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Abstract

1 Historic Background

The program of statistical physics started with the aim of understanding how the mi-
croscopic considerations (say, the mechanics of single molecules) lead to macroscopic
observations of the whole system. In particular, but not exclusively, the behaviour of
an ideal gas (a liter of which roughly contains 2.7 · 1022 molecules, cf. to the ≈ 2.71026

(the number of Avogadro) in a mol of substance.

• The macroscopic and experimental theory of the time included measurements of
temperature, pressure, energy, etc. How should they be understood as averages
over the movements of all the single particles? One is helped by conservation
laws, such as the First Law of Thermodynamics:

U = Q−W energy flow = heat flow minus net work done.

• What exactly is entropy, i.e., the measure of disorder of the system. It appears
in the Second Law of Thermodynamics:

dQ = TdS heat transfer = temperature times change of entropy

and the Third Law of Thermodynamics:

the entropy of a perfect crystal at zero temperature is zero,

but how to define such a quantity mathematically?

• Explain the macroscopic laws of thermodynamics, especially:
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– Systems strive towards lowest energy.

– Systems strive towards largest entropy.

Especially the last was not without controversy: Newtonian reversibility doesn’t
reconcile with increase of entropy. Apart from this, there is Gibbs’ paradox:
Imagine a container divided into two parts A and B, which do communicate.
The parts A and B are filled randomly with gases gA and gB. If gA and gB are
different, the entropy increases by the mixture of the gases. If gA and gB are the
same gas, then entropy is already maximal.

• Description of phase transitions:

solid ↔ liquid ↔ gaseous

magnetized ↔ non-magnetized

super-conductive ↔ conductive ↔ non-conductive

Some of the protagonists of this theory are the following:

• James Clark Maxwell (1831 - 1879). Although his work of electromagnetism and
color theory is much better known, he did publish works of kinetic theory of gas
and also the “molecular” structure of conductors.

• Ludwig Boltzmann (1844 - 1906). He is basically the founder of this theory, but
his ideas met with a lot of criticism. This was in a time when the existence of
atoms was still a hypothesis rather than a fact. His theory didn’t match empiri-
cal observations, and didn’t yet fully explain the problems with entropy increase.
Boltzmann moved between universities a lot (Graz, Vienna, Leipzig), being usu-
ally very unhappy if he shared his working place with scientific adversaries (e.g.
Mach in Vienna, Oswald in Leipzig). Nonetheless he had success; for instance,
his lectures on natural philosophy were so popular that the largest lecture hall in
Vienna at the time wasn’t big enough, and he had to move his lectures to a hall
in the imperial palace.

• Josiah Willard Gibbs (1839 - 1903). Gibbs was the first to include probability
theory in his analysis, and may be credited with coining the word “statistical
mechanics”. He published only late in his life. His 1902 book on the subject was
praised by its mathematical rigor and elegance, but sometimes criticised for not
really addressing the physical-philosophical problems of the structure of gases.

• Henri Poincaré (1854 - 1912). His theorem (now called Poincaré recurrence) gave
a mathematical refutation of the principle of ever increasing entropy.

• Albert Einstein (1879 - 1955). Between 1902 to 1904, Einstein published sev-
eral papers on statistical mechanics, which were definitely helpful in his treatise
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of Brownian motion and of the photo-electric effect (1905), for which he would
eventually receive the Nobel prize (i.e., not for his relativity theory!).

• Paul and Tatiana Ehrenfest (1880 - 1933 and 1876 - 1964) published in 1910 an
influential paper on the subject, in which they made the state of the art of the
time accessible to a wide (German-speaking) audience. Among other things, they
gave a more modest and mathematcally sound version of Boltzmann’s famous but
unrealistic Ergoden Hypothese.

• George Birkhoff (1884 – 1944) proved in 1931 the pointwise version of the Ergodic
Theorem which was long anticipated, and was crucial for the development of the
mathematical side of thermodynamic formalism.

• John von Neumann (1903 – 1957) proved the Lp version of the Ergodic Theorem.
His result came before Birkhoff’s but was published slightly later (in 1932). In
this struggle for priority, Birkhoff was not entirely innocent.

• Wilhelm Lenz (1988 - 1957) was PhD supervisor of Ising (below), and suggested
a now famous model of ferro-magnetism to Ising.

• Ernst Ising (1900 - 1998) treated this system in his thesis, found no “phase transi-
tions” and but concluded that the model was insufficient to explain the magneti-
zation of iron. He was in fact quite surprised to learn that 25 years after his thesis,
people were still interested. In fact, the model doesn’t explain magnetization in
a one-dimensional model, but performs much better in dimension three.

• Andrej Kolmogorov (1903-1987), Russian probabilist and founding father of er-
godic theory in Russia. His definiton of entropy paved the way for the current
mathematical approach to thermodynamic formalism.

The introduction of thermodynamic formalism within the mathematical field of dynam-
ical systems occurred in the 1970s, and was primarily due to the following people.

• Yakov Sinăı(1935 -): Mathematical physicists in moscow and Princeton, student
of Kolmogorov. He proved the ergodicity of what is now called Sinai billiards,
which is a model for bounding molecules in a gas.

• David Ruelle (1935 -): Mathematical physicists born in Belgium but worked
mostly in France, mainly on statistical physics and turbulence. The Ruelle-Takens
route to chaos, Ruelle’s ζ-function and the Ruelle inequality are named after him.

• Rufus Bowen (1947 - 1978): Mathematician at Berkeley (USA), student of Field’s
medalist Stephen Smale, worked on Axiom A diffeomorphisms and symbolic dy-
namics.
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1.1 Introductory example of the Ising model

This extended example is meant to give a feel for many of the ingredients in thermody-
namic formalism. It is centred around a simplified Ising model, which can be computed
completely.

We take the configuration space Ω = {−1,+1}Z, that is the space of all bi-infinite
sequences of +1’s and −1’s. This give a rough model of ferro-magnetic atoms arranged
on a line, having spin either upwards (+1) or downwards (−1). If all spins are upwards
(or all downwards), then the material is fully magnetized, but usually the heat in the
material means that atom rotate directing their spin in all directions over time, which
we discretize to either up or down.

Of course, infinitely many atoms is unrealistic, and hence a configuration space {−1,+1}[−n,n]

would be better (where [−n, n] is our notation of the integer interval {−n,−n+1, . . . , n−
1, n}), but for simplicity, let us look at the infinite line for the moment.

A probability measure µ indicates how likely it is to find a particular configuration,
or rather a particular ensemble of configurations. For example, the fully magnetized
states are expressed by the measures:

δ+(A) =

{
1 if A 3 (. . . ,+1,+1,+1,+1, . . . )
0 if A 63 (. . . ,+1,+1,+1,+1, . . . )

and δ− with the analogous definition. For these two measures, only one configuration
is likely to occur. Usually a single configuration occurs with probability zero, and we
have to look at ensembles instead. Define cylinder sets

Cm,n(ω) = {ω′ ∈ Ω : ω′i = ωi for i ∈ [m,n]}

as the set of all configurations that agree with configuration ω on sites i for m 6 i 6 n.
Its length is n−m+ 1. Another notation would be Cm,n(ω) = [ωmωm+1 . . . ωn].

The Bernoulli measure (stationary product measure) µp is defined as1

µp([ωmωm+1 . . . ωn]) =
n∏

i=m

p(ωi), where p(+1) = p and p(−1) = 1− p.

There is a Bernoulli measure µp for each p ∈ [0, 1] and µ1 = δ+, µ0 = δ−. However,
for p ∈ (0, 1), every single configuration has measure 0. The Law of Large Numbers
implies that the set of configurations in which the frequency of +1’s is anything else
than p has zero measure.

Since physical problem is translation invariant. Define the left-shift as

σ(ω)i = ωi+1.

1This measure extends uniquely to all measurable sets by Kolmogorov’s Extension Theorem.
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Translation invariance of a measure then means shift-invariance: µ(A) = µ(σ(A)) for
each ensemble A ⊂ Ω. Many probability measures on Ω are not translation invariant,
but fortunately, the examples µp above are.

Another example of shift-invariant measures are the Gibbs measures, associated to some
potential function ψ : Ω → R; the integral

∫
Ω
ψ dµ is called the (potential) energy of

µ.

Definition 1. A measure µ is a Gibbs measure w.r.t. potential function ψ : Ω→ R
if there are constants C > 0 and P ∈ R such that for all cylinder sets Cm,n and all
ω ∈ Cm,n,

1

C
6

µ(Cm,n)

exp
∑n

i=m(ψ ◦ σi(ω)− P )
6 C. (1)

The number P is called the pressure; in this setting it is a sort of normalizing constant,
adjusting the exponential decrease of the denominator to the exponential decrease of the
numerator2

If we choose the potential to be

ψ(ω) =

{
log p if ω0 = +1

log 1− p if ω0 = −1
,

then the Bernoulli measure µp is actually a Gibbs measure, with pressure P = 0 and
“distortion constant” C = 1. Indeed,

µ(Cm,n(ω)) =
n∏

i=m

p(ωi) =
n∏

i=m

eψ(σi(ω)) = exp(
n∑

i=m

ψ(σi(ω))),

and (1) follows.

The next ingredient is entropy. We postpone the precise definition, except for to say
that there are different kinds. The system itself can have topological entropy htop(σ)
which is independent of the measure, while each shift-invariant measure µ has its metric
entropy or rather measure theoretical entropy hµ(σ). For the Bernoulli measure
µp, the measure theoretical entropy is

hµp(σ) = −(p log p+ (1− p) log(1− p))

is the minus the expectation of ψ.

Exercise 1. For ϕ : [0, 1] → R defined as ϕ(x) = − (x log x+ (1− x) log(1− x)), we
can write hµp(σ) = ϕ(p). Compute the limits limx→0 ϕ(x) and limx→1 ϕ(x). Conclude
that δ+ and δ− have zero entropy. (This agrees with the idea that entropy is suppose to
measure disorder.) Where does ϕ assume its maximum? What does this suggest about
the measure of maximal entropy?

2This is the definition for one-dimensional lattices. For a d-dimensional lattice, we need to add an
extra factor (n−m + 1)d−1 in the lower and upper bounds in (1).
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Exercise 2. Compute its first and second derivative. Is ϕ (strictly) concave?

Let us fix the potential

ψ(ω) =

{
0 if ω0 = +1
1 if ω0 = −1.

(2)

The potential energy E(µ) =
∫

Ω
ψ dµ becomes smaller for measures that favours con-

figurations ω where many entries are +1. We can think of ψ as representing a fixed
external magnetic field; the better the atoms align themselves to this field, the smaller
the potential energy of their configuration. In extremo, E(δ+) = 0, but the entropy of
δ+ is zero, so we don’t maximise entropy with this choice.

Pressure can also be defined by the Variational Principle. We introduce a weighing
parameter β ∈ R between energy and entropy content of the measure. The physical
interpretation of β = 1/T , where T stands for the absolute temperature (i.e., degrees
Kelvin normalised in some way), and thus it makes only physical sense to take β ∈
(0,∞), but we will frequently look at limit case β → 0 and β →∞.

