A is a symmetric operator, then

‖A‖ = r(A).

Proof. In view of Theorem 25.23, it suffices to show that ‖An‖ =
‖A‖n when n is a power of 2. We show this for n = 2 and the
general case follows by induction.

On the one hand, ‖A2‖ ≤ ‖A‖2. On the other hand,

‖A‖2 = ( sup
‖x‖=1

‖Ax‖)2 = sup
‖x‖=1

‖Ax‖2

= sup
‖x‖=1

〈Ax,Ax〉 = sup
‖x‖=1

〈A2x, x〉

≤ ‖A2‖

by the Cauchy-Schwarz inequality.

The following corollary will be important in the proof of the
spectral theorem.
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Corollary 25.25 Let A be a symmetric bounded linear operator.
(1) If P is a polynomial with real coefficients, then

‖P (A)‖ = sup
z∈σ(A)

|P (z)|.

(2) If P is a polynomial with complex coefficients, then

‖P (A)‖ ≤ 2 sup
z∈σ(A)

|P (z)|.

Proposition 25.27 will provide an improvement of assertion (2).

Proof. (1) Since P has real coefficients, then P (A) is symmetric
and

‖P (A)‖ = r(P (A)) = sup
z∈σ(P (A))

|z|

= sup
z∈P (σ(A))

|z| = sup
w∈σ(A)

|P (w)|,

where we used Corollary 25.24 for the first equality and the spectral
mapping theorem for the third.

(2) If P (z) =
∑n
j=0(aj + ibj)z

j , let Q(z) =
∑n
j=0 ajz

n and

R(z) =
∑m
j=0 bjz

n. By (1),

‖P (A)‖ ≤ ‖Q(A)‖+ ‖R(A)‖ ≤ sup
z∈σ(A)

|Q(z)|+ sup
z∈σ(A)

|R(z)|,

and (2) follows.

The last fact we need is that the spectrum of a bounded sym-
metric operator is real. We know that each eigenvalue of a bounded
symmetric operator is real, but as we have seen, not every element
of the spectrum is an eigenvalue.

Proposition 25.26 If A is bounded and symmetric, then σ(A) ⊂
R.

Proof. Suppose λ = a+ ib, b 6= 0. We want to show that λ is not
in the spectrum.
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If r and s are real numbers, rewriting the inequality (r − s)2 ≥
0 yields the inequality 2rs ≤ r2 + s2. By the Cauchy-Schwarz
inequality

2a〈x,Ax〉 ≤ 2|a| ‖x‖ ‖Ax‖ ≤ a2‖x‖2 + ‖Ax‖2.

We then obtain the inequality

‖(λ−A)x‖2 = 〈(a+ bi−A)x, (a+ bi−A)x〉
= (a2 + b2)‖x‖2 + ‖Ax‖2 − (a+ bi)〈Ax, x〉
− (a− bi)〈x,Ax〉

= (a2 + b2)‖x‖2 + ‖Ax‖2 − 2a〈Ax, x〉
≥ b2‖x‖2. (25.11)

This inequality shows that λ−A is one-to-one, for if (λ−A)x1 =
(λ−A)x2, then

0 = ‖(λ−A)(x1 − x2)‖2 ≥ b2‖x1 − x2‖2.

Suppose λ is in the spectrum of A. Since λ − A is one-to-one
but not invertible, it cannot be onto. Let R be the range of λ−A.
We next argue that R is closed.

If yk = (λ−A)xk and yk → y, then (25.11) shows that

b2‖xk − xm‖2 ≤ ‖yk − ym‖2,

or xk is a Cauchy sequence. If x is the limit of this sequence, then

(λ−A)x = lim
n→∞

(λ−A)xk = lim
n→∞

yk = y.

Therefore R is a closed subspace of H but is not equal to H.
Choose z ∈ R⊥. For all x ∈ H,

0 = 〈(λ−A)x, z〉 = 〈x, (λ−A)z〉.

This implies that (λ − A)z = 0, or λ is an eigenvalue for A with
corresponding eigenvector z. However we know that all the eigen-
values of a bounded symmetric operator are real, hence λ is real.
This shows λ is real, a contradiction.
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25.6 Spectral resolution

Let f be a continuous function on C and let A be a bounded sym-
metric operator on a separable Hilbert space over the complex num-
bers. We describe how to define f(A).

We have shown in Proposition 25.4 that the spectrum of A is a
closed and bounded subset of C, hence a compact set. By Exercise
20.46 we can find polynomials Pn (with complex coefficients) such
that Pn converges to f uniformly on σ(A). Then

sup
z∈σ(A)

|(Pn − Pm)(z)| → 0

as n,m→∞. By Corollary 25.25

‖(Pn − Pm)(A)‖ → 0

as n,m → ∞, or in other words, Pn(A) is a Cauchy sequence in
the space L of bounded symmetric linear operators on H. We call
the limit f(A).

The limit is independent of the sequence of polynomials we
choose. If Qn is another sequence of polynomials converging to
f uniformly on σ(A), then

lim
n→∞

‖Pn(A)−Qn(A)‖ ≤ 2 sup
z∈σ(A)

|(Pn −Qn)(z)| → 0,

so Qn(A) has the same limit Pn(A) does.

We record the following facts about the operators f(A) when f
is continuous.

Proposition 25.27 Let f be continuous on σ(A).
(1) 〈f(A)x, y〉 = 〈x, f(A)y〉 for all x, y ∈ H.
(2) If f is equal to 1 on σ(A), then f(A) = I, the identity.
(3) If f(z) = z on σ(A), then f(A) = A.
(4) f(A) and A commute.
(5) If f and g are two continuous functions, then f(A)g(A) =
(fg)(A).
(6) ‖f(A)‖ ≤ supz∈σ(A) |f(z)|.

Proof. The proofs of (1)-(4) are routine and follow from the cor-
responding properties of Pn(A) when Pn is a polynomial. Let us
prove (5) and (6) and leave the proofs of the others to the reader.
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(5) Let Pn and Qn be polynomials converging uniformly on
σ(A) to f and g, respectively. Then PnQn will be polynomials
converging uniformly to fg. The assertion (5) now follows from

(fg)(A) = lim
n→∞

(PnQn)(A) = lim
n→∞

Pn(A)Qn(A) = f(A)g(A).

The limits are with respect to the norm on bounded operators on
H.

