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Preface

These are notes from an introductory course on ergodic theory given at the
Hebrew University of Jerusalem in the fall semester of 2012.

The course covers the usual basic subjects, though relatively little about
entropy (a subject that was covered in a course the previous year). On the less
standard side, we have included a discussion of Furstenberg disjointness.
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Chapter 1

Introduction

At its most basic level, dynamical systems theory is about understanding the
long-term behavior of a map T : X → X under iteration. X is called the phase
space and the points x ∈ X may be imagined to represent the possible states
of the “system”. The map T determines how the system evolves with time:
time is discrete, and from state x it transitions to state Tx in one unit of time.
Thus if at time 0 the system is in state x, then the state at all future times
t = 1, 2, 3, . . . are determined: at time t = 1 it will be in state Tx, at time t = 2
in state T (Tx) = T 2x, and so on; in general we define

Tnx = T ◦ T ◦ . . . ◦ T︸ ︷︷ ︸
n

(x)

so Tnx is the state of the system at time n, assuming that at time zero it is
in state x. The “future” trajectory of an initial point x is called the (forward)
orbit, denoted

OT (x) = {x, Tx, T 2x, . . .}

When T is invertible, y = T−1x satisfies Ty = x, so it represents the state of
the world at time t = −1, and we write T−n = (T−1)n = (Tn)−1. The one can
also consider the full or two-sided orbit

O±T (x) = {Tnx : n ∈ Z}

There are many questions one can ask. Does a point x ∈ X necessarily
return close to itself at some future time, and how often this happens? If we
fix another set A, how often does x visit A? If we cannot answer this for all
points, we would like to know the answer at least for typical points. What is the
behavior of pairs of points x, y ∈ X: do they come close to each other? given
another pair x′, y′, is there some future time when x is close to x′ and y is close
to y′? If f : X → R, how well does the value of f at time 0 predict its value at
future times? How does randomness arise from deterministic evolution of time?
And so on.
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CHAPTER 1. INTRODUCTION 5

The set-theoretic framework developed so far there is relatively little that
can be said besides trivialities, but things become more interesting when more
structure is given to X and T . For example, X may be a topological space, and
T continuous; or X may be a compact manifold and T a differentiable map (or
k-times differentiable for some k); or there may be a measure on X and T may
preserve it (we will come give a precise definition shortly). The first of these
settings is called topological dynamics, the second smooth dynamics, and the
last is ergodic theory. Our main focus in this course is ergodic theory, though
we will also touch on some subjects in topological dynamics.

One might ask why these various assumptions are natural ones to make.
First, in many cases, all these structures are present. In particular a theorem
of Liouville from celestial mechanics states that for Hamiltonian systems, e.g.
systems governed by Newton’s laws, all these assumptions are satisfied. Another
example comes from the algebraic setting of flows on homogeneous spaces. At
the same time, in some situations only some of these structures is available; an
example is can be found in the applications of ergodic theory to combinatorics,
where there is no smooth structure in sight. Thus the study of these assumptions
individually is motivated by more than mathematical curiosity.

In these notes we focus primarily on ergodic theory, which is in a sense
the most general of these theories. It is also the one with the most analytical
flavor, and a surprisingly rich theory emerges from fairly modest axioms. The
purpose of this course is to develop some of these fundamental results. We will
also touch upon some applications and connections with dynamics on compact
metric spaces.



Chapter 2

Measure preserving
transformations

2.1 Measure preserving transformations
Our main object of study is the following.

Definition 2.1.1. A measure preserving system is a quadruple X = (X,B, µ, T )
where (X,B, µ) is a probability space, and T : X → X is a measurable, measure-
preserving map: that is

T−1A ∈ B and µ(T−1A) = µ(A) for all A ∈ B

If T is invertible and T−1 is measurable then it satisfies the same conditions,
and the system is called invertible.

Example 2.1.2. Let X be a finite set with the σ-algebra of all subsets and
normalized counting measure µ, and T : X → X a bijection. This is a measure
preserving system, since measurability is trivial and

µ(T−1A) =
1

|X|
|T−1A| = 1

|X|
|A| = µ(A)

This example is very trivial but many of the phenomena we will encounter can
already be observed (and usually are easy to prove) for finite systems. It is
worth keeping this example in mind.

Example 2.1.3. The identity map on any measure space is measure preserving.

Example 2.1.4 (Circle rotation). Let X = S1 with the Borel sets B and
normalized length measure µ. Let α ∈ R and let Rα : S1 → S1 denote the
rotation by angle α, that is, z 7→ e2πiαz (if α /∈ 2πZ then this map is not the
identity). Then Rα preserves µ; indeed, it transforms intervals to intervals of
equal length. If we consider the algebra of half-open intervals with endpoints
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CHAPTER 2. MEASURE PRESERVING TRANSFORMATIONS 7

in Q[α], then T preserves this algebra and preserves the measure on it, hence it
preserves the extension of the measure to B, which is µ.

This example is sometimes described as X = R/Z, then the map is written
additively, x 7→ x+ α.

This example has the following generalization: let G be a compact group
with normalized Haar measure µ, fix g ∈ G, and consider Rg : G → G given
by x → gx. To see that µ(T−1A) = µ(A), let ν(A) = µ(g−1A), and note
that ν is a Borel probability measure that is right invariant: for any h ∈ H,
ν(Bh) = µ(g−1Bh) = µ(g−1B) = ν(B). This ν = µ.

Example 2.1.5 (Doubling map). Let X = [0, 1] with the Borel sets and
Lebesgue measure, and let Tx = 2x mod 1. This map is onto is ,not 1-1, in
fact every point has two pre-images which differ by 1

2 , except for 1, which
is not in the image. To see that T2 preserves µ, note that for any interval
I = [a, a+ r) ⊆ [0, 1),

T−1
2 [a, a+ r) = [

a

2
,
a+ r

2
) ∪ [

a

2
+

1

2
,
a+ r

2
+

1

2
)

which is the union of two intervals of length half the length; the total length is
unchanged.

Note that TI is generally of larger length than I; the property of measure
preservation is defined by µ(T−1A) = µ(A).

This example generalizes easily to Tax = ax mod 1 for any 1 < a ∈ N. For
non-integer a > 1 Lebesgue measure is not preserved.

If we identify [0, 1) with R/Z then the example above coincides with the
endomorphism x 7→ 2x of the compact group R/Z. More generally one can
consider a compact group G with Haar measure µ and an endomorphism T :
G → G. Then from uniqueness of Haar measure one again can show that T
preserves µ.

Example 2.1.6. (Symbolic spaces and product measures) Let A be a finite set,
|A| ≥ 2, which we think of as a discrete topological space. Let X+ = AN and
X = AZ with the product σ-algebras. In both cases there is a map which shifts
“to the right”,

(σx)n = xn+1

In the case of X this is an invertible map (the inverse is (σx)n = xn−1). In the
one-sided caseX+, the shift is not 1-1 since for every sequence x = x1x2 . . . ∈ AN

we have σ−1(x) = {x0x1x2 . . . : x0 ∈ A}.
Let p be a probability measure on A and µ = pZ, µ+ = pN the product

measures on X,X+, respectively. By considering the algebra of cylinder sets
[a] = {x : xi = ai}, where a is a finite sequence of symbols, one may verify that
σ preserves the measure.

Example 2.1.7. (Stationary processes) In probability theory, a sequence {ξn}∞n=1

of random variables is called stationary if the distribution of a consecutive n-
tuple (ξk, . . . , ξk+n−1) does not depend on where it behind; i.e. (ξ1, . . . , ξn) =
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(ξk, . . . , ξk+n−1) in distribution for every k and n. Intuitively this means that
if we observe a finite sample from the process, the values that we see give no
information about when the sample was taken.

From a probabilistic point of view it rarely matters what the sample space is
and one may as well choose it to be (X,B) = (Y N, CN), where (Y, C) is the range
of the variables. On this space there is again defined the shift map σ : X → X
given by σ((yn)∞n=1) = (yn+1)∞n=1. For any A1, . . . , An ∈ C and k let

Ai = Y × . . .× Y︸ ︷︷ ︸
k

×A1 × . . .×An × Y × Y × Y × . . .

Note that B is generated by the family of such sets. If P is the underlying
probability measure, then stationarity means that for any A1, . . . , An and k,

P (A0) = P (Ak)

Since Ak = σ−kA0 this shows that the family of sets B such that P (σ−1B) =
P (B) contains all the sets of the form above. Since this family is a σ-algebra
and the sets above generate B, we see that σ preserves P .

There is a converse to this: suppose that P is a σ-invariant measure on
X = Y N. Define ξn(y) = yn. Then (ξn) is a stationary process.

Example 2.1.8. (Hamiltonian systems) The notion of a measure-preserving
system emerged from the following class of examples. Let Ω = R2n; we denote
ω ∈ Ω by ω = (p, q) where p, q ∈ Rn. Classically, p describes the positions of
particles and q their momenta. Let H : Ω→ R be a smooth map and consider
the differential equation

d

dt
pi = −∂H

∂qi
d

dt
q̇i =

∂H

∂pi

Under suitable assumptions, for every initial state ω = (p0, q0) ∈ Ω and t ∈ R
there is determines a unique solution γω(t) = (p(t), q(t)), and ωt = γω(t) is the
state of the world after evolving for a period of t started from ω.

Thinking of t as fixed, we have defined a map Tt : Ω → Ω by Ttω = γω(t).
Clearly

T0(ω) = γω(0) = ω

We claim that this is an action of R. Indeed, notice that σ(s) = γω(t + s)
satisfies σ(0) = γω(t) = ωt and σ̇(s) = ˙γωt

(t + s), and so A(σ, σ̇) = A(γω(t +
s), γ̇ω(t+ s)) = 0. Thus by uniqueness of the solution, γωt

(s) = γω(t+ s). This
translates to

Tt+s(ω) = γω(t+ s) = γωt
(s) = Tsωt = Ts(Ttω)

and of course also Tt+s = Ts+t = TtTsω. Thus (Tt)t∈R is action of R on Ω.
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It often happens that Ω contains compact subsets which are invariant under
the action. For example there may be a notion of energy E : Ω → R that
is preserved, i.e. E(Ttω) = E(ω), and then the level sets M = E−1(e0) are
invariant under the action. E is nice enough, M will be a smooth and often
compact manifold. Furthermore, by a remarkable theorem of Liouville, if the
equation governing the evolution is a Hamiltonian equation (as is the case in
classical mechanics) then the flow preserves volume, i.e. vol(TtU) = vol(U) for
every t and open (or Borel) set U . The same is true for the volume form on M .

2.2 Recurrence
One of deep and basic properties of measure preserving systems is that they
display “recurrence”, meaning, roughly, that for typical x, anything that happens
along its orbit happens infinitely often. This phenomenon was first discovered
by Poincaré and bears his name.

Given a set A and x ∈ A it will be convenient to say that x returns to A if
Tnx ∈ A for some n > 0; this is the same as x ∈ A ∩ T−nA. We say that x
returns for A infinitely often if there are infinitely many such n.

The following proposition is, essentially, the pigeon-hole principle.

Proposition 2.2.1. Let A be a measurable set, µ(A) > 0. Then there is an n
such that µ(A ∩ T−nA) > 0.

Proof. Consider the sets A, T−1A, T−2A, . . . , T−kA. Since T is measure pre-
serving, all the sets T−iA have measure µ(A), so for k > 1/µ(A) they cannot
be pairwise disjoint mod µ (if they were then 1 ≥ µ(X) ≥

∑k
i=1 µ(T−iA) > 1,

which is impossible). Therefore there are indices 0 ≤ i < j ≤ k such that
µ(T−iA ∩ T−jA) > 0. Now,

T−iA ∩ T−jA = T−i(A ∩ T−(j−i)A)

so µ(A ∩ T−(j−i)A) > 0, as desired.

Theorem 2.2.2 (Poincare recurrence theorem). If µ(A) > 0 then µ-a.e. x ∈ A
returns to A.

Proof. Let

E = {x ∈ A : Tnx /∈ A for n > 0} = A \
∞⋃
n=1

T−nA

Thus E ⊆ A and T−nE ∩E ⊆ T−nE ∩A = ∅ for n ≥ 1 by definition. Therefore
by the previous corollary, µ(E) = 0.

Corollary 2.2.3. If µ(A) > 0 then µ-a.e. x ∈ A returns to A infinitely often.
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Proof. Let E be as in the previous proof. For any k-tuple n1 < n2 < . . . < nk,
the set of points x ∈ A which return to A only at times n1, . . . , nk satisfy
Tnkx ∈ E. Therefore,

{x ∈ A : x returns to A finitely often} =
⋃
k

⋃
n1<...<nk

T−nkE

Hence the set on the left is the countable union of set of measure 0.

In order to discuss of recurrence for individual points we suppose now assume
that X is a metric space.

Definition 2.2.4. Let X be a metric space and T : X → X. Then x ∈ X is
called forward recurrent if there is a sequence nk →∞ such that Tnkx→ x.

Proposition 2.2.5. Let (X,B, µ, T ) by a measure-preserving system where X
is a separable metric space and the open sets are measurable. Thenµ-a.e. x is
forward recurrent.

Proof. Let Ai = Bri(xi) be a countable sequence of balls that generate the
topology. By Theorem 2.2.2, there are sets A′i ⊆ Ai of full measure such that
every x ∈ A′i returns to Ai. Let X0 = X \

⋃
(Ai \A′i), which is of full µ-measure.

For x ∈ X0 if x ∈ Ai then x returns to Ai, so it returns to within |diamAn| of
itself. Since x belongs to An of arbitrarily small diameter, x is recurrent.

When the phenomenon of recurrence was discovered it created quite a stir.
Indeed, by Liouville’s theorem it applies to Hamiltonian systems, such as plan-
etary systems and the motion of molecules in a gas. In these settings, Poincaré
recurrence seems to imply that the system is stable in the strong sense that it
nearly returns to the same configuration infinitely often. This question arose
original in the context of stability of the solar system in a weaker sense, i.e.,
will it persist indefinitely or will the planets eventually collide with the sun,
or fly off into deep space. Stability in the strong sense above contradicts our
experience. One thing to note, however, is the time frame for this recurrence
is enormous, and in the celestial-mechanical or thermodynamics context it does
not say anything about the short-term stability of the systems.

Recurrence also implies that there are no quantities that only increase as
time moves forwards; this is on the face of it in contradiction of the second
law of thermodynamics, which asserts that the thermodynamic entropy of a
mechanical system increases monotonely over time. A function f : X → R is in-
creasing (respectively, constant) along orbits if f(Tx) ≥ f(x) a.e. (respectively
f(Tx) = f(x) a.e.). This is the same as requiring that for a.e. x the sequence
f(x), f(Tx), f(T 2x), . . . is non-decreasing (respectively constant). Although su-
perficially stronger, the latter condition follows because for fixed n,

µ(x : f(Tn+1(x)) < f(Tnx)) = µ(T−n{x : f(Tx) < f(x)})
= µ(x : f(Tx) < f(x))

= 0
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and so the intersection of these events is still of measure zero. The same argu-
ment works for functions constant along orbits.

Corollary 2.2.6. In a measure preserving system any measurable function that
is increasing along orbits is a.s. constant along orbits.

Proof. Let f be increasing along orbits. For δ > 0 let

J(δ) = {x ∈ X : f(Tx) ≥ f(x) + δ}

We must show that µ(J(δ)) = 0 for all δ > 0, since then µ(
⋃∞
n=1 J(1/n)) = 0,

which implies that f(Tx) = f(x) for a.e. x.
Suppose there were some δ > 0 such that µ(J(δ)) > 0. For k ∈ Z let

J(δ, k) = {x ∈ J(δ) : k
δ

2
≤ f(x) < (k + 1)

δ

2
}

Notice that J(δ) =
⋃
k∈Z J(δ, k), so there is some k with µ(J(δ, k)) > 0. On the

other hand, if x ∈ J(δ, k) then

f(Tx) ≥ f(x) + δ ≥ k δ
2

+ δ > (k + 1)
δ

2

so Tx /∈ J(δ, k). Similarly for any n ≥ 1, since f is increasing on orbits,
f(Tnx) ≥ f(Tx) > (k+ 1) δ2 , so T

nx /∈ J(δ, k). We have shown that no point of
J(δ, k) returns to J(δ, k), contradicting Poincaré recurrence.

The last result highlights the importance of measurability. Using the axiom
of choice one can easily choose a representative x from each orbit, and using it
define f(Tnx) = n for n ≥ 0 (and also n < 0 if T is invertible). Then we have a
function which is strictly increasing along orbits; but by the corollary, it cannot
be measurable.

2.3 Induced action on functions and measures
Given a map T : X → Y there is an induced map T̂ on functions with domain
Y , given by

T̂ f(x) = f(Tx)

On the space f : Y → R or f : Y → C the operator T̂ has some obvious
properties: it is linear, positive (f ≥ 0 implies T̂ f ≥ 0), multiplicative (T̂ (fg) =

T̂ f · T̂ g). Also |T̂ f | = T̂ |f | and T̂ (f c) = (T̂ f)c.
When (X,B) and (Y, C) are measurable spaces and T is measurable, the

induced map T̂ acts on the space of measurable functions on Y .
Similarly, in the measurable setting T induces a map on measures. Write

M(X) and P(X) for the spaces signed measures and probability measures on
(X,B), respectively, and similarly for Y . Then T̂ :M(X)→M(Y ) is given by

(T̂ µ)(A) = µ(T−1A) for measurable A ⊆ Y
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This is called the push-forward of µ and is sometimes denoted T∗µ or T#µ. It
is easy to check that T̂ µ ∈ M(Y ) and that µ 7→ T̂ µ this is a measure on Y . It
is easy to see that this operator is also linear, i.e. T̂ (aµ+ bν) = aT̂µ+ bT̂ ν for
scalars a, b.

Lemma 2.3.1. ν = T̂ µ is the unique measure satisfying
´
f dν =

´
T̂ f dµ for

every bounded measurable function f : Y → R (or for every f ∈ C(X) if X is a
compact).

Proof. For A ∈ C note that T̂1A(x) = 1A(Tx) = 1T−1A(x), henceˆ
T̂1A dµ = µ(T−1A) = (T̂ µ)(A) =

ˆ
1A dT̂µ

This shows that ν = T̂ µ has the stated property when f is an indicator func-
tion. Every bounded measurable function (and in particular every continuous
function if X is compact) is the pointwise limit of uniformly bounded sequence
of linear combinations of indicator functions, so the same holds by dominated
convergence (note that fn → f implies T̂ fn → T̂ f).

Uniqueness follows from the fact that ν is determined by the values of
´
f dν

as f ranges over bounded measurable functions,or, when X is compact, over
continuous functions.

Corollary 2.3.2. Let (X,B, µ) be a measure space and T : X → X a measurable
map. Then T preserves µ if and only if

´
f dµ =

´
T̂ f dµ for every bounded

measurable f : X → R (or f ∈ C(X) if X is compact)

Proof. T preserves µ if and only if µ = T̂ µ, so this is a special case of the
previous lemma.

Proposition 2.3.3. Let f : X → Y be a map between measurable spaces,
µ ∈ P(X) and ν ∈ T̂ µ ∈ P(Y ). Then T̂ maps Lp(ν) isometrically into Lp(µ)
for every 1 ≤ p ≤ ∞.

Proof. First note that if f is an a.e. defined function then T̂ f is also, because
if E is the nullset where f is not defined then T−1E is the set where T̂ f is
not defined, and µ(T−1E) = ν(E) = 0. Thus T̂ acts on equivalence classes of
measurable functions mod µ. Now, for 1 ≤ p <∞ we have∥∥∥T̂ f∥∥∥p

p
=

ˆ
|T̂ f |p dµ =

ˆ
T̂ (|f |p) dµ =

ˆ
|fp| dν = ‖f‖pp

For p =∞ the claim follows from the identity ‖f‖∞ = limp→∞ ‖f‖p.

Corollary 2.3.4. In a measure preserving system T̂ is a norm-preserving self-
map of Lp, and if T is invertible then T̂ is an isometry of Lp.

The operator T̂ on L2 is sometimes called the Koopman operator. When T
is invertible it is a unitary operator and opens up the door for using spectral
techniques to study the underlying system. We will return to this idea later.

We will follow the usual convention and write T instead of T̂ . This introduces
slight ambiguity but the meaning should usually be clear from he context.
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2.4 Dynamics on metric spaces
Many (perhaps most) spaces and maps studied in ergodic theory have additional
topological structure, and there is a developed dynamical theory for system of
this kind. Here we will discuss only a few aspects of it, especially those which
are related to ergodic theory.

Definition 2.4.1. A topological dynamical system is a pair (X,T ) where X is
a compact metric space and T : X → X is continuous.

It is sometimes useful to allow compact non-metrizable spaces but in this
course we shall not encounter them.

Before we begin discussing such systems we review some properties of the
space of measures. Let M(X) denote the linear space of signed (finite) Borel
measures on X and P(X) ⊆M(X) the convex space of Borel probability mea-
sures. Two measures µ, ν ∈ M(X) are equal if and only if

´
fdµ =

´
fdν for

all f ∈ C(X), so the maps µ 7→
´
fdµ, f ∈ C(X), separate points.

Definition 2.4.2. The weak-* topology on M(X) (or P(X)) is the weakest
topology that make the maps µ 7→

´
f dµ continuous for all f ∈ C(X). In

particular,

µn → µ if and only if
ˆ
fdµn →

ˆ
fdµ for all f ∈ C(X)

Proposition 2.4.3. The weak-* topology is metrizable and compact.

For the proof see Appendix 9.
Let (X,T ) be a topological dynamical system. It is clear that the induced

map T on functions preserves the space C(X) of continuous functions.

Lemma 2.4.4. T : C(X) → C(X) is contracting in ‖·‖∞, and if the original
map T : X → X is onto, the induced T : C(X) → C(X) is an isometry.
T : P(X)→ P(X) is continuous.

Proof. The first part follows from

‖Tf‖∞ = max
x∈X
|f(T (x))| = max

y∈T (X)
|fyx)| ≤ ‖f‖∞

and the fact that there is equality if TX = X.
For the second part, if µn → µ then for f ∈ C(X),

ˆ
f dTµn =

ˆ
f ◦ T dµn →

ˆ
f ◦ T dµ =

ˆ
f dTµ

This shows that Tµn → Tµ, so T is continuous.

The following result is why ergodic theory is useful in studying topological
systems.
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Proposition 2.4.5. Every topological dynamical system (X,T ) has invariant
measures.

Proof. Let x ∈ X be an arbitrary initial point and define

µN =
1

N

N−1∑
n=0

δTnx

Note that ˆ
f dµN =

1

N

N−1∑
n=0

f(Tnx)

Passing to a subsequence N(k) → ∞ we can assume by compactness that
µN(k) → µ ∈ P(X). We must show that

´
f dµ =

´
f ◦ T dµ for all f ∈ C(X).

Now, ˆ
f dµ−

ˆ
f ◦ T dµ = lim

k→∞

ˆ
(f − f ◦ T ) dµN(l)

= lim
k→∞

1

N(k)

N(k)−1∑
n=0

ˆ
(f − f ◦ T )(Tnx)

= lim
k→∞

1

N(k)

(
f(TN(k)−1x)− f(x)

)
= 0

because f is bounded.

There are a number of common variations of this proof. We could have
defined µN = 1

N

∑N−1
n=0 δTnxN

(with the initial point xN varying with N), of
begun with an arbitrary measure µ and µN = 1

N

∑N−1
n=0 T

nµ. The proof would
then show that any accumulation point of µN is T -invariant.

We denote the space of T -invariant measures by PT (X).

Corollary 2.4.6. In a topological dynamical system (X,T ), PT (X) is non-
empty, compact and convex.

Proof. We already showed that it is non-empty, and convexity is trivial. For
compactness we need only show it is closed. We know that

PT (X) =
⋂

f∈C(X)

{µ ∈ P(X) :

ˆ
(f − f ◦ T )dµ = 0}

Each of the sets in the intersection is the pre-image of 0 under the map µ 7→´
(f − f ◦ T )dµ; since f − f ◦ T is continuous this map is continuous and so
PT (X) is the intersection of closed sets, hence closed.

Corollary 2.4.7. Every topological dynamical system (X,T ) contains recurrent
points.

Proof. Choose any invariant measure µ ∈ PT (X) and apply Proposition 2.2.5
to the measure preserving system (X,B, µ, T ).
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2.5 Some technicalities
Much of ergodic theory holds in general probability spaces, but some of the
results require assumptions on the measure space in order to avoid pathologies.
There are two possible and theories available which for our purposes are essen-
tially equivalent: the theory of Borel spaces and of Lebesgue spaces. We will
work in the Borel category. In this section we review without proof the main
facts we will use. These belong to descriptive set theory and we will not prove
them.

Definition 2.5.1. A Polish space is an uncountable topological space whose
topology is induced by a complete, separable metric.

Note that a metric space can be Polish even if the metric isn’t complete.
For example [0, 1) is not complete in the usual metric but it is homeomorphic
to [0,∞), which is complete (and separable), and so [0, 1) is Polish.

Definition 2.5.2. A standard Borel space is a pair (X,B) where X is an un-
countable Polish space and B is the Borel σ-algebra. A standard measure space
is a σ-finite measure on a Borel space.

Definition 2.5.3. Two measurable spaces (X,B) and (Y, C) are isomorphic if
there is a bijection f : X → Y such that both f and f−1 are measurable.

Theorem 2.5.4. Standard Borel spaces satisfy the following properties.

1. All Borel spaces are isomorphic.

2. Countable products of Borel spaces are Borel.

3. If A is an uncountable measurable subset of a Borel space, then the re-
striction of the σ-algebra to A again is a Borel space.

4. If f is a measurable injection (1-1 map) between Borel spaces then the
image of a Borel set is Borel. In particular it is an isomorphism from the
domain to its image.

Another important operation on measure spaces is the factoring relation.

Definition 2.5.5. A factor between measurable spaces (X,B) and (Y, C) is a
measurable onto map f : X → Y . If there are measures µ, ν on X,Y , respec-
tively, then the factor is required also to satisfy fµ = ν.

Given a factor f : (X,B) → (Y, C) between Borel spaces, we can pull back
the σ-algebra C and obtain a sub-σ-algebra E ⊆ B by

E = f−1C = {π−1C : C ∈ C}

Note that C is countably generated (since it is isomorphic to the Borel σ-algebra
of a separable metric space), so E is countably generated as well.



CHAPTER 2. MEASURE PRESERVING TRANSFORMATIONS 16

This procedure can to some extent be reversed. Let (X,B) be a Borel space
and E ⊆ B a countably generated sub-σ algebra. Partition X into the atoms of
E , that is, according to the the equivalence relation

x ∼ y ⇐⇒ 1E(x) = 1E(y) for all E ∈ E

Let π : X → X/ ∼ denote the factor map and

E/ ∼= {E ⊆ X/ ∼ : π−1E ∈ E}

Then the quotient space X/E = (X/ ∼, E/ ∼) is a measurable space and π is
a factor map. Notice also that π−1 : (E/ ∼) → E is 1-1, so E/ ∼ is countably
generated. Also, the atoms of ∼ are measurable, since if f E is generated by
{En} then the atom of x is just

⋂
Fn where Fn = En if x ∈ En and Fn = X \En

otherwise. Hence E/ ∼ separates points in X/ ∼.
These two operations are not true inverses of each other: it is not in general

true that if E ⊆ B is countably generated then (X/ ∼, E/ ∼) is a Borel space.
But if one introduces a measure then it is true up to measure 0.

Theorem 2.5.6. Let µ be a probability measure on a Borel space (X,B, µ), and
E ⊆ B a countably generated infinite sub-σ-algebra. Then there is a measurable
subset X0 ⊆ X of full measure such that the quotient space of X0/E is a Borel
space.

