The Lebesgue Density Theorem

Throughout this note, let m stand for Lebesgue measure (although the results also hold for Lebesgue-Stieltjes measures in general).

Definition 1. Let $E \subset \mathbb{R}$ be a measurable set and $x \in E$. The density of E at the point x is

$$d_E(x) := \lim_{h \to 0} \frac{m(E \cap [x - h, x + h])}{m([x - h, x + h])}$$

if the limit exists. The point x is called a **density point** if $d_E(x) = 1$. Let D(E) be the set of density points of E.

Remark 1. It is not necessary for a density point x to belong to E. For example, 0 is a density point of $E = \mathbb{R} \setminus \{x\}$.

Example 1. The point x = 0 has density $0, 1, \frac{1}{2}$ for the set E = [1, 2], E = [-1, 1] and E = [0, 1], respectively. Other densities are possible too. For example x = 0 has density $\frac{1}{4}$ w.r.t. the set $E = \bigcup_{n \ge 1} [\frac{1}{2n+1}, \frac{1}{2n}]$.

Proposition 1. The following properties hold for densities:

1. $d_{\emptyset}(x) = 0$ and $d_{\mathbb{R}}(x) = 1$;

2.
$$d_{E^c}(x) = 1 - d_E(x);$$

- 3. If $A \subset B$, then $d_A(x) \leq d_B(x)$ if these densities exist. Hence $D(A) \subset D(B)$.
- 4. If $m(A \triangle B) = 0$, then $d_A(x) = d_B(x)$ for all $x \in \mathbb{R}$, so D(A) = D(B); $(A \triangle B \text{ stands})$ for the symmetric difference: $A \triangle B = (A \setminus B) \cup (B \setminus A)$.
- 5. $D(A \cap B) = D(A) \cap D(B)$.

Proof. We only prove property 5. The others are straightforward.

Property 3. gives $D(A \cap B) \subset D(A) \cap D(B)$. For the other inclusion, let I be any interval. We have $I \setminus (A \cap B) = (I \setminus A) \cup (I \setminus B)$, so

$$m(I) - m(A \cap B \cap I) \le m(I) - m(A \cap I) + m(I) - m(B \cap I),$$

and

$$\frac{m(A \cap I))}{m(I)} + \frac{m(B \cap I)}{m(I)} - 1 \le \frac{m(A \cap B \cap I)}{m(I)}.$$

Now take I = [x - h, x + h] and let $h \to 0$. If the RHS < 1, so $x \notin D(A \cap B)$, then one of the first terms on the LHS < 1 as well, so $x \notin D(A)$ or $x \notin D(B)$. Hence $D(A \cap B)^c \subset D(A)^c \cup D(B)^c$ and thus $D(A \cap B) \supset D(A) \cap D(B)$.

Theorem 1 (Lebesgue Density Theorem). For every Lebesgue measurable set $E \subset \mathbb{R}$, $m(E \triangle D(E)) = 0$.

Remark 2. The analogous statement holds in higher dimensional Euclidean space \mathbb{R}^N , as it does for Lebesgue-Stieltjes measure. In particular, for the extreme case that the Lebesgue-Stieltjes is Dirac measure δ_p , then every $E \subset \mathbb{R}$ has at most one density point, namely p if $p \in E$.

Proof. We will prove that $m(E \setminus D(E)) = 0$. This will suffice because of Proposition 1, property 2. and 3., and the fact that $D(E) \setminus E \subset E^c \setminus D(E^c)$.

Without loss of generality, we can assume that E is bounded. Write $E \setminus D(E) = \bigcup_{n \ge 1} A_n$, where $m(E \cap [m - h, m + h]) = 1$

$$A_n = \left\{ x \in E : \liminf_{h \to 0} \frac{m(E \cap [x - h, x + h])}{m([x - h, x + h])} < 1 - \frac{1}{n} \right\}.$$

It suffices to prove that $m(A_n) = 0$ for all $n \ge 1$.

Assume by contradiction that
$$n \ge 1$$
 and $A := A_n$ are such that $m^*(A) > 0$ (outer measure!)

Thus there is a bounded open set G such that $A \subset G$ and $m(G) < \frac{n}{n-1}m^*(A)$.

Let \mathcal{C} be the collection of all closed intervals $I \subset G$ such that $m(E \cap I) \leq \frac{n}{n-1}m(I)$. Then

(i) Every $x \in A$ is the center of arbitrarily small intervals in \mathcal{C} .

(ii) Whenever $\{I_k\} \subset \mathcal{C}$ are pairwise disjoint, then $m^*(A \setminus \bigcup_k I_k\}) > 0$.

Property (i) follows by definition of A. Property (ii) follows because

$$m^*(A \cap \bigcup_k I_k) \le \sum_k m^*(A \cap I_k) \le \sum_k m(E \cap I_k) \le \frac{n-1}{n} \sum_k m(I_k) \le \frac{n-1}{n} m(G) < m^*(A).$$

Take $I_1 \in \mathcal{C}$ arbitrary, and if I_1, \ldots, I_k have been selected, set

 $C_k = \{I \in C : I \text{ is disjoint from } I_1 \cup \cdots \cup I_k\}.$

By properties (i) and (ii), C_k is nonempty, so we can always find a next interval in C disjoint from the previous ones. Let

$$s_k = \sup\{m(I) : I \in \mathcal{C}_k\} > 0$$

and pick I_{k+1} so that $m(I_{k+1}) > s_k/2$.

Set $B = A \setminus \bigcup_{k=1}^{\infty} I_k$. By property (ii), $m^*(B) > 0$. So there exists $K \in \mathbb{N}$ so that

$$\sum_{k>K} m(I_k) < m^*(B)/3.$$
 (1)

Let J_k be the interval concentric with I_k so that $m(J_k) = 3m(I_k)$.

By (1), $\bigcup_{k>K} J_k \not\supseteq B$, so there is some $x \in B \setminus \bigcup_{k>K} J_k$. By property (i), there is an $I \in \mathcal{C}_K$ centered at x. If $I \cap I_k = \emptyset$ for all k > K, then $m(I) \leq s_k < 2m(I_{k+1})$ for all k > K, contradicting that $\sum_{k>K} m(I_k) \leq m(G) < \infty$.

Thus there is k > K such that $I \cap I_k \neq \emptyset$, and therefore $x \in I \subset J_k$. But this contradicts that $x \notin \bigcup_{k>K} J_k$.