
The Lebesgue Density Theorem

Throughout this note, let m stand for Lebesgue measure (although the results also hold
for Lebesgue-Stieltjes measures in general).

Definition 1. Let E ⊂ R be a measurable set and x ∈ E. The density of E at the point
x is

dE(x) := lim
h→0

m(E ∩ [x− h, x+ h])

m([x− h, x+ h])

if the limit exists. The point x is called a density point if dE(x) = 1. Let D(E) be the
set of density points of E.

Remark 1. It is not necessary for a density point x to belong to E. For example, 0 is a
density point of E = R \ {x}.

Example 1. The point x = 0 has density 0, 1, 1
2

for the set E = [1, 2], E = [−1, 1] and
E = [0, 1], respectively. Other densities are possible too. For example x = 0 has density 1

4

w.r.t. the set E =
⋃

n≥1[
1

2n+1
, 1
2n

].

Proposition 1. The following properties hold for densities:

1. d∅(x) = 0 and dR(x) = 1;

2. dEc(x) = 1− dE(x);

3. If A ⊂ B, then dA(x) ≤ dB(x) if these densities exist. Hence D(A) ⊂ D(B).

4. If m(A4B) = 0, then dA(x) = dB(x) for all x ∈ R, so D(A) = D(B); (A4B stands
for the symmetric difference: A4B = (A \B) ∪ (B \ A).)

5. D(A ∩B) = D(A) ∩D(B).

Proof. We only prove property 5. The others are straightforward.

Property 3. gives D(A∩B) ⊂ D(A)∩D(B). For the other inclusion, let I be any interval.
We have I \ (A ∩B) = (I \ A) ∪ (I \B), so

m(I)−m(A ∩B ∩ I) ≤ m(I)−m(A ∩ I) +m(I)−m(B ∩ I),

and
m(A ∩ I))

m(I)
+
m(B ∩ I)

m(I)
− 1 ≤ m(A ∩B ∩ I)

m(I)
.

Now take I = [x − h, x + h] and let h → 0. If the RHS < 1, so x /∈ D(A ∩ B), then
one of the first terms on the LHS < 1 as well, so x /∈ D(A) or x /∈ D(B). Hence
D(A ∩B)c ⊂ D(A)c ∪D(B)c and thus D(A ∩B) ⊃ D(A) ∩D(B).

Theorem 1 (Lebesgue Density Theorem). For every Lebesgue measurable set E ⊂ R,
m(E4D(E)) = 0.
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Remark 2. The analogous statement holds in higher dimensional Euclidean space RN , as
it does for Lebesgue-Stieltjes measure. In particular, for the extreme case that the Lebesgue-
Stieltjes is Dirac measure δp, then every E ⊂ R has at most one density point, namely p if
p ∈ E.

Proof. We will prove that m(E \ D(E)) = 0. This will suffice because of Proposition 1,
proerty 2. and 3., and the fact that D(E) \ E ⊂ Ec \D(Ec).

Without loss of generality, we can assume that E is bounded. Write E \D(E) =
⋃

n≥1An,
where

An =
{
x ∈ E : lim inf

h→0

m(E ∩ [x− h, x+ h])

m([x− h, x+ h])
< 1− 1

n

}
.

It suffices to prove that m(An) = 0 for all n ≥ 1.

Assume by contradiction that n ≥ 1 and A := An are such that m∗(A) > 0 (outer measure!)

Thus there is a bounded open set G such that A ⊂ G and m(G) < n
n−1m

∗(A).

Let C be the collection of all closed intervals I ⊂ G such that m(E ∩ I) ≤ n
n−1m(I). Then

(i) Every x ∈ A is the center of arbitrarily small intervals in C.

(ii) Whenever {Ik} ⊂ C are pairwise disjoint, then m∗(A \
⋃

k Ik}) > 0.

Property (i) follows by definition of A. Property (ii) follows because

m∗(A∩
⋃
k

Ik) ≤
∑
k

m∗(A∩Ik) ≤
∑
k

m(E∩Ik) ≤ n− 1

n

∑
k

m(Ik) ≤ n− 1

n
m(G) < m∗(A).

Take I1 ∈ C arbitrary, and if I1, . . . , Ik have been selected, set

Ck = {I ∈ C : I is disjoint from I1 ∪ · · · ∪ Ik}.

By properties (i) and (ii), Ck is nonempty, so we can always find a next interval in C disjoint
from the previous ones. Let

sk = sup{m(I) : I ∈ Ck} > 0

and pick Ik+1 so that m(Ik+1) > sk/2.

Set B = A \ ∪∞k=1Ik. By property (ii), m∗(B) > 0. So there exists K ∈ N so that∑
k>K

m(Ik) < m∗(B)/3. (1)

Let Jk be the interval concentric with Ik so that m(Jk) = 3m(Ik).

By (1),
⋃

k>K Jk 6⊃ B, so there is some x ∈ B \
⋃

k>K Jk. By property (i), there is an
I ∈ CK centered at x. If I ∩ Ik = ∅ for all k > K, then m(I) ≤ sk < 2m(Ik+1) for all
k > K, contradicting that

∑
k>K m(Ik) ≤ m(G) <∞.

Thus there is k > K such that I ∩ Ik 6= ∅, and therefore x ∈ I ⊂ Jk. But this contradicts
that x /∈

⋃
k>K Jk.
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