Now let the (Variational) Pressure be

P (β) = sup{hµ(σ)− β
∫
ψ dµ : µ is a shift-invariant probability measure} (3)

A shift-invariant probability measure µ is called equilibrium state or equilibrium
measure, if it assume the pressure in (3).

For the limit case T → ∞, i.e., β → 0, the potential energy plays no role, and we are
just maximising entropy. For the limit case T → 0, i.e., β → ∞, the potential energy
becomes all important, so in our example we expect δ+ to be the limit equilibrium state.
The physical interpretation of this statement is: as the temperature decreases to zero
for some fixed external magnetic field (and also as the external magnetic field grows to
infinity), the material becomes totally magnetized.

The question is now: do we find total magnetization (i.e., the measure δ+ as equilibrium
state) also for some positive temperature (or finite external magnetic field)?

For each fixed measure, the function β 7→ hµ(σ) + β
∫
ψ dµ is a straight line with slope

−
∫
ψ dµ (non-positive because our potential ψ is non-negative) and abscissa hµ(σ). If

we look at (3) again, we can view the pressure function β 7→ P (β) as the envelope of
all these straight lines. From this it follows immediately that β 7→ P (β) is continuous
and convex (and non-increasing due to ψ being non-negative).

Once full magnetization is obtained, increasing β further will not change the equilibrium
state anymore. Indeed, there is no measure that favours ωi = +1 more than δ+. So if
there is a finite β0 such that δ+ is equilibrium state, then P (β) = 0 for all β > β0. We
can call this a freezing phase transition, because at this parameter, the equilibrium
state doesn’t change anymore (as if the system is frozen in one configuration). The
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right-hand slope of the pressure function at β0 is 0; how abrupt this phase transition
is depends also on the left slope at β0 which might be different from 0, but always > 0
because of convexity.

Let us now do the computation if there really is a phase transition at a finite β0.
For simplicity (and without justification at the moment) we will only compute the
supremum in (3) over the Bernoulli measures µp. So then (3) simplifies to

P (β) = sup
p∈[0,1]

− (p log p+ (1− p) log(1− p))− β(1− p) =: sup
p∈[0,1]

F (µp, β)

The quantity F (µp, β) is called the free energy of the measure µp. In our simplified
case, it is a smooth curve in p, so to find the supremum (= maximum), we simply
compute the derivative and put it equal to 0:

0 =
∂

∂p
F (µp, β) = −(log p− log(1− p)) + β.

This is equivalent to log p
1−p = β, i.e.,

p =
eβ

1 + eβ
, 1− p =

1

1 + eβ

Substituting in P (β), we find that the pressure is

P (β) = −
(

eβ

1 + eβ
log

eβ

1 + eβ
+

1

1 + eβ
log

1

1 + eβ

)
− β 1

1 + eβ

= −

(
eβ + 1

1 + eβ
log

eβ

1 + eβ︸ ︷︷ ︸+
1

1 + eβ
log

1

1 + eβ
− 1

1 + eβ
log

eβ

1 + eβ︸ ︷︷ ︸
)
− β 1

1 + eβ

= −
(

log
eβ

1 + eβ
− β

1 + eβ

)
− β

1 + eβ

= log(1 + e−β)


→ 0 as β →∞
= log 2 if β = 0
∼ −β as β → −∞

So the pressure function is smooth (even real analytic) and never reaches the line β ≡ 0
for any finite β. Hence, there is no phase transition.

Exercise 3. Verify that for potential (2), µp is indeed a Gibbs measure. For which value
of the pressure? Here it is important to incorporate the factor −β in the potential, so
ψβ(ω) = 0 if ω0 = 1 and ψβ(ω) = −β if ω0 = −1.

In the proper Ising model, the potential also contains also a local interaction term
between nearest neighbors:

ψ(ω) =
∑
i

Jωiωi+1 + ψext(ω),
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where J < 0, so neighboring atomic magnets with the same spin have lower joint energy
than neighboring atoms with opposite spin. The term ψext(ω) still stands for the exter-
nal magnetic field, and can be taken as ψ in (2). This gives a problem for the infinite
lattice, because here all configurations have a divergent sum

∑
i Jωiωi+1. Ising’s solu-

tion to this problem lies in first dealing with a large lattice [−n, n], so the configuration
space is {−1,+1}[−n,n], and considering the Gibbs measures and/or equilibrium states
projected to fixed finite lattice [−m,m] (these projections are called marginal mea-
sures), and then letting n tend to infinity. Such limits are called thermodynamic
limits. If there is no external magnetic field (i.e., ψext ≡ 0), then as β →∞, n→∞,
there are two ergodic thermodynamic limits, namely δ+ and δ−. There is no preference
from one over the other; this preference would arise if the is an external magnetic field
of definite direction. However, no such magnetization takes place for a finite β. For this
reason, Ising dismissed the model as a good explanation for magnetization of iron (and
other substances). However, as was found much later, on higher dimensional lattices,
the Ising model does produce phase transitions and magnetization at finite values of β
(i.e., positive temperature).

2 Configuration Spaces, Subshifts of Finite Type

and Symbolic Dynamics

In this section we provide some examples of frequently occurring configuration spaces,
and we want to give an indication of their size, which is directly related to the complexity
of the maps we define on them. We start with symbolic spaces, which may seem the most
abstract, but which are used to code dynamics on more concrete space symbolically.

2.1 Symbolic spaces

Let A = {0, . . . , N − 1} be some finite collection of symbols, called the alphabet. We
can make finite words of these symbols by concatenation; the notation of the collection
of these finite words is A∗. More interesting are the infinite words of symbols, AN0 or
AZ, depending on we have one-sided (with N0 = {0, 1, 2, 3, . . . }) or two-sided infinite
words. If Ω = AN0 or AZ, then we can define the left-shift σ : Ω→ Ω as

σ(ω)i = ωi+1 for all i ∈ N or Z.

The space (Ω, σ) is called the one-sided and two-sided full shift on n letters. The
left-shift is invertible (and σ−1 is the right-shift) on two-sided infinite words, i.e., on
Ω = AZ. Define a metric on Ω as

d(ω, ω′) =
∑
n

2−|n|(1− δ(ωn, ω′n)), where the Dirac delta δ(a, b) =

{
1 if a = b
0 if a 6= b
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In this metric, two words ω and ω′ are close together if they agree on a large block
around the zero-th coordinate.

Exercise 4. Show that in the above topology, Ω is a Cantor set. That is: Ω is compact,
has no isolated points and is totally disconnected (each of its connected components is
a point).

Exercise 5. There is nothing special about the number 2. We could take any λ > 1
instead, obtaining a metric

dλ(ω, ω
′) =

∑
n

λ−|n|(1− δ(ωn, ω′n)).

Show that the metrics d and dλ are not equivalent in the sense that there would be C > 0
so that

1

C
d(ω, ω′) 6 dλ(ω, ω

′) 6 Cd(ω, ω′).

On the other hand, show that the identity map I : (Ω, d)→ (Ω, dλ) is uniformly contin-
uous, with uniformly continuous inverse.

Exercise 6. Take λ > 2 and show that the identity map I : (Ω, d)→ (Ω, dλ) is Hölder
continuous, i.e., there are C and exponent α such that

dλ(ω, ω
′) 6 Cd(ω, ω′)α.

What is the largest value of α that we can take?

Definition 2. A set Σ ⊂ Ω is called a subshift if it is closed and shift-invariant, i.e.,
σ(Σ) ⊂ Σ.

The prime example of a subshift are the subshifts of finite type (SFT) in which the
occurrence of a finite collection of words is forbidden. For example, the Fibonacci SFT

Σ¬11 = {ω ∈ {0, 1}N or {0, 1}Z : ωiωi+1 6= 11 for all i}.

Naturally, we can think of SFTs in which blocks of length > 2 are forbidden, but since
there are only finitely many forbidden word, we can always recode the subshift (using
a larger alphabet) so as to obtain a SFT in which only some words of length 2 are
forbidden. This means that we can define a transition matrix:

A = (ai,j)
N−1
i,j=0 ai,j =

{
1 if the word ij is allowed,
0 if the word ij is forbidden.

For example, the transition matrix of Σ¬11 is

(
1 1
1 0

)
. The transition matrix A is a non-

negative matrix, and hence (by the Perron-Frobenius Theorem) has a real eigenvalue
ρ(A) which is at least as large as any other eigenvalue of A. In fact, if A is irreducible
and a-periodic (that is, there is n0 ∈ N such that An is a strictly positive matrix for all
n > n0), then ρ(A) has multiplicity one and is strictly larger than the absolute value of
every other eigenvalue.
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Exercise 7. Examine the eigenvalues of(
1 0
0 1

)
and

(
0 1
1 0

)
to see what lack of irreducibility and of non-periodicity can mean.

Exercise 8. Recode the SFT Σ¬101,111 to a SFT with forbidden words of length 2 only.
Compute the corresponding transition matrix.

Example 1. One can consider configuration spaces over higher-diemnsional lattices,
for instance

Ω = {−1,+1}Z2

for which every ω ∈ Ω is an infinite square patterns of −1’s and +1s. There are now
two shifts, the left-shift σ with σ−1 being the right-shift, but also the down-shift τ with
τ−1 being the up-shift, and τ ◦ σ = σ ◦ τ . Also here you can consider subshifts of finite
type, for instance Σ¬11,

1
1

would stand for all infinite square patterns of −1’s and +1s

without two +1s begin left-right or up-down neighbors, but diagonal neighbors is allowed.
In this case, the word-complexity p(m,n), here the number of different patterns in an
m× n-block, is an open problem. We don’t know the precise value of limn

1
n

log p(n, n).

2.2 Sizes of symbolic spaces

Recall that cylinder sets of length n−m+ 1 are

Cm,n(ω) = [ωmωm+1 . . . ωn] = {ω′ ∈ Ω : ω′i = ωi for i ∈ [m,n]}

as the set of all configurations that agree with configuration ω on sites i for m 6 i 6
n. If Ω is a one-sided shift-space, then it is convenient to abbreviate n-cylinders as
Cn(ω) = [ω0 . . . ωn−1].

Definition 3. The word-complexity of a subshift Σ is defined as

p(n) = p(n,Σ) = #{different n-cylinders in Σ}.

Clearly p(n) = Nn for the full-shift on N letters. For the Fibonacci shift Σ¬11 on two
letters we have

p(1) = 2, p(2) = 3, p(3) = 5, . . . , p(n) is n+ 1st Fibonacci number.

To see why this is true, let p0(n) be the number of n-cylinders ending with 0 and p0(n)
be the number of n-cylinders ending with 1. Then p1(n) = p0(n − 1), because every 1
must have been precede by a 0. On the other hand, p0(n) = p1(n − 1) + p0(n − 1) =
p0(n−2)+p0(n−1). With initial values p0(1) = 1 and p0(2) = 2, it follows immediately
that p0(n) is the n-th Fibonacci number. The step to p(n) is now easy.
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Theorem 1. For a SFT with transition matrix A,

lim
n→∞

1

n
log p(n) = log ρ(A)

is the logarithm of the largest (Perron-Frobenius) eigenvalue of A.

