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Hamiltonian Dynamics

In general coordinates (p, q) ∈ R2n, q = position, p = momentum (usually), the Hamiltonian
equations are: (

q̇
ṗ

)
= XH

(
q
p

)
=

( ∂H
∂p

−∂H
∂q

)
=

(
∇pH
−∇qH

)
︸ ︷︷ ︸

in vector notation

for the Hamiltonian function H : R2n → R. Throughout we assume that H is C2-smooth. The
H is preserved along orbits:

Ḣ = ∇qH • q̇ +∇pH • q̇ = ∇qH • ∇qH +∇pH • (−∇qH) = 0.

(Here • stands for the usual dot-product.) Usually H represent the energy, but other preserved
quantities (e.g. momentum or angular momentum) are possible too.

Theorem 1. The Hamiltonian flow φtH preserves volume in R2n.

This “volume” is sometimes called Liouville measure in this context.

Proof. Let Ω ⊂ R2n be some region in R2, and V (t) = Vol(φtH(Ω)) its volume after flowing for
time t. In other words

V (t) =

∫
φtH(Ω)

dVol.

A standard result in multivariate calculus (see Theorem 14 Schmeiser’s Notes) says that

V̇ (t) =

∫
φtH(Ω)

divXHdVol,

where the divergence is defined as

divXH =
n∑
i=1

∂

∂qi
(XH)pi +

n∑
i=1

∂

∂pi
(XH)pi

=
n∑
i=1

∂

∂qi
(
∂

∂pi
H) +

n∑
i=1

∂

∂pi
(− ∂

∂qi
H) = 0.

Therefore V̇ (t) = 0 and V (t) is constant as claimed.
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Lagrangian Dynamics

In general coordinates (v, q) ∈ R2n, q = position, v = q̇ = velocity (usually), the Lagrangian is
L : R2 → R. We assume that L is C2-smooth.

The task is to find an extremum of the action of the Lagrangian over all C1-paths, i.e.,
minimize

I({(q̇(t), q(t)) : t1 ≤ t ≤ t2}) =

∫ t2

t1

L(q̇(t), q(t)) dt,

where q(t1), q(t2) are both fixed.

Figure 1: The path q(t) and its perturbation b(t) = εr(t)

For a perturbation path {r(t) : t1 ≤ t ≤ t2} with r(t1) = r(t2) = 0 (see Figure 1), compute
the Gateaux derivative:

d

dε
I(q + εr)|ε=0 =

∫ t2

t1

∇qL(q̇ + εṙ, q + εr) • r +∇vL(q̇ + εṙ, q + εr) • ṙ︸ ︷︷ ︸
integrate by parts

dt|ε=0

=

∫ t2

t1

(
∇qL(q̇ + εṙ, q + εr)− d

dt
∇vL(q̇ + εṙ, q + εr)

)
• r dt|ε=0

+ [∇vL(q̇ + εṙ, q + εr) • r]t2t1 |ε=0

=

∫ t2

t1

(
∇qL(q̇, q)− d

dt
∇vL(q̇, q)

)
• r dt.

The constant terms in the penultimate line above disappear because r(t1) = r(t2) = 0. In order
to have d

dε
I(q + εr)|ε=0 = 0 over all paths r, we need

∇qL(q̇, q) =
d

dt
∇vL(q̇, q). (1)

These are the Euler-Lagrange equations (one for every coordinate of q).

The Legendre Transforms

Let f : domain of f = U ⊂ Rn → R be a C2-smooth strictly convex function. This means that

D2f =


∂2f
∂x21

. . . ∂2f
∂x1∂xn

...
...

∂2f
∂xn∂x1

. . . ∂2f
∂x2n


is a positive definite matrix: (D2f)v • v > 0 unless v = 0.

Define the Legendre transform

f ∗(v) = sup
v∈U

p • v − f(v). (2)

The supremum f ∗(p) corresponds to the infimum of −f ∗(p), and this is the intersection of the
vertical axis with lines of slope p intersecting the graph of f , see Figure 2. This infimum is
achieved when this line of slope p is tangent to the graph.
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Figure 2: Illustration of the Legendre transform with x = v, p = ḟ(v) and x0 = v∗.