(6) Since f is continuous on σ(A), so is g = |f |2. Let Pn be poly-
nomials with real coefficients converging to g uniformly on σ(A).
By Corollary 25.25(1),

‖g(A)‖ = lim
n→∞

‖Pn(A)‖ ≤ lim
n→∞

sup
z∈σ(A)

|Pn(z)| = sup
z∈σ(A)

|g(z)|.

If ‖x‖ = 1, using (1) and (5),

‖f(A)x‖2 = 〈f(A)x, f(A)x〉 = 〈x, f(A)f(A)x〉 = 〈x, g(A)x〉
≤ ‖x‖ ‖g(A)x‖ ≤ ‖g(A)‖ ≤ sup

z∈σ(A)

|g(z)|

= sup
z∈σ(A)

|f(z)|2.

Taking the supremum over the set of x with ‖x‖ = 1 yields

‖f(A)‖2 ≤ sup
z∈σ(A)

|f(z)|2,

and (6) follows.

We now want to define f(A) when f is a bounded Borel mea-
surable function on C. Fix x, y ∈ H. If f is a continuous function
on C, let

Lx,yf = 〈f(A)x, y〉. (25.12)

It is easy to check that Lx,y is a bounded linear functional on
C(σ(A)), the set of continuous functions on σ(A). By the Riesz
representation theorem for complex-valued linear functionals, Ex-
ercise 17.10, there exists a complex measure µx,y such that

〈f(A)x, y〉 = Lx,yf =

∫
σ(A)

f(z)µx,y(dz) (25.13)

for all continuous functions f on σ(A). Now use the right hand
side of (25.13) to define Lx,yf for all f that are bounded and Borel
measurable.

We have the following properties of µx,y.
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Proposition 25.28 (1) µx,y is linear in x.
(2) µy,x = µx,y.
(3) The total variation of µx,y is less than or equal to ‖x‖ ‖y‖.

Proof. (1) The linear functional Lx,y defined in (25.12) is linear
in x and∫

f d(µx,y + µx′,y) = Lx,yf + Lx′,yf = Lx+x′,yf =

∫
f dµx+x′,y.

By the uniqueness of the Riesz representation (see Exercise 17.9),
µx+x′,y = µx,y + µx′+y. The proof that µcx,y = cµx,y is similar.

(2) follows from the fact that if f is continuous on σ(A), then∫
f dµy,x = Ly,xf = 〈f(A)y, x〉 = 〈y, f(A)x〉

= 〈f(A)x, y〉 = Lx,yf =

∫
f dµx,y

=

∫
f dµx,y.

Now use the uniqueness of the Riesz representation.

(3) For f continuous on σ(A) we have∣∣∣ ∫ f dµx,y

∣∣∣ = |Lx,yf | = |〈f(A)x, y〉|

≤ ‖f(A)‖ ‖x‖ ‖y‖ ≤ γf ‖x‖ ‖y‖,

where γf = supz∈σ(A) |f(z)|. Taking the supremum over f ∈
C(σ(A)) with γf ≤ 1 and using Exercise 17.11 proves (3).

If f is a bounded Borel measurable function on C, then Ly,xf is
linear in y. By the Riesz representation theorem for Hilbert spaces,
Theorem 19.10, there exists wx ∈ H such that Ly,xf = 〈y, wx〉 for
all y ∈ H. We then have that for all y ∈ H,

Lx,yf =

∫
σ(A)

f(z)µx,y(dz) =

∫
σ(A)

f(z)µy,x(dz)

=

∫
σ(A)

f(z)µy,x(dz) = Ly,xf

= 〈y, wx〉 = 〈wx, y〉.
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Since

〈y, wx1+x2
〉 = Ly,x1+x2

f = Ly,x1
f + Ly,x2

f = 〈y, wx1
〉+ 〈y, wx2

〉

for all y and

〈y, wcx〉 = Ly,cxf = cLy,xf = c〈y, wx〉 = 〈y, cwx〉

for all y, we see that wx is linear in x. We define f(A) to be the
linear operator on H such that f(A)x = wx.

If C is a Borel measurable subset of C, we let

E(C) = χC(A). (25.14)

Remark 25.29 Later on we will write the equation

f(A) =

∫
σ(A)

f(z)E(dz). (25.15)

Let us give the interpretation of this equation. If x, y ∈ H, then

〈E(C)x, y〉 = 〈χC(A)x, y〉 =

∫
σ(A)

χC(z)µx,y(dz).

Therefore we identify 〈E(dz)x, y〉 with µx,y(dz). With this in mind,
(25.15) is to be interpreted to mean that for all x and y,

〈f(A)x, y〉 =

∫
σ(A)

f(z)µx,y(dz).

Theorem 25.30 (1) E(C) is symmetric.
(2) ‖E(C)‖ ≤ 1.
(3) E(∅) = 0, E(σ(A)) = I.
(4) If C,D are disjoint, E(C ∪D) = E(C) + E(D).
(5) E(C ∩D) = E(C)E(D).
(6) E(C) and A commute.
(7) E(C)2 = E(C), so E(C) is a projection. If C,D are disjoint,
then E(C)E(D) = 0.
(8) E(C) and E(D) commute.

Proof. (1) This follows from

〈x,E(C)y〉 = 〈E(C)y, x〉 =

∫
χC(z)µy,x(dz)

=

∫
χC(z)µx,y(dz) = 〈E(C)x, y〉.
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(2) Since the total variation of µx,y is bounded by ‖x‖ ‖y‖, we
obtain (2).

(3) µx,y(∅) = 0, so E(∅) = 0. If f is identically equal to 1, then
f(A) = I, and

〈x, y〉 =

∫
σ(A)

µx,y(dz) = 〈E(σ(A))x, y〉.

This is true for all y, so x = E(σ(A))x for all x.

(4) holds because µx,y is a measure, hence finitely additive.

(5) We will first prove that

f(A)g(A) = (fg)(A) (25.16)

if f and g are bounded and Borel measurable on σ(A).

