The hyperspace of noncut subcontinua of a hairy dendrite

Rodrigo Hernández-Gutiérrez1 \hspace{1em} Jorge E. Vega2

1Department of Mathematics
Universidad Autónoma Metropolitana, Iztapalapa

2Instituto de Matemáticas
Universidad Nacional Autónoma de México

36th Summer Topology Conference
Vienna, Austria, July 19, 2022
Joint work with Jorge Vega
Dendrites

A **dendrite** is a locally connected metric continuum that does not contain simple closed curves.
Menger-Urysohn order

Let X be a dendrite and $p \in X$. The **Menger-Urysohn order** of p in X is the number of components of $X \setminus \{p\}$ and is denoted by $\text{ord}(p, X)$.

$E(X) = \{ p \in X : \text{ord}(p, X) = 1 \}$

$O(X) = \{ p \in X : \text{ord}(p, X) = 2 \}$

$R(X) = \{ p \in X : \text{ord}(p, X) \geq 3 \}$

Important: For dendrites, $\text{ord}(p, X)$ can be any finite number or ω.
Let X be a dendrite and $p \in X$. The **Menger-Urysohn order** of p in X is the number of components of $X \setminus \{p\}$ and is denoted by $\text{ord}(p, X)$.

$$
E(X) = \{ p \in X : \text{ord}(p, X) = 1 \} \quad \text{endpoints}
$$

$$
O(X) = \{ p \in X : \text{ord}(p, X) = 2 \} \quad \text{ordinary points}
$$

$$
R(X) = \{ p \in X : \text{ord}(p, X) \geq 3 \} \quad \text{ramification points}
$$
Menger-Urysohn order

Let \(X \) be a dendrite and \(p \in X \). The **Menger-Urysohn order** of \(p \) in \(X \) is the number of components of \(X \setminus \{p\} \) and is denoted by \(\text{ord}(p, X) \).

\[
E(X) = \{ p \in X : \text{ord}(p, X) = 1 \} \quad \text{endpoints}
\]
\[
O(X) = \{ p \in X : \text{ord}(p, X) = 2 \} \quad \text{ordinary points}
\]
\[
R(X) = \{ p \in X : \text{ord}(p, X) \geq 3 \} \quad \text{ramification points}
\]

Important: For dendrites, \(\text{ord}(p, X) \) can be any finite number or \(\omega \).
Example: points by their order
“Hairy” dendrites

Lemma (J. Chatatonik, W. Charatonik and J. Prajs, 1994)

For a dendrite X, the following are equivalent.

1. $E(X)$ is dense,
2. $R(X)$ is dense, and
3. if α is an arc in X, then $\alpha \cap R(X)$ is dense.
Non-cut subcontinua

Let X be a metric continuum; then

$$2^X = \{ A \subset X : A \text{ is closed and nonempty} \},$$

$$C(X) = \{ A \in 2^X : A \text{ is a continuum} \}.$$
Non-cut subcontinua

Let X be a metric continuum; then

\[2^X = \{ A \subset X : A \text{ is closed and nonempty} \}, \]

\[C(X) = \{ A \in 2^X : A \text{ is a continuum} \}. \]

It is known that 2^X and $C(X)$ are non-degenerate metric continua if X is non-degenerate.
Non-cut subcontinua

Let X be a metric continuum; then

$$2^X = \{A \subset X : A \text{ is closed and nonempty}\},$$

$$C(X) = \{A \in 2^X : A \text{ is a continuum}\}.$$

It is known that 2^X and $C(X)$ are non-degenerate metric continua if X is non-degenerate.

$$NC^*(X) = \{A \in C(X) : X \setminus A \text{ is connected}\}.$$
Theorem (Jorge Martinez-Montejano, Verónica Martinez-de-la-Vega and Jorge Vega)

If X is a dendrite where $R(X)$ is dense, then $NC^*(X)$ is totally disconnected.
Total disconnected and … ?

Theorem (Jorge Martinez-Montejano, Verónica Martinez-de-la-Vega and Jorge Vega)

If X is a dendrite where $R(X)$ is dense, then $NC^*(X)$ is totally disconnected.