As we mentioned above, there is an alternative theory available with many of
the same properties, namely the theory of Lebesgue spaces. These are measure
spaces arising as the completions of σ-finite measures on Borel spaces. In this
theory all definitions are modulo sets of measure zero, and all of the properties
above hold. In particular the last theorem can be stated more cleanly, since
the removal of a set of measure 0 is implicit in the definitions. Many of the
standard texts in ergodic theory work in this category. The disadvantage of
Lebesgue spaces is that it makes it cumbersome to consider different measures
on the same space, since the σ-algebra depends non-trivially on the measure.
This is the primary reason we work in the Borel category.



Chapter 3

Ergodicity

3.1 Ergodicity
In this section and the following ones we will study how it may be decomposed
into simpler systems.

Definition 3.1.1. Let (X,B, µ, T ) be a measure preserving system. A measur-
able set A ⊆ X is invariant if T−1A = A. The system is ergodic if there are no
non-trivial invariant sets; i.e. every invariant set has measure 0 or 1.

If A is invariant then so is X \A. Indeed,

T−1(X \A) = T−1X \ T−1A = X \A

Thus, ergodicity is an irreducibility condition: a non-ergodic system the dynam-
ics splits into two (nontrivial) parts which do not “interact”, in the sense that
an orbit in one of them never enters the other.

Example 3.1.2. Let X be a finite set with normalized counting measure, and
T : X → X a 1-1 map. If X consists of a single orbit then the system is ergodic,
since any invariant set that is not empty contains the whole orbit. In general,
X splits into the disjoint (finite) union of orbits, and each of these orbits is
invariant and of positive measure. Thus the system is ergodic if and only if it
consists of a single orbit.

Note that every (invertible) system splits into the disjoint union of orbits.
However, these typically have measure zero, so do not in themselves prevent
ergodicity.

Example 3.1.3. By taking disjoint unions of measure preserving systems with
the normalized sum of the measures, one gets many examples of non-ergodic
systems.

Definition 3.1.4. A function f : X → Y for some set Y is invariant if f(Tx) =
f(x) for all x ∈ X.

17
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The primary example is 1A when A is invariant.

Lemma 3.1.5. The following are equivalent:

1. (X,B, µ, T ) is ergodic.

2. If T−1A = A mod µ then µ(A) = 0 or 1.

3. Every measurable invariant function is constant a.e.

4. If f ∈ L1 and Tf = f a.e. then f is a.e. constant.

Proof. (1) and (3) are equivalent since an invariant set A produces the invari-
ant function 1A, while if f is invariant and not a.e. constant then there is a
measurable set U in the range of f such that 0 < µ(f−1U) < 1. But this set is
clearly invariant.

Exactly the same argument shows that (2) and (4) are equivalent.
We complete the proof by showing the equivalence of (3) and (4). Clearly

(4) implies (3). Conversely, suppose that f ∈ L1 and Tf = f a.e.. Let g =
lim sup f(Tnx). Clearly g is T -invariant (since g(Tx) is the limsup of the shifted
sequence f(Tn+1x), and is the same as the limsup of f(Tnx), which is g(x)).
The proof will be done by showing that g = f a.e. This is true at a point
x if f(Tnx) = f(x) for all n ≥ 0, and for this it is enough that f(Tn+1x) =
f(Tnx) for all n ≥ 0; equivalently, that Tnx ∈ {Tf = f} for all n, i.e. that
x ∈

⋂
T−n{Tf = f}. But this is an intersection of sets of measure 1 and hence

holds for a.e. x, as desired.

Example 3.1.6 (Irrational circle rotation). Let Rα(x) = e2πiαx be an irrational
circle rotation (α /∈ Q) on S1 with Lebesgue measure. We claim that this system
is ergodic. Indeed, let χn(z) = zn (the characters of the compact group S1) and
consider an invariant function f ∈ L∞(µ). Since f ∈ L2, it can be represented
in L2 as a Fourier series f =

∑
anχn. Now,

Tχn(z) = (e2πiαz)n = e2πinαzn = 22πinαχn

so from
f = Tf =

∑
anTχn =

∑
e2πinαanχn

Comparing this to the original expansion we have an = e2πinαan. Thus if an 6= 0
then e2πinα = 1, which, since α /∈ Q, can occur only if n = 0. Thus f = a0χ0,
which is constant .

Non-ergodicity means that one can split the system into two parts that don’t
“interact”. The next proposition reformulates this in a positive way: ergodicity
means that every non-trivial sets do “interact”.

Proposition 3.1.7. The following are equivalent:

1. (X,B, µ, T ) is ergodic.

2. For any B ∈ B, if µ(B) > 0 then
⋃∞
n=N T

−nB = X mod µ for every N .
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3. If A,B ∈ B and µ(A), µ(B) > 0 then µ(A∩T−nB) > 0 for infinitely many
n.

Proof. (1) implies (2): Given B let B′ =
⋃∞
n=N T

−nB and note that

T−1(B′) =

∞⋃
n=N

T−1T−nB =

∞⋃
n=N+1

T−nB ⊆ B′

Since µ(T−1B′) = µ(B′) we have B′ = T−1B′ mod µ, hence by ergodicity
B′ = X mod µ.

(2) implies (3): Given A,B as in (3) we conclude from (2) that, for every N ,
µ(A∩

⋃∞
n=N T

−nB) = µ(A), hence there some n > N with µ(T−nA) > 0. This
implies that there are infinitely many such n.

Finally if (3) holds and if A is invariant and µ(A) > 0, then taking B = X\A
clearly A ∩

⋃
T−nB = ∅ for all n so µ(B) = 0 by (3). Thus every invariant set

is trivial.

3.2 Mixing
Although a wide variety of ergodic systems can be constructed or shown ab-
stractly to exist, it is surprisingly difficult to verify ergodicity of naturally aris-
ing systems. In fact, in most cases where ergodicity can be proved because the
system satisfies a stronger “mixing” property.

Definition 3.2.1. (X,B, µ, T ) is called mixing if for every pair A,B of mea-
surable sets,

µ(A ∩ T−nB)→ µ(A)µ(B) as n→∞

It is immediate from the definition that mixing systems are ergodic. The
advantage of mixing over ergodicity is that it is enough to verify it for a “dense”
family of sets A,B. It is better to formulate this in a functional way.

Lemma 3.2.2. For fixed f ∈ L2 and n, the map (f, g) 7→
´
f · Tng dµ is

multilinear and
∥∥´ f · Tng dµ∥∥

2
≤ ‖f‖2 ‖g‖2.

Proof. Using Cauchy-Schwartz and the previous lemma,
ˆ
f · Tng dµ ≤ ‖f‖2 ‖T

ng‖2 = ‖f‖2 ‖g‖2

Proposition 3.2.3. (X,B, µ, T ) is mixing if and only if for every f, g ∈ L2,
ˆ
f · Tng dµ→

ˆ
f dµ ·

ˆ
g dµ as n→∞

Furthermore this limit holds for ail f, g ∈ L2 if and only if it holds for f, g in a
dense subset of L2.
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Proof. We prove the second statement first. Suppose the limit holds for f, g ∈ V
with V ⊆ L2 dense. Now let f, g ∈ L2 and for ε > 0 let f ′, g′ ∈ V with
‖f − f ′‖ < ε and ‖g − g′‖ < ε. Then∥∥∥∥ˆ f · Tng dµ

∥∥∥∥ ≤
∥∥∥∥ˆ (f − f ′ + f ′) · Tn(g − g′ + g′) dµ

∥∥∥∥
≤

∥∥∥∥ˆ (f − f ′) · Tng dµ
∥∥∥∥+

∥∥∥∥ˆ f · Tn(g − g′) dµ
∥∥∥∥+

+

∥∥∥∥ˆ (f − f ′) · Tn(g − g′) dµ
∥∥∥∥+

∥∥∥∥ˆ f ′ · Tng′ dµ
∥∥∥∥

≤ ε ‖g‖+ ‖f‖ ε+ ε2 +

∥∥∥∥ˆ f ′ · Tng′ dµ
∥∥∥∥

Since
∥∥´ f ′ · Tng′ dµ∥∥→ 0 and ε was arbitrary this shows that

∥∥´ f · Tng dµ∥∥→
0, as desired.

For the first part, using the identities
´

1A dµ = µ(A), Tn1A = 1T−nA

and 1A1B = 1A∩B , we see that mixing is equivalent to the limit above for
indicator functions, and since the integral is multilinear in f, g it holds for linear
combinations of indicator functions and these combinations are dense in L2, we
are done by what we proved above.

Example 3.2.4. Let X = AZ for a finite set A, take the product σ-algebra, and
µ a product measure with marginal given by a probability vector p = (pa)a∈A.
Let σ : X → X be the shift map (σx)n = xn+1. We claim that this map is
mixing and hence ergodic.

To prove this note that if f(x) = f̃(x1, . . . , xk) depends on the first k co-
ordinates of the input, then σnf(x) = f̃(xk+1, . . . , xk+n). If f, g are two such
functions then for n large enough, σng and f depend on different coordinates,
and hence, because µ is a product measure, they are independent in the sense
of probability theory:

ˆ
f · σng dµ =

ˆ
f dµ ·

ˆ
σng dµ =

ˆ
f dµ ·

ˆ
g dµ

so the same is true when taking n → ∞. Mixing follows from the previous
proposition.

3.3 Kac’s return time formula
We pause to give a nice application of ergodicity to estimation of the “recurrence
rate” of points to a set.

Let (X,B, µ, T ) be ergodic and let µ(A) > 0. Since X0 =
⋃∞
n=1 T

−nA, and
its measure is at least µ(A) which is positive, by ergodicity µ(X0) = 1. Thus for
a.e. there is a minimal n ≥ 1 with Tnx ∈ A; we denote this number by rA(x)
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and note that rA is measurable, since

{rA < k} = A ∩ (
⋃

1≤i<k

T−iA)

Theorem 3.3.1 (Kac’s formula). Assume that T is invertible. Then
´
A
rA dµ =

1; in particular, E(rA|A) = 1/µ(A), so the expected time to return to A starting
from A is 1/µ(A).

Proof. Let An = A ∩ {rA = n}. Then
ˆ
A

rAdµ =

∞∑
n=1

nµ(An) =

∞∑
n=1

n∑
k=1

µ(T kAn)

The proof will be completed by showing that the sets {T kAn : n ∈ N , . . . 1 ≤
k ≤ n} are pairwise disjoint and that their union has full measure. Indeed,
for a.e. x ∈ X there is a least m ≥ 1 such that y = T−mx ∈ A. Let n =
rA(y). Clearly m ≤ n, since if n < m and Tny ∈ A then Tny = TnT−mx =
T−(m−n)x ∈ A and m− n ≥ 1 is smaller than m. Thus x ∈ TmAn. This shows
that the union of the given family is X up to a null set.

To show that the family is disjoint, suppose x ∈ Tm′An′ for some (m′, n′) 6=
(m,n). We cannot have m′ < m because then T−m

′
x ∈ An′ ⊆ A would contra-

dict minimality of m. We cannot have m′ > m because this would imply that
rA(T−m

′
x) ≥ m′ > m, and at the same time T−mx = Tm

′−m(T−m
′
x) ∈

An ⊆ A, implying rA(T−m
′
x) ≤ m′ − m < m′, a contradiction. Finally,

m = m′ and n 6= n′ is impossible because then then T−mx ∈ An ∩ An′ , de-
spite An ∩An′ 6= ∅.

Even under the stated ergodicity assumption this result strengthens Poincare
recurrence. First, it shows now only that a.e. x ∈ A returns to A, if shows that it
does so in finite expected time, and identifies this expectation. Simple examples
show that the formula is incorrect in the non-ergodic case.

The invertability assumption is not necessary. We shall later see how to
remove it.

3.4 Ergodic measures as extreme points
It is clear that PT (X) is convex; in this section we will prove a nice alge-
braic characterization of the ergodic measures as precisely the extreme points
of PT (X). Recall that a point in a convex set is an extreme point if it cannot
be written as a convex combination of other points in the set.

Proof. Let f = dν/dµ. Given t let E = {f < t}; it suffices to show that this set
is invariant µ-a.e. We first claim that the sets E \ T−1E and T−1E \ E are of
the same µ-measure. Indeed,

µ(E \ T−1E) = µ(E)− µ(E ∩ T−1E)

µ(T−1E \ E) = µ(T−1E)− µ(E ∩ T−1E)
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and since µ(E) = µ(T−1E), the right hand sides are equal, and hence also the
left hand sides.

Now
ν(E) =

ˆ
E

f dµ =

ˆ
E∩T−1E

f dµ+

ˆ
E\T−1E

f dµ

On the other hand

ν(E) = ν(T−1E) =

ˆ
T−1E∩E

f dµ+

ˆ
(T−1E)\E

f dµ

Subtracting we find that
ˆ
E\T−1E

f dµ =

ˆ
T−1E\E

f dµ

On the left hand side the integral is over a subset of E, where f < t, so the
integral is < tµ(E \T−1E); on the right it is over a subset of X \E, where f > t,
so the integral is ≥ tµ(T−1E \ E). Equality is possible only if the measure of
these sets is 0, and since µ(E) = µ(T−1E), the set difference can be a µ-nullset
if and only if E = T−1E mod µ, which is the desired invariance of E.

Remark 3.4.1. If T is invertible, there is an easier argument: since Tµ = µ and
Tν = ν we have dTν/dTµ = dν/dµ = f . Now, for any measurable set A,
ˆ
A

dTν =

ˆ
1AdTν =

ˆ
1A◦T dν =

ˆ
1A◦T fdµ =

ˆ
1Af◦T−1 dTµ =

ˆ
A

f◦T−1 dTµ

This shows that f ◦ T−1 = dTν/dTµ = f . But of course we have used inverta-
bility.

Proposition 3.4.2. The ergodic invariant measures are precisely the extreme
points of PT (X).

Proof. If µ ∈ PT (X) is non-ergodic then there is an invariant set A with
0 < µ(A) < 1. Then B = X \ A is also invariant. Let µA = 1

µ(A)µ|A
and µB = 1

µ(B)µ|B denote the normalized restriction of µ to A,B. Clearly
µ = µ(A)µA + µ(B)µB , so µ is a convex combination of µA, µB , and these
measures are invariant:

µA(T−1E) =
1

µ(A)
µ(A ∩ T−1E)

=
1

µ(A)
µ(T−1A ∩ T−1E)

=
1

µ(A)
µ(T−1(A ∩ E))

=
1

µ(A)
µ(A ∩ E)

= µA(E)
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Thus µ is not an extreme point of PT (X).
Conversely, suppose that µ = αν + (1 − α)θ for ν, θ ∈ PT (X) and ν 6= µ.

Clearly µ(E) = 0 implies ν(E) = 0, so ν � µ, and by the previous lemma
f = dν/dµ ∈ L1(µ) is invariant. Since 1 = ν(X) =

´
fdµ, we know that f 6= 0,

and since ν 6= µ we know that f is not constant. Hence µ is not ergodic by
Lemma 3.1.5.

As an application we find that distinct ergodic measures are also separated
at the spacial level:

Corollary 3.4.3. Let µ, ν be ergodic measures for a measurable map T of a
measurable space (X,B). Then either µ = ν or µ ⊥ ν.

Proof. Suppose µ 6= ν and let θ = 1
2µ+ 1

2ν. Since this is a nontrivial represen-
tation of θ as a convex combination, it is not ergodic, so there is a nontrivial
invariant set A. By ergodicity, A must have µ-measure 0 or 1 and similarly for
ν. They cannot be both 0 since this would imply θ(A) = 0, and they cannot
both have measure 1, since this would imply θ(A) = 1. Therefore one is 0 and
one is 1. This implies that A supports one of the measures and X \A the other,
so µ ⊥ ν.

3.5 Ergodic decomposition I
Having described those systems that are “indecomposable”, we now turn to
study how a non-ergodic system may decompose into ergodic ones. One can
begin such a decomposition immediately from the definitions: if µ ∈ PT (X)
is not ergodic then there is an invariant set A and µ is a convex combination
of the invariant measures µA, µX\A, which are supported on disjoint invariant
sets. If µA, µB are not ergodic we can split each of them further as a convex
combination of mutually singular invariant measures. Iterating this procedure
we obtain representations of µ as convex combinations of increasingly “fine”
mutually singular measures. While at each finite stage the component measures
need not be ergodic, in a sense they are getting closer to being ergodic, since at
each stage we eliminate a potential invariant set. One would like to pass to a
limit, in some sense, and represent the original measure is a convex combination
of ergodic ones.

Example 3.5.1. If T is a bijection of a finite set with normalized counting
measure then the measure splits as a convex combination of uniform measures
on orbits, each of which is ergodic.

In general, it is too much to ask that a measure be a convex combination of
ergodic ones.

Example 3.5.2. Let X = [0, 1] with Borel sets and Lebesgue measure µ and
T the identity map. In this case the only ergodic measures are atomic, so we
cannot write µ as a finite convex combination of ergodic measures.
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The idea of decomposing µ is also motivated by the characterization of
ergodic measures as the extreme points of PT and the fact that in finite-
dimensional vector spaces a point in a convex set is a convex combination of ex-
treme points. There are also infinite-dimensional versions of this, and if PT (X)
can be made into a compact convex set satisfying some other mild conditions one
can apply Choquet’s theorem. However, we will take a more measure-theoretic
approach through the measure integration and disintegration.

3.6 Measure integration
Given a measurable space (X,B), a family {νx}x∈X of probability measures on
(Y, C) is measurable if for every E ∈ C the map x 7→ νx(E) is measurable (with
respect to B). Equivalently, for every bounded measurable function f : Y → R,
the map x 7→

´
f(y) dνx(y) is measurable.

Given a measure µ ∈ P(X) we can define the probability measure ν =´
νxdµ(x) on Y by

ν(E) =

ˆ
νx(E) dµ(x)

For bounded measurable f : Y → R this gives
ˆ
f dν =

ˆ
(

ˆ
f dνx) dµ(x)

and the same holds for f ∈ L1(ν) by approximation (although f is defined only
on a set E of full ν-measure, we have νx(E) = 1 for µ-a.e. x, so the inner
integral is well defined µ-a.e.).

Example 3.6.1. Let X be finite and B = 2X . Then
ˆ
νx dµ(x) =

∑
x∈X

µ(x) · νx

Any convex combination of measures on Y can be represented this way, so the
definition above generalizes convex combinations.

Example 3.6.2. Any measure µ on (X,B) the family {δx}x∈X is measurable
since δx(E) = 1E(x), and µ =

´
δx dµ(x) because

µ(X) =

ˆ
1E(x)dµ(x) =

ˆ
νx(E) dµ(x)

In this case the parameter space was the same as the target space.
In particular, this representation shows that Lebesgue measure on [0, 1] is

an integral of ergodic measures for the identity map.
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Example 3.6.3. X = [0, 1] and Y = [0, 1]2. For x ∈ [0, 1] let νx be Lebesgue
measure on the fiber {x} × [0, 1]. Measurability is verified using the definition
of the product σ-algebra, and by Fubini’s theorem

ν(E) =

ˆ
νx(E)dµ(x) =

ˆ 1

0

ˆ 1

0

1E(x, y)dy dx =

ˆ ˆ
E

1dxdy

so ν is just Lebesgue measure on [0, 1]2.
One could also represent ν as

´
νx,y dν(x, y) where νx,y = νx. Written this

way each fiber measure appears many times.

3.7 Measure disintegration
We now reverse the procedure above and study how a measure may be decom-
posed as an integral of other measures. Specifically, we will study the decom-
position of a measure with respect to a partition.

Example 3.7.1. Let (X,B, µ) be a probability space and let P = {P1, . . . , Pn}
be finite partition of it, i.e. Pi are measurable, Pi ∩ Pj = ∅ for i 6= j, and
X =

⋃
Pi. For simplicity assume also that µ(Pi) > 0. Let P(x) denote the

unique Pi containing x and let µx denote the conditional measure on it, µx =
1

µ(P(x))µ|P(x). Then it is easy to check that µ =
´
µx dµ(x).

Alternatively we can define Y = {1, . . . , n} with a probability measure given
by P ({i}) = µ(Pi). Let µi = 1

µ(Pi)
µ|Pi . Then µ =

∑
µ(Pi)µi =

´
µi dP (i).

Our goal is to give a similar decomposition of a measure with respect to an
infinite (usually uncountable) partition E of X. Then the partition elements
E ∈ E typically have measure 0, and the formula 1

µ(E)µ|E no longer makes
sense. As in probability theory one can define the conditional probability of an
event E given that x ∈ E as the conditional expectation E(1E |P) evaluated at
x (conditional expectation is reviewed in the Appendix). This would appear to
give the desired decomposition: define µx(E) = E(1E |E)(x). For any countable
algebra this does give a countably additive measure defined for µ-a.e. x. The
problem is that µx(E) is defined only for a.e. x but we want to define µx(E)
for all measurable sets. Overcoming this problem is a technical but nontrivial
chore which will occupy us for the rest of the section.

For a measurable space (X,B) and a sub-σ-algebra E ⊆ B generated by a
countable sequence {En}. Write x ∼E y if 1E(x) = 1E(y) for every E ∈ E , or
equivalently, 1En

(x) = 1En
(y) for all n. This is an equivalence relation. The

atoms of E are by definition the equivalence classes of ∼E , which are measurable,
being intersections of sequences Fn of the form Fn ∈ {En, X \ En}. We denote
E(x) the atom containing x.

In the next theorem we assume that the space is compact, which makes the
Riesz representation theorem available as a means for of defining measures. We
shall discuss this restriction afterwards.
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Theorem 3.7.2. Let X be compact metric space, B the Borel algebra, and
E ⊆ B a countably generated sub-σ-algebra. Then there is an E−measurable
family {µy}y∈X ⊆ P(X) such that µy is supported on E(y) and

µ =

ˆ
µy dµ(y)

Furthermore if {µ′y}y∈X is another such system then µy = µ′y a.e.

Note that E-measurability has the following consequence: For µ-a.e. y, for
every y′ ∈ E(y) we have µy′ = µy (and, since since µy(E(y)) = 1, it follows that
µy′ = µy for µy-a.e y′).

Definition 3.7.3. The representation µ =
´
µy dµ(y) in the proof is often called

the disintegration of µ over E .

We adopt the convention that y denotes the variable of E-measurable func-
tions.

Let V ⊆ C(X) be a countable dense Q-linear subspace with 1 ∈ V . For
f ∈ V let

f = E(f |E)

(see the Appendix for a discussion of conditional expectation). Since V is count-
able there is a subset X0 ⊆ X of full measure such that f is defined everywhere
on X0 for f ∈ V and f 7→ f is Q-linear and positive on X0, and 1 = 1 on X0.
Thus, for y ∈ X0 the functions Λy : V → R given by

Λy(f) = f(y)

are positive Q-linear functionals on the normed space (V, ‖·‖∞), and they are
continuous, since by positivity of conditional expectation

∥∥f∥∥∞ ≤ ‖f‖∞. Thus
Λy extends to a positive R-linear functionalΛy : C(X) → R. Note that Λy1 =
1(y) = 1. Hence, by the Riesz representation theorem, there exists µy ∈ P(X)
such that

Λyf =

ˆ
f(x) dµy(x)

For y ∈ X \X0 define µy to be some fixed measure to ensure measurability.

Proposition 3.7.4. y → µy is E-measurable and E(1A|E)(y) = µy(A) µ-a.e.,
for every A ∈ B.

Proof. Let A ⊆ B denote the family of sets A ∈ B such that y 7→ µy(A)
measurable from (X, E) to (X,B) and E(1A|E)(y) = µy(A) µ-a.e. We want to
show that A = B.

Let A0 ⊆ B denote the family of sets A ⊆ X such that 1A is a pointwise
limit of a uniformly bounded sequence of continuous functions. First, A0 is an
algebra: clearly X, ∅ ∈ A, if fn → 1A then 1− fn → 1X\A, and if also gn → 1B
then fngn → 1A1B = 1A∩B .
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We claim that A0 ⊆ A. Indeed, if fn → 1A and ‖fn‖∞ ≤ C then
ˆ
fn dµy →

ˆ
1A dµy = µy(A)

by dominated convergence, so y 7→ µy(A) is the pointwise limit of the functions
y 7→

´
fn dµy, which are the same a.e. as the measurable functions fn =

E(fn|E) : (X, E) → (X,B). This establishes measurability of the limit function
y 7→ µy(A) and also proves that this function is E(1A|E) a.e., since E(·|E) is
continuous in L1 and fn → 1A boundedly. This proves A0 ⊆ A.

Now, A0 contains the closed sets, since if A ⊆ X then 1A = lim fn for
fn(x) = exp(−n · d(x,A)). Thus A0 generates the Borel σ-algebra B.

Finally, we claim that A is a monotone class. Indeed, if A1 ⊆ A2 ⊆ . . .
belong to B′ and A =

⋃
An, then µy(A) = limµy(An), and so y 7→ µy(A) is the

pointwise limit of the measurable functions y 7→ µy(An). The latter functions
are just E(1An

|E) and, since 1An
→ 1A in L1, by continuity of conditional

expectation, E(1An |E) → E(1A|E) in L1. Hence µy(A) = E(1A|E) a.e. as
desired.

Since A is a monotone class containing the sub-algebra of A0 and A0 gen-
erates B, by the monotone class theorem we have B ⊆ A. Thus A = B, as
desired.

Proposition 3.7.5. E(f |E)(y) =
´
f dµy µ-a.e. for every f ∈ L1(µ).

Proof. We know that this holds for f = 1A by the previous proposition. Both
sides of the claimed equality are linear and continuous under monotone in-
creasing sequences. Approximating by simple functions this gives the claim for
positive f ∈ L1 and, taking differences, for all f ∈ L1.

Proposition 3.7.6. µy is µ-a.s. supported E(y), that is, µy(E(y)) = 1 ν-a.e.

Proof. For E ∈ E we have

1E(y) = E(1E |E)(y) =

ˆ
1E dµy = µy(E)

and it follows that µy(E) = 1E(y) a.e. Let {En}∞n=1 generate E , and choose a
set of full measure on which the above holds for all E = En. For y in this set
let Fn ∈ {En, X \ En} be such that E(y) =

⋂
Fn. By the above µy(Fn) = 1,

and so µy(E(y)) = 1, as claimed.

Proposition 3.7.7. If {µ′y}y∈Y is another family with the same properties then
µ′y = µy for µ-a.e. y.

Proof. For f ∈ L1(µ) define f ′(y) =
´
f dµ′y. This is clearly a linear operator

defined on L1(X,B, µ), and its range is L1(X, E , µ) because
ˆ
|f ′| dµ ≤

ˆ
(

ˆ
|f | dµy) dµ(y) =

ˆ
|f | dµ = ‖f‖1
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The same calculation shows that
´
f ′ dµ =

´
f dµ. Finally, for E ∈ E we know

that µy is supported on E for µ-a.e. y ∈ E and on X \ E for µ-a.e. y ∈ X \ E.
Thus µ-a.s. we have

(1Ef)′(y) =

ˆ
1Ef dµ

′
y = 1E(y)

ˆ
f dµ′y = 1E · f ′

By a well-known characterization of conditional expectation, f ′ = E(f |E) = f
(see the Appendix).

It remains to address the compactness assumption on X. Examples show
that one the disintegration theorem does require some assumption; it does not
hold for arbitrary measure spaces and sub-σ-algebras. We will not eliminate the
compactness assumption so much as explain why it is not a large restriction.

We can now formulate the disintegration theorem as follows.

Theorem 3.7.8. Let µ be a probability measure on a standard Borel space
(X,B, µ) and E ⊆ B a countably generated sub-σ-algebra. Then there is an
E-measurable family {µy}y∈Y ⊆ P(X,B) such that µy is supported on E(y) and

µ =

ˆ
µy dµ(y)

Furthermore if {µ′y}y∈X is another such system then µy = µ′y .

3.8 Ergodic decomposition II
Let (X,B, µ, T ) be a measure preserving system on a Borel space. Let I ⊆ B
denote the family of T -invariant measurable sets. It is easy to check that I is a
σ-algebra.