Proof. Matrix multiplication An = (ani,j)
N−1
i,j=0 gives the number of allowed words of

length n + 1 that start with i and end with j. Hence the total number of words of
length n+1 is

∑N−1
i,j=0 a

n
i,j, but the latter grows as ρ(A)n (disregarding polynomial factors

if the Jordan block associated to ρ(A) is non-trivial). Therefore limn→∞
1
n

log p(n) =
limn→∞

1
n

log ρ(A)n = log ρ(A), as required.

2.3 Further configuration spaces

In this subsection, we review some configuration spaces and maps acting on them that
frequently occur in thermodynamic formalism an dynamics as a whole. Without a
physical interpretation as direct, maybe, as {−1,+1}Z as the simple Ising model of
Section 1, it is quite common within mathematics to use manifolds as configuration
space Ω. In this setting, the word “configuration” seems less apt, so we tend to prefer
the word phase space instead, even though this has nothing to do with phase transition
in physics. Maybe dynamical space would yet be better, but that is not used so often,
in fact only to distinguish it from parameter space.

Examples of phase spaces are: the unit interval [0, 1], the unit circle S1 = R/Z, the
d-dimensional torus Td = Rd/Zd, the d-dimensional sphere Sd, etc. In this case, there
is no shift, but we have to specify the dynamics f : Ω → Ω explicitly, and it doesn’t
express translation invariance anymore.

Example 2. An example is the angle doubling map T2 : S1 → S1, defined as

T2(x) = 2x (mod 1),

and the generalization Td(x) = dx (mod 1) for any d ∈ Z is easy to grasp. In fact, there
is no reason to stick to integer d; we can define the β-transformation (see Figure 1)
for any β ∈ R as

Tβ(x) = βx (mod 1).

This is not continuous anymore for non-integer β, taking away the advantage of the
circle S1. Therefore, the β transformation is usually defined on the unit interval: Tβ :
[0, 1]→ [0, 1].

Example 3. The rotation map Rγ : S1 → S1 is defined as

Rγ(x) = x+ γ (mod 1),
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Figure 1: The β-transformation (β = 2.7), quadratic Chebyshev map and Gauss map.

and depending on whether the rotation angle γ is rational or not, every orbit is periodic
or dense. One can easily construct higher dimensional analogs, i.e., rotations R~γ : Td →
Td with a d-dimensional rotation vector.

Example 4. The integer matrix A =

(
2 1
1 1

)
acts as a linear transformation on R2,

with eigenvalues λ± = 3±
√

5
2

and eigenvectors ~v± =

(
1±
√

5
2

1

)
. It preserves the integer

lattice Z2, so it is possible to defined the factor map f : T2 = R2/Z2 → T2 as

f

(
x
y

)
=

(
2 1
1 1

)(
x
y

)
(mod 1).

This is called Arnol’d cat-map because Arnol’d in his book [2, 3] uses a picture of a
cat’s head to show what happens to shapes when iterated by f . The tangent space Tp

of the fixed point p =

(
0
0

)
(and in fact near every point), decomposes in an unstable

direction Eu(p) = span ~v+ and a stable direction Es(p) = span ~v−. This means that
shapes are stretched by a factor λ+ in the ~v+-direction and contracted by a factor λ− in
the ~v−-direction. But since λ+ · λ− = 1, the area doesn’t change under f .

Definition 4. A map f on a d-dimensional manifold M is called Anosov if

• At each p ∈ M , there is a splitting of the tangent space TpM = Eu(p) ⊕ Es(p)
which is invariant under the derivative map: Dfp(E

u/s(p)) = Eu/s(f(p)).

• The splitting Eu(p)⊕ Es(p) depends continuously on the point p.

• There is exponential expansion and contraction along Eu/s(p), i.e., there is λ > 1
and C > 0 such that

‖Dfnp · v‖ > Cλn‖v‖ for all v ∈ Eu and p ∈M ;

‖Dfnp · v‖ 6
1

C
λ−n‖v‖ for all v ∈ Es and p ∈M.
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2.4 Symbolic dynamics

In this section we make the connection between dynamics on manifolds and symbolic
spaces. The latter is a coded version of the first. For this coding, we need a partition
P = (Xn) of the phase space X, and each partition element has Xn a label, which
is a letter from the alphabet A. The orbit orb(x) = (fk(x)) is associated to a code
i(x) = i0(x)i2(x) . . . (or i(x) = . . . i−1(x)i0(x)i2(x) . . . if f is invertible) defined as

ik(x) = n if fk(x) ∈ Xn. (4)

The coding map or itinerary map i : X → Ω = AN0 or AZ need not be injective
or continuous, but hopefully, the points where i fails to be injective or continuous are
so small as to be negligible in terms of the measures we are considering, see Section 3.
The following commuting diagram holds:

Ω - Ω
σ

? ?

i i

X - X
f

In other words: i ◦ f = σ ◦ i.

Example 5. Let us look at the angle doubling map T2 : S1 → S1. It is natural to use
the partition I0 = [0, 1

2
) and [1

2
, 1) because T2 : Ik → S1 is bijective for both k = 0 and

k = 1. Using the coding of (4), we find that i(x) is just the binary expansion of x! Note
however that i : S1 → Ω =: {0, 1}N0 is not a bijection. For example, there is no x ∈ S1

such that i(x) = 11111 . . . Also i is not continuous. For example,

lim
y↑ 1

2

i(y) = 0111 · · · 6= 1000 · · · = lim
y↓ 1

2

i(y).

The points x ∈ S1 where i is discontinuous is however countable (namely all dyadic
rationals) and the points ω ∈ Ω for which there is no x with i(x) = ω is also countable
(namely those sequences ending in an infinite block of ones. These are so small sets of
exceptions that we decide to neglect them. It is worth noting that in general no choice
of itinerary map can be a homeomorphism, simply because the topology of a manifold is
quite different from the topology of the symbol space Ω, i.e., a Cantor set.

Exercise 9. Show that i−1 : Ω → S1 is continuous (wherever defined). Is it Hölder
continuous or even Lipschitz?

Example 6. Coding for the cat-map.

Definition 5. Given a dynamical system f : X → X, a partition {Xk} of X is called
a Markov partition if f : Xk → f(Xk) is a bijection for each k, and:

• If f is non-invertible: f(Xk) ⊃ Xl whenever f(Xk) ∩Xl 6= ∅.
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• If f is invertible: f(Xk) stretches entirely across Xl in the expanding direction
whenever f(Xk) ∩ Xl 6= ∅, and f−1(Xk) stretches entirely across Xl in the con-
tracting direction whenever f−1(Xk) ∩Xl 6= ∅,

Using a Markov partition for the coding, the resulting coding spaces is a subshift of finite
type (two-sided or one-sided according to whether f is invertible or not.

Theorem 2. Every Anosov diffeomorphism on a compact manifold has a finite Markov
partition.

We will not prove this theorem, cf. [4, Theorem 3.12]. In general the construction of
such a Markov partition is very difficult and there doesn’t seem to be a general practical
method to create them. Therefore we restricted ourselves to the standard example of
the cat-map.

Example 7. Let Rγ : S1 → S1 be a circle rotation over an irrational angle γ. Take the
partition I0 = [0, γ) and I1 = [γ, 0). This is not a Markov partition, so the symbolic
dynamics resulting from it is not a subshift of finite type. Yet, it gives another type
of subshift, called Sturmian subshift Σγ, and is obtain as the closure of i(S1), or
equivalently (since every orbit of Rγ is dense in S1) the closure of {σn(i(x)) : n ∈ N0}.

2.5 Complexity of maps on phase spaces

We have defined word-complexity in Definition 3. Now that we have introduced sym-
bolic dynamics, this immediately gives a measure of the complexity of maps. Given
partitions P and Q of X (Markov partition or not), call

P ∨Q = {P ∩Q : P ∈ P and Q ∈ Q}

be the joint of P and Q. Let f : X → X be the dynamics on X and let f−1P =
{f−1(P ) : P ∈ P}. Define

Pn =
n−1∨
k=0

f−kP

Lemma 1. Each Pn ∈ Pn corresponds to exacly one cylinder set of length n in the
coding space Ω of (X, f) w.r.t P. (For this reason, we call the elements of Pn cylinder
sets as well.)

Exercise 10. Prove Lemma 1.

It turns out (as we shall see in Section 4) that the exponential growth rate of #Pn
is largely independent of the finite partition we take3. Therefore we can define the

3But naturally, there are always partitions where it doesn’t work, e.g. the trivial partition - it is
important that f : P → f(P ) is bijective on each P ∈ P.
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topological entropy

htop(f) = lim
n→∞

1

n
log #Pn = lim

n→∞

1

n
log p(n).

Lemma 2. Let H be the set of points determining a partition P of a (non-invertible)
dynamical system ([0, 1], f); we suppose H ⊃ {0, 1}. Then #Pn = #

(⋃n−1
k=0 f

−k(H)
)
.

Proof. Each element of Pn =
∨n
k=0 f

−kP corresponds to exactly one component of the
complement of

⋃n−1
k=0 f

−k(H). Since {0, 1} ⊂
⋃n−1
k=0 f

−k(H) by our choice of H, these
points separate [0, 1] in exactly #

(⋃n−1
k=0 f

−k(H)
)
− 1 intervals.

Corollary 1. The word-complexity of a Sturmian shift is p(n) = n+ 1.

Proof. The partition of (S1, Rγ) to be used is P = {[0, γ), [γ, 0)}, so H = {0, γ} and
R−1
γ (H) = {−γ, 0} adds only one point to H. Each next iterate add another point −nγ

to the set, so #
(⋃n−1

k=0 f
−k(H)

)
= n+ 1. This n+ 1 points separate S1 in exactly n+ 1

intervals, so p(n) = n+ 1.

Example 8. For the map T10(x) = 10x (mod 1), say on [0, 1), the natural partition is
P = P1 = {[0, 1

10
), [ 1

10
, 2

10
), . . . , [ 9

10
, 1)}. At every iteration step, each interval P ∈ Pn−1

splits into ten equal subintervals, so Pn = {[ a
10n
, a+1

10n
) : a = 0, . . . , 10n − 1} and

#Pn = 10n. Therefore the topological entropy htop(T10) = limn
1
n

log 10n = log 10.

Exercise 11. Take β = 1+
√

5
2

the golden mean and consider the β-transformation Tβ
with this slope. Show that #Pn is the n+ 1st Fibonacci number, and hence compute the
topological entropy.

Remark: The fact that both in Example 8 and Exercise 11 the topological entropy is
the logarithm of the (constant) slope of the map is no coincidence!

3 Invariant Measures

Definition 6. Given a dynamical system T : X → X, a measure µ is called invariant
if µ(B) = µ(T−1(B)) for every measurable set B. We denote the set of T -invariant
measures by M(T ).

Example 9. Examples of shift-invariant measures are Bernoulli measures on AN0 or
AZ. Dirac measures δp are invariant if and only if p is a fixed point. If p is periodic
under the shift, say of period n, then δorb(p) = 1

n

∑n−1
i=0 δσi(p) is invariant.

