The Lebesgue Density Theorem

Throughout this note, let m stand for Lebesgue measure (although the results also hold
for Lebesgue-Stieltjes measures in general).

Definition 1. Let E C R be a measurable set and x € E. The density of E at the point
T 18

. m(EN[x—h,z+h])
d =1
p(e) = = T A
if the limit exists. The point x is called a density point if dg(x) = 1. Let D(FE) be the
set of density points of E.

Remark 1. [t is not necessary for a density point x to belong to E. For example, 0 is a
density point of E =R\ {z}.

Example 1. The point x = 0 has density 0, 1,% for the set E = [1,2], E = [-1,1] and
E =0, 1], respectively. Other densities are possible too. For example x = 0 has density %
w.r.t. the set B =J,> 507 55)-

2n417 2n
Proposition 1. The following properties hold for densities:
1. dy(x) =0 and dg(z) = 1;
dge(z) =1 —dg(z),

If A C B, then ds(z) < dp(z) if these densities exist. Hence D(A) C D(B).

e

If m(AAB) =0, then da(x) = dg(x) for allz € R, so D(A) = D(B); (AAB stands
for the symmetric difference: AAB = (A\ B)U (B\ A).)

5. D(ANB) = D(A)N D(B).
Proof. We only prove property 5. The others are straightforward.

Property 3. gives D(AN B) C D(A)N D(B). For the other inclusion, let I be any interval.
We have I\ (ANB)=(I\A)U(I\ B), so

m(Il)—m(AnNBNI)<m()—m(ANI)+m(l)—m(BNI),

and mANI)  mBnI) | _mANBNI)
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Now take I = [x — h,z + h] and let h — 0. If the RHS < 1, so x ¢ D(AN B), then
one of the first terms on the LHS < 1 as well, so x ¢ D(A) or x ¢ D(B). Hence
D(AN B)° € D(A)°U D(B)° and thus D(A N B) > D(A) N D(B). O

Theorem 1 (Lebesgue Density Theorem). For every Lebesgue measurable set E C R,
m(EAD(E)) = 0.



Remark 2. The analogous statement holds in higher dimensional Euclidean space RY, as
it does for Lebesque-Stieltjes measure. In particular, for the extreme case that the Lebesgue-
Stieltjes is Dirac measure 6,, then every E C R has at most one density point, namely p if
peEE.

Proof. We will prove that m(E \ D(E)) = 0. This will suffice because of Proposition 1,
proerty 2. and 3., and the fact that D(E) \ E C E°\ D(E°).

Without loss of generality, we can assume that £ is bounded. Write £\ D(E) = {J,,5, Ax,
where

o mENE—hath) 1
An—{xEE.hIhn_}glf m([x — h,x + h]) <1_E}'

It suffices to prove that m(A,) = 0 for all n > 1.
Assume by contradiction that n > 1 and A := A,, are such that m*(A) > 0 (outer measure!)
Thus there is a bounded open set G such that A C G and m(G) < “ym*(A).

Let C be the collection of all closed intervals I C G such that m(E N T) < -2zm(I). Then

(i) Every x € A is the center of arbitrarily small intervals in C.

(ii) Whenever {I;} C C are pairwise disjoint, then m*(A\ J, Ix}) > 0.
Property (i) follows by definition of A. Property (11) follows because

AmUIk ) < Zm (ANI}) <Zm (ENI) <

n—l

m(G) < m*(A).

Take I; € C arbitrary, and if I, ..., I; have been selected, set
Cr ={l € C: I isdisjoint from [, U--- U I;}.

By properties (i) and (ii), Cy, is nonempty, so we can always find a next interval in C disjoint
from the previous ones. Let

sy =sup{m(l): I € Cx} >0
and pick I so that m(lp41) > sp/2.
Set B = A\ U, I. By property (i), m*(B) > 0. So there exists K € N so that

> m(ly) < m*(B)/3. (1)
k>K

Let Ji be the interval concentric with Iy so that m(J,) = 3m(1y).

By (1), Upox Jx D B, so there is some x € B\ U, Jr- By property (i), there is an

I € Cx centered at . If INT, = () for all k > K, then m(I) < sp < 2m([}41) for all
k > K, contradicting that >, . m(l;) < m(G) < oo.

Thus there is k > K such that I N I # 0, and therefore x € I C J;,. But this contradicts
that x ¢ Uk>K Jk ]