Now

〈fn(A)gm(A)x, y〉 = 〈(fngm)(A)x, y〉 (25.17)

when fn and gm are continuous. The right hand side equals∫
(fngm)(z)µx,y(dz),

which converges to∫
(fng)(z)µx,y(dz) = 〈(fng)(A)x, y〉

when gm → g boundedly and a.e. with respect to µx,y. The left
hand side of (25.17) equals

〈gm(A)x, fn(A)y〉 =

∫
gm(z)µfn(A)x,y(dz),

which converges to∫
g(z)µfn(A)x,y(dz) = 〈g(A)x, fn(A)y〉

as long as gm also converges a.e. with respect to µfn(A)x,y. So we
have

〈fn(A)g(A)x, y〉 = 〈(fng)(A)x, y〉. (25.18)
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If we let fn converge to f boundedly and a.e. with respect to
µx,y, the right hand side converges as in the previous paragraph to
〈(fg)(A)x, y〉. The right hand side of (25.18) is equal to

〈g(A)x, fn(A)y〉 = 〈fn(A)y, g(A)x〉. (25.19)

If fn converges to f a.e with respect to µy,g(A)x, the right hand
side of (25.19) converges by arguments similar to the above to

〈f(A)y, g(A)x〉 = 〈g(A)x, f(A)y〉 = 〈f(A)g(A)x, y〉.

Assertion (5) now follows by letting f = χC and g = χD and
noticing that fg = χC∩D.

(6) Let h(z) = z. Note that h is bounded on σ(A) since σ(A) is
compact. We first apply (25.16) with f = χC and g = h and then
with f = h and g = χC to get that E(C)A = (fg)(A) = AE(C).

(7) Setting C = D in (5) shows E(C) = E(C)2, so E(C) is a
projection. If C∩D = ∅, then E(C)E(D) = E(∅) = 0, as required.

(8) Writing

E(C)E(D) = E(C ∩D) = E(D ∩ C) = E(D)E(C)

proves (8).

The family {E(C)}, where C ranges over the Borel subsets of
C is called the spectral resolution of the identity. We explain the
name in just a moment.

Here is the spectral theorem for bounded symmetric operators.

Theorem 25.31 Let H be a separable Hilbert space over the com-
plex numbers and A a bounded symmetric operator. There exists
a operator-valued measure E satisfying (1)–(8) of Theorem 25.30
such that

f(A) =

∫
σ(A)

f(z)E(dz), (25.20)

for bounded Borel measurable functions f . Moreover, the measure
E is unique.

Remark 25.32 When we say that E is an operator-valued mea-
sure, here we mean that (1)–(8) of Theorem 25.30 hold. We use
Remark 25.29 to give the interpretation of (25.20).
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Remark 25.33 If f is identically one, then (25.20) becomes

I =

∫
σ(A)

E(dλ),

which shows that {E(C)} is a decomposition of the identity. This
is where the name “spectral resolution” comes from.

Proof of Theorem 25.31. Given Remark 25.32, the only part
to prove is the uniqueness, and that follows from the uniqueness of
the measure µx,y.

25.7 Exercises

Exercise 25.1 Prove that if A, B, and C are bounded operators
from a Hilbert space to itself, then
(1) A(BC) = (AB)C;
(2) A(B + C) = AB +AC and (B + C)A = BA+ CA.

Exercise 25.2 Prove that if A is a bounded symmetric operator,
then so is An for each n ≥ 1.

Exercise 25.3 Suppose H = Cn and Ax is multiplication of the
vector x ∈ H by a n×n matrix M . Prove that A∗x is multiplication
of x by the conjugate transpose of M .

Exercise 25.4 Let (X,A, µ) be a σ-finite measure space and F :
X × X → C a jointly measurable function such that F (y, x) =
F (x, y) and (25.4) holds. Prove that if A is defined by (25.5), then
A is a bounded symmetric operator.

Exercise 25.5 If C1, C2 are subsets of a Hilbert space whose clo-
sures are compact, prove that the closure of

C1 + C2 = {x+ y : x ∈ C1, y ∈ C2}

is also compact.
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Exercise 25.6 Prove that if H is a Hilbert space, K is a compact
symmetric operator on H, and Y is a closed subspace of X, then
the map K|Y is compact.

Exercise 25.7 Suppose K is a bounded compact symmetric oper-
ator with non-negative eigenvalues λ1 ≥ λ2 ≥ . . . and correspond-
ing eigenvectors z1, . . . , zn. Prove that for each n,

λn = max
x⊥z1,··· ,zn−1

(Kx, x)

‖x‖2
.

This is known as the Rayleigh principle.

Exercise 25.8 Let K be a compact bounded symmetric operator
and let z1, . . . , zn be eigenvectors with corresponding eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn. Let X be the linear subspace spanned by
{z1, . . . , zN}. Prove that if y ∈ X, we have 〈Ky, y〉 ≥ λn〈y, y〉.

Exercise 25.9 Prove that the nth largest non-negative eigenvalue
for a compact bounded symmetric operator satisfies

λn = max
{

min
x∈Sn

〈Kx, x〉
‖x‖2

: Sn is a linear subspace

of dimension n
}
.

This is known as Fisher’s principle.

Exercise 25.10 Prove that the nth largest non-negative eigen-
value for a compact bounded symmetric operator satisfies

λn = min
{

max
x∈S⊥n−1

〈Kx, x〉
‖x‖2

: Sn−1 is a linear subspace

of dimension n− 1
}
.

This is known as Courant’s principle.

Exercise 25.11 We say A is a positive operator if 〈Ax, x〉 ≥ 0 for
all x. (In the case of matrices, the term used is positive definite.)
Suppose A and B are compact positive symmetric operators and
that B − A is also a positive operator. Suppose A and B have
eigenvalues αk, βk, resp., each arranged in decreasing order, i.e.,
α1 ≥ α2 ≥ · · · and similarly for the βk. Prove that αk ≤ βk for all
k.
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Exercise 25.12 Let A be a compact symmetric operator. Find
necessary and sufficient conditions on a continuous function f such
that f(A) is a compact symmetric operator.

Exercise 25.13 Let A be a bounded symmetric operator, suppose
z, w ∈ σ(A)c, Rz = (z − A)−1, and Rw = (w − A)−1. Prove the
resolvent identity

Rw −Rz = (z − w)RwRz.

Exercise 25.14 Suppose A is a bounded symmetric operator and
f is a continuous function on σ(A). Let Pn be polynomials which
converge uniformly to f on σ(A). Suppose λ ∈ C and suppose that
there exists ε > 0 such that d(λ, σ(Pn(A))) ≥ ε for each n. Prove
that λ /∈ σ(f(A)).

Exercise 25.15 Prove that K is a compact symmetric positive
operator if and only if all the eigenvalues of K are non-negative.