The σ-algebra I in general is not countably generated. Consider for example
the case of an invertible ergodic transformation on a Borel space, such as an
irrational circle rotation or two-sided Bernoulli shift. Then I consists only of
sets of measure 0 and 1. If I were countably generated by {In}∞n=1, say, then
for each n either µ(In) = 1 or µ(X \ In) = 1. Set Fn = In or Fn = X \ In
according to these possibilities. Then F =

⋂
Fn is an invariant set of measure

1 and is an atom of I. But the atoms of I are the orbits, since each point in X
is measurable and hence every countable set is. But this would imply that µ is
supported on a single countable orbit, contradicting the assumption that it is
non-atomic.

We shall work instead with a fixed countably generated µ-dense sub-σ-
algebra I0 of I. Let L1(X, I, µ) is a closed subspace of L1(X,B, µ), and since
the latter is separable, so is the former. Choose a dense countable sequence
fn ∈ L1(X, I, µ), choosing representatives of the functions that are genuinely I
measurable, not just modulo a B-measurable nullset. Now consider the count-
able family of sets An,p,q = {p < fn < q}, where p, q ∈ Q, and let I0 be
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the σ-algebra that they generate. Clearly I0 ⊆ I and all of the fn are I0-
measurable, so L1(X, I0, µ) = L1(X, I, µ). In particular, I is contained in the
µ-completion of I0.

Theorem 3.8.1 (Ergodic decomposition theorem). Let (X,B, µ, T ) be a mea-
sure preserving system on a Borel space and let I, I0 be as above. Then there is
an I0-measurable (and in particular I-measurable) disintegration µ =

´
µx dµ(x)

of µ such that a.e. µy is T -invariant, ergodic, and supported on I0(y). Further-
more the representation is unique in the sense that if {µ′y} is any other family
with the same properties then µy = µ′y for µ-a.e. y.

Let {µy}y∈X be the disintegration of µ relative to I0, we need only show
that for µ-a.e. y the measure µy is T -invariant and ergodic.

Claim 3.8.2. For µ-a.e. y, µy is T -invariant.

Proof. Define µ′y = Tµy. This is an E measurable family since for any E ∈ B,
µ′y(E) = µy(T−1E) so measurability of y 7→ µ′y(E) follows from that of y 7→
µy(E). We claim that {µ′y}y∈X is a disintegration of µ over I0. Indeed, for any
E ∈ B,

ˆ
(

ˆ
µ′y(E)) dµ(y) =

ˆ
(

ˆ
µy(T−1E)) dµ(y)

= µ(T−1E)

= µ(E)

Also T−1I0(y) = I0(y) (since I0(y) ∈ I) so

µ′y(I0(y)) = µy(T−1I0(y)) = µy(I0(y)) = 1

so µ′y is supported on E(y). Thus, {µ′y}y∈X is an E-measurable disintegration
of µ, so µ′y = µy a.e. This is exactly the same as a.e. invariance of µy.

Claim 3.8.3. For µ-a.e. y, µy is ergodic.

Proof. This can be proved by purely measure-theoretic means, but we will give a
proof that uses the mean ergodic theorem, Theorem 4.2.3 below. Let F ⊆ C(X)
be a dense countable family. Then

1

N

N∑
n=1

Tnf → E(f |I) = E(f |I0)

in L2(B, µ). For each f ∈ F , we can ensure that this holds a.e. along an
appropriate subsequence, and by a diagonal argument we can construct a sub-
sequence Nk →∞ such that 1

Nk

∑Nk

n=1 T
nf → E(f |I0) for all f ∈ F , a.e. Since

µ =
´
µydµ(y) this holds µy-a.e. for µ-a.e. y. Now, for such a y, in the measure

preserving system (X,B, µy, T ), for f ∈ F we have 1
Nk

∑Nk

n=1 T
nf → Eµy (f |I)

in L2; since f ∈ F is bounded and the limit is a.s. equal to E(f |I0), we have
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Eµy (f |I) = E(f |I0) µ-a.e. But the right hand side is I0-measurable, hence
µy-a.e. constant. We have found that for f ∈ F the conditional expectation
Eµy

(f |I) is µy-a.e. constant. F is dense in C(X) and therefore in L1(B, µy),
and Eµy

(·|I) is continuous, we the image of Eµy
(·|I) is contained in the constant

functions. But if g ∈ L1(B, µy) is invariant it is I-measurable and Eµy
(g|I) = g

is constant. Thus all invariant functions in L1(B, µy) are constant, which implies
that (X,B, µy, T ) is ergodic.

Our formulation of the ergodic decomposition theorem represents µ as an
integral of ergodic measures parametrized by y ∈ X (in an I-measurable way).
Sometimes the following formulation is given, in which PT (X) is given the σ-
algebra generated by the maps µ 7→ µ(E), E ∈ B; this coincides with the
Borel structure induced by the weak-* topology when X is given the structure
of a compact metric space. One can show that the set of ergodic measures is
measurable, for example because in the topological representation they are the
extreme points of a weak-* compact convex set.

Theorem 3.8.4 (Ergodic decomposition, second version). Let (X,B, µ, T ) be
a measure preserving system on a Borel space. Then there is a unique prob-
ability measure θ on PT (X) supported on the ergodic measure and such that
µ =
´
ν dθ(ν).



Chapter 4

The ergodic theorem

4.1 Preliminaries
We have seen that in a measure preserving system, a.e. x ∈ A returns to A
infinitely often. Now we will see that more is true: these returns occur with a
definite frequency which, in the ergodic case, is just µ(A); in the non-ergodic
case the limit is µx(A), where µx is the ergodic component to which x belongs.

This phenomenon is better formulated at an analytic level in terms of av-
erages of functions along an orbit. To this end let us introduce some notation.
Let T : V → V be a linear operator of a normed space V , and suppose T is
a contraction, i.e. ‖Tf‖ ≤ ‖f‖. This is the case when T is induced from a
measure-preserving transformation (in fact we have equality). For v ∈ V define

SNv =
1

N

N−1∑
n=0

Tnv

Note that in the dynamical setting, the frequency of visits x to A up to time
N is SN1A(x) = 1

N

∑N−1
n=0 1A(Tnx). Clearly SN is linear, and since T is a

contraction ‖Tnv‖ ≤ ‖v‖ for n ≥ 1, so by the triangle inequality, ‖SNv‖ ≤
1
N

∑N−1
n=0 ‖Tnv‖ ≤ ‖v‖. Thus SN are also contractions. This has the following

useful consequence.

Lemma 4.1.1. Let T : V → V as above and let S : V → V be another bounded
linear operator. Suppose that V0 ⊆ V is a dense subset and that SNv → Sv as
N →∞ for all v ∈ V0. Then the same is true for all v ∈ V .

Proof. Let v ∈ V and w ∈ V0. Then

lim sup
N→∞

‖SNv − Sv‖ ≤ lim sup
N→∞

‖SNv − SNw‖+ lim sup
N→∞

‖SNw − Sv‖

Since ‖SNv − SNw‖ = ‖SN (v − w)‖ ≤ ‖v − w‖ and SNw → Sw (because w ∈
V0), we have

lim sup
N→∞

‖SNv − Sv‖ ≤ ‖v − w‖+ ‖Sw − Sv‖ ≤ (1 + ‖S‖) · ‖v − w‖

31
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Since ‖v − w‖ can be made arbitrarily small, the lemma follows.

4.2 Mean ergodic theorem
Historically, the first ergodic theorem is von-Neuman’s “mean” ergodic theorem,
which can be formulated in a purely Hilbert-space setting (and it is not hard
to adapt it to LP ). Recall that if T : V → V is a bounded linear operator
of a Hilbert space then T ∗ : V → V is the adjoint operator, characterized by
〈v, Tw〉 = 〈T ∗v, w〉 for v, w ∈ V , and satisfies ‖T ∗‖ = ‖T‖.

Lemma 4.2.1. Let T : V → V be a contracting linear operator of a Hilbert
space. Then v ∈ V is T -invariant if and only if it is T ∗-invariant.

Remark 4.2.2. When T is unitary (which is one of the main cases of interest to
us) this lemma is trivial. Note however that without the contraction assumption
this is false even in Rd.

Proof. Since (T ∗)∗ = T it suffices to prove that T ∗v = v implies Tv = v.

‖v − Tv‖2 = 〈v − Tv, v − Tv〉
= ‖v‖2 + ‖Tv‖2 − 〈Tv, v〉 − 〈v, Tv〉
= ‖v‖2 + ‖Tv‖2 − 〈v, T ∗v〉 − 〈T ∗v, v〉
= ‖v‖2 + ‖Tv‖2 − 〈v, v〉 − 〈v, v〉
= ‖Tv‖2 − ‖v‖2

≤ 0

where the last inequality is because T is a contraction.

Theorem 4.2.3 (Hilbert-space mean ergodic theorem). Let T be a linear con-
traction of a Hilbert space V , i.e. ‖Tv‖ ≤ ‖v‖. Let V0 ≤ V denote the closed
subspace of T -invariant vectors (i.e. V0 = ker(T − I)) and π the orthogonal
projection to V0. Then

1

N

N−1∑
n=0

Tnv → πv for all v ∈ V

Proof. If v ∈ V0 then SNv = v and so SNv → v = πv trivially. Since V =
V0 ⊕ V ⊥0 and SN is linear, it suffices for us to show that SNv → 0 for v ∈ V ⊥0 .
The key insight is that V ⊥0 can be identified as the space of co-boundaries,

V ⊥0 = {v − Tv : v ∈ V } (4.1)
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assuming this, by Lemma 4.1.1 we must only show that SN (v − Tv) → 0 for
v ∈ V , and this follows from

SN (v − Tv) =
1

N

N−1∑
n=0

Tn(v − Tv)

=
1

N
(w − TN+1w)

→ 0

where in the last step we used
∥∥w − TN+1w

∥∥ ≤ ‖w‖+
∥∥TN+1w

∥∥ ≤ 2 ‖w‖.
To prove (4.1) it suffices to show that w ⊥ {v−Uv : v ∈ V } implies w ∈ V0.

Suppose that w ⊥ (v − Uv) for all v ∈ V . Since

〈w, v − Uv〉 = 〈w, v〉 − 〈w,Uv〉
= 〈w, v〉 − 〈U∗w, v〉
= 〈w − U∗w, v〉

we conclude that 〈w − U∗w, v〉 = 0 for all v ∈ V , hence w − U∗w = 0. Hence
Uw = w and by the lemma Uw = w, as desired.

Now let (X,B, µ, T ) be a measure preserving system and let T denote also
the Koopman operator induced on L2 by T . Then the space V0 of T -invariant
vectors is just L2(X, I, µ), where I ⊆ B is the σ-algebra of invariant sets, and
the orthogonal projection π to V0 is just the conditional expectation operator,
πf = E(f |I) (see the Appendix). We derive the following:

Corollary 4.2.4 (Dynamical mean ergodic theorem). Let (X,B, µ, T ) be a
measure-preserving system, let I denote the σ-algebra of invariant sets, and
let π denote the orthogonal projection from L(X,B, µ) to the closed subspace
L2(X, I, µ). Then for every f ∈ L2,

1

N

N−1∑
n=0

Tnf → E(f |I) in L2

In particular, if the system is ergodic then the limit is constant:

1

N

N−1∑
n=0

Tnf →
ˆ
f dµ in L2

Specializing to f = 1A, and noting that L2-convergence implies, for example,
convergence in probability, the last result says that on an arbitrarily large part
of the space, the frequency of visits of an orbit to A up to time N is arbitrarily
close to µ(A), if N is large enough.
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4.3 The pointwise ergodic theorem
Very shortly after von Neumann’s mean ergodic theorem (and appearing in print
before it), Birkhoff proved a stronger version in which convergence takes place
a.e. and in L1.

Theorem 4.3.1 (Pointwise ergodic theorem). Let (X,B, µ, T ) be a measure-
preserving system, let I denote the σ-algebra of invariant sets. Then for any
f ∈ L1(µ),

1

N

N−1∑
n=0

Tnf → E(f |I) a.e. and in L1

In particular, if the system is ergodic then the limit is constant:

1

N

N−1∑
n=0

Tnf →
ˆ
f dµ a.e. and in L1

We shall see several proofs of this result. The first and most “standard” proof
follows the same scheme as the mean ergodic theorem: one first establishes the
statement for a dense subspace V ⊆ L1, and then uses some continuity property
to extend to all of L1. The first step is nearly identical to the proof of the mean
ergodic theorem.

Proposition 4.3.2. There is a dense subspace V ⊆ L1such that the conclusion
of the theorem holds for every f ∈ V .

Proof. We temporarily work in L2. Let V1 denote the set of invariant f ∈ L2,
for which the theorem holds trivially because SNf = f for all N . Let V2 ⊆ L2

denote the linear span of functions of the form f = g − Tg for g ∈ L∞. The
theorem also holds for these, since∥∥g + TN+1g

∥∥
∞ ≤ ‖g‖∞ +

∥∥TN+1g
∥∥
∞ = 2 ‖g‖∞

and therefore

1

N

N−1∑
n=0

Tn(g − Tg) =
1

N
(g − TN+1g)→ 0 a.e. and in L1

Set V = V1 + V2. By linearity of SN , the theorem holds for f ∈ V1 + V2. Now,
L∞ is dense in L2 and T is continuous on L2, so V 2 = {g − Tg : g ∈ L2}. In
the proof of the mean ergodic theorem we saw that L2 = V1⊕V 2, so V = V1⊕V2

is dense in L2, and hence in L1, as required.

By Lemma 4.1.1, this proves the ergodic theorem in the sense of L1-convergence
for all f ∈ L1. In order to similarly extend the pointwise version to all of L1

we need a little bit of “continuity”, which is provided by the following.
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Theorem 4.3.3 (Maximal inequality). Let f ∈ L1with f ≥ 0 and SNf =
1
N

∑N−1
n=0 T

nf . Then for every t,

µ

(
x : sup

N
SNf(x) > t

)
≤ 1

t

ˆ
f dµ

Before giving the proof let us show how this finishes the proof of the ergodic
theorem. Write S = E(·|I), which is a bounded linear operator on L1, let f ∈ L1

and g ∈ V . Then

|SNf − Sf | ≤ |SNf − SNg|+ |SNg − Sg|
≤ SN |f − g|+ |SNg − Sf |

Now, SNg → Sg a.e., hence |SNg − Sf | → |S(g − f)| ≤ S|f − g| a.e. Thus,

lim sup
N→∞

|SNf − Sf | ≤ lim sup
N→∞

SN |f − g|+ S|g − f |

If the left hand side is > ε then at least one of the terms on the right is > ε/2.
Therefore,

µ

(
lim sup
N→∞

|SNf − Sf | > ε

)
≤ µ

(
lim sup
N→∞

SN |f − g| > ε/2

)
+µ (S|g − f | > ε/2)

Now, by the maximal inequality, the first term on the right side is bounded by
1
ε/2 ‖f − g‖, and by Markov’s inequality and the identity

´
Shdµ =

´
h dµ, the

second term is bounded by 1
ε/2 ‖g − f‖ as well. Thus for any ε > 0 and g ∈ V

we have found that

µ

(
lim sup
N→∞

|SNf − Sf | > ε

)
≤ 4

ε
‖f − g‖

For each fixed ε > 0, the right hand side can be made arbitrarily close to 0,
hence lim sup |SNf−Sf | = 0 a.e. which is just SNf → Sf = E(f |I), as claimed.

We now return to the maximal inequality which will be proved by reducing
it to a purely combinatorial statement about functions on the integers. Given a
function f̂ : N→ [0,∞) and a set ∅ 6= I ⊆ N, the average of f̂ over I is denoted

SI f̂ =
1

|I|
∑
i∈I

f̂(i)

In the following discussion we write [i, j] also for integer segments, i.e. [i, j]∩Z.

Proposition 4.3.4 (Discrete maximal inequality). Let f̂ : N → [0,∞). Let
J ⊆ I ⊆ N be finite intervals, and for each j ∈ J let Ij ⊆ I be a sub-interval of
I whose left endpoint is j. Suppose that SIj f̂ > t for all j ∈ J . Then

SI f̂ > t · |J |
|I|
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Proof. Suppose first that the intervals {Ij} are disjoint. Then together with
U = I \

⋃
Ij they form a partition of I, and by splitting the average SI f̂

according to this partition, we have the identity

SI f̂ =
|U |
|I|

SU f̂ +
∑ |Ij |
|I|

SIj f̂

Since f̂ ≥ 0 also SU f̂ ≥ 0, and so

SI f̂ ≥
∑ |Ij |
|I|

SIj f̂ ≥
1

|I|
∑

t|Ij | ≥ t
|
⋃
Ij |
|I|

Now, {Ij}j∈J is not a disjoint family, but the above applies to every disjoint
sub-collection of it. Therefor we will be done if we can extract from {Ij}j∈J a
disjoint sub-collection whose union is of size at least |J |. This is the content of
the next lemma.

Lemma 4.3.5 (Covering lemma). Let I, J, {Ij}j∈J be intervals as above. Then
there is a subset J0 ⊆ J such that (a) J ⊆

⋃
i∈J0 Ij and (b) the collection of

intervals {Ji}i∈J0 is pairwise disjoint.

Proof. Let Ij = [j, j+N(j)−1]. We define J0 = {jk} by induction using a greedy
procedure. Let j1 = min J be the leftmost point. Assuming we have defined j1 <
. . . < jk such that Ij1 , . . . , Ijkare pairwise disjoint and cover J∩[0, jk+N(jk)−1].
As long as this is not all of J , define

jk+1 = min{I \ [0, jk +N(jk)− 1]}

It is clear that the extended collection satisfies the same conditions, so we can
continue until we have covered all of J .

We return now to the dynamical setting. Each x ∈ X defines a function
f̂ = f̂x : N→ [0,∞) by evaluating f along the orbit:

f̂(i) = f(T ix)

Let
A = {sup

N
SNf > t}

and note that if T jx ∈ A then there is an N = N(j) such that SNf(T jx) > t.
Writing

Ij = [j, j +N(j)− 1]

this is the same as
SIj f̂ > t

Fixing a large M (we eventually take M → ∞), consider the interval I =
[0,M − 1] and the collection {Ij}j∈J , where

J = Jx = {0 ≤ j ≤M − 1 : T jx ∈ A and Ij ⊆ [0,M − 1]}
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The proposition then gives

S[0,M−1]f̂ > t · |J |
M

In order to estimate the size of J we will restrict to intervals of some bounded
length R > 0 (which we eventually will send to infinity). Let

AR = { sup
0≤N≤R

SNf > t}

Then
J ⊇ {0 ≤ j ≤M −R− 1 : T jx ∈ AR}

and if we write h = 1AR
, then we have

|J | ≥
M−R−1∑
j=0

ĥ(j)

= (M −R− 1)S[0,M−R−1]ĥ

With this notation now in place,the above becomes

S[0,M−1]f̂x > t · M −R− 1

M
· S[0,M−R−1]ĥx (4.2)

and notice that the average on the right-hand side is just frequency of visits to
AR up to time M .

We now apply a general principle called the transference principle, which
relates the integral

´
g dµ of a function g : X → R its discrete averages SI ĝ

along orbits: using
´
g =
´
Tng, we have

ˆ
g dµ =

1

M

M−1∑
m=0

ˆ
Tmg dµ

=

ˆ (
1

M

M−1∑
m=0

Tmg

)
dµ

=

ˆ
S[0,M−1]ĝx dµ(x)

Applying this to f and using 4.2, we obtain
ˆ
f dµ = S[0,M−1]f̂x

> t · M −R− 1

M
·
ˆ
h dµ

= t · (1− R− 1

M
) ·
ˆ

1AR
dµ

= t · (1− R− 1

M
) · µ(AR)
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Letting M →∞, this is ˆ
f dµ > t · µ(AR)

Finally, letting R → ∞ and noting that µ(AR) → µ(A), we conclude that´
f dµ > t · µ(A), which is what was claimed.

Example 4.3.6. Let (ξn)∞n=1 be an independent identically distributed se-
quence of random variables represented by a product measure on (X,B, µ) =
(Ω,F , P )N, with ξn(ω) = ξ(ωn) for some ξ ∈ L1(Ω,F , P ). Let σ : X → X be
the shift, which preserves µ and is ergodic, and ξn = ξ0(σn). Since the shift
acts ergodically on product measures, the ergodic theorem implies

1

N

N−1∑
n=0

ξn =
1

N

N−1∑
n=0

σnξ0 → E(ξ0|I) = Eξ0 a.e.

Thus the ergodic theorem generalizes the law of large numbers. However it is a
very broad generalization: it holds for any stationary process (ξn)∞n=1 without
any independence assumption, as long as the process is ergodic.

When T is invertible it is also natural to consider the two-sided averages
SN = 1

2N+1

∑N
n=−N T

nf . Up to an extra term 1
2N+1f , this is just

1
2SN (T, f) +

1
2SNT

−1, f), where we write SN (T, f) to emphasize which map is being used.
Since both of these converge in L1 and a.e. to the same function E(f |I), the
same is true for SNf .

4.4 Generic points
The ergodic theorem is an a.e. statement relative to a given L1 function, and,
anyway, L1 functions are only a.e. Therefore it is not clear how to interpret
the statement that the orbit of an individual point distributes well in the space.
There is an exception: When the space is a compact metric space, one can use
the continuous functions as test functions to define a more robust notion.

Definition 4.4.1. Let (X,T ) be a topological dynamical system. A point
x ∈ X is generic for a Borel measure µ ∈ P(X) if it satisfies the conclusion of
the ergodic theorem for every continuous function, i.e.

1

N

N−1∑
n=0

Tnf(x)→
ˆ
f dµ for all f ∈ C(X) (4.3)

We have already seen that any measure µ that satisfies the above is T -
invariant.

Lemma 4.4.2. Let F ⊆ C(X) be a countable ‖·‖∞-dense set. If 4.3 holds for
every f ∈ F then x is generic for µ.
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Proof. By a familiar calculation, given f ∈ C(X) and g ∈ F ,

lim sup
N→∞

|SNf(x)−
ˆ
f dµ| ≤ lim sup

N→∞
|SNf(x)− SNg(X)|+ lim sup

N→∞
|SNg(x)−

ˆ
f dµ|

≤ lim sup
N→∞

SN |f − g|(x) + lim sup
N→∞

|
ˆ
g dµ−

ˆ
f dµ|

≤ 2 ‖f − g‖∞

since g can be made arbitrarily close to f we are done.

Proposition 4.4.3. If µ is T -invariant with ergodic decomposition µ =
´
µx dµ(x).

Then µ-a.e. x is generic for µx.

Proof. Since µ =
´
µx dµ(x), it suffices to show that for µ-a.e. x, for µx-a.e. y,

y is generic for µx. Thus we may assume that µ is ergodic and show that a.e.
point is generic for it. To do this, fix a ‖·‖∞-dense, countable set F ⊆ C(X).
By the ergodic theorem, SNf(x) →

´
f a.e., for every f ∈ F , so since F is

countable there is a set of measure one on which this holds simultaneously for
all f ∈ F . The previous lemma implies that each of these points is generic for
µ.

This allows us to give a new interpretation of the ergodic decomposition
when T : X → X is a continuous map of a compact metric space. For a given
ergodic measure µ, let Gµ denote the set of generic points for µ. Since a measure
is characterized by its integral against continuous functions, if µ 6= ν then
Gµ ∩ Gν = ∅. Finally, it is not hard to see that Gµ is measurable and µ(Gµ) = 1
by the proposition above. Thus we may regard Gµ as the ergodic component
of µ. One can also show that G =

⋃
Gµ, the set of points that are generic for

ergodic measures, is measurable, because these are just the points such that
ergodic averages exist against every continuous function, or equivalently every
function in a dense countable subset of C(X). Now, for any invariant measure
ν with ergodic decomposition ν =

´
νx dν(x),

ν(G) =

ˆ
νx(G) dν(x) = 1

because νx are a.s. ergodic and Gνx ⊆ G. Thus on a set of full ν-measure sets Gµ
give a partition that coincides with the ergodic decomposition. Note, however,
that this partition does not depend on ν (in the ergodic decomposition theorem
it is not a-priori clear that such a decomposition can be achieved).

Example 4.4.4. Let X = {0, 1}N and let µ0 = δ000... and µ1 = δ111.... These
are ergodic measures for the shift σ. Now let x ∈ X be the point such that
xn = 0 for k2 ≤ n < (k + 1)2 if k is even, and xn = 1 for k2 ≤ n < (k + 1)2 if k
is odd. Thus

x = 111000001111111000000000111 . . .
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We claim that x is generic for the non-ergodic measure µ = 1
2µ0 + 1

2µ1. It
suffices to prove that for any `,

1

N

N−1∑
n=0

10`(Tnx) → 1

2

1

N

N−1∑
n=0

11`(Tnx) → 1

2

where 0`, 1` are the sets of points beginning with ` consecutive 0s and ` con-
secutive 1s, respectively. The proofs are similar so we show this for 0`. Notice
that 10`(Tnx) = 1 if k2 ≤ n < (k + 1)2 − ` and k is even, and 10`(Tnx) = 0
otherwise. Now, each N satisfies k2 ≤ N < (k + 2)2 for some even k. Then

N−1∑
n=0

10`(Tnx) =

k/2∑
j=1

((2j + 1)2 − `)− (2j)2) =

k/2∑
j=1

(4j + 1− `) = (
1

2
k2 +O(k))

Also N − k2 ≤ (k + 1)2 − k2 = O(k). Therefore SN10`(x)→ 1
2 as claimed.

Example 4.4.5. With (X,σ) as in the previous example, let yn = 0 if 2k ≤
n < 2k+1 for k even and yn = 1 otherwise. Then one can show that x is not
generic for any measure, ergodic or not.

Our original motivation for considering ergodic averages was to study the
frequency of visits of an orbit to a set. Usually 1A is not continuous even when
A is topologically a nice set (e.g. open or closed), so generic points do not have
to behave well with respect to visit frequencies. The following shows that this
can be overcome with slightly stronger assumption on A and x.

Lemma 4.4.6. If x is generic for µ, and if U is open and C is closed, then

lim inf
1

N

N−1∑
n=0

1U (Tnx) ≥ µ(U)

lim sup
1

N

N−1∑
n=0

1C(Tnx) ≤ µ(C)

Proof. Let fk ∈ C(X) with fk ↗ 1U (e.g. fn(y) = 1 − e−kd(y,Uc)). Then
1U ≥ fn and so

lim inf
1

N

N−1∑
n=0

1U (Tnx) ≥ lim
1

N

N−1∑
n=0

fk(Tnx) =

ˆ
fkdµ→ µ(U)

The other inequality is proves similarly using gn ↘ 1C .

Proposition 4.4.7. If x is generic for µ, A ⊆ X and µ(∂A) = 0 then 1
N

∑N−1
n=0 1A(Tnx)→

µ(A).
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Proof. Let U = interior(A) and C = A, so 1U ≤ 1A ≤ 1C . By the lemma,

lim inf SN1A ≥ lim inf SN1U ≥ µ(U)

and
lim supSN1A ≤ lim supSN1C ≤ µ(C)

But by our assumption, µ(U) = µ(C) = µ(A), and we find that

µ(A) = lim inf SN1A ≤ lim supSN1A ≤ µ(A)

So all are equalities, and SN1A → µ(A).

4.5 Unique ergodicity and circle rotations
When can the ergodic theorem be strengthened from a.e. point to every point?
Once again the question does not make sense for L1 functions, since these are
only defined a.e., but it makes sense for continuous functions.

Definition 4.5.1. A topological system (X,T ) is uniquely ergodic if there is
only one invariant probability measure, which in this case is denoted µX .

Proposition 4.5.2. Let (X,T ) be a topological system and µ ∈ PT (X). The
following are equivalent.

1. Every point is generic for µ.

2. SNf →
´
f dµ uniformly, for every f ∈ C(X).

3. (X,T ) is uniquely ergodic and µ is its invariant measure.

Proof. (1) implies (3): If ν 6= µ were another invariant measure there would be
points that are generic for it, contrary to (1).