Let v∗(p) be the value where the supremum is assumed (so (v∗(p), f(v∗(p))) is the point of
tangency). Then

p = ∇vf(v∗(p)), (3)

f ∗(p) = p • v∗(p)− f(v∗(p)). (by inserting (3) in (2)) (4)

Theorem 2. Let f be strictly convex C2 function. Then

• f ∗ is a strictly convex C2 function;

• f ∗∗ = f .

Proof. Compute

∇pf
∗(p) =︸︷︷︸

by (4)

∇p (p • v∗(p))− f(v∗(p)))

= v∗(p) + p • ∇pv
∗(p)︸ ︷︷ ︸

p=∇vf(v∗(p)) by (3)

−∇vf(v∗(p)) • ∇pv
∗(p)

= v∗(p).

so (3) holds with f ∗ instead of f and the roles of v and p swapped. But then (4) follows as
well. So f ∗∗ = f .

In fact, we also have ∇pf
∗(p) = v, ∇vf(v) = p, so

∇vf = (∇pf
∗)inv (5)

Now f is C2 strictly convex
⇔ the Jacobian matrix D2f = J(∇f) is positive definite
⇔ J(∇f)−1 is positive definite
⇔ (by (5)) J(∇f ∗) = D2f ∗ is positive definite
⇔ f ∗ is C2 strictly convex.
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Theorem 3. Assume that (for each q fixed) the Hamiltonian is the Legendre transform of the
Lagrangian, so by (3) and (4)

p = ∇vL(v∗, q) and H(p, q) = L∗(v, q) = p • v∗(p)− L(v∗(p)), q).

Then the Euler-Lagrange equations are equivalent to the Hamiltonian equations.

Proof. We assumed H = L∗ so by the previous theorem also L = H∗. Using (3) with f = H
and v and p swapped, we find the first Hamiltonian equation:

q̇ = v = ∇pH.

Also, by (4)

∇qH = ∇q (p • v∗(p, q))− L(v∗(p, q)), q))

= p • ∇qv
∗(p, q)−∇vL • ∇qv

∗ −∇qL

=︸︷︷︸
(3) withf=L

p • ∇qv
∗ − p • ∇qv

∗ −∇qL

= −∇qL

=︸︷︷︸
by (1)

− d

dt
∇vL

=︸︷︷︸
(3) with f=L

− d

dt
p = −ṗ.

This is the second Hamiltonian equation.

The example of the pendulum

Newton’s equation of motion for the pendulum (see Figure 3) is:

q̈ +
g

`
sin q = 0, (6)

for the angle q.

Figure 3: The pendulum with gravitational force along the rod F = −mg sin q

In the Hamiltonian setting, we set p = m`2q̇,

Ekin =
m(`q̇)2

2
=

p2

2m`2
, Epot = −mg` cos q,

and Hamiltonian

H(p, q) = Ekin + Epot =
p2

2m`2
−mg` cos q.

Then 
∂H
∂p

= p
m`2

= q̇

−∂H
∂q

= −mg` sin q =︸︷︷︸
Newton’s eq. of motion

`2mq̈ = ṗ.
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From Lagrangian point of view with v = q̇:

Lagrangian = L(v, q) = Ekin − Epot =
m`2v2

2
+mg` cos q.

The Euler-Lagrangian equation gives

0 = ∇qL−
d

dt
∇vL = −mg` sin q − d

dt
m`2q̇

⇔ 0 =
g

`
sin q + q̈,

which is Newton’s equation of motion.
Now we compare the Hamiltonian and Lagrangian using the Legendre transform. Start with

v = q̇ and L(v, q) = m`2v2

2
+mg` cos q. Take the Legendre transform to get the Hamiltonian:

H(p, q) = sup
v∈R

p • v −
(
m`2v2

2m
+mg` cos q

)
.