Exercise 25.16 Let A be a bounded symmetric operator, not nec-
essarily compact. Prove that if A = B2 for some bounded sym-
metric operator B, then A is a positive operator..

Exercise 25.17 Let A be a bounded symmetric operator whose
spectrum is contained in [0,∞). Prove that A has a square root,
that is, there exists a bounded symmetric operator B such that
A = B2.

Exercise 25.18 Let A be a bounded symmetric operator, not nec-
essarily compact. Prove that A is a positive operator if and only if
σ(A) ⊂ [0,∞).

Exercise 25.19 Let A be a bounded symmetric operator. Prove
that µx,x is a real non-negative measure.

Exercise 25.20 Suppose that A is a bounded symmetric opera-
tor, C1, . . . , Cn, are disjoint Borel measurable subsets of C, and
a1, . . . , an are complex numbers. Prove that∥∥∥ n∑

i=1

ciE(Ci)
∥∥∥ = max

1≤i≤n
|ci|.
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Exercise 25.21 Prove that if A is a bounded symmetric operator
and f is a bounded Borel measurable function, then

‖f(A)x‖2 =

∫
σ(A)

|f(z)|2 µx,x(dz).

Exercise 25.22 Prove that if A is a bounded symmetric operator
and {sn} is a sequence of simple functions such that sn converges
uniformly to a bounded Borel measurable f on σ(A), then

‖f(A)− sn(A)‖ → 0.



Chapter 26

Distributions

Mathematical physicists often talk about the Dirac delta function,
which is supposed to be a function that is equal to 0 away from 0,
equal to infinity at 0, and which has integral equal to 1. Of course,
no measurable function can have these properties. The delta func-
tion can be put on a solid mathematical footing through the use
of the theory of distributions. The term generalized function is
also used, although there are other notions of generalized functions
besides that of distributions.

For simplicity of notation, in this chapter we restrict ourselves to
dimension one, but everything we do can be extended to Rn, n > 1,
although in some cases a more complicated proof is necessary. See
[5] for the n dimensional case.

26.1 Definitions and examples

We use C∞K for the set of C∞ functions on R with compact support.
Let Df = f ′, the derivative of f , D2f = f ′′, the second derivative,
and so on, and we make the convention that D0f = f .

If f is a continuous function on R, let supp (f) be the support
of f , the closure of the set {x : f(x) 6= 0}. If fj , f ∈ C∞K , we
say fj → f in the C∞K sense if there exists a compact subset K
such that supp (fj) ⊂ K for all j, fj converges uniformly to f , and
Dmfj converges uniformly to Dmf for all m.

381
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We have not claimed that C∞K with this notion of convergence
is a Banach space, so it doesn’t make sense to talk about bounded
linear functionals. But it does make sense to consider continuous
linear functionals. A map F : C∞K → C is a continuous linear
functional on C∞K if F (f + g) = F (f) + F (g) whenever f, g ∈ C∞K ,
F (cf) = cF (f) whenever f ∈ C∞K and c ∈ C, and F (fj) → F (f)
whenever fj → f in the C∞K sense.

A distribution is defined to be a complex-valued continuous lin-
ear functional on C∞K .

Here are some examples of distributions.

Example 26.1 If g is a continuous function, define

Gg(f) =

∫
R
f(x)g(x) dx, f ∈ C∞K . (26.1)

It is routine to check that Gg is a distribution.

Note that knowing the values of Gg(f) for all f ∈ C∞K deter-
mines g uniquely up to almost everywhere equivalence. Since g is
continuous, g is uniquely determined at every point by the values
of Gg(f).

Example 26.2 Set δ(f) = f(0) for f ∈ C∞K . This distribution is
the Dirac delta function.

Example 26.3 If g is integrable and k ≥ 1, define

F (f) =

∫
R
Dkf(x)g(x) dx, f ∈ C∞K .

Example 26.4 If k ≥ 1, define F (f) = Dkf(0) for f ∈ C∞K .

There are a number of operations that one can perform on dis-
tributions to get other distributions. Here are some examples.

Example 26.5 Let h be a C∞ function, not necessarily with com-
pact support. If F is a distribution, define Mh(F ) by

Mh(F )(f) = F (fh), f ∈ C∞K .

It is routine to check that Mh(F ) is a distribution.



26.1. DEFINITIONS AND EXAMPLES 383

Example 26.1 shows how to consider a continuous function g as
a distribution. Defining Gg by (26.1),

Mh(Gg)(f) = Gg(fh) =

∫
(fh)g =

∫
f(hg) = Ghg(f).

Therefore we can consider the operator Mh we just defined as an
extension of the operation of multiplying continuous functions by
a C∞ function h.

Example 26.6 If F is a distribution, define D(F ) by

D(F )(f) = F (−Df), f ∈ C∞K .

Again it is routine to check that D(F ) is a distribution.

If g is a continuously differentiable function and we use (26.1)
to identify the function g with the distribution Gg, then

D(Gg)(f) = Gg(−Df) =

∫
(−Df)(x)g(x) dx

=

∫
f(x)(Dg)(x) dx = GDg(f), f ∈ C∞K ,

by integration by parts. Therefore D(Gg) is the distribution that
corresponds to the function that is the derivative of g. However,
D(F ) is defined for any distribution F . Hence the operator D
on distributions gives an interpretation to the idea of taking the
derivative of any continuous function.

Example 26.7 Let a ∈ R and define Ta(F ) by

Ta(F )(f) = F (f−a), f ∈ C∞K ,

where f−a(x) = f(x+ a). If Gg is given by (26.1), then

Ta(Gg)(f) = Gg(f−a) =

∫
f−a(x)g(x) dx

=

∫
f(x)g(x− a) dx = Gga(f), f ∈ C∞K ,

by a change of variables, and we can consider Ta as the operator
that translates a distribution by a.
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Example 26.8 Define R by

R(F )(f) = F (Rf), f ∈ C∞K ,

where Rf(x) = f(−x). Similarly to the previous examples, we can
see that R reflects a distribution through the origin.

Example 26.9 Finally, we give a definition of the convolution of
a distribution with a continuous function h with compact support.
Define Ch(F ) by

Ch(F )(f) = F (f ∗Rh), f ∈ C∞K ,

where Rh(x) = h(−x). To justify that this extends the notion of
convolution, note that

Ch(Gg)(f) = Gg(f ∗Rh) =

∫
g(x)(f ∗Rh)(x) dx

=

∫ ∫
g(x)f(y)h(y − x) dy dx =

∫
f(y)(g ∗ h)(y) dy

= Gg∗h(f),

or Ch takes the distribution corresponding to the continuous func-
tion g to the distribution corresponding to the function g ∗ h.