(3) implies (2): Suppose (2) fails, so there is an f ∈ C(X) such that∥∥SNf 6 − ´ fdµ∥∥∞ → 0. Then there is some sequence xk ∈ X and integers
Nk → ∞ such that SNk

f(xk) → c 6=
´
fdµ. Let ν be an accumulation point

of 1
Nk

∑Nk

n=1 δTnxk
. This is a T -invariant measure and

´
fd ν = c so ν 6= µ,

contradicting (3).
(2) implies (1) is immediate.

Proposition 4.5.3. Let X = R/Z and α /∈ Q. The map Tαx = x+ α on X is
uniquely ergodic with invariant measure µ = Lebesgue.

We give two proofs.

Proof number 1. We know that µ is ergodic for Tα so a.e. x is generic. Fix one
such x. Let y ∈ X be any other point. then there is a β ∈ R such that y = Tβx.
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For any function f ∈ C(X),

1

N

N−1∑
n=0

Tnα f(y) =
1

N

N−1∑
n=0

f(y + αn)

=
1

N

N−1∑
n=0

f(x+ αn + β)

=
1

N

N−1∑
n=0

(Tβf)(Tnαx)

→
ˆ
Tβf dµ =

ˆ
f dµ

Therefore every point is generic for µ and Tα is uniquely ergodic.

Our second proof is based on a more direct calculation that does not rely on
the ergodic theorem.

Definition 4.5.4. A sequence (xk) in a compact metric space X equidistributes
for a measure µ if 1

N

∑N
n=1 δxn

→ µ weak-*.

Lemma 4.5.5 (Weyl’s equidistribution criterion). A sequence (xk) ⊆ R/Z
equidistributes for Lebesgue measure µ if and only if for every m,

1

N

N−1∑
n=0

e2πimxn →
{

0 m = 0
1 m 6= 0

Proof. Let χm(t) = esπimt. The linear span of {χm}m∈Z is dense in C(R/Z) by
Fourier analysis so equidistribution of (xk) is equivalent to SNχm(x)→

´
χmdµ

for every m. This is what the lemma says.

Proof number 2. Fix t ∈ R/Z and xk = t + αk. For m = 0 the limit in Weyl’s
criterion is automatic so we only need to check m 6= 0. Then

1

N

N−1∑
n=0

e2πimxn =
1

N
e2πimt ·

N−1∑
n=0

(e2πimα)n =
1

N
e2πit · e

2πimαN − 1

e2πimα − 1
= 0

(note that α /∈ Q ensures that the denominator is not 0, otherwise the summa-
tion formula is invalid).

Corollary 4.5.6. For any open or closed set A ⊆ R/Z, for every x ∈ R/Z,
SN1A(x)→ Leb(A).

Proof. The boundary of an open or closed is countable and hence of Lebesgue
measure 0.
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Example 4.5.7 (Benford’s law). Many samples of numbers collected in the
real world exhibit the interesting feature that the most significant digit is not
uniformly distributed. Rather, 1 is the most common digit, with frequency
approximately 0.30; the frequency of 2 is about 0.18; the frequency of 3 is
about 0.13; etc. More precisely, the frequency of the digit k is approximately
log10(1 + 1

d ).
We will show that a similar distribution of most significant digits holds for

powers of b whenever b is not a rational power of 10. The main observation
is that the most significant base-10 digit of x ∈ [1,∞) is determined by y =
log10 x mod 1, and is equal to k if y ∈ Ik = [log10 k, log10(k + 1)). Therefore,
the asymptotic frequency of k being the most significant digits of bn is

lim
N→∞

1

N

N∑
n=1

1Ik(log10 b
n) = lim

N→∞

1

N

N∑
n=1

1Ik(n
ln b

ln 10
)

= Leb(Ik)

= Leb[log10 k, log10(k + 1)]

= log10(1 +
1

k
)

since this is just the frequency of visits of the orbit of 0 to [log10 k, log10(k+ 1)]
under the map t 7→ t + ln b/ ln 10 mod 1, and ln b/ ln 10 /∈ Q by assumption (it
would be rational if and only if b is a rational power of 10).

4.6 Sub-additive ergodic theorem
Theorem 4.6.1 (Subadditive ergodic theorem). Let (X,B, µ, T ) be an ergodic
measure-preserving system. Suppose that fn ∈ L1(µ) satisfy the subadditivity
relation

fm+n(x) ≤ fm(x) + fn(Tmx)

and are uniformly bounded above, i.e. fn ≤ L for some L. Then limn→∞
1
nfn(x)

exists a.e. and is equal to the constant limn→∞
1
n

´
fn.

Before giving the proof we point out two examples. First, if fn =
∑n−1
k=0 T

kg
then fn satisfies the hypothesis, so this is a generalization of the usual ergodic
theorem (for ergodic T ).

For a more interesting example, let An = A(Tnx) be a stationary sequence of
d×d matrices (for example, if the entries are i.i.d.). Let fn = log ‖A1 · . . . ·An‖
satisfies the hypothesis. Thus, the subadditive ergodic theorem implies that
random matrix products have a Lyapunov exponent – their norm growth is
asymptotically exponential.

Proof. Let us first make a simple observation. Suppose that {1, . . . , N} is par-
titioned into intervals {[ai, bi)}i∈I . Then subadditivity implies

fN (x) ≤
∑
i∈I

fbi−ai(T
aix)
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Let
a = lim inf

1

n
fn

We claim that a is invariant. Indeed,

1

n
fn(Tx) ≥ 1

n
(fn+1(x)− f1(x))

From this it follows that a(Tx) ≥ a(x) so by ergodicity a is constant.
Fix ε > 0. Since lim inf 1

nfn = a there is an N such that the set

A = {x :
1

n
fn(x) < a+ ε for some 0 ≤ n ≤ N}

satisfies µ(A) > 1− ε.
Now fix a typical point x. By the ergodic theorem, for every large enough

M ,
1

M

M−1∑
n=0

1A(Tnx) > 1− ε

Fix such an M and let

I0 = {0 ≤ n ≤M −N : Tnx ∈ A}

For i ∈ I0 there is a 0 ≤ ki ≤ N such that 1
kfki(T

ix) < a+ε. Let Ui = [i, n+kn).
Applying the covering lemma, Lemma 4.3.5, there is a subset I1 ⊆ I0 such that
{Ui}i∈I1 are pairwise disjoint and |

⋃
i∈I1 Ui| ≥ |I0| > (1−ε)M . By construction

also
⋃
i∈I1 Ui ⊆ [0,M).

Choose an enumeration {Ui}i∈I2 of the complementary intervals in [0,M) \⋃
i∈Ii Ui, so that {Ui}i∈I1∪I2 is a partition of [0,M). Writing Ui = [ai, bi) and

using the comment above, we find that

1

M
fM (x) ≤ 1

M

(∑
i∈I1

fbi−ai(T
aix) +

∑
i∈I2

fbi−ai(T
aix)

)

≤
∑
n∈I1 |Ui|
M

(a+ ε) +

∑
n∈I2 |Ui|
M

‖f‖∞
≤ (a+ ε) + ε ‖f‖∞

Since this holds for all large enough M we conclude that lim sup 1
M fM ≤ a =

lim inf 1
nfn so the limit exists and is equal to a.

It remains to identify a = lim 1
n

´
fn. First note that

ˆ
fm+n ≤

ˆ
fmdµ+

ˆ
fn ◦ Tmdµ =

ˆ
fmdµ+

ˆ
fndµ

so an =
´
fndµ is subadditive, hence the limit a′ = lim 1

nan exists. By Fatou’s
lemma (since fn ≤ L we can apply it to −fn) we get

a =

ˆ
lim sup

1

n
fndµ ≥ lim sup

ˆ
1

n
fndµ = lim

1

n
an = a′
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Suppose the inequality were strict, a′ < a− ε for some ε > 0 and let n be such
that an < a− ε. Note that for every 0 ≤ p ≤ n− 1 we have the identity

fN (x) ≤ fp(x) +

[N/n]−1∑
k=0

fn(T kn+px) + fN−p−n([N/n]−1))(T
p+n([N/n]−1))x)

Averaging this over 0 ≤ p < n, we have

1

N
fN ≤ SN (

1

n
fn) +O(

n

N
)

This by the ergodic theorem,

lim
N→∞

1

N
fN ≤ lim

N→∞
SN (

1

n
fn) =

ˆ
1

n
fn < a− ε

which is a contradiction to the definition of a.

4.6.1 Group actions
Let G be a countable group. A measure preserving action of G on a measure
space (X,B, µ) is, first of all, an action, that is a map G×X → X, (g, x) 7→ gx,
such that g(hx) = (gh)(x) for all g, h ∈ G and x ∈ X. In addition, for each
g ∈ G the map Tg : x 7→ gx must be measurable and measure-preserving. It is
convenient to denote the action by {Tg}g∈G.

An invariant set for the action is a set A ∈ B such tat TgA = A for all g ∈ G.
If every such set satisfies µ(A) = 0 or µ(X \A) = 0, then the action is ergodic.
There is an ergodic decomposition theorem for such actions, but for simplicity
(and without loss of generality) we will assume that the action is ergodic.

For a function f : X → R the function Tgf = f ◦ Tg−1 : X → R has the
same regularity, and {Tg}g∈G gives an isometric action on Lp for all 1 ≤ p ≤ ∞.
Given a finite set E ⊆ G let SEf be the functions defined by

SEf(x) =
∑
g∈E

f(Tgx)

As before, this is a contraction in Lp. We say that a sequence En ⊆ G of finite
sets satisfies the ergodic theorem along {En} if SEn

f →
´
f , in a suitable sense

(e.g. in L2 or a.e.) for every ergodic action and every suitable f .

Definition 4.6.2. A group G is amenable if there is a sequence of sets En ⊆ G
such that for every g ∈ G,

|Eng∆En|
|En|

→ 0

Such a sequence {En} is called a Følner sequence.

For example, Zd is a amenable because En = [−n, n]d ∩ Zd satisfies

|(En + u) ∩ En| = |En−‖u‖∞ | = |En|+ o(1)
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The class of amenable groups is closed under taking subgroups and countable
increasing unions, and if G and N C G are amenable so is G/N . Groups of
sub-exponential growth are amenable; the free group is not amenable, but there
are amenable groups of exponential growth.

Theorem 4.6.3. If {En} is a Følner sequence in an amenable group G then the
ergodic theorem holds along {En} in the L2 sense (the mean ergodic theorem).

Proof. Let
V0 = span{f − Tgf : f ∈ L2 , g ∈ G}

One can show exactly as before that V ⊥0 consists of the invariant functions
(in this case, the constant functions, because we are assuming the action is
ergodic). Then one must only show that SEn

(f − Tgf) → 0 for f ∈ L2. But
this is immediate from the Følner property, since

SEn
f − SEn

Tgf = SEn\Enr−1f

and therefore∥∥∥∥ 1

|En|
SEn

(f − Tgf)

∥∥∥∥
2

≤ 1

|En|
|En \ Eng−1| · ‖f‖2 ≤

|En∆Eng
−1|

|En|
‖f‖2 → 0

This proves the mean ergodic theorem.

The proof of the pointwise ergodic theorem for amenable groups is more
delicate and does not hold for every Følner sequence. However, one can reduce
it as before to a maximal inequality. What one then needs is an analog of the
discrete maximal inequality, which now concerns functions f̂ : G→ [0,∞), and
requires an analog of the covering Lemma 4.3.5. Such a result is known under
a stronger assumption on {En}, namely assuming that |

⋃
k<nE

−1
k En| ≤ C|En|

for some constant C and all n. Every Følner sequence has a subsequence that
satisfies this, and so every amenable group has a sequence along which the
pointwise ergodic theorem holds a.e. and in L1.

Outside of amenable groups one can also find ergodic theorems. The sim-
plest to state is for the free group Fs on s generates g±1

1 , . . . , g±1
s . This is a

non-amenable group which can be identified with the set of words in the gen-
erators that don’t contain any occurrence of uu−1. The group operation is
concatenation follows by reduction, that is, repeatedly deleting any pair ss1.
For example the product of words aba−1c and c−1abb is

aba−1cc−1abb = aba−1abb = abbb

the right hand side is reduced.
Let En ⊆ Fs denote the set of reduced words of length ≤ n.

Theorem 4.6.4 (Nevo-Stein, Bufetov). If Fs acts ergodically by measure pre-
serving transformations on (X,B, µ) then for every SEn

f →
´
f for every

f ∈ L1(µ).
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There is a major difference between the proof of this result and in the
amenable case. Because |En∆Eng

−1|/|En| 6→ 0, the there is no trivial rea-
son for the averages of co-boundaries to tend to 0. Consequently there is no
natural dense set of functions in L1 for which convergence holds. In any case,
the maximal inequality is not valid either. The proof in non-amenable cases
takes completely different approaches (but we will not discuss them here).

4.6.2 Hopf’s ergodic theorem
Another generalization is to the case of a measure-preserving transformation
T of a measure space (X,B, µ) with µ(X) = ∞ (but σ-finite). Ergodicity is
defined as before – all invariant sets are of measure 0 or their complement is
of measure 0. It is also still true that T : L2(µ) → L2(µ) is norm-preserving,
and so the mean ergodic theorem holds: SNf → πf for f ∈ L2, where π is the
projection to the subspace of invariant L2 functions. Now, however, the only
constant function that is integrable is 0, and we find that SNf → 0 in L2. In
fact this is true in L1 and a.e. The meaning is, however, the same: if we take a
set of finite measure A, this says that the fraction of time an orbit spends in A
is the same as the relative size of A compared to Ω; in this case µ(A)/µ(Ω) = 0.

Instead of asking about the absolute time spent in A, it is better to consider
two sets A,B of positive finite measure. Then an orbit visits both with frequency
0, but one may expect that the frequency of visits to A is µ(A)/µ(B)-times the
frequency of visits to B. This is actually he case:

Theorem 4.6.5 (Hopf). If T is an ergodic measure-preserving transformation
of (X,B, µ) with µ(X) =∞, and if f, g ∈ L1(µ) and

´
gdµ 6= 0, then∑N−1

n=0 T
nf∑N−1

n=0 T
ng
−−−−→
N→∞

´
fdµ´
gdµ

a.e.

Since the right hand side is usually not 0, one cannot expect this to hold in
L1.

Hopf’s theorem can also be generalized to group actions, but the situation
there is more subtle, and it is known that not all amenable groups have sequences
En such that

∑
En
T gf/

∑
En
T gh→

´
f/
´
h. See ??.



Chapter 5

Some categorical
constructions

5.1 Isomorphism and factors
Definition 5.1.1. Two measure preserving systems (X,B, µ, T ) and (Y, C, ν, S)
are isomorphic if there are invariant subsets X0 ⊆ X and Y0 ⊆ Y of full measure
and a bijection π : X0 → Y0 such that π, π−1 are measurable, πµ = ν, and
π ◦ T = S ◦ π. The last condition means that the following diagram commutes:

X0
T−→ X0

↓ π ↓ π

Y0
S−→ Y0

It is immediate that ergodicity and mixing are isomorphism invariants. Also,
π induces an isometry L2(µ)→ L2(ν) in the usual manner and the induced maps
of T, S on these spaces commute with π, so the induced maps T, S are unitarily
equivalent in the Hilbert-space sense. The same is true for the associated Lp

spaces.

Example 5.1.2. Let α ∈ R and X = R/Z with Lebesgue measure µ, and
Tαx = x+α mod 1. Then Tα, T−α are isomorphic via the isomorphism x→ −x.

Example 5.1.3. Let X = {0, 1}N with µ the product measure 1
2 ,

1
2 and the

shift T , and Y = [0, 1] with ν = Lebesgue measure and Sx = 2x mod 1. Let
π : X → Y be the map π(x) =

∑∞
n=1 xn2−n, or π(x) = 0.x1x2x3 . . . in binary

notation. Then it is well known that πµ = ν, and we have

S(πx) = S(0.x1x2 . . .) = 0.x2x3 . . . = π(Tx)

Thus π is a factor map between the corresponding systems. Furthermore it is
an isomoprhism, since if we take X0 ⊆ X to be all eventually-periodic sequences

48
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and Y0 = Y \Q. These are invariant sets; µ(X0) = 1, since there are countably
many eventually periodic sequences and each has measure 0; and ν(Y0) = 1.
Finally π : X0 → Y0 is 1-1 and onto, since there is an inverse given by the
binary expansion, which is measurable. This proves that the two systems are
isomorphic.

Example 5.1.4. An irrational rotation is not isomorphic to a shift space with a
product measure. This can be seen in many ways, one of which is the following.
Note that there is a sequence nk → ∞ such that Tnk

α 0 → 0; this follows from
the fact that 0 equidistributes for Lebesgue measure, so its orbit must return
arbitrarily close to x. Since x = Tx0, we find that

Tnkx = TnkTx0 = TxT
nk0→ Tx0 = x

so Tnkx → x for all x ∈ R/Z. It follows from dominated convergence that for
every f ∈ L2(µ) ∩ L∞(µ) we have Tnkf → f in L2, henceˆ

Tnkf · f →
ˆ

(f2)dµ

On the other hand if (AZ, C, ν, S) is a shifts space with a product measure then
we have already seen that it is mixing, hence for every f ∈ L2(ν) we haveˆ

Snkf · f → (

ˆ
f)2dν

By Cauchy-Schwartz, we generally have (
´
f)2 6=

´
(f2) so the operators S, T

cannot be unitarily equivalent.

Definition 5.1.5. A measure preserving system (Y, C, ν, S) is a factor of a
measure preserving system (X,B, ν, T ) if there are invariant subsets X0 ⊆ X,
Y0 ⊆ Y of full measure and a measurable map π : X0 → Y0 such that πµ = ν
and π ◦ T = S ◦ π.

This is the same as an isomorphism, but without requiring π to be 1-1 or
onto. Note that πµ = ν means that π is automatically “onto” in the measure
sense: if A ⊆ Y0 and π−1(A) = ∅ then ν(A) = 0.
Remark 5.1.6. When X,Y are standard Borel spaces (i.e. as measurable spaces
they are isomorphic to complete separable metric spaces with the Borel σ-
algebra), one can always assume that π : X0 → Y0 is onto (even though the
image of a measurable set is not in general measurable, in the standard setting
one can find a measurable subset of the image that has full measure, and restrict
to it).

Example 5.1.7. Let Tα be rotation by α. Let k ∈ Z\0. Then π : x 7→ kx mod 1
maps Lebesgue measure to Lebesgue measure on R/Z and

πTαx = k(x+ α) = Tkαπx

Thus Tkα is a factor of Tα. Note that unless k = ±1 this is not an isomorphism,
since |π−1y| = k for all y.
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Example 5.1.8. Let A = {1, . . . , n}, p = (p1, . . . , pn) be a non-degenerate
probability vector, X = AZ with the product σ-algebra and product measure
µ = pZ. Let B be a set and π : A → B any map, and let qb = pπ−1b the
push-forward probability vector. Let Y = BZ and ν = qZ. Finally let S be the
shift (on both spaces) and extend π to a map X → Y pointwise:

π(. . . , x−1, x0, x1, . . .) = (. . . π(x−1), π(X0), π(x1), . . .)

Then by considering cylinder sets it is easy to show that this πµ = ν, and clearly
Sπ − πS. This Y is a factor of X.

Proposition 5.1.9. Let (X,B) and (Y, C) be measurable spaces and T : X → X
and S : Y → Y measurable maps, and π : X → Y π : X → Y be a measurable
map such that πT = Sπ. .

1. If µ is an invariant measure for T then ν = πµ is an invariant measure
for S and π is a factor map between (X,B, µ, T ) and (Y, C, ν, S).

2. If the spaces are standard Borel spaces and if ν is an invariant measure
for S, then there exist invariant measures µ for T such that ν = πµ and
π is a factor map between (X,B, µ, T ) and (Y, C, ν, S) (but no uniqueness
is claimed).

Proof. The first part is an exercise.
The second part is less trivial. We give a proof for the case that X,Y are

compact metric spaces, B, C the Borel σ-algebras, and T, S, π are continuous.
In this situation, we first need a non-dynamical version:

Lemma 5.1.10. There is a measure µ0 on X such that πµ = ν.

Proof No. 1 (almost elementary). Start by constructing a sequence νn of atomic
measures on Y with νn → ν weakly, i.e.

´
g dνn →

´
g dν for all g ∈ C(Y ). To

get such a sequence, given n choose a finite partition En of Y into measurable
sets of diameter < 1/n (for instance cover Y by balls Bi of radius < 1/n and set
Ei = Bi \

⋃
j<iBj). For each E ∈ En choose xE and set νn =

∑
E∈En ν(E) · δxE

.
One may verify that νn → ν.

Now, each νn can be lifted to a probability measure µn on X such that
πµn = νn: to see this, if νn =

∑
wi · δyi choose xi ∈ π−1(yi) (there may be

many choices, choose one), and set µn =
∑
wi · δxi

.
Since the space of Borel probability measures on X is compact in the weak-*

topology, by passing to a subsequence we can assume µn → µ. Clearly µ is a
probability measures; we claim πµ = ν. It is enough to show that

´
g d(πµ) =´

g dν for every g ∈ C(Y ). Using the identity
´
g dνn =

´
g ◦ π dµn (which is

equivalent to νn = πµn) we have
ˆ
g dν = lim

ˆ
g dνn =

ˆ
g ◦ π dµn =

ˆ
g ◦ π dµ =

ˆ
g d(πµ)

as claimed.
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Proof No. 2 (function-analytic). . First a few general remarks. A linear func-
tional µ∗ on C(X) is positive if it takes non-negative values on non-negative
functions. This property implies boundedness: to see this note that for any
f ∈ C(X) we have ‖f‖∞− f ≥ 0, hence by linearity and positivity µ∗(‖f‖∞)−
µ∗(f) ≥ 0, giving

µ∗(f) ≤ µ∗(‖f‖∞) = ‖f‖∞ · µ
∗(1)

Similarly, using f + ‖f‖∞ ≥ 0 we get µ∗(f) ≥ −‖f‖∞. Combining the two we
have |µ∗(f)| ≤ C ‖f‖∞, where C = µ∗(1).

Since a positive functional µ∗ is bounded it corresponds to integration against
a regular signed Borel measure µ, and since

´
f dµ = µ∗(f) ≥ 0 for continuous

f ≥ 0, regularity implies that µ is a positive measure. Hence a linear functional
µ∗ ∈ C(X)∗ corresponds to a probability measure if and only if it be positive
and µ∗(1) = 1 (this is the normalization condition

´
1 dµ = 1).

We now begin the proof. Let ν∗ : C(Y )→ R be bounded positive the linear
functional g 7→

´
g dν. The map π∗ : C(Y ) → C(X), g 7→ g ◦ π, embeds C(Y )

isometrically as a subspace V = π(C(Y )) < C(X), and lifts ν∗ to a bounded
linear functional µ∗0 : V → R (given by µ∗0(g ◦ π) = ν∗(g)).

Consider the positive cone P = {f ∈ C(X) : f ≥ 0}, and let s ∈ C(X)∗ be
the functional

s(f) = sup{0,−f(x) : x ∈ X}

It is easy to check that s is a seminorm, that s|P ≡ 0 and that −µ∗0(f) ≤ s(f)
on V . Hence by Hahn-Banach we can extend −µ∗0 to a functional −µ∗ on C(X)
satisfying −µ∗ ≤ s, which for f ∈ P implies µ∗(f) ≥ −s(f) = 0, so µ∗ is
positive. By the previous discussion there is a Borel probability measure µ such
that

´
f dµ = µ∗(f); for f = g ◦ π this means that
ˆ
g dπµ =

ˆ
g ◦ π dµ = µ∗(g ◦ π) = µ∗0(g ◦ π) = ν∗(g) =

ˆ
g dν

so µ is the desired measure.

Now let µn = 1
n

∑n−1
k=0 T

kµ0 and let µ be a subsequential limit of µn. It is
easy to check int he usual way that µ is T -invariant. Also,

πµn =
1

n

n−1∑
k=0

π(T kµ) =
1

n

n−1∑
k=0

T kπµ =
1

n

n−1∑
k=0

ν = ν

Since the space M of measure on X projecting to ν is weak-* closed, and
µn ∈M, also their limit point µ ∈M, as claimed.

Example 5.1.11. Let A,B be finite sets, AZ, BZ the product spaces and S the
shift. Let π : A2n+1 → B be any map and extend π to AZ → BZ by

(πx)i = π(xi−n, . . . , xi, . . . xi+n)

This commutes with the shift and so any invariant measure on AZ projects to
an invariant measure on BZ and vice versa.
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For example if A = B = {0, 1}, n = 1 and π(a, b, c) = b + c mod 1 then we
get a factor map as above and one may verify that the ( 1

2 ,
1
2 ) product measure

is mapped to itself; but the factor map is non-trivial since each sequence has
two pre-images.

If π : X → Y is a factor map between measure preserving systems (X,B, µ, T )
and (Y, C, ν, S) (already restricted to the invariant subsets of full measure). Then

π−1C = {π−1C : C ∈ C}

is a sub-σ-algebra of B and it is invariant since πT = Sπ. Noe also that π is an
isometry between L2(π−1C, µ) and L2(C, ν). Thus

There is also a converse:

Proposition 5.1.12. Let (X,B, µ, T ) be a measure preserving system on a
standard Borel space and let C′ ⊆ B be an invariant, countably generated σ-
algebra. Then there is a factor (Y, C, ν, S), with (Y, C) a standard Borel space,
and factor map π such that C′ = π−1C.

The proof relies on the analogous non-dynamical fact that a countably gen-
erated sub-σ-algebra in standard Borel space always arises as the pullback via
a measurable map of some other standard Borel space. We shall not go into
details.

5.2 Product systems
Another basic construction is to take products:

Definition 5.2.1. Let (X,B, µ, T ) and (Y, C, ν, S) be measure preserving sys-
tems. Let T × S : X × Y → X × Y denote the map T × S(x, y) = (Tx, Sy).
Then (X × Y,B × C, µ× ν, T × S) is called the product of X and Y .

Claim 5.2.2. The product of measure preserving systems is measure preserving.

Proof. Let θ = µ×ν and R = T×S. It is enough to check that θ(R−1(A×B)) =
θ(A×B) for A ⊆ X, B ⊆ Y , since these sets generate the product algebra and
the family invariant sets whose measure is preserved is a σ-algebra. For such
A,B,

θ(R−1(A×B)) = θ(T−1A×S−1B) = µ(T−1A)ν(T−1B) = µ(A)ν(B) = θ(a×B)

Remark 5.2.3. Observe that the coordinate projections π1 and π2 are factor
maps from the product system to the original systems.

The definition generalizes to products of finitely many or countably many
systems.

We turn tot he construction of inverse limits. Let (Xn,Bn, µn, Tn) be mea-
sure preserving systems, and let πn : Xn+1 → Xn be factor maps, and suppose
that πn are defined everywhere and onto their image. Let X∞ ⊆ ×∞n=1Xn

denote the set of sequences (. . . , xn, xn−1, . . . , x1), with xn ∈ Xn, such that
πn(xn+1) = xn.
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5.3 Natural extension
When (X,B, µ, T ) is an ergodic m.p.s. on a standard Borel space, there is
canonical invertible m.p.s. (X̃, B̃, µ̃, T̃ ) and factor map π : X̃ → X such that if
(Y, C, ν, S) is another invertible system and τ : Y → X a factor map, τ factors
through π, that is there is a factor map σ : Y → X̃ with τ = πσ:

Y
σ−→ X̃

τ ↘ ↓ π
X

We now construct X̃. Let πn : XZ → X denote the coordinate projections,
which are measurable with respect tot he product algebra, and let

X̃ = {x ∈ XZ : Txn = xn+1}

This is the intersection of the measurable sets {x ∈ XZ : πn+1x = T ◦ πnx} so
X̃ is measurable. The shift map T̃ is measurable and X̃ is clearly invariant. It
is also easy to check that πn : X̃ → X is a factor map: Tπn = πnT̃ .

As for uniqueness, if σ : (Y, C, ν, S)→ (X,B, T, µ) we can define τ : Y → XZ

by τ(y)n = σ(Tny). Then the image is X̃, σ = πτ is automatic, and one can
show that τν = µ̃; again, we omit the details.