Example 10. For interval maps such as T (x) = nx (mod 1) (where n ∈ Z \ {0} is a
fixed integer, Lebesgue measure is T -invariant. Lebesgue measure is also invariant for
circle rotations: Rγ : S1 → S1, x 7→ x+ γ (mod 1).
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Theorem 3 (Poincaré’s Recurrence Theorem). If (X,T, µ) is a measure preserving
system with µ(X) = 1, then for every measurable set U ⊂ X of positive measure, µ-a.e.
x ∈ U returns to U , i.e., there is n = n(x) such that T n(x) ∈ U .

Naturally, reapplying this theorem shows that µ-a.e. x ∈ U returns to U infinitely of-
ten. Because this result uses very few assumptions, it posed a problem for the perceived
“Law of Increasing Entropy” in thermodynamics. If the movement of a gas, say, is to
be explained purely mechanical, namely as the combination of many particles moving
and bouncing against each other according to Newton’s laws of mechanics, and hence
preserving energy, then in principle it has an invariant measure. This is Liouville mea-
sure4 on the huge phase space containing the six position and momentum components
of every particle in the system. Assuming that we start with a containing of gas in
which all molecules are bunch together in a tiny corner of the container. This is a state
of low entropy, and we expect the particles to fill the entire container rather evenly,
thus hugely increasing the entropy. However, Poincaré Recurrence Theorem predicts
that at some time t, the system returns arbitrarily closely to the original system, so
again with small entropy. Ergo, entropy cannot increase monotonically throughout all
time.

Proof of Theorem 3. Let U be an arbitrary measurable set of positive measure. As µ
is invariant, µ(T−i(U)) = µ(U) > 0 for all i > 0. On the other hand, 1 = µ(X) >
µ(∪iT−i(U)), so there must be overlap in the backward iterates of U , i.e., there are
0 6 i < j such that µ(T−i(U)∩T−j(U)) > 0. Take the j-th iterate and find µ(T j−i(U)∩
U) > µ(T−i(U) ∩ T−j(U)) > 0. This means that a positive measure part of the set U
returns to itself after n := j − i iterates.

For the part U ′ of U that didn’t return after n step, assuming this part has positive
measure, we repeat the argument. That is, there is n′ such that µ(T n

′
(U ′) ∩ U ′) > 0

and then also µ(T n
′
(U ′) ∩ U) > 0.

Repeating this argument, we can exhaust the set U up to a set of measure zero, and
this proves the theorem.

Definition 7. A measure µ is ergodic if for every set A such that the inverse T−1(A) =
A holds: µ(A) = 0 or µ(Ac) = 0.

Ergodic measure cannot be decomposed into “smaller elements”, whereas non-ergodic
measure are mixtures of ergodic measures. For example, the angle doubling map T2 of
Example 2, taken on the interval [0, 1], has fixed points 0 and 1. The Dirac measures δ0

and δ1 are both invariant, and therefore every convex combination µλ = (1−λ)δ0 +λδ1

are invariant too. But µλ is not ergodic for λ ∈ (0, 1), whereas δ0 = µ0 and δ1 = µ1

4This is an invariant measure over continuous time t ∈ R, rather than discrete time as stated in
Theorem 3, but this doesn’t matter for the argument
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are. Lebesgue measure is another ergodic invariant measure for T2, but its ergodicity
is more elaborate to prove.

Every invariant measure µ can be decomposed into ergodic components, but in general
there are so many ergodic measures, that this decomposition is not finite (as in the
example above) but infinite, and it is expressed as an integral. Let Merg(T ) be the
collection of ergodic T -invariant measures. Then the ergodic decomposition of a
(non-ergodic) T -invariant measure µ requires a probability measure τ on the space
Merg(T ):

µ(A) =

∫
Merg

ν(A) dτ(ν) for all measurable subsets A ⊂ X. (5)

Every invariant measure has such an ergodic decomposition, and because of this, it
suffices in many cases to consider only the ergodic invariant measures instead of all
invariant measures.

Theorem 4 (Birkhoff’s Ergodic Theorem). If (X,T, µ) is a dynamical system with
T -invariant measure µ, and ψ : X → R is integrable w.r.t. µ. Then

lim
N→∞

1

N

N−1∑
i=0

ψ ◦ T i(x) = ψ̄(x)

exists µ-a.e., and the function ψ̄ is T -invariant, i.e., ψ̄(x) = ψ̄ ◦ T (x).

If in addition, µ is ergodic, then ψ̄(x) is constant, and
∫
ψ̄ dµ =

∫
ψ dµ. In other

words, the space average of ψ over an ergodic invariant measure is the same as the
time average of the ergodic sums of µ-a.e. starting point:∫

X

ψ dµ = lim
N→∞

1

N

N−1∑
i=0

ψ ◦ T i(x) µ-a.e. (6)

Birkhoff’s Ergodic Theory (proved in 1931) is a milestone, yet preceded by a short while
by Von Neumann’s L2 Ergodic Theorem, in which the convergence of ergodic averages
is in the L2-norm.

Example 11. Let T : [0, 1] → [0, 1] be defined as x 7→ 10x (mod 1), and write xk :=
T k(x). Then it is easy to see that the integer part of 10xk−1 is the k-th decimal digit of
x.

Lebesgue measure is T -variant and ergodic5, so Birkhoff’s Ergodic Theorem applies
as follows: For Lebesgue-a.e. x ∈ [0, 1], the frequency of decimal digit a is exactly∫ (a+1)/10

a/10
dx = 1

10
. In fact, the frequency in the decimal expansion of Lebesgue-a.e. x of

5ergodicity you will have to believe; we won’t prove it here
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a block of digits a1 . . . an is exactly 10−n. This property is known in probability theory
as normality. Before Birkhoff’s Ergodic Theorem, proving normality of Lebesgue-a.e.
x ∈ [0, 1] was a lengthy exercise in Probability Theory. With Birkhoff’s Ergodic Theorem
it is a two-line proof.

Theorem 5 (Krylov-Bogol’ubov). If T : X → X is a continuous map on a nonempty
compact metric space X, then M(T ) 6= ∅.

Proof. The proof relies on the Let ν be any probability measure and define Cesaro
means:

νn(A) =
1

n

n−1∑
j=0

ν(T jA),

these are all probability measures. The collection of probability measures on a compact
metric space is known to be compact in the weak topology, i.e., there is limit probability
measure µ and a subsequence (ni)i∈N such that for every continuous function ψ : X → R:∫

X

ψ dνni →
∫
ψ dµ as i→∞.

On a metric space, we can, for any ε > 0 and set A, find a continuous function ψA :
X → [0, 1] such that ψA(x) = 1 if x ∈ A and µ(A) 6

∫
X
ψAdµ 6 µ(A) + ε. Now

|µ(T−1(A))− µ(A)| 6

∣∣∣∣∫ ψA ◦ T dµ−
∫
ψA dµ

∣∣∣∣+ 2ε

= lim
i→∞

∣∣∣∣∫ ψA ◦ T dνni −
∫
ψA dνni

∣∣∣∣+ 2ε

= lim
i→∞

1

ni

∣∣∣∣∣
ni−1∑
j=0

(∫
ψA ◦ T j+1 dν −

∫
ψA ◦ T j dν

)∣∣∣∣∣+ 2ε

6 lim
i→∞

1

ni

∣∣∣∣∫ ψA ◦ T ni dν −
∫
ψA dν

∣∣∣∣+ 2ε

6 lim
i→∞

1

ni
2‖ψA‖∞ + 2ε = 2ε.

Since ε > 0 is arbitrary, we find that µ(T−1(A)) = µ(A) as required.

Definition 8. We call (X, f) uniquely ergodic if there is only one f -invariant prob-
ability measure.

Examples of uniquely ergodic systems are circle rotations Rγ over rotation angle γ ∈
R \Q. Here, Lebesgue measure is the only invariant measure.

Exercise 12. Why is (S1, Rγ) not uniquely ergodic for rational angles γ?
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In general, a system (X, f) can have many invariant measures, and it is worth thinking
about what may be useful invariant measures (e.g. for the application of Birkhoff’s
Ergodic Theorem).

Definition 9. A measure µ is absolutely continuous w.r.t. ν (notation: µ � ν) if
ν(A) = 0 implies µ(A) = 0. If both µ � ν and ν � µ, then we say that µ and ν are
equivalent. If µ is a probability measure and µ� ν then the Radon-Nikodym Theorem
asserts that there is a function h ∈ L1(ν) (called Radon-Nikodym derivative or
density) such that µ(A) =

∫
A
h(x) dν(x) for every measurable set A. Sometimes we

use the notation: h = dµ
dν

.

The advantage of knowing that an invariant measure µ absolutely continuous w.r.t. a
given “reference” measure ν (such as Lebesgue measure), is that instead of µ-a.e. x, we
can say that Birkhoff’s Ergodic Theorem applies to ν-a.e. x, and ν-a.e. x may be much
easier to handle.

Suppose that T : [0, 1] → [0, 1] is some (piecewise) differentiable interval map. If
µ� Leb is an T -invariant measure, then this can be expressed in terms of the density
h, namely:

h(x) =
∑

y,T (y)=x

1

|T ′(y)|
h(y). (7)

Example 12. The Gauss map G : [0, 1]→ [0, 1] (see Figure 1) is defined as

G(x) =
1

x
− b1

x
c,

where byc denotes rounding down to the nearest integer below y. It is related to continued
fractions by the following algorithm with starting point x ∈ [0, 1). Define

xk = Gk(x), ak = b 1

xk−1

c,

then

x =
1

a1 + 1
a2+ 1

...

=: [0; a1, a2, a3, . . . ]

is the standard continued fraction expansion of x. If x ∈ Q, then this algorithm
terminates at some Gk(x) = 0, and we cannot iterate G any further. In this case,
x = [0; a1, a2, a3, . . . ak] has a finite continued fraction expansion. For x ∈ [0, 1] \Q, the
continued fraction expansion is infinite.

Gauss discovered (without revealing how) that G has an invariant density

h(x) =
1

log 2

1

1 + x
,
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where 1
log 2

is a normalizing constant, making
∫ 1

0
h(x) dx = 1. We check (7). Note that

G(y) = x means that y = 1
x+n

for some n ∈ N, and also G′(y) = −1/y2. Therefore we
can compute:

∑
G(y)=x

1

|G′(y)|
h(y) =

∞∑
n=1

∣∣∣∣ −1

(x+ n)2

∣∣∣∣ 1

log 2

1

1 + 1
x+n

=
1

log 2

∞∑
n=1

1

x+ n

1

x+ n+ 1

=
1

log 2

∞∑
n=1

1

x+ n
− 1

x+ n+ 1
=

1

log 2

1

x+ 1
= h(x).

Using the Ergodic Theorem, we can estimate the frequency of digits ak = N for typical
points points x ∈ [0, 1] as

lim
n→∞

1

n
{1 6 k 6 n : ak = N} =

∫ 1/N

1/(N+1)

h(x) dx =

[
log(1 + x)

log 2

]1/N

1/(N+1)

=
log(1 + 1

N(N+2)
)

log 2
.