One cannot, in general, define the product of two distributions
or quantities like δ(x2).

26.2 Distributions supported at a point

We first define the support of a distribution. We then show that a
distribution supported at a point is a linear combination of deriva-
tives of the delta function.

Let G be open. A distribution F is zero on G if F (f) = 0 for
all C∞K functions f for which supp (f) ⊂ G.

Lemma 26.10 If F is zero on G1 and G2, then F is zero on
G1 ∪G2.

Proof. This is just the usual partition of unity proof. Suppose f
has support in G1∪G2. We will write f = f1 +f2 with supp (f1) ⊂
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G1 and supp (f2) ⊂ G2. Then F (f) = F (f1) + F (f2) = 0, which
will achieve the proof.

Fix x ∈ supp (f). Since G1, G2 are open, we can find hx such
that hx is non-negative, hx(x) > 0, hx is in C∞K , and the support of
hx is contained either in G1 or in G2. The set Bx = {y : hx(y) > 0}
is open and contains x.

By compactness we can cover supp f by finitely many sets, say,
{Bx1

, . . . , Bxm}. Let h1 be the sum of those hxi whose support is
contained in G1 and let h2 be the sum of those hxi whose support
is contained in G2. Then let

f1 =
h1

h1 + h2
f, f2 =

h2

h1 + h2
f.

Clearly supp (f1) ⊂ G1, supp (f2) ⊂ G2, f1 + f2 > 0 on G1 ∪ G2,
and f = f1 + f2.

If we have an arbitrary collection of open sets {Gα}, F is zero on
each Gα, and supp (f) is contained in ∪αGα, then by compactness
there exist finitely many of the Gα that cover supp (f). By Lemma
26.10, F (f) = 0.

The union of all open sets on which F is zero is an open set
on which F is zero. The complement of this open set is called the
support of F .

Example 26.11 The support of the Dirac delta function is {0}.
Note that the support of Dkδ is also {0}.

Define
‖f‖CN (K) = max

0≤k≤N
sup
x∈K
|Dkf(x)|.

Proposition 26.12 Let F be a distribution and K a fixed compact
set. There exist N and c depending on F and K such that if f ∈
C∞K has support in K, then

|F (f)| ≤ c‖f‖CN (K).

Proof. Suppose not. Then for each m there exists fm ∈ C∞K with
support contained inK such that F (fm) = 1 and ‖f‖Cm(K) ≤ 1/m.
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Therefore fm → 0 in the sense of C∞K . However F (fm) = 1 while
F (0) = 0, a contradiction.

Proposition 26.13 Suppose F is a distribution and supp (F ) =
{0}. There exists N such that if f ∈ C∞K and Djf(0) = 0 for
j ≤ N , then F (f) = 0.

Proof. Let ϕ ∈ C∞ be 0 on [−1, 1] and 1 on |x| > 2. Let
g = (1− ϕ)f . Note ϕf = 0 on [−1, 1], so F (ϕf) = 0 because F is
supported on {0}. Then

F (g) = F (f)− F (ϕf) = F (f).

Thus is suffices to show that F (g) = 0 whenever g ∈ C∞K , supp (g)
⊂ [−3, 3], and Djg(0) = 0 for 0 ≤ j ≤ N .

Let K = [−3, 3]. By Proposition 26.12 there exist N and
c depending only on F such that |F (g)| ≤ c‖g‖CN (K). Define
gm(x) = ϕ(mx)g(x). Note that gm(x) = g(x) if |x| > 2/m.

Suppose |x| < 2/m and g ∈ C∞K with support in [−3, 3] and
Djg(0) = 0 for j ≤ N . By Taylor’s theorem, if j ≤ N ,

Djg(x) = Djg(0) +Dj+1g(0)x+ · · ·+DNg(0)
xN−j

(N − j)!
+R

= R,

where the remainder R satisfies

|R| ≤ sup
y∈R
|DN+1g(y)| |x|

N+1−j

(N + 1− j)!
.

Since |x| < 2/m, then

|Djg(x)| = |R| ≤ c1mj−1−N (26.2)

for some constant c1.

By the definition of gm and (26.2),

|gm(x)| ≤ c2|g(x)| ≤ c3m−N−1,

where c2 and c3 are constants. Again using (26.2),

|Dgm(x)| ≤ |ϕ(mx)| |Dg(x)|+m|g(x)| |Dϕ(mx)| ≤ c4m−N .
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Continuing, repeated applications of the product rule show that if
k ≤ N , then

|Dkgm(x)| ≤ c5mk−1−N

for k ≤ N and |x| ≤ 2/m, where c5 is a constant.

Recalling that gm(x) = g(x) if |x| > 2/m, we see that Djgm(x)
→ Djg(x) uniformly over x ∈ [−3, 3] if j ≤ N . We conclude

F (gm − g) = F (gm)− F (g)→ 0.

However, each gm is 0 in a neighborhood of 0, so by the hypothesis,
F (gm) = 0; thus F (g) = 0.

By Example 26.6, Djδ is the distribution such that Djδ(f) =
(−1)jDjf(0).

Theorem 26.14 Suppose F is a distribution supported on {0}.
Then there exist N and constants ci such that

F =

N∑
i=0

ciD
iδ.

Proof. Let Pi(x) be a C∞K function which agrees with the poly-
nomial xi in a neighborhood of 0. Taking derivatives shows that
DjPi(0) = 0 if i 6= j and equals i! if i = j. Then Djδ(Pi) = (−1)ii!
if i = j and 0 otherwise.

Use Proposition 26.13 to determine the integer N . Suppose
f ∈ C∞K . By Taylor’s theorem, f and the function

g(x) =

N∑
i=0

Dif(0)Pi(x)/i!

agree at 0 and all the derivatives up to order N agree at 0. By the
conclusion of Proposition 26.13 applied to f − g,

F
(
f −

N∑
i=0

Dif(0)

i!
Pi

)
= 0.
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Therefore

F (f) =

N∑
i=0

Dif(0)

i!
F (Pi) =

N∑
i=0

(−1)i
Diδ(f)

i!
F (Pi)

=

N∑
i=0

ciD
iδ(f)

if we set ci = (−1)iF (Pi)/i! Since f was arbitrary and the ci do
not depend on f , this proves the theorem.