Set the derivative d
dv

= 0: p−m`2v = 0, so v = p
m`2

. (Thus p = m`2v = m`q̇ – this somewhat
strange form of the momentum is a result of Legendre transforming a somewhat strange form
of velocity, which is really an angular velocity of physical dimension [1/sec]). Insert

H(p, q) =
p2

m`2
− m`2p2

2m2`4
−mg` cos q

=
p2

2m`2
−mg` cos q

= Ekin + Epot.

Relativistic pendulum

In order to illustrate that the relation between Lagangian and Hamiltonian can be more com-
plicated than just flipping the sign of the potential energy, we consider the pendulum within
the framework of Einstein’s relativistic mechanics.{

Ekin = m(v)c2, m(v) = m0

√
1 + |v|2

c2
.

Epot = Epot(q).

Here c is the speed of light, v the velocity and m0 the rest-mass of the particle. Note that v = q̇
is a vector, and |v| =

√∑
i v

2
i .

The Lagrangian is defined as L(v, q) = Ekin − Epot, and therefore

∂

∂vi
L(v, q) =

m0c
2

2
√

1 + |v|2
c2

2vi
c2

=
m0vic√
c2 + |v|2

.

Therefore the Euler-Lagrange equations become

∇qEpot(q) =
d

dt

m0cq̇√
c2 + |q̇|2

.
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We find the Hamiltonian via the Legendre transform:

H(p, q) = L∗(v, q) = sup
v∈Rn

v • p−

(
m0c

2

√
1 +
|v|2
c2
− Epot(q)

)
. (7)

Solve ∇vL(v, q) = 0:

p =
m0cv√
c2 + |v|2

⇒ |v|2 =
c2|p|2

m2
0c

2 − |p|2
.

Insert in (7)

H(p, q) =
c|p|2√

m2
0c

2 − |p|2
−m0c

2

√
1 +

|p|2
m2

0c
2 − |p|2

+ Epot(q)

= −c
√
m2

0c
2 − |p|2 + Epot(q).

Noether’s Theorem and First Integrals

Not only energy can supply the Hamiltonian; there are often other preserved (additional)
quantities, e.g. momentum, angular momentum. Such constants of motion are called first
integrals. These can often be related to a continuous symmetry in the system. This is the
content of Noether’s Theorem.

Let Q(s, q) be a continuous family of motions in Rn. For instance, rotations in R2 over an
angle s:

Q : (s, q) 7→
(

cos s − sin s
sin s cos s

)(
q1 q2

)
.

Formally, Q(0, q) = q and Q(s + t, q) = Q(s,Q(t, q)) for all q ∈ Rn and s, t ∈ R. Therefore we
can describe Q(s, q) as the solution of a flow of a vector field, say f : Rn → Rn:{

∂
∂s
Q(s, q) = f(Q(s, q)),

Q(0, q) = q.
(8)

The corresponding action on tangent vectors v = q̇ ∈ TqRn (which is isomorphic to Rn) is

v 7→ DqQ(s, q)v,

with s-derivative at s = 0:

∂

∂s
DqQ(s, q)|s=0 = Dq

∂

∂s
Q(s, q)|s=0 = Dqf(Q(s, q))|s=0 = Dqf(q). (9)

Definition 4. A vector field f (with ∂
∂s

(Q(s, q)) = f(Q(s, q))) generates a symmetry of a
Lagrangian system if

L(v, q) = L(DqQ(s, q)v,Q(s, q)) (10)

for all s ∈ R and q ∈ Rn, v ∈ TqRn. That is, L remains constant over actions of the symmetry.
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Theorem 5 (Noether’s Theorem). If f generates a symmetry, then

I(v, q) := ∇vL(v, q) • f(q)

is a first integral.

Proof. Differentiate (10) with respect to s at s = 0. Because L is constant over the action of
Q(s, q), we obtain

0 =
d

ds
L(DqQ(s, q)v,Q(s, q))|s=0

= ∇vL •
d

ds
DqQ(s, q)v +∇qL •

d

ds
Q(s, q)︸ ︷︷ ︸
=f(q)

|s=0 (11)

Hence

İ(v, q) =
d

dt
∇vL(v, q) • f +∇vL(v, q) •

∇qf •
d

dt
q︸︷︷︸

v


︸ ︷︷ ︸
d
ds
DqQ(s,q)v|s=0 by (9)

=︸︷︷︸
by (11)

d

dt
∇vL • f(q)−∇qL • f(q)

=︸︷︷︸
by (1)

(
d

dt
∇vL−∇qL

)
• f(q) = 0.