Exercise 13. Let T : [0, 1]→ [0, 1] be a piecewise affine map such that each branch of
T is onto [0, 1]. That is, there is a partition Jk of [0, 1] such that T |Jk is an affine map
so that T (Jk) = [0, 1]. Show that T preserves Lebesgue measure.

Exercise 14. Let the quadratic Chebyshev polynomial T : [0, 1]→ [0, 1] (see Figure 1)
be defined as T (x) = 4x(1− x). Verify that the density h(x) = 1

π
1√

x(1−x)
is T -invariant

and that
∫
h(x) dx = 1.

Exercise 15. If T is defined on a subset of d-dimensional Euclidean space, then (7)
needs to be replace by

h(x) =
∑

y,T (y)=x

| detDT (y)|︸ ︷︷ ︸
J(y)

−1h(y).

Show that the cat-map of Example 4 preserves Lebesgue measure.

4 Entropy

4.1 Measure theoretic entropy

Entropy is a measure for the complexity of a dynamical system (X,T ). In the previous
sections, we related this (or rather topological entropy) to the exponential growth rate
of the cardinality of Pn =

∨n−1
k=0 T

−kP for some partition of the space X. In this
section, we look at the measure theoretic entropy hµ(T ) of an T -invariant measure µ,
and this amounts to, instead of just counting Pn, taking a particular weighted sum of the
elements Zn ∈ Pn. However, if the mass of µ is equally distributed over the all the Zn ∈
Pn, then the outcome of this sum is largest; then µ would be the measure of maximal
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entropy. In “good” systems (X,T ) is indeed the supremum over the measure theoretic
entropies of all the T -invariant probability measures. This is called the Variational
Principle:

htop(T ) = sup{hµ(T ) : µ is T -invariant probability measure}. (8)

In this section, we will skip some of the more technical aspect, such as conditional en-
tropy (however, see Proposition 1) and σ-algebras (completing a set of partitions), and
this means that at some points we cannot give full proofs. Rather than presenting more
philosophy what entropy should signify, let us first give the mathematical definition.

Define
ϕ : [0, 1]→ R ϕ(x) = −x log x

with ϕ(0) := limx↓0 ϕ(x) = 0. Clearly ϕ′(x) = −(1+log x) so ϕ(x) assume its maximum
at 1/e and ϕ(1/e) = 1/e. Also ϕ′′(x) = −1/x < 0, so that ϕ is strictly concave:

αϕ(x) + βϕ(y) 6 ϕ(αx+ βy) for all α + β = 1, α, β > 0, (9)

with equality if and only if x = y.

Theorem 6. For every strictly concave function ϕ : [0,∞)→ R we have∑
i

αiϕ(xi) 6 ϕ(
∑
i

αixi) for αi > 0,
∑
i

αi = 1 and xi ∈ [0,∞), (10)

with equality if and only if all the xi are the same.

Proof. We prove this by induction on n. For n = 2 it is simply (9). So assume that
(10) holds for some n, and we treat the case n + 1. Assume αi > 0 and

∑n+1
i=1 αi = 1

and write B =
∑n

i=1 αi.

ϕ(
n+1∑
i=1

αixi) = ϕ(B
n∑
i=1

αi
B
xi + αn+1xn+1)

> Bϕ(
n∑
i=1

αi
B
xi) + ϕ(αn+1xn+1) by (9)

> B
n∑
i=1

αi
B
ϕ(xi) + ϕ(αn+1xn+1) by (10) for n

=
n+1∑
i=1

αiϕ(xi)

as required. Equality also carries over by induction, because if xi are all equal for
1 6 i 6 n, (9) only preserves equality if xn+1 =

∑n
i=1

αi
B
xi = x1.
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This proof doesn’t use the specific form of ϕ, only its (strict) concavity. Applying it to
ϕ(x) = −x log x, we obtain:

Corollary 2. For p1 + · · · + pn = 1, pi > 0, then
∑n

i=1 ϕ(pi) 6 log n with equality if
and only if all pi are equal, i.e., pi ≡ 1

n
.

Proof. Take αi = 1
n
, then by Theorem 6,

1

n

n∑
i=1

ϕ(pi) =
n∑
i=1

αiϕ(pi) 6 ϕ(
n∑
i=1

1

n
pi) = ϕ(

1

n
) =

1

n
log n.

Now multiply by n.

Corollary 3. For real numbers ai and p1 + · · ·+ pn = 1, pi > 0,
∑n

i=1 pi(ai − log pi) 6
log
∑n

i=1 e
ai with equality if and only if pi = eai/

∑n
i=1 e

ai for each i.

Proof. Write Z =
∑n

i=1 e
ai . Put αi = eai/Z and xi = piZ/eai in Theorem 6. Then

n∑
i=1

pi(ai − logZ − log pi) = −
n∑
i=1

eai

Z

(
piZ
eai

log
piZ
eai

)
6 −

n∑
i=1

eai

Z
piZ
eai

log
n∑
i=1

eai

Z
piZ
eai

= ϕ(1) = 0.

Rearranging gives
∑n

i=1 pi(ai − log pi) 6 logZ, with equality only if xi = piZ/e
ai are

all the same, i.e., pi = eai/Z.

Exercise 16. Reprove Corollaries 2 and 3 using Lagrange multipliers.

Given a finite partition P of a probability space (X,µ), let

Hµ(P) =
∑
P∈P

ϕ(µ(P )) = −
∑
P∈P

µ(P ) log(µ(P )), (11)

where we can ignore the partition elements with µ(P ) = 0 because ϕ(0) = 0. For a
T -invariant probability measure µ on (X,B, T ), and a partition P , define the entropy
of µ w.r.t. P as

Hµ(T,P) = lim
n→∞

1

n
Hµ(

n−1∨
k=0

T−kP). (12)

Finally, the measure theoretic entropy of µ is

hµ(T ) = sup{Hµ(T,P) : P is a finite partition of X}. (13)

Naturally, this raises the questions:

22



Does the limit exist in (12)?
How can one possibly consider all partitions of X?

We come to this later; first we want to argue that entropy is a characteristic of a measure
preserving system. That is, two measure preserving systems (X,B, T, µ) and (Y, C, S, ν)
that are isomorphic, i.e., there is a bi-measurable invertible measure-preserving map
π (called isomorphism) such that the diagram

(X,B, µ)
T−→ (X,B, µ)

π ↓ ↓ π

(Y, C, ν)
S−→ (Y, C, ν)

commutes, then hµ(T ) = hν(S). This holds, because the bi-measurable measure-
preserving map π preserves all the quantities involved in (11)-(13), including the class
of partitions for both systems.

A major class of systems where this is very important are the Bernoulli shifts. These
are the standard probability space to measure a sequence of i.i.d. events each with
outcomes in {0, . . . , N − 1} with probabilities p0, . . . , pN−1 respectively. That is: X =
{0, . . . , N − 1}N0 or {0, . . . , N − 1}Z, σ is the left-shift, and µ the Bernoulli measure
that assigns to every cylinder set [xm . . . xn] the mass

µ([xm . . . xn]) =
n∏

k=m

ρ(xk) where ρ(xk) = pi if xk = i.

For such a Bernoulli shift, the entropy is

hµ(σ) = −
∑
i

pi log pi, (14)

so two Bernoulli shifts (X, p, µp) and (X ′, p′, µp′) can only be isomorphic if−
∑

i pi log pi =
−
∑

i p
′
i log(p′i). The famous theorem of Ornstein showed that entropy is a complete in-

variant for Bernoulli shifts:

Theorem 7 (Ornstein 1974 [7], cf. page 105 of [9]). Two Bernoulli shifts (X, p, µp) and
(X ′, p′, µp′) are isomorphic if and only if −

∑
i pi log pi = −

∑
i p
′
i log p′i.

Exercise 17. Conclude that the Bernoulli shift µ( 1
4
, 1
4
, 1
4
, 1
4

) is isomorphic to µ( 1
8
, 1
8
, 1
8
, 1
8
, 1
2

),
but that no Bernoulli measure on four symbols can be isomorhic to µ( 1

5
, 1
5
, 1
5
, 1
5
, 1
5

)

Let us go back to the definition of entropy, and try to answer the outstanding questions.

Definition 10. We call a real sequence (an)n>1 subadditive if

am+n 6 am + an for all m,n ∈ N.
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Theorem 8. If (an)n>1 is subadditive, then limn
an
n

= infr>1
ar
r

.

Proof. Every integer n can be written uniquely as n = i · r+ j for 0 6 j < r. Therefore

lim sup
n→∞

an
n

= lim sup
i→∞

ai·r+j
i · r + j

6 lim sup
i→∞

iar + aj
i · r + j

=
ar
r
.

This holds for all r ∈ N, so we obtain

inf
r

ar
r

6 lim inf
n

an
n

6 lim sup
n

an
n

6 inf
r

ar
r
,

as required.

Definition 11. Motivated by the conditional measure µ(P |Q) = µ(P∩Q)
µ(Q)

, we define
conditional entropy of a measure µ as

Hµ(P|Q) = −
∑
j

µ(Qj)
∑
i

µ(Pi ∩Qj)

µ(Qj)
log

µ(Pi ∩Qj)

µ(Qj)
, (15)

where i runs over all elements Pi ∈ P and j runs over all elements Qj ∈ Q.

Avoiding philosophical discussions how to interpret this notion, we just list the main
properties that are needed in this course that rely of condition entropy:

Proposition 1. Given measures µ, µi and two partitions P and Q, we have

1. Hµ(P ∨Q) 6 Hµ(P) +Hµ(Q);

2. Hµ(T,P) 6 Hµ(T,Q) +Hµ(P | Q).

3.
∑n

i=1 piHµi(P) 6 H∑n
i=1 piµi

(P) whenever
∑n

i=1 p1 = 1, pi > 0,

Subadditivity is the key to the convergence in (12). Call an = Hµ(
∨n−1
k=0 T

−kP). Then

am+n = Hµ(
m+n−1∨
k=0

T−kP) use Proposition 1, part 1.

6 Hµ(
m−1∨
k=0

T−kP) +Hµ(
m+n−1∨
k=m

T−kP) use T -invariance of µ

= Hµ(
m−1∨
k=0

T−kP) +Hµ(
n−1∨
k=0

T−kP)

= am + an.

ThereforeHµ(
∨n−1
k=0 T

−kP) is subadditive, and the existence of the limit of 1
n
Hµ(

∨n−1
k=0 T

−kP)
follows.
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Proposition 2. Entropy has the following properties:

1. The identity map has entropy 0;

2. hµ(TR) = R · hµ(T ) and for invertible systems hµ(T−R) = R · hµ(T ).

Proof. Statement 1. follows simply because
∨n−1
k=0 T

−kP = P if T is the identity map,
so the cardinality of

∨n−1
k=0 T

−kP doesn’t increase with n.

For statement 2. set Q =
∨R−1
j=0 T

−jP . Then for k > 1,

R ·Hµ(T,P) = lim
n→∞

R · 1

nR
Hµ(

nR−1∨
j=0

T−kP)

= lim
n→∞

1

n
Hµ(

n−1∨
j=0

(TR)−jQ)

= Hµ(TR,Q).

