
1 Bass Exercise 2.1: Example of a Monotone Class That Is Not a
σ-Algebra

We aim to find a set X and a collection M ⊆ P(X) such that:

• ∅ ∈ M,

• X ∈ M,

• M is a monotone class,

• M is not a σ-algebra.

Definitions

• A monotone class M is a collection of subsets of X satisfying:

– If A1 ⊆ A2 ⊆ · · · and each An ∈ M, then
⋃∞

n=1 An ∈ M,

– If A1 ⊇ A2 ⊇ · · · and each An ∈ M, then
⋂∞

n=1 An ∈ M.

• A σ-algebra must be closed under:

– Complements,

– Countable unions.

Example

Let:
X = N, M = {A ⊆ N | A is finite or N \A is finite}

This collection M is known as the algebra of finite/cofinite sets.

Verification

• ∅ ∈ M since ∅ is finite.

• N ∈ M since N \ N = ∅ is finite.

• M is closed under monotone (increasing and decreasing) limits:

– Increasing unions: If A1 ⊆ A2 ⊆ · · · and all An ∈ M, then:

∗ If all An are finite, their union is at most countably infinite. If the union is finite or cofinite, it
belongs to M.

∗ If at some point An becomes cofinite, then the union remains cofinite.

– Decreasing intersections: Similar reasoning applies.

• However, M is not a σ-algebra. For instance, consider the set of even numbers:

A = {2, 4, 6, . . .}

Then A ⊆ N is infinite, and its complement (the odd numbers) is also infinite. Hence:

A /∈ M

But A can be expressed as a countable union of singleton sets:

A =

∞⋃
n=1

{2n}, each {2n} ∈ M

Since M is not closed under arbitrary countable unions, it is not a σ-algebra.
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Conclusion:

The collection
M = {A ⊆ N : A is finite or cofinite}

is a monotone class that contains ∅ and N, but it is not a σ-algebra.

2 Example: Union of Two σ-Algebras Need Not Be a σ-Algebra

We are asked to find an example of:

• A set X,

• Two σ-algebras A1 and A2 on X, such that:

A1 ∪ A2 is not a σ-algebra.

Definitions

• A σ-algebra A ⊆ P(X) satisfies:

– ∅ ∈ A,

– If A ∈ A, then Ac ∈ A,

– If A1, A2, · · · ∈ A, then
⋃∞

n=1 An ∈ A.

Construction of the Example

Let X = {1, 2}. Define two σ-algebras:

A1 = {∅, {1}, {2}, X}
A2 = {∅, {1}, X}

Clearly, both A1 and A2 are σ-algebras on X.
Now consider the union:

A1 ∪ A2 = {∅, {1}, {2}, X}

At first glance, this looks promising. But let’s take a slightly different pair of σ-algebras to demonstrate the
failure more clearly.

Instead, let us use this standard counterexample. Let: X = {1, 2, 3}. Define:

A1 = {∅, {1}, {2, 3}, X}
A2 = {∅, {2}, {1, 3}, X}

Each of these is a σ-algebra on X:

• A1 is closed under complements and countable unions:

– {1}c = {2, 3} ∈ A1,

– {2, 3}c = {1} ∈ A1, etc.

• Similarly, A2 is a σ-algebra.
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Now consider:

A1 ∪ A2 = {∅, {1}, {2}, {2, 3}, {1, 3}, X}

Let’s test whether this union is a σ-algebra. We have:

{1}, {2} ∈ A1 ∪ A2

But their union:
{1} ∪ {2} = {1, 2}

is not in A1 ∪ A2. Therefore, A1 ∪ A2 is not closed under finite (hence not under countable) unions, and
thus:

A1 ∪ A2 is not a σ-algebra.

Conclusion:

We have found:

• X = {1, 2, 3},

• A1 = {∅, {1}, {2, 3}, X},

• A2 = {∅, {2}, {1, 3}, X},

such that both A1 and A2 are σ-algebras, but their union is not.