Hence I is constant as claimed.

Examples: Assume that q ∈ Rn and L(v, q) = Ekin(v) − Epot(q) (with Ekin = mv2

2
) does

not depend on the coordinate qj. Take Q(s, q) = q+ sej, so Q(0, q) = q and the corresponding
vector field is

f(q) = ej the j-th basis vector in Rn.

Then

I(v, q) = ∇vL(v, q) • f(q)

= ∇v(Ekin(v)− Epot(q)) • f(q)

= mv • ej = mvj = pj

is the j-th component of the momentum. That is: the j-th component of the momentum is
preserved.

For rotational symmetries q 7→ Q(s, q) = A(s)q for a family of skew-symmetric matrices,

e.g., A(s) =

(
cos s − sin s
sin s cos s

)
, the preservation of

I(v, q) = mvTA(0)q.

leads to the preservation of (a component of) the angular momentum.
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Definition 6. When a Hamiltonian system in R2n has n first integrals Ij, j = 1, . . . , n, then
the system is called integrable. This doesn’t mean that you can solve the system explicitly (in
general), but that trajectories are confined to the intersection of level sets

n⋂
j=1

{(v, q) : Ij(v, q) = aj} .

When these level sets are compact, they are almost surely (i.e., for almost all values aj) n-
dimensional tori.

Figure 4: Parallel flow on the torus and on nested tori.

As an example, note that constant parallel motion

ẋ = ~C

on a d-dimensional torus is dense in a d − i-dimensional torus if the d coordinates of ~C have
i rational relations among them. For instance, if ~C = (c1, c2)T , then the motion is periodic if
ac1 = bc2 for some (a, b) ∈ Z2 \ {(0, 0)}, and dense fills the 2-dimensional torus if not.

Figure 5: The phase portrait of the pendulum.

A second example is the pendulum, with n = 1 and H = Ekin + Epot a first integral.
Therefore this system is integrable. In Figure 5, if we take x = q mod 2π ∈ [−π, π], then
all orbits are compact in the cylinder. All the orbits are topological circles, except the two
equilibria at (0, 0) and (±π, 0).

0.1 The n-body problem

The 2-body problem (Kepler’s Problem) is about the motio of two particles (e.g. the Sun and
the Earth) moving in ech other’s gravitational field in R3, and no other forces around. Kepler,
as well known in science history, gave three laws to describe the motion of the planets:

1. The orbit of a planet is an ellipse with the Sun at one of the two foci.

2. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals
of time:

3. The square of the orbital period T of a planet is directly proportional to the cube of the
semi-major axis a of its orbit:

T 2 ∼ a3.
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Figure 6: Illustration of Kepler’s Laws.

Here the dimension of the problem is n = 6 (3 space coordinates ~qS of the Sun, 3 space
coordinates ~qE of the Earth), and there are (more than) 6 first integrals:

• the momentum vector p∗ = ~pS + ~pE (3 components), where ~pS = mS
d
dt
~qS and ~pE =

mE
d
dt
~qE;

• the angular momentum vector `∗ = ~pS × ~qS + ~pE × ~qE. (This is equivalent to Kepler’s
second law).

Therefore all bounded motions are confined to a 6-dimensional torus (integrable).

There are, however, more first integrals, each of them reducing the dimension in which orbits

• From the Galilei transformations (~v, ~q) 7→ (~v−~v0, ~q− t~v0) (which allows us to put p∗ = 0).

• Energy Ekin + Epot.

• The Laplace-Runge-Lenz vector p∗ × `∗ − α ~q
|~q| , where the constant α is depends on the

masses of Sun and Earth an don the gravitational constant G in Newton law of attraction:

Fgrav = G
mSmE

r2
. G ≈ 6.67410−11 m3

kg.sec2
. (12)

This first integral exists precisely because the gravitation force is inverse square propor-
tional to the mutual distance between Sun and Earth.