Taking the supremum over all P or Q has the same effect.

The next theorem is the key to really computing entropy, as it shows that a single
well-chosen partition P suffices to compute the entropy as hµ(T ) = Hµ(T,P).

Theorem 9. Let (X,B, T, µ) be a measure-preserving dynamical system. If partition
P is such that { ∨∞

j=0 T
−kP generates B if T is non-invertible,∨∞

j=−∞ T
−kP generates B if T is invertible,

then hµ(T ) = Hµ(T,P).

We haven’t explained properly what “generates B means, but the idea you should
have in mind is that (up to measure 0), every two points in X should be in different
elements of

∨n−1
k=0 T

−kP (if T is non-invertible), or of
∨n−1
k=−n T

−kP (if T is invertible)
for some sufficiently large n. The partition B = {X} fails miserably here, because∨n
j=−n T

−kP = P for all n and no two points are ever separated in P . A more subtle

example can be created for the doubling map T2 : S1 → S1, T2(x) = 2x (mod 1). The
partition P = {[0, 1

2
), [1

2
, 1)}. is separating every two points, because if x 6= y, say

2−(n+1) < |x− y| 6 2−n, then there is k 6 n such that T k2 x and T k2 y belong to different
partition elements.

On the other hand, Q = {[1
4
, 3

4
), [0, 1

4
) ∪ [3

4
, 1)} does not separate points. Indeed, if

y = 1−x, then T k2 (y) = 1−T k2 (x) for all k > 0, so x and y belong to the same partition
element, T k2 (y) and T k2 (x) will also belong to the same partition element!
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In this case, P can be used to compute hµ(T ), while Q in principle cannot (although
here, for all Bernoulli measure µ = µp,1−p, we have hµ(T2) = Hµ(T,P) = Hµ(T,Q)).

We finish this section with computing the entropy for a Bernoulli shift on two symbols,
i.e., we will prove (14) for two-letter alphabets and any probability µ([0]) =: p ∈ [0, 1].
The space is thus X = {0, 1}N0 and each x ∈ X represents an infinite sequence of
coin-flips with an unfair coin that gives head probability p (if head has the symbol 0).
Recall from probability theory

P(k heads in n flips) =

(
n

k

)
pk(1− p)n−k,

so by full probability:
n∑
k=0

(
n

k

)
pk(1− p)n−k = 1.

Here
(
n
k

)
= n!

k!(n−k)!
are the binomial coefficients, and we can compute{
k
(
n
k

)
= n!

(k−1)!(n−k)!
= n (n−1)!

(k−1)!(n−k)!
= n

(
n−1
k−1

)
(n− k)

(
n
k

)
= n!

(k)!(n−k−1)!
= n (n−1)!

k!(n−k−1)!
= n

(
n−1
k

) (16)

This gives all the ingredients necessary for the computation.

Hµ(
n−1∨
k=0

σ−kP) = −
1∑

x0,...,xn−1=0

µ([x0, . . . , xn−1]) log µ([x0, . . . , xn−1])

= −
1∑

x0,...,xn−1=0

n−1∏
j=0

ρ(xj) log
n−1∏
j=0

ρ(xj)

= −
n∑
k=0

(
n

k

)
pk(1− p)n−k log

(
pk(1− p)n−k

)
= −

n∑
k=0

(
n

k

)
pk(1− p)n−kk log p

−
n∑
k=0

(
n

k

)
pk(1− p)n−k(n− k) log(1− p)

In the first sum, the term k = 0 gives zero, as does the term k = n for the second sum.
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Thus we leave out these terms and rearrange by (16):

= −p log p
n∑
k=1

k

(
n− 1

k

)
pk−1(1− p)n−k

−(1− p) log(1− p)
n−1∑
k=0

(n− k)

(
n

k

)
pk(1− p)n−k−1

= −p log p
n∑
k=1

n

(
n− 1

k − 1

)
pk−1(1− p)n−k

−(1− p) log(1− p)
n−1∑
k=0

n

(
n− 1

k

)
pk(1− p)n−k−1

= n (−p log p− (1− p) log(1− p)) .

The partition P = {[0], [1]} is generating, so by Theorem 9,

hµ(σ) = Hµ(σ,P) = lim
n

1

n
Hµ(

n−1∨
k=0

σ−kP) = −p log p− (1− p) log(1− p)

as required.

4.2 Topological entropy and the topological pressure

Topological entropy was first defined in 1965 by Adler et al. [1], but the form that
Bowen [4] redressed it in is commonly used nowadays, and Bowen’s approach readily
generalises to topological pressure as well.

Let T be map of a compact metric space (X, d). If my eyesight is not so good, I cannot
distinguish two points x, y ∈ X if they are at a distance d(x, y) < ε from one another. I
may still be able to distinguish there orbits, if d(T kx, T ky) > ε for some k > 0. Hence,
if I’m willing to wait n iterations, I can distinguish x and y if

dn(x, y) := min{d(T kx, T ky) : 0 6 k < n} > ε.

If this holds, then x and y are said to be (n, ε)-separated. Among all the subsets of
X of which all points are mutually (n, ε)-separated, choose one, say En(ε), of maximal
cardinality. Then sn(ε) := #En(ε) is the maximal number of n-orbits I can distinguish
with my ε-poor eyesight.

The topological entropy is defined as the limit (as ε→ 0) of the exponential growth-
rate of sn(ε):

htop(T ) = lim
ε→0

lim sup
n→∞

1

n
log sn(ε).
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Note that sn(ε1) > sn(ε2) if ε1 6 ε2, so lim supn
1
n

log sn(ε) is a decreasing function in
ε, and the limit as ε→ 0 indeed exists.

Instead of (n, ε)-separated sets, we can also work with (n, ε)-spanning sets, that is,
sets that contain, for every x ∈ X, a y such that dn(x, y) 6 ε. Note that, due to its
maximality, En(ε) is always (n, ε)-spanning, and no proper subset of En(ε) is (n, ε)-
spanning. Each y ∈ En(ε) must have a point of an (n, ε/2)-spanning set within an
ε/2-ball (in dn-metric) around it, and by the triangle inequality, this ε/2-ball is disjoint
from ε/2-ball centred around all other points in En(ε). Therefore, if rn(ε) denotes the
minimal cardinality among all (n, ε)-spanning sets, then

rn(ε) 6 sn(ε) 6 rn(ε/2).

Thus we can equally well define

htop(T ) = lim
ε→0

lim sup
n→∞

1

n
log rn(ε).

Examples: Consider the β-transformation Tβ : [0, ) → [0, 1), x 7→ βx (mod 1) for
some β > 1. Take ε < 1/(2β2), and Gn = { k

βn
: 0 6 k < βn}. Then Gn is (n, ε)-

separating, so sn(ε) > βn. On the other hand, G′n = {2kε
βn

: 0 6 k < βn/(2ε)} is

(n, ε)-spanning, so rn(ε) 6 βn/(2ε). Therefore

log β = lim sup
n

1

n
log βn 6 htop(Tβ) 6 lim sup

n
log βn/(2ε) = log β.

Circle rotations, or in general isometries, T have zero topological entropy. Indeed,
if E(ε) is an ε-separated set (or ε-spanning set), it will also be (n, ε)-separated (or
(n, ε)-spanning) for every n > 1. Hence sn(ε) and rn(ε) are bounded in n, and their
exponential growth rates are equal to zero.

Finally, let (X, σ) be the full shifts on N symbols. Let ε > 0 be arbitrary, and take m
such that 2−m < ε. If we select a point from each n + m-cylinder, this gives an (n, ε)-
spanning set, whereas selecting a point from each n-cylinder gives an (n, ε)-separated
set. Therefore

logN = lim sup
n

1

n
logNn 6 lim sup

n

1

n
log sn(ε) 6 htop(Tβ)

6 lim sup
n

1

n
log rn(ε) 6 lim sup

n
logNn+m = logN.

The topological pressure Ptop(T, ψ) combines entropy with a potential function ψ : X →
R. Its definition is so much analogous to topological entropy that we immediately get
htop(T ) = Ptop(T, ψ) if ψ(x) ≡ 0. Denote the n-th ergodic sum of ψ by

Snψ(x) =
n−1∑
k=0

ψ ◦ T k(x).
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Next set {
Pn(T, ψ, ε) = sup{

∑
x∈E e

Snψ(x) : E is (n, ε)-separated},
Qn(T, ψ, ε) = inf{

∑
x∈E e

Snψ(x) : E is (n, ε)-spanning}.
(17)

For reasonable choices of potentials, the quantities limε→0 lim supn→∞
1
n

logPn(T, ψ, ε)
and limε→0 lim supn→∞

1
n

logQn(T, ψ, ε) are the same, and this quantity is called the
topological pressure. To give an example of an unreasonable potential, take X0 be
a dense subset of X such that X \X0 is also dense. Let

ψ(x) =

{
100 if x ∈ X0,
0 if x /∈ X0.

Then Qn(T, ψ, ε) = rn(ε) whilst Pn(T, ψ, ε) = e100nsn(ε), and their exponential growth
rates differ by a factor 100. Hence, some amount of continuity of ψ is necessary to make
it work.

Lemma 3. If ε > 0 is such that d(x, y) < ε implies that |ψ(x)− ψ(y)| < δ/2, then

e−nδPn(T, ψ, ε) 6 Qn(T, ψ, ε/2) 6 Pn(T, ψ, ε/2).

Exercise 18. Prove Lemma 3. In fact, the second inequality holds regardless of what
ψ is.

Theorem 10. If T : X → X and ψ : X → R are continuous on a compact metric
space, then the topological pressure is well-defined by

Ptop(T, ψ) := lim
ε→0

lim sup
n→∞

1

n
logPn(T, ψ, ε) = lim

ε→0
lim sup
n→∞

1

n
logQn(T, ψ, ε).

Exercise 19. Show that Ptop(T
R, SRψ) = R · Ptop(T, ψ).

4.3 The Variational Principle

The Variational Principle as mentioned in (3) and (8) claims that topological entropy
(or pressure) is achieved by taking the supremum of the measure-theoretic entropies over
all invariant probability measures. But in the course of these notes, topological entropy
has seen various definitions. Even sup{hµ(T ) : µ is a T -invariant probability measure}
is sometimes used as definition of topological entropy. So it is high time to be more
definite.

We will do this by immediately passing to topological pressure, which we will base on
the definition in terms of (n, δ)-spanning sets and/or (n, ε)-separated sets. Topological
entropy then simply emerges as htop(T ) = Ptop(T, 0).
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Theorem 11 (The Variational Principle). Let (X, d) be a compact metric space, T :
X → X a continuous map and ψ : X → R as continuous potential. Then

Ptop(T, ψ) = sup{hµ(T ) +

∫
X

ψ dµ : µ is a T -invariant probability measure}. (18)

Remark 1. By the ergodic decomposition, every T -invariant probability measure can
be written as convex combination (sometimes in the form of an integral) of ergodic
T -invariant probability measures. Therefore, it suffices to take the supremum over all
ergodic T -invariant probability measures in (18).