26.3 Distributions with compact
support

In this section we consider distributions whose supports are com-
pact sets.

Theorem 26.15 If F has compact support, there exist a non-
negative L and continuous functions gj such that

F =
∑
j≤L

DjGgj , (26.3)

where Ggj is defined by Example 26.1.

Example 26.16 The delta function is the derivative of h, where
h is 0 for x < 0 and 1 for x ≥ 0. In turn h is the derivative of g,
where g is 0 for x < 0 and g(x) = x for x ≥ 0. Therefore δ = D2Gg.

Proof. Let h ∈ C∞K and suppose h is equal to 1 on the support of
F . Then F ((1− h)f) = 0, or F (f) = F (hf). Therefore there exist
N and c1 such that

|F (hf)| ≤ c1‖hf‖CN (K).

By the product rule,

|D(hf)| ≤ |h(Df)|+ |(Dh)f | ≤ c2‖f‖CN (K),
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and by repeated applications of the product rule,

‖hf‖CN (K) ≤ c3‖f‖CN (K).

Hence
|F (f)| = |F (hf)| ≤ c4‖f‖CN (K).

Let K = [−x0, x0] be a closed interval containing the support of
F . Let CN (K) be the N times continuously differentiable functions
whose support is contained in K. We will use the fact that CN (K)
is a complete metric space with respect to the metric ‖f−g‖CN (K).

Define

‖f‖HM =
( ∑
k≤M

∫
|Dkf |2 dx

)1/2

, f ∈ C∞K ,

and let HM be the completion of {f ∈ C∞K : supp (f) ⊂ K} with
respect to this norm. It is routine to check that HM is a Hilbert
space.

Suppose M = N + 1 and x ∈ K. Then using the Cauchy-
Schwarz inequality and the fact that K = [−x0, x0],

|Djf(x)| = |Dj(x)−Djf(−x0)| =
∣∣∣ ∫ x

−x0

Dj+1f(y) dy
∣∣∣

≤ |2x0|1/2
(∫

R
|Dj+1f(y)|2 dy

)1/2

≤ c5
(∫

R
|Dj+1f(y)|2 dy

)1/2

.

This holds for all j ≤ N , hence

‖u‖CN (K) ≤ c6‖u‖HM . (26.4)

Recall the definition of completion from Section 20.4. If g ∈
HM , there exists gm ∈ CN (K) such that ‖gm−g‖HM → 0. In view
of (26.4), we see that {gm} is a Cauchy sequence with respect to
the norm ‖ · ‖CN (K). Since CN (K) is complete, then gm converges
with respect to this norm. The only possible limit is equal to g a.e.
Therefore we may assume g ∈ CN (K) whenever g ∈ HM .

Since |F (f)| ≤ c4‖f‖CN (K) ≤ c4c6‖f‖HM , then F can be viewed

as a bounded linear functional on HM . By the Riesz representation
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theorem for Hilbert spaces (Theorem 19.10), there exists g ∈ HM

such that

F (f) = 〈f, g〉HM =
∑
k≤M

〈Dkf,Dkg〉, f ∈ HM .

Now if gm → g with respect to the HM norm and each gm ∈
CN (K), then

〈Dkf,Dkg〉 = lim
m→∞

〈Dkf,Dkgm〉 = lim
m→∞

(−1)k〈D2kf, gm〉

= (−1)k〈D2kf, g〉 = (−1)kGg(D
2kf)

= (−1)kD2kGg(f)

if f ∈ C∞K , using integration by parts and the definition of the
derivative of a distribution. Therefore

F =
∑
k≤M

(−1)kD2kGgk ,

which gives our result if we let L = 2M , set gj = 0 if j is odd, and
set g2k = (−1)kg.

26.4 Tempered distributions

Let S be the class of complex-valued C∞ functions u such that
|xjDku(x)| → 0 as |x| → ∞ for all k ≥ 0 and all j ≥ 1. S is called
the Schwartz class. An example of an element in the Schwartz class
that is not in C∞K is e−x

2

.

Define
‖u‖j,k = sup

x∈R
|x|j |Dku(x)|.

We say un ∈ S converges to u ∈ S in the sense of the Schwartz
class if ‖un − u‖j,k → 0 for all j, k.

A continuous linear functional on S is a function F : S → C
such that F (f + g) = F (f) + F (g) if f, g ∈ S, F (cf) = cF (f) if
f ∈ S and c ∈ C, and F (fm) → F (f) whenever fm → f in the
sense of the Schwartz class. A tempered distribution is a continuous
linear functional on S.
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Since C∞K ⊂ S and fn → f in the sense of the Schwartz class
whenever fn → f in the sense of C∞K , then any continuous lin-
ear functional on S is also a continuous linear functional on C∞K .
Therefore every tempered distribution is a distribution.

Any distribution with compact support is a tempered distribu-
tion. If g grows slower than some power of |x| as |x| → ∞, then
Gg is a tempered distribution, where Gg(f) =

∫
f(x)g(x) dx.

For f ∈ S, recall that we defined the Fourier transform Ff = f̂
by

f̂(u) =

∫
f(x)eixu dx.

Theorem 26.17 F is a continuous map from S into S.

Proof. For elements of S, Dk(Ff) = F((ix)k)f). If f ∈ S,
|xkf(x)| tends to zero faster than any power of |x|−1, so xkf(x) ∈
L1. This implies DkFu is a continuous function, and hence Ff ∈
C∞.

We see by Exercise 26.11 that

ujDk(Ff)(u) = ik+jF(Dj(xkf))(u). (26.5)

Using the product rule, Dj(xkf) is in L1. Hence ujDkFf(u) is
continuous and bounded. This implies that every derivative of
Ff(u) goes to zero faster than any power of |u|−1. Therefore Ff ∈
S.

Finally, if fm → f in the sense of the Schwartz class, it fol-
lows by the dominated convergence theorem that F(fm)(u) →
F(f)(u) uniformly over u ∈ R and moreover |u|kDj(F(fm)) →
|u|kDj(F(f)) uniformly over R for each j and k.

If F is a tempered distribution, define FF by

FF (f) = F (f̂)

for all f ∈ S. We verify that FGg = Gĝ if g ∈ S as follows:

F(Gg)(f) = Gg(f̂) =

∫
f̂(x)g(x) dx

=

∫ ∫
eiyxf(y)g(x) dy dx =

∫
f(y)ĝ(y) dy

= Gĝ(f)
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if f ∈ S.