Lemma 5.3.1. If a m.p.s. is ergodic then so is its natural extension.

Proof. Let X be the original system and X̃ its natural extension, π : X̃ → X the
factor map. Then from the construction above it is clear that f = limE(f |Bn)

for f ∈ L2(µ̃), where Bn = T̃nπ−1B. It is clear that (X̃,Bn, µ̃, T̃ ) ∼= (X,B, µ, T )

and is therefore ergodic. It is also clear that E(T̃ f |Bn) = T̃E(f |Bn), since Bn
is invariant. Therefore if f ∈ L2(µ̃) is T̃ -invariant then E(f |Bn) is invariant.
Since it corresponds to an invariant function on the ergodic system (X,B, µ, T )

it is constant. Since f = limE(f |Bn), f is constant. Therefore X̃ has no non-
constant invariant functions, so it is ergodic.

Example 5.3.2. Let (X,B, µ, T ) be an ergodic measure preserving system and
A ∈ B. Define the return time rA(x) as usual. If T is invertible, Kac’s formula
(Theorem 3.3.1) ensures that

´
A
rAdµ = 1. We can now prove this in the non-

invertible case: let (X̃, T̃ .µ̃) and π : X̃ → X be the natural extension. Let
Ã = π−1A and rÃ the return time function in X̃. Since X̃ is ergodic, by Kac’s
formula

´
rÃdµ̃ = 1. But clearly rÃ = rA ◦ π so

´
rÃdµ̃ =

´
rAdπµ̃ =

´
rAdµ,

and the claim follows.

5.4 Inverse limits
A very similar construction gives the following theorem.
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Theorem 5.4.1. Let (Xn,Bn, Tn, µn) be m.p.s. and πn : Xn → Xn−1 factor
maps. Then there is a measure-preserving system (X̃, B̃, µ̃, T̃ ) and factor maps
τn : X̃ → Xn such that

1. τn−1 = πnτn.

2. X̃ is unique in the sense that if Y is another m.p.s. and σn : Y → Xn

satisfies σn−1 = πnσn, then there is a factor map τ : Y → X̃ such that
σn = τnτ .

3. If all the Xns are ergodic, so is X̃.

5.5 Skew products
Let (X,B, µ, T ) be a m.p.s. and G a compact group with normalized Haar mea-
surem (for example R/Z with Lebesgue measure). Fix a probability space(Y, C, ν)
and let G = Aut(ν) be the group of invertible ν-preserving maps Y → Y . This
group can be identified with a subgroup of the bounded linear operators on
L2(ν) with the operator topology (strong or weak) and given the induced Borel
structure.

Now suppose that Φ : x → ϕx is a measurable map X → G. Now form
XΦ = ×Y and TΦ : X × Y → X × Y by TΦ(x, y) = (Tx,Φ(x)y).

Lemma 5.5.1. Let θ = µ× ν. Then θ is TΦ-invariant.

Proof. Using Fubini, for A ⊆ X × Y we have:

θ(T−1
Φ A) =

ˆ
T−1

Φ (A)dθ

=

ˆ
1A(Tγx)dθ(x)

=

ˆ (ˆ
1A(Tx, ϕxy)dν(y)

)
dµ(x)

=

ˆ (ˆ
1A(Tx, y)dν(y)

)
dµ(x)

=

ˆ (ˆ
1A(Tx, y)dµ(x)

)
dν(y)

=

ˆ (ˆ
1A(x, y)dµ(x)

)
dν(y)

= θ(A)

as claimed.

The m.p.s. (XΦ, θ, TΦ) is called a skew-product over X (the base) with
cocycle Φ.

Note that π(x, y) = x is a factor map from (X × Y, θ, TΦ) to (X,µ, T ). In a
sense there is a converse:
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Theorem 5.5.2 (Rohlin). Let π : Y → X be a factor map between standard
Borel spaces. Then Y is isomorphic to a skew-product over X.

Note that we already know that the measure on Y disintegrates into condi-
tional measures. What is left to do is identify all the fibers with a single space.
Then Φ is defined as the transfer map between fibers. We omit the technical
details.



Chapter 6

Weak mixing

6.1 Weak mixing
Ergodicity is the most basic “mixing” property; it ensures that any two sets A,B
intersect at some time, i.e. there is an n with µ(A∩T−nB) > 0. It also ensures
that every orbit “samples” the entire space correctly. The notion of weak mixing
is a natural generalization to pairs (and later k-tuples) of points. Thus we are
interested in understanding the implications of independent pairs x, y of points
sampling the product space. This is ensured by the following definition.

Definition 6.1.1. A m.p.s. (X,B, µ, T ) is weak mixing if (X ×X,B×B, µ×
µ, T × T ) is ergodic.

This property has many equivalent and surprising forms which we will now
discuss. Let us first give some example.

Since X is a factor of X ×X and the factor of an ergodic system is ergodic,
weak mixing implies ergodicity. The converse is false.

Example 6.1.2. The translation of R/Z by α /∈ Q is ergodic but not weak mix-
ing. Indeed, let d be a translation-invariant metric on R/Z, so that d(Tαx, Tαy) =
d(x, y). Then the function d : R/Z×R/Z→ R is T ×T -invariant and is not a.e.
constant with respect to Lebesgue measure on the product space (each level set
is a sub-manifold of measure 0). Therefore the product is not ergodic.

Example 6.1.3. More generally, if (X, d) is a compact metric space, T : X → X
an isometry, and µ an invariant measure supported on more than one point, then
the same argument shows that (X,µ, T ) is not weak mixing.

Example 6.1.4. Let X = {0, 1}Z with the product measure µ = { 1
2 ,

1
2}

Z and
the shift S. Then X ×X ∼= {00, 01, 10, 11}Z with the product measure µ× µ =
{ 1

4 ,
1
4 ,

1
4 ,

1
4}

Z, which is ergodic. Therefore (X,µ, T ) is weak mixing.

In the last example, X was strong mixing: µ(A∩T−nB)→ µ(A), (B) for all
measurable A,B, or:

´
f · Tng →

´
f
´
g in L2 for f, g ∈ L2. Weak mixing has

56
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a similar characterization. Before stating it we need a definition. For a subset
I ⊆ N we define the upper density to be

d(I) = lim sup
N→∞

|I ∩ {1, . . . , N}|
N

Definition 6.1.5. A sequence an ∈ R converges in density to a ∈ R, denoted
an

D−→ a or D-lim an = a, if

d({n : |an − a| > ε}) = 0 for all ε > 0

Compare this to the usual notion of convergence, where we require the set
above to be finite rather than 0-density. Since the union of finitely many sets of
zero density has zero density, this notion of limit has the usual properties (with
the exception that a subsequence may not have the same limit). One can also
show the following:

Lemma 6.1.6. For a bounded sequence an, the following are equivalent:

1. an
D−→ a.

2. 1
N

∑N
n=0 |an − a| = 0.

3. 1
N

∑N
n=0(an − a)2 = 0.

4. There is a subset I = {n1 < n2 < . . .} ⊆ N with d(I) = 1 and limk→∞ ank
=

a.

We leave the proof as an exercise.

Theorem 6.1.7. For a m.p.s. (X,B, µ, T ) the following are equivalent:

1. X is weak mixing.

2. 1
N

∑N−1
n=0

∣∣´ f · Tngdµ− ´ fdµ ´ gdµ∣∣→ 0 for all f, g ∈ L2(µ).

3. 1
N

∑N−1
n=0 |µ(A ∩ T−nB)− µ(A)µ(B)| → 0 for every A,B ∈ B.

4. µ(A ∩ T−nB)
D−→ µ(A)µ(B) for every A,B ∈ B.

This is based on the following:

Lemma 6.1.8. For a m.p.s. (Y, C, ν, s) the following are equivalent:

1. Y is ergodic.

2. 1
N

∑N
n=0 (µ(A ∩ T−nB)− µ(A)µ(B))→ 0 for every A,B ∈ C.

3. 1
N

∑N
n=0

´ (
f · Tng −

´
fdµ ·

´
gdµ

)
→ 0 for every f, g ∈ L2(ν).
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Proof. The equivalence of the last two conditions is standard, we prove equiva-
lence of the first two.

If the limit holds then, it implies that µ(A ∩ T−nB) =
´

1A · Tn1Bdµ > 0
infinitely often if µ(A)µ(B) > 0. This gives ergodicity.

Conversely, if the system is ergodic then by the mean ergodic theorem,
SNg = 1

N

∑N−1
n=0 T

ng →
´
g in L2 for any g ∈ L2. So by continuity of the

inner product,

lim
N→∞

N−1∑
n=0

µ(A ∩ T−nB) = lim
N→∞

1

N

N∑
n=0

(ˆ
1A · Tn1Bdµ

)
= lim

N→∞
〈1A, SN1B〉

=

〈
1A,

ˆ
1Bdµ

〉
= 〈1A, µ(B)〉

µ(A)µ(B)

which is what we wanted.

Proof of the Proposition. Since |µ(A∩T−nB)−µ(A)µ(B)| ≤ 1, the equivalence
of (3) and (4) is Lemma 6.1.6. The equivalence of (2) and (3) is standard be
approximating L2 functions by simple functions and using Cauchy-Schwartz. So
we have to prove that (1) ⇐⇒ (2).

We may suppose that X is ergodic, since otherwise (1) fails trivially and (2)
fails already without absolute values by the lemma. Then for f, g ∈ L∞(µ) we
know from the lemma that

1

N

N−1∑
n=0

ˆ
f · Tng →

ˆ
f

ˆ
g (6.1)

Suppose that X is weak mixing. Let f ′ = f(x)f(y) ∈ L2(µ× µ) and define
g′ ∈ L2(µ× µ) similarly. By ergodicity of X ×X

1

N

N−1∑
n=0

ˆ
f ′ · (T × T )ng′dµ× µ→

ˆ
f ′
ˆ
g′

but ˆ
f ′(T × T )ng′dµ× µ =

ˆ ˆ
f(x)f(y)g(Tnx)g(Tny) dµ(x)dµ(y)

= (

ˆ
f · Tngdµ)2

and ˆ
f ′dµ× µ ·

ˆ
g′dµ× µ = (

ˆ
fdµ)2(

ˆ
gdµ)2
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Thus we have proved:

1

N

N−1∑
n=0

(

ˆ
f · Tngdµ)2 → (

ˆ
f

ˆ
g)2 (6.2)

Combining this with 1
N

∑N−1
n=0

´
f · Tng →

´
f
´
g, we find that

1

N

N−1∑
n=0

(

ˆ
f · Tngdµ− (

ˆ
f

ˆ
g))2 → 0 (6.3)

and since the terms are bounded, this implies (2).
In the opposite direction, assume (4), which is equivalent to (2). We must

prove that X ×X is ergodic, or equivalently, that for every F,G ∈ L2(µ× ν),

1

N

N−1∑
n=0

ˆ
F · TnGdµ× ν →

ˆ
Fdµ× ν ·

ˆ
Gdµ× ν

By approximation it is enough to prove this when F (x1, x2) = f1(x1)f2(x2) and
G(x1, x2) = g1(x1)g2(x2). Furthermore we may assume that f1, f2, g1, g2 are
simple, and even indicator functions 1A, 1A′ , 1B , 1B′ . Thus we want to prove
that for A,A′, B,B′,

1

N

N−1∑
n=0

µ(A ∩ T−nB)µ(A ∩ T−nB′)→ µ(A)µ(B)µ(A′)µ(B′)

But µ(A∩ T−nB)→ µ(A)µ(B) in density and µ(A′ ∩ T−nB′)→ µ(A′)µ(B′) in
density, so the same is true for their product; and hence the averages converge
as desired.

Corollary 6.1.9. If (X,B, µ, T ) is mixing then it is weak mixing.

Proof. µ(A ∩ T−nB) → µ(A)µ(B) implies it in density. Now apply the propo-
sition.

6.2 Weak mixing as a multiplier property
Proposition 6.2.1. (X,B, µ, T ) is weak mixing if and only if X ×Y is ergodic
for every ergodic system (Y, C, ν, S).

Proof. One direction is trivial: if X × Y is ergodic whenever Y is ergodic then
this is true in particular for the 1-point system. Then X × Y ∼= X so X is
ergodic. It then follows taking Y = X that X × X is ergodic, so X is weak
mixing.

In the opposite direction we must prove that for every F,G ∈ L2(µ× ν),

1

N

N−1∑
n=0

ˆ
F · (T × S)nGdµ× ν →

ˆ
Fdµ× ν

ˆ
Gdµ× ν
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As before it is enough to prove this when F (x1, x2) = f1(x1)f2(x2) andG(x1, x2) =
g1(x1)g2(x2), and it reduces to

1

N

N−1∑
n=0

ˆ
f1(x)Tnf2(x)dµ(x)·

ˆ
g2(x)Sng2(x)dν(x)→

ˆ
f1dµ

ˆ
f2dµ

ˆ
g1dν

ˆ
g2dν

Splitting L2(µ) into constant functions and their orthogonal complement (func-
tions of integral 0), it is enough to prove this for f1 in each of these spaces. If
f1 is constant then

´
f1(x)Tnf2(x)dµ(x) =

´
f1dµ

´
f2dν and the claim follows

from ergodicity of S. On the other hand if
´
f1dµ = 0 we have(

1

N

N−1∑
n=0

ˆ
f1(x)Tnf2(x)dµ(x) ·

ˆ
g2(x)Sng2(x)dν(x)

)2

≤ 1

N

N−1∑
n=0

(ˆ
f1(x)Tnf2(x)dµ(x)

)2

· 1

N

N−1∑
n=0

(ˆ
g2(x)Sng2(x)dν(x)

)2

but

1

N

N−1∑
n=0

(ˆ
f1(x)Tnf2(x)dµ(x)

)2

=≤ 1

N

N−1∑
n=0

(ˆ
f1(x)Tnf2(x)dµ(x)−

ˆ
f1

ˆ
f2

)2

→ 0

by weak mixing of X and we are done.

Corollary 6.2.2. If X is weak mixing so is X ×X and X ×X × . . .×X.

Proof. For any ergodic Y , (X×X)×Y = X× (X×Y ). Since X×Y is ergodic
so is X × (X × Y ). The general claim follows in the same way.

More generally,

Corollary 6.2.3. If X1, X2, . . . are weak mixing so are X1 ×X2 × . . ..

Also

Corollary 6.2.4. If (X,B, µ, T ) is weak mixing then so is Tn for all n ∈ N (if
T is invertible, also negative n).

Proof. Since T × T is ergodic if and only if T−1 × T−1 is ergodic, weak mixing
of T and T−1 are equivalent, so we only need to consider n > 0.

First we show that t weak mixing implies Tm is ergodic. Otherwise let
f ∈ L2 be a Tm invariant and non-constant function. Consider the system
Y = {0, . . . ,m− 1} and S(y) = y+ 1 mod m with uniform measure. Since X,T
is weak mixing, X × Y, T × S is ergodic. Let F (x, i) = f(Tm−ix). Then

F (Tx, Si) = f(Tm+1−(i+1)x) = f(Tm−ix) = F (x, i)

so F is T × S invariant and non-constant, a contradiction. Thus Tm is ergodic.
Applying this to T × T , which is weak mixing, we find that (T × T )m is

ergodic, equivalently Tm × Tm is ergodic, so Tm is weak mixing.
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6.3 Isometric factors
An isometric m.p.s. is a m.p.s. (Y, C, ν, S) where Y is a compact metric space, C
the Borel algebra, and S preserves the metric. We say that system is nontrivial
if ν is not a single atom.

We have already seen that nontrivial isometric systems are not weak mixing,
since if d is the metric then d : Y × Y → R is a non-trivial invariant function.
In this section we prove the following.

Theorem 6.3.1. Let (X,B, µ, T ) be an invertible m.p.s. on a standard Borel
space. Then it is weak mixing if and only if it does not have nontrivial isometric
factors (up to isomorphism).

One direction is easy: If Y is an isometric factor then X × X factors onto
Y × Y and so, since the latter is not ergodic, neither is the former, For the
converse direction we must show that if X is not weak mixing then it has non-
trivial isometric factors. We can assume that X is ergodic, since otherwise the
ergodic decomposition gives a factor to a compact metric space with the identity
map, which is an isometry.

Recall that if (X,B, µ) is a probability space then there is a pseudo-metric
on B defined by

d(A,B) = µ(A∆B) = ‖1A − 1B‖1
Identifying sets that differ in measure 0 dives a metric on equivalence classes,
and the resulting space may be identified with the space of 0-1 valued functions
in L1, which is the same as the set of indicator functions. This is an isometry
and since the latter space is closed in L1, it is complete.

Now suppose that X is not weak mixing and let A ⊆ X×X be a non-trivial
invariant set. Consider the map X → L1 given by x→ 1Ax

where

Ax = {y ∈ X : (x, y) ∈ A}

The map is measurable, we use the fact that the Borel structure of the unit ball
in L1 in the norm and weak topologies coincide (this fact is left as an exercise).
Then we only need to check that

x 7→
ˆ

1Ax
(y)g(y) dµ(y)

is measurable for every g ∈ L∞. For fixed g, this clearly holds when A is a
product set or a union of product sets, and the general case follows from the
monotone class theorem.

Now, notice that

TAx = {Ty : (x, y) ∈ A}
= {y : (x, T−1y) ∈ A}
= {y : (x, T−1y) ∈ T−1A}
= {y : (Tx, y) ∈ A}
= ATx
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so π : x→ Ax commutes with the action of T on X and L1. Finally, the action
of T on L1 is an isometry. Therefore we have proved:

Claim 6.3.2. If T is not weak mixing then there is a complete metric space (Y, d),
and isometry T : Y → Y and a Borel map π : X → Y such that Tπ = πT .

Let ν = πµ, the image measure; it is preserved. Thus (Y, ν, T ) is almost the
desired factor, except that the space Y is not compact (and there is another
technicality we will mention later). To fix these problems we need a few general
facts.

Definition 6.3.3. Let (Y, d) be a complete metric space. A subset Z ⊆ Y is
called totally bounded if for every ε there is a finite set Zε ⊆ Y such that
Z ⊆

⋃
z∈Zε

Bε(z).

Lemma 6.3.4. Let Z ⊆ Y as above. Then Z is compact if and only if Z is
totally bounded.

Proof. This is left as an exercise.

Lemma 6.3.5. Let (Y, d) be a complete separable metric space, S : Y → Y
an isometry and µ an invariant and ergodic Borel probability measure. Then
suppµ is compact.

Proof. Let C = suppµ. This is a closed set and is clearly invariant so we only
need to show that it is compact. For this it is enough to show that it is totally
bounded.

Choose a µ-typical point y. By the ergodic theorem, its orbit is dense in C.
Furthermore since S is an isometry, Br(Sny) = SnBr(y). Now let z ∈ C. There
is an n with d(z, Sny) < r so Br(Tny) ⊆ B2r(z), hence

µ(Br(y)) ≤ µ(B2r(z))

This is true for every r.
Now, let {zi} be a maximal set of r-separated points in C. the set must

be finite, because Br/2(zi) are disjoint balls of mass uniformly bounded below.
Therefore B2r(zi) is a finite cover of C, and since r was arbitrary, C is totally
bounded.

Let ν be, as before, the image of µ under the map π : X → L1. Then supp ν
is compact and we can replace X by π−1(supp ν), which has full measure. We
are done.

6.4 Eigenfunctions
Definition 6.4.1. Let T be an operator on a Hilbert space H. Then λ ∈ C is
an eigenvalue and u a corresponding eigenfunction if Uu = λu. We denote the
set of eigenvalues by Σ(U).
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As in the finite-dimensional case, unitary operators have only eigenvalues of
modulus 1, because if Uv = λv and ‖v‖ = 1 then

λλ = 〈λv, λv〉 = 〈Uv,Uv〉 = 〈U∗Uv, v〉 = 〈v, v〉 = 1

Lemma 6.4.2. If Uv = λv and Uv′ = λ′v′ and λ 6= λ′ then v ⊥ v′. In
particular, if H is separable then |Σ(U)| ≤ ℵ0.

Proof. We can assume ‖v‖ = ‖v′‖ = 1. Then the same calculation as above
shows that λλ′ 〈v, v′〉 = 〈v, v′〉, which is possible if and only if 〈v, v′〉 = 0.

From now on let (X,B, µ, T ) be an invertible m.p.s. and denote also by T
the induced unitary operator on L2(µ).

Notice that an invariant function is an eigenvector of eigenvalue 1, and the
space of such functions is always at least 1-dimensional, since it contains the
constant functions. Therefore,

Lemma 6.4.3. T is ergodic if and only if 1 is a simple eigenvalue (the corre-
sponding eigenspace has complex dimension 1).

If T is ergodic and e2πiα is an eigenvalue with eigenfunction f ∈ L2(µ), then
|f | satisfies

T |f | = |Tf | = |e2πiαf | = |f |

so |f | is invariant. Therefore,

Corollary 6.4.4. If T is ergodic then all eigenfunctions are constant.

By convention, we always assume that eigenfunctions have modulus 1.
Therefore if α, β ∈ Σ(T ) with corresponding eigenfunctions f, g, then f · g

has modulus 1, hence is in L2, and

T (fg) = Tf · Tg = αf · βg = αβ · fg

so αβ ∈ Σ(T ) and fg is an eigenfunction for it. Similarly considering f we find
that α = α−1 ∈ Σ(T ). This shows that

Corollary 6.4.5. Σ(T ) ⊆ C is a (multiplicative) group and if T is ergodic then
all eigenvalues are simple.

Proof. The first statement is immediate. For the second, note that if f, g are
distinct eigenfunctions for the same α then fg is an eigenfunction for αα = 1,
hence fg = 1, or (using g = g−1) we have f = g.

Note that Σ(U) is not generally a group if U is unitary.
The following observation is trivial:

Lemma 6.4.6. If π : (X,T )→ (Y, S) is a factor map between measure preserv-
ing systems then Σ(S) ⊆ Σ(T ).
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Proof. If λ ∈ Σ(S) let f be a corresponding eigenfunction, Sf = λf then

T (fπ) = fπT = fSπ = λfπ

This shows that λ ∈ Σ(T ).

Theorem 6.4.7. (X,B, µ, T ) is ergodic then it is weak mixing if and only if 1
is the only eigenvalue, i.e. Σ(T ) = {1}.

One direction of the proof is easy. Note that from a dynamical point of view,
an eigenfunction f for α ∈ Σ of (X,B, µ, T ) is a factor map to rotation on S1,
since if f is an eigenfunction with eigenvalue α and Rαz = αz is the rotation
on S1 then the eigenfunction equation is just

fT (x) = αf(x) = Rα(f(x))

so fT = Rαf , and the image measure fµ is a probability measure on S1 invari-
ant under Rα. Of course, Rα is an isometry of S1, and if α 6= 1 then fµ is not
a single atom; thus we have found a non-trivial isometric factor of X and so it
is not weak mixing.

For the other direction we need the following. For a group G and g ∈ G
let Lg : G → G denote the map h 7→ gh. A dynamical system in which G is a
compact group and the map is Lg is called a group translation. Note that Haar
measure is automatically invariant, since by definition it is the unique Borel
probability measure that is invariant under all translations. If Haar measure is
also ergodic the we say the translation is ergodic.

Proposition 6.4.8. Let (Y, d) be a compact metric space and S : Y → Y an
isometry with a dense orbit. Then there is a compact metric group G and g ∈ G
and a homeomorphism π : Y → G such that Lgπ = πS. Furthermore if ν is an
invariant measure on Y then it is ergodic and πν is Haar measure on G.

Proof. Consider the group Γ of isometries of Y with the sup metric,

d(γ, γ′) = sup
y∈Y

d(γ(y), γ′(y))

Then (Γ, d) is a complete metric space, and note that it is right invariant:
d(γ ◦ δ, γ ◦ δ) = d(γ, γ′).

Let y0 ∈ Y have dense orbit and set Y0 = {Sny0}n∈Z. If the orbit is finite,
Y = Y0 is a finite set permuted cyclically by S, so the statement is trivial.
Otherwise y ∈ Y0 uniquely determines n such that Sny0 = y and we can define
π : Y0 → Γ by y 7→ Sn ∈ Γ for this n.

We claim that π is an isometry. Fix y, y′ ∈ Y0, so y = Sny0 and y′ = Sn
′
y0,

so
d(πy, πy′) = sup

z∈Y
d(Snz, Sn

′
z)
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Given z ∈ Y there is a sequence nk →∞ such that Snky0 → z. But then

d(Snz, Sn
′
z) = d(Sn(limSnky0), Sn

′
(limSnky0))

= lim d(SnSnky0, S
n′Snky0)

= lim d(Snk(Sny0), Snk(Sn
′
y0))

= lim d(Sny0, S
n′y0)

= d(Sny0, S
n′y0)

= d(y, y′)

Thus d(πy, πy′) = d(y, y′) and π is an isometry Y0 ↪→ Γ. Furthermore, for
y = Sny0 ∈ Y0,

π(Sy) == π(SSny) = Sn+1 = LSS
n = LSπ(y)

It follows that π extends uniquely to an isometry with Y ↪→ Γ also satisfying
π(Sy) = S(πy). The image π(Y0) is compact, being the continuous image of the
compact set Y . Since π(Y0) = {Sn}n∈Z and this is a group its closure is also a
group G.

Finally, suppose ν is an invariant measure on Y . Then m = πν is LS
invariant on G. Since it is invariant under LS it is invariant under {LnS}n∈Z,
and this is a dense set of elements in G. Thus m it is invariant under every
translation in G, and there is only one such measure up to normalization: Haar
measure. The same argument applies to every ergodic components of m (w.r.t.
LS) and shows that the ergodic components are also Haar measure. Thus m is
LS-ergodic and since π is an isomorphism, (Y, ν, S) is ergodic.

Corollary 6.4.9. If (X,B, µ, T ) is ergodic but not weak mixing, then a non-
trivial ergodic group translation as a factor.

Finally, for the existence of eigenfunctions we will rely on a well-known result
from group theory.

Theorem 6.4.10 (Peter-Weyl). If G is a compact topological group with Haar
measure m then the characters form an orthonormal basis for L2(m) (a char-
acter is a continuous homomorphisms ξ : G→ S1 ⊆ C).

Corollary 6.4.11. Let G be a compact group with Haar measure m and g ∈ G.
Then L2(m) is spanned by eigenfunctions of Lg.

Proof. If ξ is a character then

Lgξ(x) = ξ(gx) = ξ(g)ξ(x)

so ξ is an eigenfunction with eigenvalue ξ(g). Since the characters span L2(m)
we are done.
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In summary, we have seen that if (X,B, µ, T ) is ergodic but not weak mixing
then it has a nontrivial isometric factor. This is isomorphic to a non-trivial
group rotation, which has a non-trivial eigenfunction. This eigenfunction lifts
via the composition of all these factor maps to a non-trivial eigenfunction on
X. This completes the characterization of weak mixing in terms of existence of
eigenfunctions.

6.5 Spectral isomorphism and the Kronecker fac-
tor

We will now take a closer look at systems that are isomorphic to group rotations.
Let T∞ = (S1)N, which is a compact metrizable group with the product

topology. Let m be the infinite product of Lebesgue measure, which is invariant
under translations in T∞. Given α ∈ T∞ let Lα : T∞ → T∞ as usual be the
translation map. Note that

Lnαx = αnx

Lemma 6.5.1. The orbit closure Gα of 0 ∈ T∞ under Lα (that is, the closure
of {αn : n ∈ N}) is the closed subgroup generated by α.

Proof. It is clear that it is contained in the group in question, is closed, contains
α, and is a semigroup. The latter is because it is the closure of the semigroup
{αn}n∈N; explicitly, if x, y ∈ Gα then x = limαni and y = lim 0mj , so

xy = (limαmj )(limαni) limαmi+ni ∈ Gα

Thus, we only need to check that x ∈ Gα implies x−1 ∈ Gα. Let x = limαni .
We can assume ni+1 > 2ni. Passing to a subsequence, we can also assume that
αni+1−2ni → y. But then

xy = (limαni)(limαni+1−2ni) = limαni+1−ni = xx−1 = 1

so y = x−1.