Proof. First we show that for every T -invariant probability measure, hµ(T )+
∫
X
ψ dµ 6

Ptop(T, ψ). Let P = {P0, . . . , PN−1} be an arbitrary partition with N > 2 (if P = {X},
then hµ(T,P) = 0 and there is not much to prove). Let η > 0 be arbitrary, and choose
ε > 0 so that εN logN < η.

By “regularity of µ”, there are compact sets Qi ⊂ Pi such that µ(Pi \Qi) < ε for each
0 6 i < N . Take QN = X \ ∪N−1

i=0 Qi. Then Q = {Q0, . . . , QN} is a new partition of X,
with µ(QN) 6 Nε. Furthermore

µ(Pi ∩Qj)

µ(Qj)
=

{
0 if i 6= j < N,
1 if i = j < N.

whereas
∑N−1

i=0
µ(Pi∩QN )
µ(QN )

= 1. Therefore the conditional entropy

Hµ(P|Q) =
N∑
j=0

N−1∑
i=0

µ(Qj)ϕ

(
µ(Pi ∩Qj)

µ(Qj)

)
︸ ︷︷ ︸

= 0 if j<N

= −µ(QN)
N−1∑
i=0

µ(Pi ∩QN)

µ(QN)
log(

µ(Pi ∩QN)

µ(QN)
)

6 µ(QN) logN by Corollary 2

6 εN logN < η.

Choose 0 < δ < 1
2

min06i<j<N d(Qi, Qj) so that

d(x, y) < δ implies |ψ(x)− ψ(y)| < ε/2. (19)

Here we use uniform continuity of ψ on the compact space X. Fix n and let En(δ) be
an (n, δ)-spanning set. For Z ∈ Qn :=

∨n−1
k=0 T

−kQ, let α(Z) = sup{Snψ(x) : x ∈ Z}.
For each such Z, also choose xZ ∈ Z such that Snψ(x) = α(Z) (again we use continuity
of ψ here), and yZ ∈ En(δ) such that dn(xZ , yZ) < δ. Hence

α(Z)− nε 6 Snψ(yZ) 6 α(Z).
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This gives

Hµ(Qn) +

∫
X

Snψ dµ 6
∑
Z∈Qn

µ(Z)(α(Z)− log µ(Z)) 6 log
∑
Z∈Qn

eα(Z) (20)

by Corollary 3.

Each δ-ball intersects the closure of at most two elements of Q. Hence, for each y, the
cardinality #{Z ∈ Qn : yZ = y} 6 2n. Therefore∑

Z∈Qn

eα(Z)−nε 6
∑
Z∈Qn

eSnψ(yZ) 6 2n
∑

y∈En(δ)

eSnψ(y).

Take the logarithm and rearrange to

log
∑
Z∈Qn

eα(Z) 6 n(ε+ log 2) + log
∑

y∈En(δ)

eSnϕ(y).

By T -invariance of µ we have
∫
Snψ dµ = n

∫
ψ dµ. Therefore

1

n
Hµ(Qn) +

∫
X

ψ dµ 6
1

n
Hµ(Qn) +

1

n

∫
X

Snψ dµ

6
1

n
log

∑
Z∈Qn

eα(Z)

6 ε+ log 2 +
1

n
log

∑
y∈En(δ)

eSnϕ(y).

Taking the limit n→∞ gives

Hµ(T,Q) +

∫
X

ψ dµ 6 ε+ log 2 + Ptop(T, ψ).

By Proposition 1, part 2., and recalling that ε < η, we get

Hµ(T,P) +

∫
X

ψ dµ = Hµ(T,Q) +Hµ(P|Q) +

∫
X

ψ dµ 6 2η + log 2 + Ptop(T, ψ).

We can apply the same reasoning to TR and SRψ instead of T and ψ. This gives

R ·
(
Hµ(T,P) +

∫
X

ψ dµ

)
= Hµ(TR,P) +

∫
X

SRψ dµ

6 2η + log 2 + Ptop(T
R, SRψ)

= 2η + log 2 +R · Ptop(T, ψ).

Divide by R and take R → ∞ to find Hµ(T,P) +
∫
X
ψ dµ 6 Ptop(T, ψ). Finally take

the supremum over all partitions P .
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Now the other direction, we will work with (n, ε)-separated sets. After choosing ε > 0
arbitrary, we need to find a T -invariant probability measure µ such that

hµ(T ) +

∫
X

ψ dµ > lim sup
n→∞

1

n
logPn(T, ψ, ε) := P (T, ψ, ε).

Let En(ε) be an (n, ε)-separated set such that

log
∑

y∈En(ε)

eSnψ(y) > logPn(T, ψ, ε)− 1. (21)

Define ∆n as weighted sum of Dirac measures:

∆n =
1

Z
∑

y∈En(ε)

eSnψ(y)δy,

where Z =
∑

y∈En(ε) e
Snψ(y) is the normalising constant. Take a new probability measure

µn =
1

n

n−1∑
k=0

∆n ◦ T−k.

Therefore∫
X

ψ dµn =
1

n

n−1∑
k=0

∫
X

ψ d(∆n ◦ T−k) =
1

n

n−1∑
k=0

∑
y∈En(ε)

ψ ◦ T k(y)
1

Z
eSnψ(y)

=
1

n

∑
y∈En(ε)

Snψ(y)
1

Z
eSnψ(y) =

1

n

∫
X

Snψ d∆n. (22)

Since the space of probability measures on X is compact in the weak topology, we can
find a sequence (nj)j>1 such that for every continuous function f : X → R∫

X

f dµnj →
∫
X

f dµ as j →∞.

Choose a partition P = {P0, . . . , PN−1} with diam(Pi) < ε and µ(∂Pi) = 0 for all
0 6 i < N . Since Z ∈ Pn :=

∨n−1
k=0 T

−kP contains at most one element of an (n, ε)-
separated set, we have

H∆n(Pn) +

∫
X

Snψ d∆n =
∑

y∈En(ε)

∆n({y}) (Snψ(y)− log ∆n({y}))

= log
∑

y∈En(ε)

eSnψ(y) = logZ.

by Corollary 3
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Take 0 < q < n arbitrary, and for 0 6 j < q, let

Uj = {j, j + 1, . . . , ajq + j − 1} where aj = bn− j
q
c.

Then

{0, 1, . . . , n− 1} = Uj ∪ {0, 1, . . . , j − 1} ∪ ajq + j, ajq + j + 1, . . . , n− 1}︸ ︷︷ ︸
Vj

where Vj has at most 2q elements. We split

n−1∨
k=0

T−kP =

(
aj−1∨
r=0

q−1∨
i=0

T−(rq+j+i)P

)
∨
∨
l∈Vj

T−lP

=

(
aj−1∨
r=0

T−(rq+j)

q−1∨
i=0

T−iP

)
∨
∨
l∈Vj

T−lP .

Therefore,

logZ = H∆n(Pn) +

∫
X

Snψ d∆n

6
aj−1∑
r=0

H∆n(T−(rq+j)

q−1∨
i=0

T−iP) +H∆n(
∨
l∈Vj

T−lP) +

∫
X

Snψ d∆n

6
aj−1∑
r=0

H∆n◦T−(rq+j)(

q−1∨
i=0

T−iP) + 2q logN +

∫
X

Snψ d∆n,

because
∨
l∈Vj T

−lP has at most N2q elements and using Corollary 2. Summing the
above inequality over j = 0, . . . , q − 1, gives

q logZ =

q−1∑
j=0

aj−1∑
r=0

H∆n◦T−rq+j(

q−1∨
i=0

T−iP) + 2q2 logN + q

∫
X

Snψ d∆n

6 n

n−1∑
k=0

1

n
H∆n◦T−k(

q−1∨
i=0

T−iP) + 2q2 logN + q

∫
X

Snψ d∆n.

Proposition 1, part 3., allows us to swap the weighted average and the operation H:

q logZ 6 nHµn(

q−1∨
i=0

T−iP) + 2q2 logN + q

∫
X

Snψ d∆n.
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Dividing by n and recalling (21) for the left hand side, and (22) to replace ∆n by µn,
we find

q

n
logPn(T, ψ, ε)− q

n
6 Hµn(

q−1∨
i=0

T−iP) +
2q2

n
logN + q

∫
X

ψ dµn.

Because µ(∂Pi) = 0 for all i, we can replace n by nj and take the weak limit as j →∞.
This gives

qP (T, ψ, ε) 6 Hµ(

q−1∨
i=0

T−iP) + q

∫
X

ψ dµ.

Finally divide by q and let q →∞:

P (T, ψ, ε) 6 hµ(T ) +

∫
X

ψ dµ.

This concludes the proof.

4.4 Measures of maximal entropy

For the full shift (Ω, σ) with Ω = {0, . . . , N − 1}N0 or Ω = {0, . . . , N − 1}Z, we have
htop(σ) = logN , and the ( 1

N
, . . . , 1

N
)-Bernoulli measure µ indeed achieves this maxi-

mum: hµ(σ) = htop(σ). Hence µ is a (and in this case unique) measure of maximal
entropy. The intuition to have here is that for a measure to achieve maximal entropy,
it should distribute its mass as evenly over the space as possible. But how does this
work for subshifts, where it is not immediately obvious how to distribute mass evenly?

For subshifts of finite type, Parry [8] demonstrated how to construct the measure of
maximal entropy, which is now called after him. Let (ΣA, σ) be a subshift of finite type
on alphabet {0, . . . , N−1} with transition matrix A = (ai,j)

N−1
i,j=0, so x = (xn) ∈ Σn if and

only if axn,xn+1 = 1 for all n. Let us assume that A is aperiodic and irreducible. Then
there is a unique real eigenvalue, of multiplicity one, which is larger in absolute value
than every other eigenvalue, and htop(σ) = log λ. Furthermore, by irreducibility of A,
the left and right eigenvectors u = (u0, . . . , uN−1) and v = (v0, . . . , vN−1)T associated
to λ are unique up to a multiplicative factor, and they can be chosen to be strictly
positive. We will scale them such that

N−1∑
i=0

uivi = 1.

Now define the Parry measure by

pi := uivi = µ([i]),

pi,j :=
ai,jvj
λvi

= µ([ij] | [i]),
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so pi,j indicates the conditional probability that xn+1 = j knowing that xn = i. There-
fore µ([ij]) = µ([i])µ([ij] | [i]) = pipi,j. It is stationary (i.e., shift-invariant) but not
quite a product measure, but µ([im . . . in]) = pim · pim,im+1 · · · pin−1,in .

Theorem 12. The Parry measure µ is the unique measure of maximal entropy for a
subshift of finite type with irreducible transition matrix.

Proof. In this proof, we will only show that hµ(σ) = htop(σ) = log λ, and skip the (more
complicated) uniqueness part.

The definitions of mass of 1-cylinders and 2-cylinders are compatible, because (since v
is a right eigenvector)

N−1∑
j=0

µ([ij]) =
N−1∑
j=0

pipi,j = pi

N−1∑
j=0

ai,jvj
λvi

= pi
λvi
λvi

= pi = µ([i]).

Summing over i, we get
∑N−1

i=0 µ([i]) =
∑N−1

i=0 uivi = 1, due to the our scaling.