Note that for the above equations to work, we used the fact
that F maps S into S. Of course, F does not map C∞K into C∞K .
That is why we define the Fourier transform only for tempered
distributions rather than all distributions.

Theorem 26.18 F is an invertible map on the class of tempered
distributions and F−1 = (2π)1/2FR. Moreover F and R commute.

Proof. We know

f(x) = (2π)−1/2

∫
f̂(−u)eixu du, f ∈ S,

so f = (2π)−1/2FRFf , and hence FRF = (2π)1/2I, where I is
the identity. Then if H is a tempered distribution,

(2π)−1/2FRFH(f) = RFH((2π)−1/2Ff) = FH((2π)−1/2RFf)

= H((2π)−1/2FRFf) = H(f).

Thus

(2π)−1/2FRFH = H,

or

(2π)−1/2FRF = I.

We conclude A = (2π)−1/2FR is a left inverse of F and B =
(2π)−1/2RF is a right inverse of F . Hence B = (AF)B = A(FB)
= A, or F has an inverse, namely, (2π)−1/2FR, and moreover
RF = FR.

26.5 Exercises

Exercise 26.1 Can C∞K be made into a metric space such that
convergence in the sense of C∞K is equivalent to convergence with
respect to the metric? If so, is this metric space complete? Can it
be made into a Banach space?
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Exercise 26.2 We define a metric for S by setting

d(f, g) =
∑
k,j

1

2j+k
· ‖f − g‖j,k

1 + ‖f − g‖j,k
.

Prove that this is a metric for S. Prove that a sequence converges
in the sense of the Schwartz class if and only if it converges with
respect to the metric. Is S with this metric complete?

Exercise 26.3 Prove that if f ∈ C∞K , then

F (f) = lim
ε→0

∫
|x|>ε

f(x)

x
dx

exists. Prove that F is a distribution.

Exercise 26.4 Suppose U is a continuous linear map from C∞K
into C∞K . If F is a distribution, define TF by

TF (f) = F (Uf), f ∈ C∞K .

(1) Prove that TF is a distribution.
(2) Suppose V is a continuous linear map from C∞K into itself such
that

∫
g(Uf) =

∫
(V g)f for every f, g ∈ C∞K . Prove that if g ∈ C∞K ,

then

TGg = GV g.

Exercise 26.5 If µ is a finite measure defined on the Borel σ-
algebra, prove that F given by F (f) =

∫
f dµ is a distribution.

Exercise 26.6 Suppose g is a continuously differentiable function
and h is its derivative in the classical sense. Prove that DGg = Gh.

Exercise 26.7 A positive distribution F is one such that F (f) ≥ 0
whenever f ≥ 0. Prove that ifK is a compact set and F is a positive
distribution, then there exists a constant c such that

|F (f)| ≤ c sup
x∈K
|f(x)|

for all f supported in K.
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Exercise 26.8 Prove that if F is a positive distribution with com-
pact support, then there exists a measure µ such that F (f) =∫
f dµ for f ∈ C∞K .

Exercise 26.9 Suppose

F (f) = lim
ε→0

∫
1≥|x|≥ε

f(x)

x
dx.

Show that F is a distribution with compact support. Find ex-
plicitly L and the functions gj guaranteed by Theorem 26.15, and
prove that F has the representation given by (26.3).

Exercise 26.10 Let g1(x) = ex and g2(x) = ex cos(ex). Prove
that Gg2 is a tempered distribution but Gg1 is not.

Exercise 26.11 Prove (26.5).

Exercise 26.12 Determine FG1, Fδ, and FDjδ for j ≥ 1.
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compact, 205
compact operator, 355
complete

measure space, 15
metric space, 3
orthonormal set, 191

completely regular space, 217
completion, 15, 215
component, 246
conditional

expectation, 106, 262
conditional probability, 262
conjugate exponent, 132
connected, 236
consistent, 287
continuity point, 272
continuous, 204
continuous linear functional on

C∞K , 382
convergence

almost everywhere, 75
almost uniform, 78

in Lp, 75
in measure, 75

convergence in distribution, 272
convergence in law, 272
convergence in probability, 256
convergence of a net, 203
convex

function, 67, 186
set, 179
strictly, 180

convolution, 136
countable additivity, 13
countably compact, 206
counting measure, 14
Courant’s principle, 378
covariance, 284
covariance matrix, 285
covering lemma, 108
cylindrical set, 287, 293

decreasing, 2
strictly, 2

dense, 201
density, 101, 250
derivates, 122
derivative, 107
differentiable, 107
Dirac delta function, 382
directed set, 202
disconnected, 236
discrete topology, 198
distribution, 248, 382

positive, 393
tempered, 390

divergence theorem, 304
dominated convergence

theorem, 55
Doob decomposition, 297
Doob’s inequality, 268, 269
dual space, 178

Egorov’s theorem, 78
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eigenvalue, 350
eigenvector, 350
ε-net, 213
equicontinuous, 228
equivalence relationship, 4
equivalent measures, 104
essential infimum, 134
essential supremum, 134
expectation, 248
expected value, 248

Fatou’s lemma, 54
Fatou’s theorem, 346
finer topology, 200
finite intersection property, 206
finitely additive, 13
first category, 176
first countable, 201
Fisher’s principle, 378
Fourier series, 192
Fourier sine series, 362
Fubini theorem, 85
Fubini-Tonelli theorem, 85

Gagliardo-Nirenberg inequality,
319

gamma distribution, 299
Gaussian, 280
Gel’fand’s spectral radius

formula, 366
generalized Cantor

set, 29
generalized function, 381
generalized Hölder

inequality, 322
generates the σ-algebra, 9
graph, 180
Green’s first identity, 305
Green’s function, 362
Green’s second identity, 305

Hölder continuous, 244
Hölder inequality

generalized, 322
Hörmander condition, 340
Hahn decomposition, 95
Hahn-Banach theorem, 172
Hardy’s inequality, 145
harmonic, 303
harmonic extension, 312, 334
Harnack inequality, 314
Hausdorff metric, 242
Hausdorff space, 217
heat equation, 363
Heine-Borel theorem, 212
Heisenberg’s inequality, 156
Helly’s theorem, 275
Hermitian, 353
Hilbert space, 185
Hilbert transform, 336
Hölder’s inequality, 132
homeomorphism, 204

i.i.d., 256
increasing, 2

strictly, 2
indefinite integral, 113
independent and identically

distributed, 256
indicator, 248
infinitely often, 253
inner product space, 183
integrable, 48
integration by parts, 128
interior, 3, 198
interior point, 198
intermediate value theorem, 237
inversion formula, 279
isolated point, 198
isometry, 215