Theorem (HG and Vega)

If X is a dendrite where $R(X)$ is dense, then $NC^*(X) \approx \mathbb{R} \setminus \mathbb{Q}$.
Characterization of $\mathbb{R} \setminus \mathbb{Q}$

Theorem (Alexandroff and Urysohn, 1928)

For a separable metrizable space X the following are equivalent:

- $X \cong \mathbb{R} \setminus \mathbb{Q}$, and
- X is Polish, zero dimensional and nowhere locally compact.
Characterization of $\mathbb{R} \setminus \mathbb{Q}$

Theorem (Alexandroff and Urysohn, 1928)

For a separable metrizable space X the following are equivalent:

- $X \cong \mathbb{R} \setminus \mathbb{Q}$, and
- X is Polish, zero dimensional and nowhere locally compact.

Theorem (Krupski and Samulewicz, 2017)

If X is a locally connected continuum, then the family $S(X)$ of all compacta that separate X is an F_σ-subset of 2^X.
Characterization of $\mathbb{R} \setminus \mathbb{Q}$

Theorem (Alexandroff and Urysohn, 1928)

For a separable metrizable space X the following are equivalent:

- $X \approx \mathbb{R} \setminus \mathbb{Q}$, and
- X is Polish, zero dimensional and nowhere locally compact.

Theorem (Krupski and Samulewicz, 2017)

If X is a locally connected continuum, then the family $S(X)$ of all compacta that separate X is an F_σ-subset of 2^X.

$$NC^*(X) = C(X) \setminus S(X)$$
Elements of $NC^*(X)$ when X is a dendrite

Theorem (Martinez-Montejano, Martinez-de-la-Vega and Vega)

Let X be a dendrite and let $A \in C(X)$. Then $A \in NC^*(X)$ if and only if one of the following holds:

1. $A = X$,
2. $A = \{ e \}$ for some $e \in E(X)$, or
3. $A = X \setminus C$, where C is a component of $X \setminus \{ p \}$ with $p \in X \setminus E(X)$.

Example of $A \in NC^*(X)$.

$$A = X \setminus C$$

Notice: $bd_X(A) = \{p\}$.
Some closed discrete sets

Let $A \in NC^{*}(X)$.
Some closed discrete sets

Let $A \in NC^*(X)$. Choose $B \in NC^*(X)$ close to A such that $q \in R(X)$.

\[e \quad q \in R(X) \quad p \quad B \quad A \]
Some closed discrete sets

Let \(A \in NC^*(X) \). Choose \(B \in NC^*(X) \) close to \(A \) such that \(q \in R(X) \).
Some closed discrete sets

Let $A \in NC^*(X)$. Choose $B \in NC^*(X)$ close to A such that $q \in R(X)$.
Some closed discrete sets

Let $A \in NC^*(X)$. Choose $B \in NC^*(X)$ close to A such that $q \in R(X)$.

Then $\{B_n : n \in \mathbb{N}\}$ is closed and discrete in $NC^*(X)$.
Clopen sets in $NC^*(X)$

Let $q, r \in [ab \setminus \{a, b\}] \cap R(X)$.

$$\mathcal{B}(q, r) = \{B_x : x \in qr \setminus \{q\}\}$$
Clopen sets in $NC^*(X)$

Let $q, r \in [ab \setminus \{a, b\}] \cap R(X)$.

$$B(q, r) = \{B_x : x \in qr \setminus \{q\}\}$$
Open questions

Question

In general, what space is $NC^*(X)$ when X is a dendroid?
Open questions

Question

In general, what space is $NC^(X)$ when X is a dendroid?*

More interesting question (for me):
Open questions

Question

In general, what space is $NC^*(X)$ when X is a dendroid?

More interesting question (for me):

Question

Is there a dendroid X such that $NC^*(X)$ is totally disconnected but not zero dimensional?
Open questions

Question

In general, what space is $NC^*(X)$ when X is a dendroid?

More interesting question (for me):

Question

Is there a dendroid X such that $NC^*(X)$ is totally disconnected but not zero dimensional?

Question

If X is the Mohler-Nikiel universal smooth dendroid, is $NC^*(X)$ totally disconnected and not zero-dimensional?
Thank you

Preprint available at:
https://arxiv.org/abs/2108.06020

Figure: The Julia set of $z \mapsto z^2 + i$ is homeomorphic to D_3.
https://sciencedemos.org.uk/julia.php