Lemma 6.5.2. Let α ∈ T∞ = (S1)N and Gα be as above. Let mα be the
Haar measure on Gα, equivalently, the unique Lα-invariant measure. Then
Σ(Lα) = 〈α1, α2, . . .〉 ⊆ S1, the discrete group generated by the coordinates αi
of α.

Proof. Let πn : T∞ → S1 denote the n-th coordinate projection. Clearly
πn(Lαx) = αnxn = αnπn(x), so the functions πn are eigenfunctions of (Gα,mα, Lα).
Let A denote the C-algebra generated by {πn}. This is an algebra of continuous
functions that separate points in T∞ and certainly in Gα, so they are dense in
L2(mα). Since this algebra consists precisely of the eigenfunctions with eigen-
values in 〈α1, α2, . . .〉 we are done.
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Proposition 6.5.3. Let (X,B, µ, T ) be an ergodic measure preserving system
on a standard Borel space. Let Σ(T ) = {α1, α2, . . .} and α = (α1, α2, . . .) ∈ T∞.
Then

1. (Gα,mα, Lα) is a factor of X

2. If L2(µ) is spanned by eigenfunctions then the factor map is an isomor-
phism: X ∼= Gα.

3. If τ : X → Y is a factor map to an isometric system (Y, S, ν) then π
factors through Gα.

Proof. We may restrict to a subset of X of full measure where all the eigenfunc-
tions fi of αi are defined, and satisfy Tfi = αifi. Let F : X → T∞ denote the
map F (x) = (f1(x), f2(x), . . .). Then it is immediate that F (Tx) = LαF (x).
Let ν = Fµ, which is an Lα-invariant measure on T∞, and y ∈ supp ν be a point
with dense orbit (which exists by ergodicity). Consider the map Ly−1x 7→ y−1x,
which commutes with Lα (because T∞ is abelian) and note that Ly−1 maps the
Lα-orbit of y to the Lα-orbit of 1. Writing m = Ly−1ν it follows that m is
Lα-invariant and suppm = Gα. Hence m = mα. Also π : x 7→ Ly−1F (x) is a
factor map from X to Gα.

Suppose that the eigenfunctions span L2(µ). Since each eigenfunction is
lifted by π from an eigenfunction of Gα, we find that L2(π−1Bα) = L2(µ),
where Bα is the Borel algebra of Gα. It follows that π is 1-1 a.e. and by
standardness it is an isomorphism.

Finally suppose τ : X → Y as in the statement. Then (Y,X) is a group
rotation, its eigenvectors are dense in L2(ν), and we have an isomorphism σ :
Y → Gβ where β = (β1, β2, . . .) enumerates Σ(S). Now, each eigenvector f of
(Gβ , S) lifts to one of X and since the multiplicity is 1, this is the eigenvector for
its eigenvalue. Thus the coordinates of α include those of β. Let u : Gα → T∞
denote projection to the coordinates corresponding to eigenvalues of S; then the
map u ◦ F = σ ◦ τ defined above. The claim follows.

Let us point out two consequences of this theorem. First,

Definition 6.5.4. An ergodic measure preserving system has discrete spectrum
if L2 is spanned by eigenfunctions.

Corollary 6.5.5. Discrete spectrum systems are isomorphic if and only if the
induced unitary operators are unitarily equivalent.

Proof. This follows from the theorem above and the fact that two diagonal-
izable unitary operators are unitarily equivalent if and only if they have the
same eigenvalues (counted with multiplicities), and ergodicity implies that all
eigenvalues are simple.

Second, part (3) of the theorem above shows that every measure preserving
system has a maximal isometric factor. This factor is called the Kronecker
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factor. The factor is canonical, although the factor map is not – one can always
post-compose it with a translation of the group.

We emphasize that in general it is false that unitary equivalence implies
ergodic-theoretic isomorphism. The easiest example to state is that the prod-
uct measures (1/2, 1/2)Z and (1/3, 1/3, 1/3)Z with the shift map have unitarily
isomorphic induced actions on L2, but they are not isomorphic.

6.6 Spectral methods
Our characterization of weak mixing is, in the end, purely a Hilbert-space state-
ment. Thus one should be able to prove the existence of eigenfunctions without
use of the underlying dynamical system. This can be done with the help of the
spectral theorem. Let us first give a brief review of the version we will use.

Let us begin with an example of a unitary operator. Let µ be a probability
measure on the circle S1 and let M : L2(µ) → L2(µ) be given by (Mf)(z) =
zf(z). Note that U preserves norm, since |zf(z)| = |f(z)| for z ∈ S1 and hence
µ-a.e. z; it is invertible since the inverse is given by multiplication by z.

The spectral theorem says that any unitary operator can be represented in
this way on any invariant subspace for which it has an cyclic vector.

Theorem 6.6.1 (Spectral theorem for unitary operators). Let U : H → H be
a unitary operator and v ∈ H a unit vector such that {Unv}∞n=−∞ = H. Then
there is a probability measure µv ∈ P(S1) and a unitary operator V : L2(µ)→ H
such that U = VMV −1, where M : L2(µ) → L2(µ) is as above. Furthermore
V (1) = v.

We give the main idea of the proof. The measure µv is characterized by the
statement because its Fourier transform µ̂v : Z→ R is given by

µ̂v(n) =

ˆ
zn dµv = 〈Mn1, 1〉L2(µv) = 〈Unv, v〉H

Reversing this argument, in order to construct µv one starts with the sequence
an = 〈Un1, 1〉H . This sequence is positive definite in the sense that for any
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sequence λi ∈ C and any n,
∑n
i,j=1 λiλjai−j ≥ 0:

∞∑
i,j=1

λiλjai−j =

n∑
i,j=−n

λiλj
〈
U i−jv, v

〉
H

=

n∑
i,j=−n

〈
U iλiv, U

jλjv
〉
H

=

〈
n∑

i=−n
U iλiv,

n∑
j=−n

U jλjv

〉
H

=

∥∥∥∥∥
n∑

i=−n
U iλiv

∥∥∥∥∥
2

2

≥ 0

Therefore, by a theorem of Hergolz (also Bochner) an is the Fourier transform
of a probability measure on S1 (note that a0 == ‖v‖2 = 1).

One first defines V on complex polynomials p(z) =
∑d
n=0 bnz

n by V p =∑d
n=0 bnU

nv. One can check that this preserves inner products; it suffices to
check for monomials, and indeed

〈V (bzm), V (czn)〉 = bc 〈Umv, Unv〉 = bc·am−n = bc

ˆ
zm−ndµv =

ˆ
(bzm)(czn)dµv = 〈bzm, bzn〉L2(µv)

Since polynomials are dense in L2(µ) it remains to extend V to measurable
functions. The technical details of carrying this out can be found in many
textbooks.

Lemma 6.6.2. Let U : H → H be unitary and v a cyclic unit vector for U with
spectral measure µ. Then α ∈ Σ(U) if and only if µv(α) > 0.

Proof. If α is an atom of µv let f = 1{α}. This is a non-zero vector in L2(µv),
and Mf(z) = zf(z) = αf(z). Hence α ∈ Σ(M) and by the spectral theorem
α ∈ Σ(U).

Conversely, suppose that µv({α}) = 0. Consider the operator Uα(w) =
αUw, which can easily be seen to be unitary. Clearly w is an eigenfunction
with eigenvalue α if and only if Uαw = w. Thus it suffices for us to prove that
1
N

∑N−1
n=0 U

n
αw → 0 for all w, and, since v is cyclic and the averaging operator is

linear and continuous, it is enough to check this for v. Transferring the problem
to (S1, µv,M), we must show that 1

N

∑N−1
n=0 α

nzn → 0 in L2(µv). We have

1

N

N−1∑
n=0

αnzn =
1

N

(αz)N − 1

αz − 1

This converges to 0 at every point z 6= α, hence µv-a.e., and it is bounded.
Hence by bounded convergence, it tends to 0 in L2(µv), as required.
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Proposition 6.6.3. Let U,H, v, µv be as above. If µv is continuous (has no
atoms), then

1

N

N−1∑
n=0

|(w,Unw′)| → 0

for every w,w′ ∈ Hv.

Proof. Using the fact that w,w′ can be approximated in L2 by linear combina-
tions of {Unv}, it is enough to prove this for w,w′ ∈ {Unv}. Since the statement
we are trying to prove is formally unchanged if we replace w by U±1w or w′ by
U±1w′, we may assume that w = w′ = v. Also, we may square the summand, as
we have seen this does not affect the convergence to 0 of the averages. Passing
to the spectral setting, we have

1

N

N−1∑
n=0

|(v, Unv)|2 =
1

N

N−1∑
n=0

∣∣∣∣ˆ zndµv

∣∣∣∣2

=
1

N

N−1∑
n=0

(ˆ
zndµv ·

ˆ
zndµv

)

=
1

N

N−1∑
n=0

(ˆ ˆ
znyndµv(y)dµv(z)

)
=

ˆ ˆ (
1

N
· (zy)N − 1

zy − 1

)
dµv × µv(z, y)

The integrand is bounded by 1 and tends pointwise to 0 off the diagonal {y = z},
which has µv × µv-measure 0, since µv is non-atomic. Therefore by bounded
convergence, the expression tends to 0.

Corollary 6.6.4. If (X,B, µ, T ) is ergodic then it is weak mixing if and only
if µf is continuous (has no atoms) for every f ⊥ 1 (equivalently, the maximal
spectral type is non-atomic except for an atom at 1), if and only if Σ(T ) = {1}.

Proof. Suppose for f ⊥ 1 the spectral measure µf is continuous. By the last
proposition, 1

N

∑N−1
n=0 |

´
f · Tnf dµ| → 0. For general f, g we can write f =

f ′ +
´
f , g = g′ +

´
g, where f ′, g′ ⊥ 1. Substituting f = f ′ +

´
f into

1

N

N−1∑
n=0

|
ˆ
f · Tnf dµ− (

ˆ
f dµ)(

ˆ
gdµ)|

we obtain the expression

1

N

N−1∑
n=0

|
ˆ
f ′ · Tng′ dµ|

which by assumption→ 0. This was one of our characterizations of weak mixing.
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Conversely suppose T is weak mixing. Then it has no eigenfunctions except
1 (this was the trivial direction of the eigenfunction characterization), so if f ⊥ 1
also span{Unf} ⊥ 1 and so, since on this subspace T has no eigenfunctions, µf
is continuous.

We already know that weak mixing implies Σ(T ) = {1}. In the other di-
rection, if T is not weak mixing, we just saw that there is some f ⊥ 1 with
µf (α) > 0 for some α, and by the previous lemma, α ∈ Σ(T ).

In a certain sense, we can now “split” the dynamics of a non-weak-mixing
system into an isometric part, and a weak mixing part:

Corollary 6.6.5. Let (X,B,µ, T ) be ergodic. Then L2(µ) = U ⊕ V , where
U = L2(µ, E) for E ⊆ B the Kronecker factor, and V is an invariant subspace
such that T |V is a weak-mixing in the sense that 1

N

∑N−1
n=0 |

´
f · Tng dµ| → 0

for g ∈ V .

One should note that, in general, the subspace V in the corollary does not
correspond to a factor in the dynamical sense.

An important consequence is the following:

Theorem 6.6.6. Let (X,B, µ, T ) and (Y, C, ν, S) be ergodic measure preserving
systems. Then X × Y is ergodic if and only if Σ(T ) ∩ Σ(S) = {1}.

Proof. Let Z = X×Y , R = T×S, θ = µ×ν. If α 6= 1 is a common eigenvalue of
T, S with eigenfunctions f, g, then h(x, y) = g(y) · f(x) is a non-trivial invariant
function, since

h(R(z, y)) = g(Sy) · f(Tx) = αg(y)αf(x) = h(x, y)

and so Z is not ergodic.
Conversely, write L2(µ) = Vwm ⊕ Vpp, where T |Vpp as in the previous corol-

lary, where T |Vpp has no eigenvalues, and decompose L2(ν) = Wwm ⊕ Wpp

similarly. We must show that

1

N

N−1∑
n=0

ˆ
h ·Rnhdθ → (

ˆ
h)2

for every h ∈ L2(θ) and it suffices to check this for h = fg, f ∈ L2(µ), g ∈ L2(ν),
since the span of these is dense in L2. Then

´
hRnhdθ =

´
fTnfdµ ·

´
gSngdν.

Also, since we can write f = fwm + fpp and g = gwm + gpp for fwm ∈ Vwm etc.
we can expand the expression above, and obtain a sum of terms of the form

1

N

N−1∑
n=0

ˆ
h·Rnhdθ → (

ˆ
h)2 =

∑
i,j,s,t∈{wm,pp}

(
1

N

N−1∑
n=0

(

ˆ
fiT

nfjdµ)(

ˆ
gsS

ngtdν)

)
(6.4)
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Consider the terms in parentheses; they are all bounded independently of n. So
if i, j = wm we can bound∣∣∣∣∣ 1

N

N−1∑
n=0

(

ˆ
fiT

nfjdµ)(

ˆ
gsS

ngtdν)

∣∣∣∣∣ ≤ C · 1

N

N−1∑
n=0

|
ˆ
fiT

nfjdµ| → 0

and similarly if s, t = wm. Also if i = wm, s = pp, then Tnfj = αnfj for some
α, and f j ⊥ fi. Hence

ˆ
fiT

nfjdµ = αn
ˆ
fifjdµ = α

〈
fi, f j

〉
= 0

Thus in 6.4 we only need to consider the case i, j, s, t = pp. In this case we can
expand each of the functions as a series in normalized, distinct eigenfunctions:
fpp =

∑
ϕk and gpp =

∑
ψk where Tϕk = αkϕk and Sψk = βkψk. We assume

ϕ0 = const and ψ0 = const. Expanding again using linearity, we must consider
terms of the form

1

N

N−1∑
n=0

(

ˆ
ϕiT

nϕjdµ)(

ˆ
ψsS

nψtdν) =
1

N

N−1∑
n=0

(αnj

ˆ
ϕiϕjdµ)(βnt

ˆ
ψsψtdν)

Now, the first integral is 0 unless ϕj = ϕi and the second is 0 unless ψt = ψs.
If this is the case we have, writing ci,s = ‖ϕj‖2 ‖ψj‖2

=
1

N

N−1∑
n=0

αnj β
n
t ci,s =

{
ci,s αj = βt

ci,s
1
N

(αβ)N−1
β−1 otherwise

−−−−→
N→∞

{
ci,s αj = βt
0 otherwise

Since Σ(T ) ∩ Σ(S) = {1} the limit is thus 0 except for i = j = s = t = 0. In
the latter case, c0,0 =

´
ϕ2

0dµ
´
ψ2

0dν = (
´
f)2(
´
g)2, so this was the limit we

wanted.



Chapter 7

Disjointness and a taste of
entropy theory

7.1 Joinings and disjointness
Definition 7.1.1. A joining of measure preserving systems (X,B, µ, T ) and
(Y, C, ν, S) is a measure θ on X × Y that is invariant under T × S and projects
to µ, ν ,respectively, under the coordinate projections.

Remark 7.1.2. There is a more general notion of a joining of X,Y , namely,
a preserving system (Z, E , θ, R) together with factor maps πX : Z → X and
πY : Z → Y . This gives a joining in the previous sense by taking the image of
the measure θ under z 7→ (πX(z), πY (z)).

Joinings always exist since we could take θ = µ × ν with the coordinate
projection. This is called the trivial joining.

Another example arises when ϕ : X → Y is an isomorphism. Then the
graph map g : x 7→ (x, ϕx) pushes µ forwards to a measure on X × Y that
is invariant under T × S and projects in a 1-1 manner under the coordinate
maps to µ, ν respectively. In particular this joining is different from the product
joining unless X consists of a single point.

We saw that when X,Y are isomorphic there are non-trivial joinings. The
following can be viewed, then, as an extreme form of non-isomorphism.

Definition 7.1.3. X,Y are disjoint if the only joining is the trivial one. Then
we write X ⊥ Y .

If X is not a single point then it cannot be disjoint from itself. Indeed,
the graph of T is a non-trivial joining. Also if X,Y are ergodic but X × Y
is not the ergodic components of θz of µ × ν must project to µ, ν under the
coordinate maps, πXθz is T -invariant and

´
θz = θ implies

´
πXθz = µ, and by

ergodicity of µ this implies πθz = µ for a.e. z; similarly for πY θ. Thus if the
ergodic decomposition is non-trivial then the ergodic components are non-trivial
joinings.

73
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Example 7.1.4. Let X = Z/mZ, Y = Z/nZ with the maps i 7→ i + 1. If
π : X → Y is a factor between these systems (i.e. preserves measure) then,
since it is measure preserving, the fibers π−1(i) all have the same cardinality,
hence n|m. Conversely if m|n there exists a factor map, given by x 7→ x mod m.

It is now a simple algebraic fact that if θ joining of X,Y , then it consists
of a coset in (Z/mZ) × (Z/nZ) generated by (i, j) 7→ (i, j) + (1, 1). Thus the
systems are disjoint if and only if (Z/mZ)×(Z/nZ) is a cyclic group of ordermn
generated by (1, 1), which is the same as saying that mn is the least common
multiple of m and n. This is equivalent to gcd(m,n) = 1.

Since any common divisor of m,n gives rise to a common factor of the
systems, in this setting disjointness is equivalent to the absence of common
nontrivial factors. It also shows that if X,Y are disjoint, then any factor of X
is disjoint from any factor of Y (since if gcd(m,n) = 1 then gcd(m′, n′) = 1 for
any m′|m andn′|n.

These phenomena hold to some extent in the general ergodic setting.

Proposition 7.1.5. Let X,Y be invertible systems on standard Borel spaces
(neither assumption is not really necessary). Suppose that πXX → W and
πY Y →W are factors and (W, E , θ, R) is non-trivial. Then X 6⊥ Y .

Proof. Let µ =
´
µzdθ(x) and ν =

´
νzdθ(z) denote the decomposition of µ

over the factor W . Define a measure τ on X × Y by

τ =

ˆ
µz × νzdθ(z)

We claim that τ is a non-trivial joining of X and Y .
First, it is invariant:

(T×S)τ =

ˆ
T×S(µz×νz)dθ(z) =

ˆ
Tµz×Sνzdθ(z) =

ˆ
µRz×νRzdθ(z) =

ˆ
µz×νzdθ(z) = τ

Second, it is distinct from µ × ν. Indeed, let E ⊆ W be a non-trivial set and
E′ = π−1

X E × π−1
Y E. Then

τ(E′) =

ˆ
µz(π

−1
X E)νz(π

−1
Y E)dθ(z) =

ˆ
1E(z)1E(z)dθ(z) = θ(E)

On the other hand

(µ× ν)(E′) = µ(π−1
X E) · ν(π−1

Y (E)) = θ(E)2

since θ(E) ≡ 0, 1 we have θ(E) 6= θ(E)2 so τ 6= µ× ν.

The converse is false in the ergodic setting: there exist systems with no
common factor but non-trivial joinings.

Proposition 7.1.6. If X1 ⊥ X2 and X1 → Y1 and X2 → Y2, then Y1 ⊥ Y2.
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Proof. Let us supposeX1 → Y1 andX2 → Y2, and θ ∈ P(Y1×Y2) is a non-trivial
joining. Let µ1 =

´
µ1,ydν1(y) and µ2 =

´
µ2, ydν2(y) be the disintegrations.

Define a measure τ on X1 ×X2 by

τ =

ˆ
µ1,y! × µ2,y2dθ(y1, y2)

One can check in a similar way to the previous proposition that τ is invariant
and projects to µ1, µ2 under the coordinate projections. It is not the product
measure because under the maps X1 × X2 → Y1 × Y2 given by applying the
original factor maps to each coordinate, the image measure is θ which the image
of µ1 × µ2 is ν1 × ν2.

Proposition 7.1.7. Let (X,Y ) and (Y, S) be uniquely ergodic topological sys-
tems. and µ, ν invariant measures respectively. Suppose µ ⊥ ν.

1. For any generic point x for µ and y for ν, the point (x, y) ∈ X × Y is
generic for µ× ν.

2. If X,Y are uniquely ergodic then so is X × Y .

Proof. Clearly any accumulation point of 1
N

∑N−1
n=0 1(Tnx,Sny) projects under

coordinate maps to µ, ν, hence is a joining. Since the only joining is µ× ν there
is only one accumulation point, sot he averages converge to µ× ν, which is the
same as saying that (x, y) is generic for µ× ν.

If X,Y are uniquely ergodic then every invariant measure on X × Y is a
joining (since it projects to invariant measures under the coordinate maps, and
these are necessarily µ, ν). Therefore by disjointness the only invariant measure
on X × Y is µ× ν.

Remark 7.1.8. In the ergodic setting, unlike the arithmetic setting, there do
exists examples of systems X,Y that are not disjoint, but have no common
factor. The examples are highly nontrivial to construct, however.

7.2 Spectrum, disjointness and theWiener-Wintner
theorem

Theorem 7.2.1. If X is weak mixing and Y has discrete spectrum then X ⊥ Y .

In fact this is a result of the following more general fact.

Theorem 7.2.2. Let X,Y be ergodic m.p.s. and Y discrete spectrum. If Σ(X)∩
Σ(Y ) = {1} then they are disjoint.

Proof. We may assume Y = G is a compact abelian group with Haar measure
m and S = La a translation.

Suppose that θ is a joining. Define the maps L̃g : X ×G→ X ×G by

L̃g(x, h) = (x, Lgh) = (x, gh)
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and let
θg = L̃gθ

These are invariant since Lg and La commute, hence L̃g commutes with T ×La.
Also, π1θg = π1θ = µ and π2θg = Lgπ2θ = LgmG = mG, so θg is a joining.

Let
θ′ =

ˆ
θgdmG(g)

This is again a joining. Now, for any F ∈ L2(θ),
ˆ
F (x, h)dθ′(x, h) =

ˆ
F (x, h)dθg(x, h)dmG(g)

=

ˆ
L̃gF (x, h)dθ(x, h)dmG(g)

=

ˆ
F (x, gh)dθ(x, h)dmG(g)

=

ˆ
F (x, gh)dmG(g)dθ(x)

=

ˆ
F (x, g)dmG(g)dθ(x)

which means that θ′ = µ×mG is a product measure.
Now, from Theorem ?? we know that X × Y is ergodic hence θ′ is ergodic.

But θ′ =
´
θgdmG(g) and the θg are invariant. Thus by uniqueness of the

ergodic decomposition θg are mG-a.s. equal to θ′. Since they are all images of
each other under the L̃g maps, they are all ergodic, in particular θ = θe = θ′,
which is what we wanted to prove.

Corollary 7.2.3. Among systems with discrete spectrum, disjointness is equiv-
alent to absence of nontrivial common factors.

Theorem 7.2.4 (Wiener-Wintner theorem). Let (X,B, µ, T ) be an ergodic mea-
sure preserving system, with X compact metric and T continuous (this is no
restriction assuming the space is standard), and f ∈ L1. Then for a.e. x the
limit limN→∞

1
N

∑N−1
n=0 α

nf(Tnx) exists for every α ∈ S1.

Proof. Fix f . If we fix a countable sequence αi ∈ S1, then the conclusion for
these values is obtained as follows. Given α consider the product system X×S1

and T × Rα, and the function g(x, z) = zf(x). Then by the ergodic theorem
lim 1

N

∑N−1
n=0 (T×Rα)ng exists a.s., hence for µ-a.e. x there is a w ∈ S1 such that

lim 1
N

∑N−1
n=0 (T × Rα)ng(x,w) exists, but this is just limw 1

N

∑N−1
n=0 α

nf(Tnx)
so the claim follows.

First assume f is continuous. Applying the above to the collection of α
such that α or some power αn are in Σ(T ), we obtain a set of full measure
where the associated averages converge so it is enough to prove there is a set
of full measure where the averages converge for the other values of α. For
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these α consider the system X × S1 as above. Now (X,T ) and (S1, Rα) are
disjoint (since Σ(Ra) = {αn} so by choice of α, Σ(T ) ∩ Σ(Rα) = {1}) so the
only invariant measure is µ × m. It follows that if x is a generic point for T
then (x, z) is generic for µ×m (this is proved similarly to the statement about
products of disjoint uniquely ergodic systems). Therefore the ergodic averages
of g converge, and hence 1

N

∑N−1
n=0 α

nf(x).
We have proved the following: for continuous f there is a set of full measure

of x such that 1
N

∑N−1
n=0 α

nf(x) converges for every α. Now if f ∈ L1 we
can approximate f by continuous functions, and note that the limsup of the
difference of the averages in question is bounded by ‖f − f ′‖1 for every α and
a.s. x. This gives, for fixed f , a set of measure 1 where the desired limit
converges for every α.

7.3 Shannon entropy: a quick introduction
Entropy originated as a measure of randomness. It was introduced in informa-
tion theory by Shannon in 1948. Later the ideas turned out relevant in ergodic
theory and were adapted by Kolmogorov, with an important modification due
to Sinai. We will quickly cover both of these topics now.

We begin with the non-dynamical setting. Suppose we are given a discrete
random variable. How random is it? Clearly a variable that is uniformly dis-
tributed on 3 points is more random than one that is uniformly distributed on 2
point, and the latter is more random than a non-uniform measure on 2 points.
It turns out that the way to quantify this randomness is through entropy. Given
a random variable X on a probability space (Ω,F , P ), and values in a countable
set A, then its entropy H(X) is defined by

H(X) = −
∑
a∈A

P (X = a) logP (X = a)

with the convention that log is in base 2 and 0 log 0 = 0. This quantity may in
general be infinite.

Evidently this definition is not affected by the actual values in A, and de-
pends only on the probabilities of each value, P (X = a). We shall writedist(X)
for the distribution of X which is the probability vector

dist(X) = (P (X = a))a∈range(X)

The entropy is then a function of dist(X); fixing the size k of the range, the
function is

H(t1, . . . , tk) = −
∑

ti log ti

Again we define 0 log 0 = 0, which makes t log t continuous on [0, 1].

Lemma 7.3.1. H(·) is strictly concave.

Remark if p, q are distributions on Ω then tp+(1− t)q is also a distribution
on Ω for all 0 ≤ t ≤ 1.
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Proof. Let f(t) = −t log t. Then

f ′(t) = − log t− 1

f ′′(t) = −1

t

so f is strictly concave on (0,∞). Now

H(tp+(1−t)q) =
∑
i

f(tpi+(1−t)qi) ≥
∑
i

(tf(pi) + (1− t)f(qi)) = tH(p)+(1−t)H(q)

with equality if and only if pi = qi for all i.

Lemma 7.3.2. If X takes on k values with positive probability then 0 ≤ H(X) ≤
log k. the left is equality if and only if k = 1 and the right is equality if and only
if dist(X) is uniform, i.e. p(X = x) = 1/k for each of the values.

Proof. The inequality H(X) ≥ 0 is trivial. For the second, note that since
H is strictly concave on the convex set of probability vectors it has a unique
maximum. By symmetry this must be (1/k, . . . , 1/k).

Definition 7.3.3. The joint entropy of random variables X,Y is H(X,Y ) =
H(Z) where Z = (X,Y ).

The conditional entropy of X given that another random variable Y (de-
fined on the same probability space as X) takes on the value y is is an entropy
associated to the conditional distribution of X given Y = y, i.e.

H(X|Y = y) = H(dist(X|Y = y)) = −
∑
x

p(X = x|Y = y) log p(X = x|Y = y)

The conditional entropy of X given Y is the average of these over y,

H(X|Y ) =
∑
y

p(Y = y) ·H(dist(X|Y = y))

Example 7.3.4. If X,Y are independent 1
2 ,

1
2 coin tosses then (X,Y ) takes 4

values with probability 1/4 so H(X,Y ) = log 4.
IfX,Y are correlated fair coin tosses then (X,Y ) is distributed non-uniformly

on its 4 values and the entropy H(X,Y ) < log 4.

Lemma 7.3.5. .