3 Bass Exercise 2.2: Question

Suppose A1 ⊂ A2 ⊂ · · · are σ-algebras consisting of subsets of a set X. Is
⋃∞

i=1 Ai necessarily a σ-algebra?

Answer: No, not necessarily.

The countable union of increasing σ-algebras is not necessarily a σ-algebra.

Counterexample

Let X = R, and define An as the σ-algebra generated by the interval (−∞, n], for each n ∈ N. That is:

An = σ ({(−∞, n]})

Each An is the smallest σ-algebra that contains (−∞, n], and hence contains all intervals of the form (−∞, a]
with a ≤ n.

Thus, we have:

A1 ⊂ A2 ⊂ · · ·

Now consider the union:

A =

∞⋃
n=1

An

This union contains all sets of the form (−∞, a] for rational a, but it may not contain arbitrary Borel sets
such as (0, 1), which is not in any An, since these σ-algebras are too small.

More concretely, let’s build a simpler counterexample with finite sets.
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Simpler Finite Counterexample

Let X = N, the natural numbers. Define:

An = σ({{1}, {2}, . . . , {n}})

This is the σ-algebra generated by the finite subsets of {1, 2, . . . , n}, and it consists of all subsets of X that
are determined by the behavior on the first n elements. Specifically, each An consists of subsets of N that
depend only on whether each of 1, 2, . . . , n is included or not, and whether the rest of the set is included as a
block or not.

Then:

∞⋃
n=1

An

contains many subsets of N, but it is not closed under countable unions. For instance, the singleton sets
{n} ∈ An ⊂ An+1, so each {n} ∈

⋃
n An, but:

∞⋃
n=1

{n} = N

is not in any An, because each An only sees the first n elements. Therefore, the union is not closed under
countable unions and hence is not a σ-algebra.

Conclusion

The increasing union of σ-algebras is not necessarily a σ-algebra. The union may fail to be closed under
countable unions, so:

∞⋃
i=1

Ai

is not necessarily a σ-algebra.

4 Bass Exercise 2.3: Question

Suppose
M1 ⊂ M2 ⊂ · · ·

are monotone classes, and let

M =
⋃
n≥1

Mn.

Suppose Aj ↑ A and each Aj ∈ M. Is A necessarily in M? If not, give a counterexample.

Answer: No, not necessarily.

Counterexample: Let
Ω = {0, 1}N, ω = (ω1, ω2, . . . ).

For each n ≥ 1, let Mn be the σ-algebra (hence a monotone class) generated by the first n coordinate maps
ω 7→ ω1, . . . , ωn. Define

M =
⋃
n≥1

Mn.

Each Mn is a monotone class and M1 ⊂ M2 ⊂ · · ·.
Now, for j ≥ 1, set

Aj = {ω ∈ Ω : ωi = 1 for some i ≤ j}.
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Clearly Aj ∈ Mj ⊂ M, and

Aj ↑ A :=
⋃
j≥1

Aj = {ω : ∃i ωi = 1},

i.e. A is the set of all sequences except the all-zero sequence

0∞ = (0, 0, 0, . . . ).

We claim A /∈ M. Suppose otherwise. Then A ∈ Mn for some n. But every set in Mn depends only on
the first n coordinates: if two sequences agree on the first n coordinates, then they are either both in the set or
both outside it.

Consider the two sequences:

ω′ = (0, 0, . . . , 0, 1, 0, 0, . . . ) (with a 1 at position n+ 1),

and
0∞ = (0, 0, 0, . . . ).

They agree on the first n coordinates, but ω′ ∈ A while 0∞ /∈ A. Thus A /∈ Mn for any n, hence A /∈ M.

∴ Aj ↑ A, Aj ∈ M, but A /∈ M.

This shows that the union of an increasing sequence of monotone classes need not be closed under increasing
limits.

5 Bass Exercise 2.6: Question

Suppose X is non-empty. Suppose A is a σ-algebra with the property that whenever A ∈ A is non-empty, there
exist B,C ∈ A with B ∩ C = ∅, B ∪ C = A, and neither B nor C is empty. Prove that A is uncountable.