This reduces the orbits to 1-dimensional tori, i.e., ellipses, as Kepler’s first law states (or to
hyperbolas or parabolas if the orbit is not compact). In fact, also Kepler’s third law is a
consequence of the preservation of the Laplace-Runge-Lenz vector (so again of the precise form
of the Newtonian gravitation).
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Let us try to derive the elliptical motion (i.e., solve Kepler’s problem) with a bit of physical
insight:

mS~qS +mE~qE = 0 the center of mass fixed at the origin;

p∗ = mS~vS +mE~vE = 0 preservation of momentum;

`∗ = ~pS × ~qS + ~pE × ~qE = c~e3 preservation of angular momentum,

we choose coordinates to keep orbits in x, y-plane.

Use polar coordinates for

~r := ~qS − ~qE = r cosφ ~e1 + r sinφ ~e2. r = |~r|.

Since the origin is the center of mass, we have

~qS =
mE

mE +mS

~r, ~qE = − mS

mE +mS

~r.

Now we compute the angular momenta of Sun and Earth explicitly:

`S = mS
mE

mS +mE

 d
dt

(r cosφ)
d
dt

(r sinφ)
0

× mE

mS +mE

r cosφ
r sinφ

0


= mS

(
mE

mS +mE

)2
ṙ cosφ− rφ̇ sinφ

ṙ sinφ+ rφ̇ sinφ
0

×
r cosφ
r sinφ

0


= mS

(
mE

mS +mE

)2
 0

0

r2φ̇

 .

Similarly

`E = mE

(
mS

mS +mE

)2
 0

0

r2φ̇

 .

Thus
|`∗| := |`S|+ |`E| = m∗r2φ̇, m∗ =

mSmE

mS +mE

. (13)

Next we compute the kinetic energies of Sun and Earth explicitly:

Ekin,S =
mS|~vS|2

2
=
mS

2

∣∣∣∣∣∣
 d

dt
(r cosφ)

d
dt

(r sinφ)
0

∣∣∣∣∣∣
2

=
mS

2

(
mE

mS +mE

)2

(ṙ2 + r2φ̇2),

and similarly

Ekin,E =
mE

2

(
mS

mS +mE

)2

(ṙ2 + r2φ̇2).
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Their combined potential energies are

Epot = −mSmEG

r
.

Adding all the energies together:

E =
m∗

2
(ṙ2 + r2φ̇2)− mSmEG

r
. (14)

Solve r as function of φ, using (13) (i.e., |`∗| = m∗r2φ̇):

ṙ =
dr

dφ

dφ

dt
=
dr

dφ
φ̇ = − dr

dφ

|`∗|
m∗r2

.

Inserted in (14):

E =
|`∗|2

2m∗

(
1

r4

(
dr

dφ

)2

+
1

r2

)
− mSmEG

r
.

We can simplify this differential equation by taking r = 1
ρ
, so dr

dφ
= − 1

ρ2
dρ
dφ

. This gives

E =
|`∗|2

2m∗

((
dρ

dφ

)2

+ ρ2

)
−mSmEG ρ.

Next split off the square:(
dρ

dφ

)2

+ (ρ− A)2 = B2,

{
A = m∗mSmEG

|`∗|2 ,

B = A2 + 2m∗E
|`∗| .

Introduce a new variable ψ by setting ρ = A+B cosψ:

B2 sin2 ψ

(
dψ

dφ

)2

+B2 cos2 ψ = B2 ⇒
(
dψ

dφ

)2

= 1.

We choose the positive solution dψ
dφ

= 1 (the negative solution will result in the same shape of

orbit, traversed in the opposite direction). Therefore

ψ = ψ(φ) = φ− φ0, ρ(φ) = A+B cos(φ− φ0),

and

r(φ) =
A−1

1 + ε cos(φ− φ0)
with eccentricity ε =

B

A
=

√
1 +

2E|`∗|
m∗(mSmE)2G

.