1. H(X,Y ) = H(X) +H(Y |X).

2. H(X,Y ) ≥ H(X) with equality if and only if Y is a function of X.

3. H(X|Y ) ≤ H(X) with equality if and only if X,Y are independent.

4. More generally, H(X|Y Z) ≤ H(X|Y ).
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Proof. Write

H(X,Y ) = −
∑
x,y

p((X,Y ) = (x, y)) log p((X,Y ) = (x, y))

=
∑
y

p(Y = y)
∑
x

p(X = x|Y = y)

(
− log

p((X,Y ) = (x, y))

p(Y = y)
− log p(Y = y)

)
= −

∑
y

p(Y = y) log p(Y = y)
∑
x

p(X = x|Y = y)

−
∑
y

p(Y = y)
∑
x

p(X = x|Y = y) log p(X = x|Y = y)

= H(Y ) +H(X|Y )

Since H(Y |X) ≥ 0, the second inequality follows, and it is an equality if and
only if H(X|Y = y) = 0 for all y which Y attains with positive probability. But
this occurs if and only if on each event {Y = y}, the variable X takes one value.
This means that X is determined by Y .

The third inequality follows from concavity:

H(X|Y ) =
∑
y

p(Y = y)H(dist(X|Y = y))

≤ H(
∑
y

p(Y = y)dist(X|Y = y))

= H(X)

and equality if and only if and only if dist(X|Y = y) are all equal to each other
and to dist(X), which is the same as independence.

The last inequality follows similarly from concavity.

It is often convenient to re-formulate entropy for partitions rather then ran-
dom variables. Given a countable partition β = {Bi} of Ω let

dist(β) = (P (B))B∈β

and define the entropy by

H(β) = H(dist(β)) = −
∑
B∈β

P (B) logP (B)

This is the entropy of the random variable that assigns to ω ∈ Ω the unique
set Bi containing ω. This set is denoted β(ω). Conversely if X is a random
variable then it induces a partition ofΩ and the entropy ofX and of this partition
coincide.

Given partitions α, β their join is the partition

α ∨ β = {A ∩B : A ∈ α : B ∈ β}
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This is the partition induced by the pair (X,Y ) of random variables X : ω 7→
α(ω) and Y : ω 7→ β(ω). If we define the conditional entropy of α on a set B by

H(α|B) = −
∑
A∈α

P (A|B) logP (A|B)

and
H(α|β) =

∑
B∈β

P (B) ·H(α|B)

then we have the identities corresponding to Lemma ??. Specifically, we say
that α refines β, or α ≺ β, if every A ∈ α is a subset of some B ∈ β. Then we
have

Lemma 7.3.6. .

1. H(α ∨ β) = H(α) +H(β|α).

2. H(α ∨ β) ≥ H(α) with equality if and only if α ≺ β.

3. H(α|β) ≤ H(α) with equality if and only if α, β are independent.

Definition 7.3.7. Given a discrete random variable X and a σ-algebra B ⊆ F ,
the conditional entropy H(X|B) is

ˆ
H(dist(X|B(ω)) dP (ω) =

ˆ
HPω(X) dP (ω)

where dist(X|B(ω)) is the distribution of X given the atom B(ω), and Pω is
the disintegrated measure at ω given B. For a partition α we define H(α|B)
similarly.

Proposition 7.3.8. Suppose α is a finite partition and β1 � β2 � . . . a sequence
of refining partitions and B = σ(β1, β2, . . .) =

∨
βn the generated σ-algebra.

Then
H(α|B) = lim

n→∞
H(X|βn)

Equivalently, if X is a finite-valued random variable and Yn are discrete random
variables then

H(X|Y1, Y2, . . .) = lim
n→∞

H(X|Y1 . . . Yn)

Remark 7.3.9. The same is true when α is a countable partition but the proof
is slightly longer and we won’t need this more general version.

Proof. By the martingale convergence theorem, for each A ∈ α we have

P (A|βn(ω)) = E(1A|βn)(ω)→ E(1A|B)(ω) = P (A|B(ω)) a.e.

This just says that dist(α|βn) → dist(α|B) pointwise as probability vectors.
SinceH(t1, . . . , t|α|) is continuous this implies thatH(dist(α|βn))→ H(dist(α|B),
which is the desired conclusion.
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Remark 7.3.10. There is a beautiful axiomatic description of entropy as the only
continuous functional of random variables satisfying the conditional entropy for-
mula. Suppose that Hm(t1, . . . , tm) are functions on the space of m-dimensional
probability vectors, satisfying

1. H2(·, ·) is continuous,

2. H2( 1
2 ,

1
2 ) = 1,

3. Hk+m(p1, p2, . . . pk, q1, . . . , qm) = (
∑
pi)Hk(p′1, . . . , p

′
k)+(

∑
qi)Hm(q′1, . . . , q

′
k),

where p′i = pi/
∑
pi and q′i = qi/

∑
qi.

Then Hm(t) = −
∑
ti log ti. We leave the proof as an exercise.

7.4 Digression: applications of entropy
We describe here two applications of entropy. The first demonstrates how en-
tropy can serve as a useful analog of cardinality, but with better analytical
properties. The basic connection is that if X is uniform on its range Σ, then
H(X) = log |Σ|.

Proposition 7.4.1 (Loomis-Whitney Theorem). Let A ⊆ R3 be a finite set
and πxy, πxz, πyz the projections to the coordinate planes. Then the image of A
under one of the projections is of size at least |A|2/3.

If we make the same statement in 2 dimensions, it is trivial, since if |πx(A)| ≤√
|A| and |πy(A)| <

√
|A| then A ⊆ πx(A)×πy(A) has cardinality < |A|, which

is impossible. This argument does not work in three dimensions.

Lemma 7.4.2 (Shearer’s inequality). If X,Y, Z are random variables then

H(X,Y, Z) ≤ 1

2
(H(X,Y ) +H(X,Z) +H(Y, Z))

Proof. Write

H(X,Y, Z) = H(X) + H(Y |X) + H(Z|X,Y )
H(X,Y ) = H(X) + H(Y |X)
H(Y,Z) = H(Y ) + H(Z|Y )
H(X,Z) = H(X) + H(Z,X)

Using H(Y ) ≥ H(Y |X) and H(Z|X) ≥ H(Z|X,Y ) and H(Z|Y ) ≥ H(Z|X,Y ),
the sum of last 3 lines is at least equal to the first line. This was the claim.

Proof of Loomis-Whitney. Let P = (X,Y, Z) be a random variable uniformly
distributed over A. Thus

H(P ) = H(X,Y, Z) = log |A|
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On the other hand by Shearer’s inequality,

H(P ) ≤ 1

2
(H(X,Y ) +H(X,Z) +H(Y, Z)) =

1

2
(H(πxy(P )) +H(πxz(P )) +H(πzy(P )))

so at least one H(πxy(P )), H(πxz(P )), H(πyz(P )) is ≥ 2
3 log |A|. Since π(P )

is supported on π(A) we also have H(πx,z(P )) ≤ log | suppπx,yA|, etc. In
conclusion for one of the projections, π(|A|) ≥ 2

3 log |A|, which is what we
claimed.

We now turn to the original use of Shannon entropy in information theory,
where H(X) should be thought of as a quantitative measure of the amount of
randomness tin the variable X, Suppose we want to record the value of X using
a string of 0s and 1s. Such an association c : Σ→ {0, 1}∗ is called a code. We
shall require that the code be 1-1, and for simplicity we require it to be a prefix
code, which means that if a, b ∈ Σ then neither of a, b is a prefix of the other.
Let |c(a)| denote the length of the codeword c(a).

Lemma 7.4.3. If c : Σ→ {0, 1}∗ is a prefix code then
∑
a∈Σ 2−|c(a)| ≤ 1.

Conversely, if ` : Σ → N are given and
∑
a∈Σ 2−`(a) then there is a prefix code

c : Σ→ {0, 1}∗ with |c(a)| = `(a).

Theorem 7.4.4. Let {`i}i∈Σ be integers. Then the following are equivalent:

1.
∑

2−`i ≤ 1.

2. There is a prefix code with lengths `i.

Proof. We can assume Σ = {1, . . . , n}. Let L = max `i and order `1 ≤ `2 ≤
. . . ≤ `n = L. Identify

⋃
i≤L{0, 1}i with the full binary tree of height L, so each

vertex has two children, one connected to the vertex by an edge marked 0 and
the other by an edge marked 1. Each vertex is identified with the labels from
the root to the vertex; the root corresponds to the empty word and the leaves
(at distance L from the root) correspond to words of length L.

2 =⇒ 1: The prefix condition means that c(i), c(j) are not prefixes of each
other if i 6= j; consequently no leaf of the tree has both as an ancestor. Writing
Ai for the leaves descended from i, we have |Ai| = 2L−`i and the sets are disjoint,
therefore ∑

2L−`i =
∑
|Ai| = |

⋃
Ai| ≤ |{0, 1}L| = 2L

dividing by 2L gives (1) .
Conversely a greedy procedure allows us to construct a prefix code for `i as

above. The point is that if we have defined a prefix code on {1, . . . , k− 1} then
the set of leaves below the codewords must have size

|
⋃
i<k

Ai| ≤
∑
i<k

|Ai| =
∑
i<k

2L−`i < 2L

The strict inequality is because
∑

2−`i ≤ 1, and the sum above includes at least
one term less than the full sum. Therefore we can choose a codeword for k that
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is the ancestor of a leaf not in
⋃
i<k Ai. This extends the prefix code to k and

we continue until all codewords are defined.

Now, given a code c(·), the average coding length (w.r.t. X) is E(|c(X)|). We
wish to find the prefix code that minimizes this. quantity. This is equivalent to
optimizing E(`(X)) over all functions ` : Σ→ N satisfying

∑
2−`i ≤ 1.

Theorem 7.4.5. If c is a prefix code, then the expected coding length is ≥ H(X)
and equality is achieved if and only if |c(i)| = − logP (X = i).

Proof. Let `i be the coding length of i and pi = P (X = i). We know that∑
2−`i ≤ 1. Consider

∆ = H(p)−
∑

pi`i

= −
∑

pi (log pi + `i)

Let ri = 2−`i/
∑

2−`i , so
∑
ri = 1 and `i ≥ − log ri (because

∑
2−`i ≤ 1).

∆ ≤ −
∑

pi (log pi − log ri)

= −
∑

pi

(
log

pi
ri

)
=

∑
pi

(
log

ri
pi

)
Using the concavity of the logarithm,

≤ log

(∑
pi(

ri
pi

)

)
= log 1 = 0

Equality occurs unless ri/pi = 1.

Theorem 7.4.6 (Achieving optimal coding length (almost)). There is a prefix
code whose average coding length is H(X) + 1

Proof. Set `i = d− log pie. Then∑
2−`i ≤

∑
2− log pi =

∑
pi = 1

and since `i ≤ − log pi + 1, the expected coding length is∑
pi`i ≤ H(X) + 1

Thus up to one extra bit we achieved the optimal coding length.

Corollary 7.4.7. If (Xn) is a stationary finite-valued process with entropy
h(X) = lim 1

nH(X1 . . . Xn), then for every ε > 0 if n is large enough we can
code X1 . . . Xn using h+ ε bits per symbol (average coding length ≤ (h+ ε)n).
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Proof. We can code X1, . . . , Xn using H(X1, . . . , Xn) + 1 bits on average. Di-
viding by n and assuming n > 2/ε, and also that 1

nH(X1 . . . Xn) < h+ε/2, this
gives a per-bit coding rate of

1

n
(H(X1, . . . , Xn) + 1) ≤ h+ ε/2 + ε/2 = h+ ε

7.5 Entropy of a stationary process
X = (Xn)∞n=−∞ be a stationary sequence of random variables with values in
a finite set Σ; as we know, such a sequence may be identified with a shift-
invariant measure µ on ΣZ, with Xn(ω) = ωn for ω = (ωn) ∈ ΣZ, and Xn(ω) =
X0(Snω), where S is the shift. The partition induced by X0 on ΣZ is the
partition according tot he 0-th coordinate, and we denote α. Then Xn induces
the partition Tnα = {T−nA : A ∈ α}. Since (Xn(ω))∞n=−∞ determines ω, we
see that the partitions Tnα, n ∈ Z, separate points, so B =

∨∞
n=−∞ Tnα.

Definition 7.5.1. The entropy h(X) of the process X = (Xn) is

lim
n→∞

1

n
H(X1, . . . , Xn)

Let us first show that the limit exists: Let Hn(X) = H(X1, . . . . . . Xn). For
each n,m,

Hm+n(X) = H(X1 . . . Xm, Xm+1, . . . , Xn+m)

= H(X1, . . . , Xm) +H(Xm+1, . . . , Xm+n|X1, . . . , Xm)

≤ H(X1, . . . , Xm) +H(Xm+1, . . . , Xm+n)

= H(X1, . . . , Xm) +H(X1, . . . , Xn)

= Hm(X) +Hn(X)

Here the inequality is because conditioning cannot increase entropy, and then
we used stationarity, which implies dist(Xm+1, . . . , Xm+n) = dist(X1, . . . , Xn).
e have shown that the sequence Hn(X) is subadditive so the limit h(X) =
lim 1

nHn(X) exists (and equals inf 1
nHn(X)).

Example 7.5.2. If Xn are i.i.d. then H(X1, . . . , Xn) =
∑
H(Xi) = nH(X1)

and so h(X) = H(X1).

Example 7.5.3. Let µ be the S-invariant measure on a periodic point ω =
SNω. Then (Xn) can be obtained by choosing a random shift of the sequence ω.
Since X1, . . . , Xn takes on at most N different values, H(X1, . . . , XN ) ≤ logN
and so 1

nH(X1 . . . XN )→ 0 = h(X).
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Example 7.5.4. Let θ ∈ R 6= Q and Rθ : R/Z → R/Z translation, for which
Lebesgue measure µ is the unique invariant measure. Let X1(x) = 1[0,1/2](x)
and Xn = X1(Rnθx). We claim that the process X = (Xn) has entropy 0.

Indeed, the partition determined by Xn is an interval of length 1/2 in R/Z
and so (X1, . . . , Xn) determines a partition that is the join of n intervals. This
partition is the partition into intervals that is determined by 2n endpoints and so
consists of 2n intervals. Hence H(X1, . . . , Xn) ≤ log 2n and so 1

nh(X1 . . . Xn)→
0 = h(X).

Theorem 7.5.5. h(X) = H(X0|X−1, X−2, . . .).

Proof. It is convenient to write Xn
m = Xm, . . . , Xn. Now,

H(Xn
1 ) = H(X1 . . . Xn−1) +H(Xn|X1, . . . , Xn−1)

= H(X1 . . . Xn−1) +H(X0|X−n, . . . , X−1)

by stationarity. By induction,

H(Xn
1 ) =

n−1∑
i=0

H(X0|X−1
−i )

so

h(X) = lim
n→∞

1

n
H(X1, . . . , Xn)

= lim
n→∞

1

n

n−1∑
i=0

H(X0|X−1
−i )

SinceH(X0|X−1
−∞) = limn→∞H(X0|X−1

−n), the summands in the averages above
converge, so the averages converge to the same limit, which is what we claimed.

Definition 7.5.6. A process (Xn)∞n=−∞ is deterministic if X−1
−∞ a.s. deter-

mines X0 (and by induction also X1, X2, . . .).

Corollary 7.5.7. (Xn) is deterministic if and only if h(X) = 0.

Proof. H(X0|X−1
−∞) = 0 if and only if a.e. the conditional distribution of X0

given X−1
−∞ is atomic, which is the same as saying that X0 is measurable with

respect to σ(X−1
−∞), which is the same as determinism.

Remark 7.5.8. Note that the entropy of the time-reversal (X−n)∞n=−∞ is the
same as of (Xn), because the entropy of the initial n variables is the same
in both cases. It follows that a process and its time-reversal are either both
deterministic (if the entropy is 0) or neither is. This conclusion is nonobvious!

Definition 7.5.9. For a stationary process (Xn)∞n=−∞, the tail σ-algebra
is the σ-algebra T =

⋂∞
n=1 σ(X−n−∞). The process has trivial tail, or is a

Kolmogorov process, if T is the trivial algebra (modulo nullsets).
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Intuitively, a process with trivial tail is a process in which the remote past
has no effect on the present (and future).

Example 7.5.10. If (Xn) are i.i.d. then σ(X−n−∞) is independent of X∞−n+1.
so T is independent of all the variables Xn and so, since it is measurable with
respect tot hem , is independent of itself; so it is trivial.

Proposition 7.5.11. If X = (Xn) has trivial tail and H(X0) > 0 then h(X) >
0.

Proof. Since H(X0|X−n−∞) → H(X0|T ) = H(X0). Therefore there is some n0

such that such that H(X0|X−n0
−∞ ) > 0. Now,

H(X0, . . . , Xn) ≥ H(X0, Xn0
, X2n0

, . . . , X[n/n0]n0
)

=

[n/n0]−1∑
i=0

H(Xin0
|X0, Xn0

, . . . , X(i−1)n0
)

≥
[
n

n0

]
H(X0|X−n0

−∞ )

so
h(X) = lim

n→∞

1

n
H(X0, . . . , Xn) ≥ 1

n0
H(X0|X−n0

−∞ ) > 0

as claimed.

Corollary 7.5.12. The only process that is both deterministic and has trivial
tail is the trivial process Xn = a for all n.

7.6 Couplings, joinings and disjointness of pro-
cesses

Let (Xn), (Yn) be stationary processes taking values in A,B respectively. A
coupling is a stationary process (Zn) with Zn = (X ′n, Y

′
n) and the marginals

(X ′n), (Y ′n) have the same distribution as (Xn), (Yn), respectively. This is the
probabilistic analog of a joining. Indeed, identify (Xn), (Yn) with invariant
measures µ, ν on AZ, BZ,respectively. The coupling (Zn) can be identified with
an invariant measure θ on (A × B)Z, and the assumption on the distribution
of (X ′n), (Y ′n) is the same as saying that the projections (A × B)Z → AZ maps
θ 7→ µ and the other projection maps θ 7→ ν; thus θ is a joining of the systems
(AZ, µ, S) and (BZ, ν, S). On the other hand any joining gives an associated
coupling, Zn = πn(z) where πn : (A × B)Z → A × B is the projection to the
n-th coordinate.

Definition 7.6.1. We say that two processes are disjoint if the only coupling
is the independent one; equivalently, the associated shift-invariant measures are
disjoint.
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Proposition 7.6.2. If (Xn), (Yn) have positive entropy, they are not disjoint.

Proof. We prove this for 0, 1-valued processes, the general proof is the same.
If U, V are random variables taking on values 0, 1 with positive probability,

then there is a non-trivial coupling that can be constructed as follows: let
p = P (U = 1) and q = P (V = 1). Let Z ∼ U [0, 1] and set U ′ = 1{Z<p} and
V ′ = 1{Z<q}. Clearly P (U ′ = 1) = p and P (V ′ = 1) = q, but U ′, V ′ are not
independent because, assuming w.l.o.g. that p < q, if U ′ = 1 then Z ′ < p < q
so V ′ = 1. This shows that

H(V ′|U ′) = 0

Similarly if q < p then
H(V ′|U ′) = 0

Since H(U ′, V ′) = H(U ′) +H(V ′|U ′) = H(V ′) +H(U ′|V ′), we see that in any
case,

H(U ′, V ′) ≤ max{H(U), H(V )}
We construct a stochastic process (Un, Vn)∞−∞ with U∞−∞ ∼ X∞−∞ and V∞−∞ ∼

Y∞−∞ as follows. Choose U−1
−∞ ∼ X−1

−∞ and V −1
−∞ ∼ Y −1

−∞ independently. Now
assume we have defined a distribution on sequences U−n−∞, V

−n
−∞ for some n ≥ 0

such that Un−∞ ∼ Xn
−∞ and V n−∞ ∼ Y n−∞, we almost surely have a conditional

probability p = P (Xn+1 = 1|Xn
−∞ = Un−∞) and q = P (Yn+1 = 1|Y n−∞ = V n−∞).

For each realization of Un−∞, V n−∞ in a set of probability 1, this allows us to
define Un+1, Vn+1 as above, using an independent auxiliary random variable
Zn+1 ∼ U [0, 1].

Let θ denote the measure associated to the sequence (Wn) = (Un, Vn). By
construction θ is not a product measure and projects to µ, ν (the measures
associated to (Xn), (Yn)) on the marginals, but it is not invariant. To fix this
we can pass to a limit

θ′ = lim
1

Nk

Nk∑
n=0

Snθ

This measure is invariant, and still projects to µ, ν on the marginals (because
the set of measures with this property is closed). It remains to show that θ′
it not the product measure. Suppose, by way of contradiction, that it is a
product measure. Let W ′n be the associated process; we obtain a contradiction
by showing that h(W ) < h(X) + h(Y ). To see this, note that

h(W ′) = h(W ′0|(W ′)−1
−∞) = lim

T→∞
H(W ′0|(W ′)−1

−T )

so it suffices to prove that

H(W ′0|(W ′)−1
−T ) < h(X) + h(Y )

for some T . Now, for a given T we have

H(W ′0|(W ′)−1
−T ) = lim

k→∞

1

n

n∑
i=Nk

H(Wi|W i−1
i−T )
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Now, for i ≥ 1 note that H(Wi|W i−1
i−T ) is determined in a manner independent

of i by the conditional distribution of (Ui, Vi) given (Uj , Vj)
i−1
j=i−T and the latter

is converging to an independent coupling of the marginal distributions, so this
limit is

H(W ′0|(W ′)−1
−T ) = H(W1|W 0

−T+1)

and this → H(W0|W−1
−∞) as T →∞. Therefore it is enough to show that

H(W1|W 0
−∞) < h(X) + h(Y )

But, by construction, for each realization w0
−∞ = (x, y)0

−∞ of W 0
−∞ we have

H(W1|W 0
−∞ = w0

−∞) ≤ max{H(X1|X0
−∞ = x0

−∞), H(Y1|Y 0
−∞ = y0

−∞)}
≤ H(X1|X0

−∞ = x0
−∞) +H(Y1|Y 0

−∞ = y0
−∞)

and we have a strict inequality with positive probability, because each term is
positive with positive probability, and the pasts are independent. Therefore

H(W1|W 0
−∞) =

ˆ
H(W1|W 0

−∞ = w0
−∞) dP (w0

−∞)

<

ˆ
H(X1|X0

−∞ = x0
−∞) +H(Y1|Y 0

−∞ = y0
−∞) dµ× ν((x, y)0

−∞)

= h(X) + h(Y )

as desired.

Theorem 7.6.3. Let (Xn) be a process with trivial tail and (Yn) deterministic
process, taking values in finite sets A,B respectively. Then (Xn) ⊥ (Yn).

Lemma 7.6.4. Let Z = (Xn, Yn)∞n=−∞ be a stationary process with values in
A×B. Then

h(Z) = h(Y ) +H(X0|X−1
−∞, Y

∞
−∞)

Proof. Expand H(Z1, . . . , Zn) = H(X1, . . . , XnY1, . . . , Yn) as

H(Y1, . . . , Yn, X1, . . . , Xn) = H(Yn) +H(Y1, . . . , Yn−1, X1, . . . Xn|Yn)

= H(Yn) +H(Yn−1|Yn) +H(Y1, . . . , Yn−2, X1, . . . Xn|Yn−1Yn)

...

=

n−1∑
i=0

H(Yn−i|Y n−i−1
1 ) +H(X1 . . . Xn|Y n1 )

...

=

n−1∑
i=0

H(Yn−i|Y n−i−1
1 ) +

n−1∑
i=0

H(Xn−i|Xn−i−1
1 , Y n1 )

Dividing by n, the first term converges to h(Y ). The second term, after shifting
indices, is an average of terms of the form H(X1|X−1

−kY
m
−k) where k → −∞ and

m → ∞, and these tend uniformly to H(X0|X−1
−∞, Y

∞
−∞), so the average does

too.
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Lemma 7.6.5. Let YMn = (Yn−M , . . . . . . Yn+M ). Then h(YM ) = h(Y ).

Lemma 7.6.6. H(X0|X−M , X−2M , . . .)→ H(X0) as M →∞.

Of the theorem. Suppose Zn = (Xn, Yn) is a coupling. Let us first show that
X0 is independent of σ(Y∞−∞). If not then there is some M and ε > 0 such
that H(X0|YM−M ) < H(X0) − ε. Consider YMn = (Yn−M , . . . . . . Yn+M ) and
ZMn = Xn, (Yn−M , . . . , Yn+M ). Then Zn is stationary. Consider the stationary
process (ZMMn). Then

h(ZM ) ≥ h((XMn)∞n=1) ≥ h(X0)− ε

assuming M is large enough. But applying the previous lemma,

h(ZM ) = h(YMn )+H(X0|(Xkn)−1
k=−∞, (Y

M

n )−1
−∞) ≤ 0+H(X0|YM0 ) = H(X0|YM−M ) < H(X0)−ε

a contradiction.
To show that the coupling is independent, repeat this argument with (XM , Y )

in place of (X,Y ), noting that XM also has trivial tail.

7.7 Kolmogorov-Sinai entropy
Let (X,B, µ, T ) be an invertible measure-preserving system. For a partition
α = {Ai} of X we define

hµ(T, α) = lim
n→∞

1

n
Hµ(

n∨
i=1

T−iα)

This is the same as the entropy of the process (Xα
n )∞n=−∞, where

Xα
n (x) = i ⇐⇒ Tnx ∈ Ai

Definition 7.7.1. The Kolmogov-Sinai entropy hµ(T ) of the system is

hµ(T ) = sup
α
hµ(T, α)

This number is non-negative and may be infinite.

Proposition 7.7.2. hµ(T ) is an isomorphism invariant of the system (that is,
isomorphic systems have equal entropies).

Proof. SinceHµ(
∨n
i=1 T

−iα) depends only on the masses of the atoms of
∨n
i=1 T

−iα,
and the partition β = πα of Y has the property that π(

∨n
i=1 T

−iα) =
∨n
i=1 S

−iβ,
the two have equal entropy. It follows that hµ(T, α) = hν(S, πα). This shows
that the supremum of entropies of partitions of Y is at least as large as the
supremum of the entropies of partitions of X. By symmetry, we have equal-
ity.



CHAPTER 7. DISJOINTNESS AND A TASTE OF ENTROPY THEORY90

Definition 7.7.3. A partition α of X is generating if
∨∞
i−=∞ T−iα = B mod

µ.

Example 7.7.4. the partition of AZ according tot he first coordinate is gener-
ating.

In order for entropy to be useful, we need to know how to compute it. This
will be possibly using

Theorem 7.7.5. If α is a generating partition, then hµ(T ) = hµ(T, α).

Proof. Let α be a generating partition and β another partition. We only need
to show that hµ(T, α) ≥ hµ(T, β). Consider the process (Xn, Yn) where Xn is
the process determined by α and Yn the one determined by β (so (Xn, Yn) is
determined by α∨β). By definition hµ(T, α) = h((Xn)) and hµ(T, β) = h((Yn)).
Now, since H(Xn

1 , Y
n
1 ) ≥ H(Y n1 ) we have h((Xn, Yn)) ≥ h((Yn)). On the other

hand by a previous lemma,

h((Xn, Yn)) = h((Xn) +H(Y0|Y 0
−∞, X

∞
−∞)

Since σ(X∞−∞) is the full σ-algebra up to nullsets, the conditional expectation on
the right is 0. Thus, hµ(T, α) = h((Xn)) ≥ h((Yn)) = hµ(T, β), as desired.

Example 7.7.6. Let p = (p1, . . . , pn) be a probability vector and µp = pZ ∈
P({1, . . . , n}Z), S= the shift. Then the partition α according to the 0-coordinate
is generating, so hµp

(S) = h((Xn)) where (Xn) is the process associated to
α. This is an i.i.d. process with marginal p so its entropy if H(p). Thus,
µp ∼= µq implies that H(p) = H(q). In particular, this shows that (1/2, 1/2)Z 6=
(1/3, 1/3, 1/3)Z.