Jensen’s inequality, 67, 252
joint characteristic function, 283
joint density, 294
joint distribution, 283
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joint law, 283
jointly Gaussian, 284
jointly measurable, 86
jointly normal, 284
Jordan decomposition theorem,

97

Kolmogorov 0-1 law, 296
Kolmogorov extension theorem,

287

Laplace transform, 245
lattice of functions, 232
law, 248
law of the iterated

logarithm, 300
LCH, 225
Lebesgue decomposition

theorem, 103
Lebesgue measurable, 27
Lebesgue measure, 21, 27

n-dimensional, 87
Lebesgue σ-algebra, 21, 27
Lebesgue-Stieltjes measure, 21,

27
LIL, 300
liminf, 2
limit point, 198
limsup, 2
Lindelöf property, 241
linear functional, 137

bounded, 137, 172
complex, 172
positive, 159
real, 172

linear map, 171
linear space, 4
Liouville’s theorem, 316
Lipschitz, 128
Littlewood-Paley function, 348
locally compact, 225
locally compact Hausdorff

spaces, 225
locally integrable, 109
lower semicontinuous, 73

Marcinkiewicz interpolation
theorem, 326

martingale, 265
martingale convergence

theorem, 270
maximal function, 109, 329
maximum principle, 307
meager, 176
mean, 251
mean value property, 305
measurable, 7
measurable rectangle, 81
measurable space, 7
measure, 13

complex, 104
finite, 15
regular, 164
signed, 93

measure space, 13
metric space, 3
metrizable, 223
Minkowski inequality

generalized, 143
Minkowski’s inequality, 133
monotone, 2
monotone class, 10
monotone class theorem, 10
monotone convergence theorem,

51
µ∗-measurable, 22
multiplicity, 358
mutually singular, 96

Nash inequality, 324
negative set, 93
neighborhood, 198
net, 203
nontangential convergence, 346
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normal random variable, 280
normal space, 217
normed linear space, 4
nowhere dense, 201
nowhere differentiable, 181
null set, 15, 20, 93

one-point compactification, 225
open, 3
open ball, 3
open base, 200
open base at a point, 201
open cover, 205
open function, 204
open mapping, 177
open mapping theorem, 177
open neighborhood, 198
open set, 197
optional stopping theorem, 267
optional time, 266
orthogonal, 187
orthogonal complement, 187
orthonormal, 189
outer measure, 20

pairwise disjoint, 13
parallelogram law, 186
Parseval’s identity, 191
partial order, 4
partial sum process, 256
Plancherel theorem, 154
point at infinity, 225
point mass, 14
points of density, 112
pointwise convergence, 242
Poisson integral, 312, 334
Poisson kernel, 334

ball, 313
half space, 311

positive definite, 378
positive measure, 93
positive operator, 378

positive set, 93
precompact, 206
premeasure, 32
probability, 15, 247
probability measure, 247
probability space, 247
product σ-algebra, 81
product topology, 201
projection, 196

quotient topology, 200

Radon-Nikodym
theorem, 101, 196

Radon-Nikodym derivative, 101
random variable

Bernoulli, 249
binomial, 249
exponential, 250
geometric, 249
normal, 250
Poisson, 250
standard normal, 250

random variables, 248
random vector, 282
Rayleigh principle, 378
relative topology, 200
relatively open, 200
resolvent identity, 379
resolvent set, 350
Riemann-Lebesgue lemma, 195
Riesz representation

theorem, 159, 166, 188
Riesz transform, 347

Schwartz class, 156, 390
second category, 176
second countable, 201
section, 81
self-adjoint, 353
semigroup, 347
separable, 178, 201
separate points, 5
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separated, 217
separates points, 232
sequentially compact, 206
σ-algebra, 7

generated by a collection, 8
σ-compact, 206
σ-field, 15, 247
σ-finite, 15
sign function, 137
signed measure, 93
signum function, 137
simple function, 41
simple random walk, 296
Slutsky’s theorem, 274
Sobolev inequalities, 321
span, 192
spectral mapping theorem, 365
spectral radius, 350
spectral radius formula, 366
spectral resolution, 376
spectral theorem, 357, 376
spectrum, 350
standard deviation, 251
Steinhaus theorem, 35
stochastic process, 289
Stone-Čech

compactification, 226
Stone-Weierstrass

theorem, 5, 234, 235
stopping time, 266
strictly convex, 180
strong law of large numbers, 260
strong-type, 326
stronger topology, 200
subbase, 200
subbasic open cover, 207
subcover, 205
sublinear, 325
submartingale, 265
subsequential limit, 202
subspace, 186, 200

closed, 186

supermartingale, 266
support, 3, 381

measure, 35
support of a distribution, 385
symmetric, 353
symmetric difference, 1

T1 space, 217
tail σ-field, 295
tempered distribution, 390
Tietze extension theorem, 222
tight, 275
topological space, 197
topology, 197
topology generated by a metric,

198
total variation, 97, 104

of a function, 118
total variation measure, 97, 104
totally bounded, 213
totally disconnected, 246
triangle inequality, 184
trigonometric series, 192
trivial topology, 198
Tychonoff theorem, 209

uniform boundedness
theorem, 176

uniform convergence on
compact sets, 243

uniformly absolutely
continuous, 59

uniformly continuous, 214
uniformly integrable, 58
upcrossing lemma, 269
upper semicontinuous, 73
Urysohn embedding

theorem, 223
Urysohn metrization

theorem, 223
Urysohn’s lemma, 219

vanish at infinity, 243
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vanish at no point, 5
vanishes at infinity, 163
vanishes at no point, 232
variance, 251
vector space, 4
Vitali convergence theorem, 59
Vitali cover, 121
Vitali covering lemma, 121

weak 1-1 inequality, 109
weak convergence, 195

probability sense, 272
weak derivative, 317
weak-type, 326
weaker topology, 200
Weierstrass approximation the-

orem, 230
Wiener measure, 293

Young’s inequality, 323

Zorn’s lemma, 172