In Cartesian coordinates x = r(φ) cos(φ− φ0), y = r(φ) sin(φ− φ0), this is

(1− ε2)x2 + y2 = r2
(
(1− ε2) cos2(φ− φ0) + sin2(φ− φ0)

)
=

A−2

(1 + ε cos(φ− φ0))2

(
1− ε2 cos2(φ− φ0)

)
=

1

A2

1− ε cos(φ− φ0)

1 + ε cos(φ− φ0)

=
1

A2

1 + ε cos(φ− φ0)− 2ε cos(φ− φ0)

(1 + ε cos(φ− φ0))
=

1

A2
− 2εx

A
.
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which gives

(1− ε2)x2 +
2εx

A
+ y2 = A2.

Finally, for the eccentricity we have:

ε


< 1 if E < 0 and we have an ellipse,

= 1 if E = 0 and we have a parabola,

> 1 if E > 0 and we have a hyperbola.

Figure 7: Paris mathematicians with an L, in alphabetical and chronological order.

The mathematical explanation (in first place due to Newton) for Kepler’s Laws was a big
triumph of the use of mathematics to understand the world. In the wake of the Enlightening
(Aufklärung) philosophical movement of the late 17th century, it gave ground for an optimistic
view on determinism, i.e., the view that in nature everything is predictable. This was most
famously expressed by Laplace:

We may regard the present state of the universe as the effect of its past and the cause
of its future. An intellect1 which at a certain moment would know all forces that set
nature in motion, and all positions of all items of which nature is composed, if this
intellect were also vast enough to submit these data to analysis, it would embrace
in a single formula the movements of the greatest bodies of the universe and those
of the tiniest atom; for such an intellect nothing would be uncertain and the future
just like the past would be present before its eyes. 2

However, the three body problem, and more generally the eight body problem (i.e., the
Solar system, Neptune was discovered in 1848, making it a nine body problem, Pluto was only
discovered in 1930) stubbornly refused to be integrable, at least all the efforts of 19th century
mathematics went in vain. As such, it remained an open question whether the planets would
circle around the Sun for ever, or actually have unstable orbits, maybe swinging off to outer
space, or colliding with one another at some point in the future. The Swedish mathematician
Mittag-Leffler persuaded King Oscar II to arrange an international prize competition in math-
ematics honouring the king’s 60th birthday in 1884. This competition was won by the French

1also called: Laplace’s demon
2Pierre Simon Laplace, A Philosophical Essay on Probabilities
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mathematician Henri Poincaré with a lengthy essay3 which can be seen as the beginning of
“Dynamical Systems”, and in which he showed that predicting motions as complicated as the
three body problem can, in general and to any degree of accuracy and in spite of “determinism”,
not be accomplished. The reason is the occurrence of sensitive dependence on initial conditions
and of horseshoes, but the words for these notions emerge much later.

Modern computer simulations confirm that there is no way of saying whether, for instance,
the Earth and Mars will collide within the next 50 million years or not. Computers also found
some very unexpected periodic orbits (choreographies) for three or more bodies, see Figure 8.

Figure 8: Some possible periodic orbits for three (and even six) bodies.

Exercise 7. Show that if the Hamiltonian H = Ekin(p) + Epot(q) and Ekin = p2

2m
, then the

Lagrangian is L = Ekin(p)− Epot(q).

Exercise 8. Given is the differential equation

ẋ = C, x ∈ T2 = R2/Z2, C =

(
c1

c2

)
∈ R2.

Show that:

• the return map F : S1 → S1 of the flow ϕt to the circle S1 = {x ∈ T2 : x1 = 0} is a
rotation over c1/c2.

• hence all orbits of F are dense if and only if c1/c2 /∈ Q.

• hence all orbit of ϕt are dense if and only if c1/c2 /∈ Q.

What does this say about the Poincaré-Bendixson theorem on the torus T2?

Exercise 9. Assume that XH is a Hamiltonian vector field in R2:

• Show that equilibria of XH can only be centers or saddles.

• Which bifurcations (of the ones we treated in class) can occur in a family of Hamiltonian
vector fields?