Proof. We shall produce a countably infinite family of pairwise disjoint nonempty sets in A. From that it
will follow immediately that A contains at least 2ℵ0 distinct sets (all possible unions of those countably many
disjoint sets), hence A is uncountable.

Define sets C0, C1, . . . and B1, B2, . . . recursively as follows. Put C0 := X (which is nonempty by assump-
tion). Given Cn−1 ∈ A and Cn−1 ̸= ∅, the hypothesis yields Bn, Cn ∈ A with

Bn ∩ Cn = ∅, Bn ∪ Cn = Cn−1,

and Bn ̸= ∅, Cn ̸= ∅. This defines Bn and Cn for every n ≥ 1.
Observe that the sets Bn are pairwise disjoint: if m < n then

Bn ⊆ Cn−1 ⊆ Cm and Bm ⊆ Cm−1 \ Cm,

so Bm ∩Bn = ∅. (Equivalently, each Bn lies in the difference Cn−1 \ Cn, and these differences are disjoint for
different n.) By construction each Bn is nonempty and belongs to A.

Now consider the map

Φ : P(N) −→ A, I 7→
⋃
n∈I

Bn.

Every I ⊆ N is at most countable, so the union
⋃

n∈I Bn is a countable union of elements of A and therefore
lies in A (since A is a σ-algebra). Because the Bn are pairwise disjoint, the map Φ is injective: if I ̸= J let k
be the least index in the symmetric difference I△J ; then Bk is contained in exactly one of Φ(I) or Φ(J), hence
Φ(I) ̸= Φ(J).

Thus A contains at least as many elements as P(N), so

|A| ≥ |P(N)| = 2ℵ0 ,

in particular A is uncountable. □
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6 Bass Exercise 2.8: Countable σ-algebra?

Does there exist a σ-algebra which has countably many elements, but not finitely many?

Answer

No. A σ-algebra is either finite or of cardinality at least 2ℵ0 (in particular uncountable). In particular there is
no countably infinite σ-algebra. Below is a standard proof.

Proof. Let (X,A) be a measurable space. If X = ∅ then A = {∅} is finite, so there is nothing to show.
Assume X ̸= ∅.

Call a nonempty set A ∈ A an atom if there is no B ∈ A with ∅ ⊊ B ⊊ A (i.e. A has no nontrivial
measurable subset). The atoms of A are pairwise disjoint: if A and A′ are distinct atoms then A ∩ A′ is a
measurable subset of A, so by minimality it must be either ∅ or A; since A′ ̸= A we get A ∩A′ = ∅.

Let Aatom be the (possibly empty or infinite) collection of atoms. Two cases arise.

Case 1: Aatom is finite. Show that every measurable set is a union of atoms. Indeed, let

N := X \
⋃

A∈Aatom

A

be the part of X not covered by atoms. If N ̸= ∅ then N contains no atom, so every nonempty measurable
subset of N admits a proper nonempty measurable subset; iterating this (or using Zorn’s lemma on the family
of measurable subsets of N ordered by inclusion) contradicts that atoms were maximal minimal nonempty sets.
Thus N = ∅, i.e. the atoms partition X. Consequently every E ∈ A is a union of some subcollection of the
finitely many atoms, hence |A| ≤ 2|Aatom| < ∞. So A is finite.

Case 2: Aatom is infinite. Then the atoms provide an infinite sequence of pairwise disjoint nonempty
measurable sets {An : n ∈ N}. For each subset I ⊂ N the union

⋃
n∈I An is measurable (countable unions are

allowed), and different I give different unions because the An are disjoint. Hence there is an injection

P(N) ↪→ A, I 7→
⋃
n∈I

An,

so |A| ≥ |P(N)| = 2ℵ0 . In particular A is uncountable.

Combining the two cases we see that a σ-algebra is either finite or has cardinality at least 2ℵ0 . Therefore
there is no σ-algebra with countably infinitely many elements.
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