7.8 Application to filterling
See Part I, Section 9 of H. Furstenberg, Disjointness in ergodic theory, minimal
sets, and a problem in diophantine approximation, 1967, available online at

http://www.kent.edu/math/events/conferences/cbms2011/upload/furst-disjointness.pdf



Chapter 8

Rohlin’s lemma

8.1 Rohlin lemma
Theorem 8.1.1 (Rohlin’s Lemma). Let (X,B, µ, T ) be an invertible measure
preserving system, and suppose that for every δ > 0 there is a set A with µ(A) <
δ and µ(X \

⋃∞
n=0 TA) = 0. Then for every ε > 0 and integer N ≥ 1 there is

a set B such that B, TB, . . . , TN−1B are pairwise disjoint, and their union has
mass > 1− ε.

Remark 8.1.2. We will discuss the hypothesis soon but note for now that if µ is
non-atomic and T is ergodic then it is automatically satisfied, since in fact for
any set B of positive measure, C =

⋃∞
n=0 T

nB satisfies C ⊆ T−1C, hence by
ergodicity µ(C∆X) = 0.

Thus the theorem has the following heuristic implication: any two measure
preserving maps behave in an identical manner on an arbitrarily large fraction
of the space, on which it acts simply as a “shift”; the differences are “hidden” in
the exceptional ε of mass.

Proof. Let ε,B be given and choose A as in the hypothesis for δ = ε/N . Let
rA(x) = min{n > 0 : Tnx ∈ A} and A into An = r−1

A (x) ∩A, that is,

An = {x ∈ A : T ix ∈ A for 0 ≤ i < n but Tnx ∈ A}

Note that
∞⋃
n=0

TnA =
⋃
n

n−1⋃
i=0

T iAn

Both are X up to measure 0, but the union on the right hand side is disjoint.
Now, fix n and let

A′n =

[n/N ]−1⋃
i=0

T iNAn

91
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Also set

En =

n−1⋃
i=N [n/N ]

T iAn

Notice that
n−1⋃
i=0

T iA = En ∪
N−1⋃
i=0

T iA′n

and the union is disjoint.
Since the above holds for all N , the set

B =
⋃
n

A′n

has the property thatB, TB, . . . , TN−1B are pairwise disjoint, and µ(X\
⋃N−1
i=0 T iB) =

µ(E), where E =
⋃
En. Finally, to estimate µ(E), we have

µ(E) =
∑

µ(En) ≤
∑

Nµ(An) = Nµ(A) < N
ε

N
= ε

as desired.

Definition 8.1.3. For a measure-preserving system (X,B, µ, T ) let

Per(T ) =

∞⋃
n=1

{x ∈ X : x = Tnx}

The system is aperiodic if µ(Per(T )) = 0.

Proposition 8.1.4. If (X,B, µ, T ) is aperiodic and (X,B) is standard, then the
hypothesis of the previous proposition is satisfied.

Proof. First, we may assume that Per(T ) = ∅ by replacing X with X \Per(T ).
Let ε > 0 and consider the class A of measurable sets A with the property that
µ(A) ≤ εµ(

⋃∞
n=0 T

nA). Note that A is non-empty since it contains ∅, and it is
closed under monotone increasing unions of its members.

Consider the partial order ≺ on A given by A ≺ A′ if A ⊆ A′ and µ(A) <
µ(A′). Any maximal chain is countable, since there are no uncountable bounded
increasing sequences of reals. Therefore the chain has a maximal element,
namely the union of its members. We shall show that every such maximal
element A must satisfy µ(

⋃∞
n=0 T

nA) = 1.
To see this first suppose that A ∈ A and µ(

⋃∞
n=0 T

nA) < 1. Set X ′ =
X \

⋃∞
n=0 T

nA which is an invariant set (up to a nullset, which we also remove
as necessary). All we must show is that there exists E ⊆ X ′ with µ(E) ≤
εµ(
⋃∞
n=0 T

nE), then A ∪ E � A. To see this let d be a compatible metric
on X, with B the Borel algebra. Let N = [1/ε]. By Lusin’s theorem we can
find X ′′ ⊆ X ′ with µ(X ′′) > 0 and all the maps T, . . . , TN are continuous
on X ′′. For x ∈ X ′′, since all the points x, Tx, . . . , TNx are distinct, there is a
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relative ball B = Br(x)(x)∩X ′′ such that B, TB, . . . , TNB are pairwise disjoint,
which implies µ(E) ≤ εµ(

⋃∞
n=0 T

nB). Moreover the same holds for any B′ ⊆ B.
Choose such a B′ containing X from some fixed countable basis for the topology
of X ′′ (here we use standardness, though actually only separability is needed).
Since these B′ form a countable cover of X ′′ one of them must have positive
mass. This is the desired set E.

8.2 The group of automorphisms and residuality
Fix Ω = ([0, 1],B,m) Lebesgue measure on the unit interval with Borel sets.
Let Aut denote the group of measure-preserving maps of Ω, with two maps
identified if they agree on a Borel set of full measure.

We introduce a topology on Aut whose sub-basis is given by sets of the form

U(T,A, ε) = {S ∈ Aut : µ(S−1A∆T−1A) < ε}

where T ∈ Aut, A ∈ B and ε > 0. Note that T ∈ U(T,A, ε).
We may also identify Aut with a subgroup of the group of unitary (or

bounded linear) operators of L2(m). As such it inherits the strong and weak
operator topologies from the group of bounded linear operators. These are the
topologies whose bases are given by sets

{S : ‖Tf − Sf‖2 < ε} for given operator T, f ∈ L2 ε > 0

and

{S : |(Tf, Sf)− (f, f)| < ε} for given operator T, f ∈ L2 ε > 0

respectively. When restricted to the group of unitary operators these are equiv-
alent bases, as can be seen from the identity

‖Tf − Sf‖22 = ‖Tf‖22 − 2(Tf, Sf) + ‖Sf‖22 = 2(f, f)− 2(Tf, Sf)

Now. the topology we have defined is clearly weaker than the strong operator
topology, since

µ(S−1A∆T−1A) = ‖1S−1A − 1TA‖22 = ‖S1A − T1A‖22
so

U(T, 1A, ε
2) ⊆ U(T−1, A, ε)

On the other hand for step functions f =
∑k
i=1 ai1Ai

we can show that it is
also stronger: setting a =

∑
|ai|,

k⋂
i=1

U(T,Ai, ε/ak) ⊆ U(T, f, ε)

For general f one can argue by approximation. Hence, all three topologies on
Aut agree. It also shows that the topology makes composition continuous and
makes tha map T 7→ T−1 continuous (since this is true in the unitary group).



CHAPTER 8. ROHLIN’S LEMMA 94

Definition 8.2.1. Denote by Dn the partition of [0, 1) into the dyadic intervals
[k/2n, (k + 1)/2n).

Lemma 8.2.2. Aut is closed in the group of unitary operators with the strong
operator topology.

Proof. Let Tn ∈ Aut. Since Tn arise from maps of [0, 1], each Tn is not only
a unitary map of L2, it also preserves pointwise multiplication of functions in
L∞: Tn(fg) = Tnf · Tng. It is easy to see that if Tn → T ∈ U(L2(m)) in
the strong operator topology. Then is it a simple matter to verify that T also
preserves pointwise multiplication. But it is then a classical fact that T arises
from a measure preserving map of the underlying space. By using the fact that
T−1
n → T−1 we similarly see that T−1 arises from a measure preserving map.

Now the relation TnT−1
n A = T−1

n TnA = A imples that T, T−1 are inverses, so
T, T−1 ∈ Aut.

Corollary 8.2.3. Aut is Polish in our topology.

Definition 8.2.4. A set is called dyadic (of generation n) if it is the union of
elements of Dn. Let D∗n denote the algebra of these sets.

T ∈ Aut is dyadic (of generation n) if it permutes the elements of Dn (with
the map of intervals realized by isometries).

A dyadic automorphism is cyclic if the permutation is a cycle.

Note that if π is a permutation of Dn then there is an automorphism Sπ ∈
AutD such that Sπ : I → πI in a linear and orientation preserving manner.

Proposition 8.2.5. The cyclic permutations are dense in Aut. Furthermore
for every n0, the cyclic permutations of order ≥ 2n0 are dense.

Proof. Fix n0. Let Ui = U(Ai, Ti, εi), i = 1, . . . , k, be given. We must show
that AutC ∩

⋂k
i=1 Ui 6= ∅.

First let us show that AutD ∩(
⋂
Ui) 6= ∅. Let A denote the coarsest partition

of X that refines the partitions {Ai, X \ Ai}. Let TA be its image, which is
similarly defined by the sets TAi. Fix an auxiliary parameter δ > 0. Given n
and A ∈ A let

En(A) = {I ∈ Dn : m(I ∩A) > (1− δ)m(I)}
Fn(A) = {I ∈ Dn : m(I ∩ TA) > (1− δ)m(I)}

and write

En(A) = ∪En(A)

Fn = ∪Fn(A)

By Lebesgue’s differentiation theorem, we can choose an n > n0 so large that
for every A ∈ A,

m(A∆En(A)) < δ

m(TA∆Fn(A)) < δ
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Of course, m(A) = m(TA), so the above means that |m(En(A))−m(Fn(A))| <
2δ. Ifm(En(A)) < m(Fn(A)), remove dyadic intervals from Fn(A) of total mass
< 2δ, to make the mass of En(A), Fn(A) equal. Then all the inequalities above
will hold with 3δ instead of δ. Similarly if m(Fn(A)) < m(En(A)).

Thus we assume m(En(A)) = m(Fn(A)), which is equivalent to |En(A)| =
|Fn(A)|. Let π : Dn → Dn be a permutation defined by choosing an arbitrary
bijection π : En(A) → Fn(A), and then extending to a permutation where
it is not defined. Let Sπ be the associated permutation. For A ∈ A clearly
Sπ(En(A)) = Fn(A) so

m(SπA∆TA) ≤ m(SπA∆SπEn(A)) +m(SπEn(A)∆Fn(A)) ≤ m(Fn(A)∆TA)

≤ m(A∆En(A)) + 0 +m(Fn(A) + TA)

< 6δ

Assuming δ was small this shows that Sπ ∈
⋂
Ui.

The permutation π above need may not be cyclic, so we have only shown so
far that AutD is dense. To improve this to AutC proceed as follows. Fix a large
N and consider the partition Dn+N into dyadic intervals of level n+N . Let π′
be a permutation of Dn+N that has the property that if I ′ ∈ Dn+N and I ′ ⊆ I
for I ∈ Dn, then π′I ′ ⊆ πI. There are many such π′ and we may choose one so
that every cycle of π′ covers a complete cycle of π. For example, if I1 → I2 → I1
is a cycle or order 2 of π, then enumerate the (n+N)-adic subintervals of I1 as
I ′1,1, . . . , I

′
1,k and similarly I ′2,1, . . . , I ′2,k the sub-intervals of I2, and define

π′ : I ′1,1 → I ′2,1 → I ′1,2 → I ′2,2I
′
1,3 → I ′2,3 → . . .→ I ′1,k → I ′2,k → I ′1,1

Now, if S′ = Sπ′ is the automorphism associated to π′ and S to π, then S′I = SI
for every I ∈ Dn, so the argument above shows thatm(S′A, TA) < 6δ for A ∈ A.
Also, it is clear that π′ has the same number of cycles as π, which is at most
2n. By changing the definition of π′ on at most 2n of the n+N -adic intervals,
we obtain cyclic permutation π′′ and associated S′′ = Sπ′′ ∈ AutC with

m(S′′I∆S′I) ≤ 2n2−n+N = 2−N for I ∈ Dn

Thus, assuming 2−N < δ, we will have m(S′A, TA) < 8δ for A ∈ A. Thus
S′′ ∈ AutC ∩

⋂
Ui, as desired.

Theorem 8.2.6 (Rohlin density phenomenon). Let (X,B, µ, T ) be an aperi-
odic measure preserving transformation on a standard measure space. Then the
isomorphism class

[T ] = {S ∈ Aut : S ∼= T}

is dense in Aut.

Proof. Take S ∈ Aut, A and ε, we must show [T ] ∩ U(S,A, ε) 6= ∅. By the pre-
vious proposition, it suffices to show this for S ∈ AutC of arbitrarily high order
N . Now, by Rohlin’s lemma we can find B ∈ B such that B, TB, . . . , TN−1B
are disjoint and fill > 1 − ε of X. Let I1, . . . , IN denote an ordering of dyadic
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intervals as permuted by S. Let I ′N denote In \ I ′′n where I ′′n is the interval at
the right end of In of length ε/N . Thus m(I ′n) = (1−ε)/N = µ(B) and S maps
I ′n → I ′n+1.

Using standardness we can find an isomorphism π0 : B → I1. Now for
x ∈ TnB, 0 ≤ n < N , define π(x) = Sn(π0(T−nx)). Finally, extend π to an
isomorphism X → [0, 1] using standardness again.

Let S′ : [0, 1]→ [0, 1] be given by S′(y) = πTπ−1y. By construction, S′ = S
on
⋃
I ′n. From this it follows easily that for any dyadic interval J of level

< log2N , we have m(S′J∆SJ) < 2ε. The claim therefore follows then A is a
finite union of dyadic intervals (by taking N large relative to their lengths); and
for general A by approximation.

Take a moment to appreciate this theorem. It immediately implies that
the group rotations are dense in Aut (in fact, any particular group rotation
is); the isomorphism class of every nontrivial product measure is dense in Aut;
etc. Stated another way, for any two non-atomic invertible ergodic transfor-
mations of a standard measure space, one can find realizations of them in Aut
that are arbitrarily close. Hence, essentially nothing can be learned about an
automorphism by observing it at a “finite resolution”.

Theorem 8.2.7. Let

WM = {T ∈ Aut : T is weak mixing}

Then WM is a dense Gδ in Aut. In particular the set of ergodic automorphisms
contains a dense Gδ.

Proof. Let {fi} be a countable dense subset of L2(m). Let

U =
⋂
i

⋂
j

⋂
n

⋃
k

{T ∈ Aut : |(fi, T kfj)−
ˆ
fi

ˆ
fj | < 1/n}

Since T 7→ (fi, T
kfj) is continuous, the innermost set is open, and so this is a

Gδ set. We claim U = WM . To see that WM ⊆ U , note that for every weak
mixing transformation and every i, j,, we know that

|(fi, T kfj)−
ˆ
fi

ˆ
fj |

density−−−−−→ 0

so for every n there is a k with the difference < 1/n, hence T ∈ U .
In the other direction, if T ∈ Aut \WM , then there is a non-constant eigen-

function Tϕ = λϕ, ‖ϕ‖ = 1, which we may assume has zero integral. Then
Taking fi, fj close to ϕ we will have |(fi, T kfj)| > |(ϕ, T kϕ)|− 1/2 = 1/2 for all
k, thus for n = 3 and these i, j we do not have |(fi, T kfj) −

´
fi
´
fj | < 1/n}

and therefore T /∈ U .
Finally, WM is dense by the previous theorem, since it contains aperiodic

automorphisms.
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Theorem 8.2.8. Let

SM = {T ∈ Aut : T is strongly mixing}

Then SM is meager in Aut.

Proof. Let I = [0, 1/2]. Let o(S) denote the order of a cyclic automorphism
S ∈ AutC and let

V =
⋂
n

⋃
{S∈AutC : o(S)≥n}

o(S)⋂
i=0

U(S, SiI,
1

n · o(S)
)

where o(S) is the order of S. This is a Gδ set and it is dense since AutC is
dense. So we only need to prove that V ∩ SM = ∅. Indeed, if T ∈ V then for
arbitrarily large n there is a cyclic automorphism S of order k = o(S) ≥ n with
T ∈ U(S, I, 1/nk). Now note that m(I ∩ SkI) = m(I). It is an easy induction
to show that m(SiI∆T iI) ≤ i/nk for 1 ≤ i ≤ k, since for i = 1 it follows from
T ∈ U(S, I, 1/nk, and assuming we know it for i− 1, we can write

m(SiI∆T iI) = m(S(Si−1I)∆T (T i−1I))

≤ m(S(Si−1I)∆T (Si−1I)) +m(T (Si−1I)∆T (T i−1I))

≤ 1

nk
+m(Si−1I∆T i−1I)

≤ 1

nk
+
i− 1

nk

where in the second inequality we used T ∈ U(S, Si−1I, 1/nk) and the fact that
T is measure-preserving. We conclude that

m(SkI∆T kI) ≤ k

nk
=

1

n

so
m(I∆T kI) ≤ m(I∆SkI) +m(SkI∆T kI) = 0 +

1

n

Since k →∞ as n→∞, we do not have m(I∆T kI)→ m(I)2 = 1
4 . This shows

that T is not strong mixing.
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Appendix

9.1 The weak-* topology
Proposition 9.1.1. Let X be a compact metric space. Then P(X) is metrizable
and compact in the weak-* topology.

Proof. Let {fi}∞i=1 be a countable dense subset of the unit ball in C(X). Define
a metric on P(X) by

d(µ, ν) =

∞∑
i=1

2−i|
ˆ
fidµ−

ˆ
fidν|

It is easy to check that this is a metric. We must show that the topology induced
by this metric is the weak-* topology.

If µn → µ weak-* then
´
fidµn−

´
fidµ→ 0 as n→∞, hence d(µn, µ)→ 0.

Conversely, if d(µn, µ)→ 0, then
´
fidµn →

´
fidµ for every i and therefore

for every linear combination of the fis. Given f ∈ C(X) and ε > 0 there is a
linear combination g of the fi such that ‖f − g‖∞ < ε. Then

|
ˆ
fdµn −

ˆ
fdµ| < |

ˆ
fdµn −

ˆ
gdµn|+ |

ˆ
gdµn −

ˆ
gdµ|+ |

ˆ
gdµ−

ˆ
fdµ|

< ε+ |
ˆ
gdµn −

ˆ
gdµ|+ ε

and the right hand side is < 3ε when n is large enough. Hence µn → µ weak-*.
Since the space is metrizable, to prove compactness it is enough to prove

sequential compactness, i.e. that every sequence µn ∈ P(X) has a convergent
subsequence. Let V = spanQ{fi}, which is a countable dense Q-linear subspace
of C(X). The range of each g ∈ V is a compact subset of R (since X is compact
and g continuous) so for each g ∈ V we can choose a convergent subsequence
of
´
gdµn. Using a diagonal argument we may select a single subsequence µn(j)

such that
´
gµn(j) → Λ(g) as j → ∞ for every g ∈ V . Now, Λ is a Q-linear
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functional because

Λ(afi + bfj) = k lim

ˆ
(afi + bfj) dµn(k)

= lim
k→∞

a

ˆ
fidµn(k) + b

ˆ
fjdµn(k)

= aΛ(fi) + bΛ(fj)

Λ is also uniformly continuous because, if ‖fi − fj‖∞ < ε then

|Λ(fi − fj)| =

∣∣∣∣ lim
k→∞

ˆ
(fi − fj) dµn(k)

∣∣∣∣
≤ lim

k→∞

ˆ
|fi − fj |dµn(k)

≤ ε

Thus Λ extends to a continuous linear functional on C(X). Since Λ is positive
(i.e. non-negative on non-negative functions), sos is its extension, so by the
Riesz representation theorem there exists µ ∈ P(X) with Λ(f) =

´
fdµ. By

definition
´
gdµ−

´
gdµn(k) → 0 as k →∞ for g ∈ V , hence this is true for the

fi, so d(µn(k), µ)→ 0 Hence µn(k) → µ weak-* .

9.2 Conditional expectation
When (X,B, µ) is a probability space, f ∈ L1, and A a set of positive measure,
then the conditional expectation of f on A is usually defined as 1

µ(A)

´
A
f dµ.

When A has measure 0 this formula is meaningless, and it is not clear how
to give an alternative definition. But if A = {Ai}i∈I is a partition of X into
measurable sets (possibly of measure 0), one can sometimes give a meaningful
definition of the conditional expectation of f on A(x) for a.e. x, where A(x) is
the element Ai containing x. Thus the conditional expectation off on A is a
function that assigns to a.e. x the conditional expectation of f on the set A(x).
Rather than partitions, we will work with σ-algebras; the connection is made
by observing that if E is a countably-generated σ-algebra then the partition of
X into the atoms of E is a measurable partition.

Theorem 9.2.1. Let (X,B, µ) be a probability space and E ⊆ B a sub-σ algebra.
Then there is a linear operator L1(X,B, µ)→ L1(X, E , µ) satisfying

1. Chain rule:
´
E(f |E) dµ =

´
f dµ.

2. Product rule: E(gf |E) = g · E(f |E) for all g ∈ L∞(X, E , µ).

Proof. We begin with existence. Let f ∈ L1(X,B, µ) and let µf be the finite
signed measure dµf = fdµ. Then µf � µ in the measure space (X,B, µ) and
this remains true in (X, E , µ). Let E(f |E) = dµf/dµ ∈ L1(X, E , µ), the Radon-
Nykodim derivative of µf with respect to µ in (X, E , µ).
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The domain of this map is L1(X,B, µ) and its range is in L1(X, E , µ) by the
properties of dµf/dµ.

Linearity follows from uniqueness of the Radon-Nykodim derivative and the
definitions. The chain rule is also immediate:ˆ

E(f |E) dµ =

ˆ
dµf
dµ

dµ =

ˆ
f dµ

For the product rule, let g ∈ L∞(X, E , µ). We must show that g · dµf

dµ =
dµgf

dµ

in (X, E , µ). Equivalently we must show that
ˆ
E

g
dµf
dµ

dµ =

ˆ
E

dµgf
dµ

dµ for all E ∈ E

Now, for A ∈ E and g = 1A we have
ˆ
E

1A
dµf
dµ

dµ =

ˆ
A∩E

dµf
dµ

dµ

= µf (A ∩ E)

=

ˆ
A∩E

f dµ

=

ˆ
E

1Af dµ

=

ˆ
E

dµ1Af

dµ
dµ

so the identity holds. By linearity of these integrals in the g argument it holds
linear combinations of indicator functions. For arbitrary g ∈ L∞ we can take
a uniformly bounded sequence of such functions converging pointwise to g, and
pass to the limit using dominated convergence. This proves the product rule.

To prove uniqueness, let T : L1(X,B, µ)→ L1(X, E , µ) be an operator with
these properties. Then for f ∈ L1(X,B, µ) and E ∈ E ,

ˆ
E

Tf dµ =

ˆ
1ETf dµ

=

ˆ
T (1Ef) dµ

=

ˆ
1Ef dµ

=

ˆ
E

f dµ

where the second equality uses the product rule and the third uses the chain
rule. Since this holds for all E ∈ E we must have Tf = dµf/dµ.

Proposition 9.2.2. The conditional expectation operator satisfies the following
properties:



CHAPTER 9. APPENDIX 101

1. Positivity: f ≥ 0 a.e. implies E(f |E) ≥ 0 a.e.

2. Triangle inequality: |E(f |I)| ≤ E(|f | |I).

3. Contraction: ‖E(f |E)‖1 ≤ ‖f‖1; in particular, E(·|E) is L1-continuous.

4. Sup/inf property: E(sup fi|E) ≥ supE(fi|E) and E(inf fi|E) ≤ inf E(fi|E)
for any countable family {fi}.

5. Jensen’s inequality: if g is convex then g(E(f |E)) ≤ E(g ◦ f |E).

6. Fatou’s lemma: E(lim inf fn|E) ≤ lim inf E(fn|E).

Remark 9.2.3. Properties (2)–(6) are consequences of positivity only.

Proof. (1) Suppose f ≥ 0 and E(f |E) 6> 0, so E(f |E) < 0 on a set A ∈ E of
positive measure. Applying the product rule with g = 1A, we have

E(1Af |E) = 1AE(f |E)

hence, replacing f by 1A, we can assume that f ≥ 0 and E(f |E) < 0. But this
contradicts the chain rule since

´
f dµ ≥ 0 and

´
E(f |E) dµ < 0.

(2) Decompose f into positive and negative parts, f = f+ − f−, so that
|f | = f+ + f−. By positivity,

|E(f |E)| = |E(f+|E)− E(f−|E)|
≤ |E(f+|E)|+ |E(f−|E)|
= E(f+|E) + E(f−|E)

= E(f+ + f−|E)

= E(|f | |E)

(3) We compute:

‖E(f |E)‖1 =

ˆ
|E(f |E)| dµ

≤
ˆ

E(|f | |E)| dµ

=

ˆ
|f | dµ

= ‖f‖1

where we have used the triangle inequality and the chain rule.
(4) We prove the sup version. By monotonicity and continuity it suffices

to prove this for finite families and hence for two functions. The claim now
follows from the identity max{f1, f2} = 1

2 (f1 + f2 + |f1 − f2|), linearity, and
the triangle inequality.

(5) For an affine function g(t) = at+ b,

E(g ◦ f |E) = E(af + b|E) = aE(f |E) + b = g ◦ E(f |E)
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If g is convex then g = sup gi where {gi}i∈I is a countable family of affine
functions. Thus

E(g ◦ f |E) = E(sup
i
gi ◦ f |E)

≥ sup
i

E(gi ◦ f |E)

= sup
i
gi ◦ E(f |E)

= g ◦ E(f |E)

(6) Since infk>n fk ↗ lim inf fk as n→∞ the convergence is also in L1, so
by continuity and positivity the same holds after taking the conditional expec-
tation. Thus, using the inf property,

lim inf
n→∞

E(fn|E) = lim
n→∞

inf
k>n

E(fk|E)

≥ lim
n→∞

E( inf
k>n

fk|E)

= E(lim inf
n→∞

fn|E)

Corollary 9.2.4. The restriction of the conditional expectation operator to
L2(X,B, µ) coincides with the orthogonal projection π : L2(X,B, µ)→ L2(X, E , µ).

Proof. Write π = E(·|E). If f ∈ L2 then by by convexity of t→ t2 and Jensen’s
inequality (which is immediate for simple functions and hence holds for f ∈ L1

by approximation),

‖πf‖2 =

ˆ
|E(f |E)|2 dµ

≤
ˆ

E(|f |2|E) dµ

=

ˆ
|f |2 dµ by the chain rule

= ‖f‖2

Thus π maps L2 into the subspace of E-measurable L2 functions, hence π :
L2(X,B,m)→ L2(X, E , µ). We will now show that π is the identity on L2(X, E , µ)
and is π. Indeed, if g ∈ L2(X,E, µ) then for every A ∈ E

πg = E(g · 1|E)

= g · E(1|E)

Since
´
E(1|E) =

´
1 = 1, this shows that π is the identity on L2(X, E , ). Next



CHAPTER 9. APPENDIX 103

if f, g ∈ L2 then fg ∈ L1, and

〈f, πg〉 =

ˆ
f · E(g|E) dµ

=

ˆ
E (f · E(g|E)) dµ by the chain rule

=

ˆ
E (f |E)E(g|E) dµ by the product rule

=

ˆ
E (E(f |E) · g) dµ by the product rule

=

ˆ
E(f |E) · g dµ by the chain rule

= 〈πf, g〉

so π is self-adjoint.

9.3 Regularity
I’m not sure we use this anywhere, but for the record:

Lemma 9.3.1. A Borel probability measure on a complete (separable) metric
space is regular.

Proof. It is easy to see that the family of sets A with the property that

µ(A) = inf{µ(U) : U ⊇ A is open}
= sup{µ(C) : C ⊆ A is closed}

contains all open and closed sets, and is a σ-algebra. Therefore every Borel set
A has this property. We need to verify that in the second condition we can
replace closed by compact. Clearly it is enough to show that for every closed
set C and every ε > 0 there is a compact K ⊆ C with µ(K >> µ(C)− ε.

Fix C and ε > 0. For every n we can find a finite family Bn,1, . . . , Bn,k(n) of
δ-balls whose union Bn =

⋃
Bn,i intersects A in a set of measure > µ(A)−ε/2n.

Let K0 = C ∩
⋂
Bn, so that µ(K0) > µ(C) − ε. By construction K0 is pre-

compact, and K = K0 ⊆ C, so K has the desired property.