• Find a family of Hamiltonians Hε : R2 → R such that at ε = 0, a saddle becomes a center.

Exercise 10. A Lagrangian system in R3 has the Lagrangian

L(v, q) =
v2

1 + v2
2 + v2

3

2
− q2

1 + q2
2 + q3

3

2
.

Use Noether’s Theorem to find first integrals. Is the system integrable?
3Poincaré discovered a mistake in the first version of his essay, corrected it, and had to spend all his prize

money to recall the wrong first version that was already in print.
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Exercise 11. We have a Hamiltonian system in coordinates (x, y) ∈ R2 where the Hamiltonian
has the form

H(x, y) =
y2

2
+ V (x), V is C2-smooth,

and assume that V (x) = V (−x) has V ′′(0) > 0. This means that (0, 0) is

(a) Show that (0, 0) is a center, with periodic motion around it.

(b) Let T (a) be the period of the orbit starting at (a, 0). Show that

T (a) =

∫ a

0

4√
2(V (a)− V (x))

dx.

Hint: Integrate T (a) =
∫ t2
t1

a quarter of the periodic orbit and invert t = t(x) (instead of
x = x(t)) to rewrite the integral.

• Show that T (a) = 2π is constant for V (x) = x2

2
(harmonic oscillator).

• Show that T (a) is increasing if V (x) = − cosx (pendulum), and find lima↘0 T (a) and
lima↗0 T (a).
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Solution to Exercise 9: By Liouville’s Theorem, the Hamiltonian flow preserves area, so
there cannot be sinks or saddles (because locally these contract resp. expand area). As such,
fold bifurctions and Hopf bifurcations cannot occur, neither pitchfork bifurcations. However,
for the Hamiltonian H(x, y) = y2

2
+ εx2 +x4, the center at (0, 0) turns into saddle as ε becomes

negative. The eigenvalues of this equilibrium, which are two purely imaginary complex conju-
gates, first decrease to 0, and then become real (one postive, the other negative).

Solution to Exercise 11: (a) Equilibria at (x, 0) where V ′(x) = 0, and DXH(x, 0) =(
0 1

−V ′′(x) 0

)
. Since V ′′(0) > 0, the eigenvalues are λ± = ±

√
V ′′(0)i, so purely imaginary,

and therefore 0 is a center.
(b) Let t1 and t2 be the points in time where the orbit through (a, 0) hits the positive vertical
resp. positive horizontal axis. We have, by change of coordinates x = x(t).

T (a) = 4

∫ t2

t1

dt =

∫ a

0

dt

dx
dx =

∫ a

0

1

y
dx.

We compute y from H = y2

2
+ V (x), so y =

√
2(H − V (x)). But H(x, y) = H(y, 0) = V (a)

because it is a constant of motion. Therefore

T (a) = 4

∫ a

0

1√
2(V (a)− V (0))

dx.

(c) Take V (x) = x2

2
. Then, using x = a sinψ,

T (a) = 4

∫ a

0

1√
a2 − x2

dx = 4

∫ π
2

0

a sinψ√
a2(1− sinψ2)

dψ = 4

∫ π
2

0

dψ = 2π.

(d) For V (x) = − cosx we have T (a) = 4
∫ a

0
1√

2(cos(x)−cos(a))
dx. This integral cannot be solved

with an explicit expression, ut for 0 ≤ x ≤ a both small, we can use the Taylor expansion:

lim
a→0

T (a) = lim
a→0

4

∫ a

0

1√
2(1− x2

2
− (1− a2

2
))
dx = lim

a→0
4

∫ a

0

1√
a2 − x2

dx = 2π

as in (c). For a→ π/2, we simply plug in the value:

lim
a→π

2

T (a) = 4

∫ π
2

0

1√
cosx

dx = 4

∫ π
2

0

cosx

(cosx)3/2
dx.

Change coordinates u = sinx and then v = 1− u:

lim
a→π

2

T (a) = 4

∫ 1

0

du

(1− u2)3/2
= 4

∫ 1

0

v−3/2(2− v)−3/2dv ≥
√

2

∫ 1

0

v−3/2dv =∞.
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