The Lebesgue Density Theorem

Throughout this note, let m stand for Lebesgue measure (although the results also hold for Lebesgue-Stieltjes measures in general).

Definition 1. Let $E \subset \mathbb{R}$ be a measurable set and $x \in E$. The density of E at the point x is

$$
d_{E}(x):=\lim _{h \rightarrow 0} \frac{m(E \cap[x-h, x+h])}{m([x-h, x+h])}
$$

if the limit exists. The point x is called a density point if $d_{E}(x)=1$. Let $D(E)$ be the set of density points of E.

Remark 1. It is not necessary for a density point x to belong to E. For example, 0 is a density point of $E=\mathbb{R} \backslash\{x\}$.

Example 1. The point $x=0$ has density $0,1, \frac{1}{2}$ for the set $E=[1,2], E=[-1,1]$ and $E=[0,1]$, respectively. Other densities are possible too. For example $x=0$ has density $\frac{1}{4}$ w.r.t. the set $E=\bigcup_{n \geq 1}\left[\frac{1}{2 n+1}, \frac{1}{2 n}\right]$.

Proposition 1. The following properties hold for densities:

1. $d_{\emptyset}(x)=0$ and $d_{\mathbb{R}}(x)=1$;
2. $d_{E^{c}}(x)=1-d_{E}(x)$;
3. If $A \subset B$, then $d_{A}(x) \leq d_{B}(x)$ if these densities exist. Hence $D(A) \subset D(B)$.
4. If $m(A \triangle B)=0$, then $d_{A}(x)=d_{B}(x)$ for all $x \in \mathbb{R}$, so $D(A)=D(B) ;(A \triangle B$ stands for the symmetric difference: $A \triangle B=(A \backslash B) \cup(B \backslash A)$.)
5. $D(A \cap B)=D(A) \cap D(B)$.

Proof. We only prove property 5. The others are straightforward.
Property 3. gives $D(A \cap B) \subset D(A) \cap D(B)$. For the other inclusion, let I be any interval. We have $I \backslash(A \cap B)=(I \backslash A) \cup(I \backslash B)$, so

$$
m(I)-m(A \cap B \cap I) \leq m(I)-m(A \cap I)+m(I)-m(B \cap I)
$$

and

$$
\frac{m(A \cap I))}{m(I)}+\frac{m(B \cap I)}{m(I)}-1 \leq \frac{m(A \cap B \cap I)}{m(I)}
$$

Now take $I=[x-h, x+h]$ and let $h \rightarrow 0$. If the RHS <1, so $x \notin D(A \cap B)$, then one of the first terms on the LHS <1 as well, so $x \notin D(A)$ or $x \notin D(B)$. Hence $D(A \cap B)^{c} \subset D(A)^{c} \cup D(B)^{c}$ and thus $D(A \cap B) \supset D(A) \cap D(B)$.

Theorem 1 (Lebesgue Density Theorem). For every Lebesgue measurable set $E \subset \mathbb{R}$, $m(E \triangle D(E))=0$.

Remark 2. The analogous statement holds in higher dimensional Euclidean space \mathbb{R}^{N}, as it does for Lebesgue-Stieltjes measure. In particular, for the extreme case that the LebesgueStieltjes is Dirac measure δ_{p}, then every $E \subset \mathbb{R}$ has at most one density point, namely p if $p \in E$.

Proof. We will prove that $m(E \backslash D(E))=0$. This will suffice because of Proposition 1, proerty 2. and 3., and the fact that $D(E) \backslash E \subset E^{c} \backslash D\left(E^{c}\right)$.

Without loss of generality, we can assume that E is bounded. Write $E \backslash D(E)=\bigcup_{n \geq 1} A_{n}$, where

$$
A_{n}=\left\{x \in E: \liminf _{h \rightarrow 0} \frac{m(E \cap[x-h, x+h])}{m([x-h, x+h])}<1-\frac{1}{n}\right\} .
$$

It suffices to prove that $m\left(A_{n}\right)=0$ for all $n \geq 1$.
Assume by contradiction that $n \geq 1$ and $A:=A_{n}$ are such that $m^{*}(A)>0$ (outer measure!) Thus there is a bounded open set G such that $A \subset G$ and $m(G)<\frac{n}{n-1} m^{*}(A)$.
Let \mathcal{C} be the collection of all closed intervals $I \subset G$ such that $m(E \cap I) \leq \frac{n}{n-1} m(I)$. Then
(i) Every $x \in A$ is the center of arbitrarily small intervals in \mathcal{C}.
(ii) Whenever $\left\{I_{k}\right\} \subset \mathcal{C}$ are pairwise disjoint, then $\left.m^{*}\left(A \backslash \bigcup_{k} I_{k}\right\}\right)>0$.

Property (i) follows by definition of A. Property (ii) follows because
$m^{*}\left(A \cap \bigcup_{k} I_{k}\right) \leq \sum_{k} m^{*}\left(A \cap I_{k}\right) \leq \sum_{k} m\left(E \cap I_{k}\right) \leq \frac{n-1}{n} \sum_{k} m\left(I_{k}\right) \leq \frac{n-1}{n} m(G)<m^{*}(A)$.
Take $I_{1} \in \mathcal{C}$ arbitrary, and if I_{1}, \ldots, I_{k} have been selected, set

$$
\mathcal{C}_{k}=\left\{I \in \mathcal{C}: I \text { is disjoint from } I_{1} \cup \cdots \cup I_{k}\right\}
$$

By properties (i) and (ii), \mathcal{C}_{k} is nonempty, so we can always find a next interval in \mathcal{C} disjoint from the previous ones. Let

$$
s_{k}=\sup \left\{m(I): I \in \mathcal{C}_{k}\right\}>0
$$

and pick I_{k+1} so that $m\left(I_{k+1}\right)>s_{k} / 2$.
Set $B=A \backslash \cup_{k=1}^{\infty} I_{k}$. By property (ii), $m^{*}(B)>0$. So there exists $K \in \mathbb{N}$ so that

$$
\begin{equation*}
\sum_{k>K} m\left(I_{k}\right)<m^{*}(B) / 3 \tag{1}
\end{equation*}
$$

Let J_{k} be the interval concentric with I_{k} so that $m\left(J_{k}\right)=3 m\left(I_{k}\right)$.
By (1), $\bigcup_{k>K} J_{k} \not \supset B$, so there is some $x \in B \backslash \bigcup_{k>K} J_{k}$. By property (i), there is an $I \in \mathcal{C}_{K}$ centered at x. If $I \cap I_{k}=\emptyset$ for all $k>K$, then $m(I) \leq s_{k}<2 m\left(I_{k+1}\right)$ for all $k>K$, contradicting that $\sum_{k>K} m\left(I_{k}\right) \leq m(G)<\infty$.
Thus there is $k>K$ such that $I \cap I_{k} \neq \emptyset$, and therefore $x \in I \subset J_{k}$. But this contradicts that $x \notin \bigcup_{k>K} J_{k}$.