To show that µ is shift-invariant, we take any cylinder set Z = [im . . . in] and compute

µ(σ−1Z) =
N−1∑
i=0

µ([iim . . . in]) =
N−1∑
i=0

pipi,im
pim

µ([im . . . in])

= µ([im . . . in])
N−1∑
i=0

uiviai,imvim
λviuimvim

= µ(Z)
N−1∑
i=0

uiai,im
λuim

= µ(Z)
λuim
λuim

= µ(Z).

This invariance carries over to all sets in the σ-algebra B generated by the cylinder sets.

Based on the interpretation of conditional probabilities, the identity

N−1∑
im+1,...,in=0

aik,ik+1
=1

pimpim,im+1 · · · pin−1,in = pim and
N−1∑

im,...,in−1=0

aik,ik+1
=1

pimpim,im+1 · · · pin−1,in = pin (23)

follows because the left hand side indicates the total probability of starting in state im
and reach some state after n−m steps, respectively start at some state and reach state
n after n−m steps.

To compute hµ(σ), we will confine ourselves to the partition P of 1-cylinder sets; this
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partition is generating, so this restriction is justified by Theorem 9.

H(
n−1∨
k=0

σ−kP) = −
N−1∑

i0,...,in−1=0

aik,ik+1
=1

µ([i0 . . . in−1]) log µ([i0 . . . in−1])

= −
N−1∑

i0,...,in−1=0

aik,ik+1
=1

pi0pi0,i1 · · · pin−1,in

(
log pi0 + log pi0,i1 + · · ·+ log pin−2,in−1

)

= −
N−1∑
i0=0

pi0 log pi0 − (n− 1)
N−1∑
i,j=0

pipi,j log pi,j,

by (23) used repeatedly. Hence

hµ(σ) = lim
n→∞

1

n
H(

n−1∨
k=0

σ−kP)

= −
N−1∑
i,j=0

pipi,j log pi,j

= −
N−1∑
i,j=0

uiai,jvj
λ

(log ai,j + log vj − log vi − log λ) .

The first term is zero because ai,j ∈ {0, 1}. The second term (summing first over i)
simplifies to

−
N−1∑
j=0

λujvj
λ

log vj = −
N−1∑
j=0

ujvj log vj,

whereas the third term (summing first over j) simplifies to

N−1∑
i=0

uiλvi
λ

log vi =
N−1∑
i=0

uivi log vi.

Hence these two terms cancel each other. The remaining term is

N−1∑
i,j=0

uiai,jvj
λ

log λ =
N−1∑
i=0

uiλvi
λ

log λ =
N−1∑
i=0

uivi log λ = log λ.

Remark 2. There are systems without maximising measure, for example among the
“shifts of finite type” on infinite alphabets. To give an example (without proof !), if N
is the alphabet, and the infinite transition matrix A = (ai,j)i,j∈N is given by

ai,j =

{
1 if j > i− 1,
0 if j < i− 1,

then htop(σ) = log 4, but there is no measure of maximal entropy.
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Exercise 20. Find the maximal measure for the Fibonacci subshift of finite type. What
is the limit frequency of the symbol zero in µ-typical sequences x?

5 Equilibrium states and Gibbs measures

5.1 The Griffith-Ruelle Theorem

Let (Ω, σ) now be a one-sided or two-sided subshift of finite type. Throughout we will
assume that the transition matrix is aperiodic and irreducible, so the Perron-Frobenius
Theorem applies in its full force. Let ψ : Ω→ R be a potential function, which we will
assume to be Hölder continuous, i.e., there is C > 0 and α ∈ (0, 1) such that if xk and
yk agree for |k| < n, then |ψ(x)−ψ(y)| 6 Cαn. The Hölder property can be applied to
ergodic sums on n-cylinders Z:

sup{Snψ(x) : x ∈ Z} > inf{Snψ(x) : x ∈ Z}

> sup{Snψ(x) : x ∈ Z} −
n−1∑
k=0

Cαk︸ ︷︷ ︸
=C 1−αn

1−α < C
1−α

(24)

Definition 12. We say that a shift-invariant probability measure µ satisfies the Gibbs
property if there are constants C2 > C1 > 0 such that for all n, all n-cylinders Z and
all x ∈ Z,

C1 6
µ(Z)

eSnψ(x)−Pn 6 C2. (25)

Here P is some constant, which, as we will see later, coincides with the topological
pressure of the system. It is the number by which we need to translate the potential such
that the measure of an n-cylinder scales as eSn(ψ−P ).

The main theorem of this section is sometimes called, in physics the Griffith-Ruelle
Theorem (which actually also include analyticity of the pressure function):

Theorem 13. If ψ is Hölder continuous potential function on an aperiodic irreducible
subshift of finite type, then there is a unique Gibbs measure µ; this measure is the unique
equilibrium state for (Ω, σ, ψ).

We will prove this theorem in various steps. We start by a trick to reduce the potentially
two-sided shift space to a one-sided shift.

Definition 13. Two potential functions ψ and χ on Ω are called cohomologous if
there is a function u such that

ψ = χ+ u− u ◦ σ. (26)
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From this definition, the following consequence are immediate for σ-invariant measure:

Snψ(x) = Snχ(x) + u(x)− u ◦ σn(x),

lim
n→∞

1

n
Snψ(x) = lim

n→∞

1

n
Snχ(x) µ-a.e.,∫

ψ dµ =

∫
χ dµ.

From this it is easy to derive that cohomologous potentials have the same equilibrium
states. This will be used, in the next proposition, to reduce our task from two-sided
shifts spaces to one-sided shift spaces.

Proposition 3. If (Ω, σ) is a two-sided subshift of finite type and ψ a Hölder potential,
then there is a potential χ which is also Hölder continuous but depending only on forward
coordinates (xk)k>0 of x ∈ Ω, such that ψ and χ are cohomologous.

Proof. For each symbol n ∈ {0, . . . , N−1} pick a fix sequence an ∈ Ω such that an0 = n.
For x ∈ Ω, let x∗ be the sequence with x∗k = xk if k > 0 and x∗k = ank if k < 0 and
x0 = n. Next choose

u(x) =
∞∑
j=0

ψ ◦ σj(x)− ψ ◦ σj(x∗).

Note that |ψ ◦ σj(x)− ψ ◦ σj(x∗)| < Cαj, so the sum u(x) converges and is continuous
in x. Let m = bn/2c. If xk and yk coincide for |k| < n, then

|u(x)− u(y)| 6
m∑
j=0

|ψ ◦ σj(x)− ψ ◦ σj(y)|+ |ψ ◦ σj(x∗)− ψ ◦ σj(y∗)|

+
∑
j>m

|ψ ◦ σj(x)− ψ ◦ σj(x∗)|+ |ψ ◦ σj(y)− ψ ◦ σj(y∗)|

6 2
m∑
j=0

Cαn−j + 2
∑
j>m

Cαj 6 4C
αm

1− α
.

Hence u is Hölder continuous with even a better Hölder exponent
√
α instead of α.

Now for χ = ψ − u+ u ◦ σ, which is also Hölder, we have

χ(x) = ψ(x) +
∞∑
j=0

ψ ◦ σj(x)− ψ ◦ σj(x∗)︸ ︷︷ ︸
separate term j=0

−
∞∑
j=0

ψ ◦ σj(σx)− ψ ◦ σj((σx)∗)

= ψ(x∗) +
∞∑
j=1

ψ ◦ σj(x)− ψ ◦ σj(x∗)−
∞∑
j=0

ψ ◦ σj(σx)− ψ ◦ σj((σx)∗)

= ψ(x∗) +
∞∑
j=0

ψ ◦ σj((σx)∗)− ψ ◦ σj(σx∗).

This depends only on the forward coordinates of x.
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Now that we can work on one-sided shift spaces, it is instructive to see why:

Lemma 4. Gibbs measures of Hölder potentials are equilibrium states (i.e., measures
that achieve the supremum in the Variational Principle).

Proof. Let P is the partition into 1-cylinders, and recall that Pn =
∨n−1
k=0 σ

−kP is the
partition into n-cylinders. Write

Zn =
∑
Z∈Pn

esup{Snψ(x) : x∈Z}.

be the n-th partition function. For Hölder continuous ψ, due to (24), whether we

choose sup or inf, the result only changes by a multiplicative factor e
C

1−α , independently
of n.

Now suppose that µ satisfies the Gibbs property (25). Summing over all n-cylinders
gives

C1
Zn
ePn

6
∑
Z∈Pn

µ(Z) = 1 6 C2
Zn
ePn

.

therefore P = limn
1
n

logZn. Combining this with (20) in the proof of the Variational
Principle, with Pn instead of Qn, we can write

Hµ(Pn) +

∫
Ω

Snψ dµ 6 logZn

Now we divide by n and take the limit n→∞ to obtain hµ(σ) +
∫
ψ dµ 6 P .

For any x in an n-cylinder Z, we have

−µ(Z) log µ(Z) +

∫
Z

Snψ dµ > −µ(Z)

[
log µ(Z)− Snψ(x) +

C

1− α

]
> −µ(Z)

[
logC2e

−Pn+Snψ(x) − Snψ(x) +
C

1− α

]
= µ(Z)

[
Pn− logC2 −

C

1− α

]
.

Summing over all n-cylinders Z ∈ Pn gives

Hµ(Pn) +

∫
Ω

Snψ dµ >
∑
Z∈Pn

µ(Z)

[
Pn− logC2 −

C

1− α

]
= Pn− logC2 −

C

1− α
.

Dividing by n and letting n → ∞, we find hµ(σ) +
∫

Ω
ψ dµ > P . Therefore we have

equality hµ(σ) +
∫

Ω
ψ dµ = P .
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To show that P = Ptop(σ, ψ), take ε > 0 arbitrary and M such that 2−(M+1) 6 ε < 2−M .
Taking a point x in each n+M -cylinder then produces an (n, ε)-separated set En(ε) of
maximal cardinality. Therefore, as in (17), we find

Zn+M = sup

{∑
x∈E

eSnψ(x) : E is (n, ε)-separated

}
=: Pn(σ, ψ, ε).

The ε-dependence of the left hand side is only in the choice of M . This dependence
disappears when we take the limit limn

1
n

logZn = limn
1
n

logPn(σ, ψ, ε), and therefore
taking the limit ε→ 0 gives

P = lim
n

1

n
logZn = lim

ε→0
lim
n→∞

1

n
logPn(σ, ψ, ε) = Ptop(σ, ψ).

This completes the proof.

Next we give somewhat abstract results from functional analysis to find a candidate
Gibbs measure as the combination of the eigenfunction and eigenmeasure of a particular
operator and its dual.

Definition 14. The Ruelle-Perron-Frobenius operator acting on functions f : Ω → R
is defined as

Lψf(x) =
∑
σy=x

eψ(y)f(y). (27)

The dual operator L∗ψ acts on measures:
∫
f d(L∗ψν) =

∫
Lψf dν for all f ∈ L1(ν).

This operator describes how densities are transformed by the dynamics. For instance, if
instead of σ we had a differentiable transformation T : [0, 1]→ [0, 1] and ψ = − log |T ′|,
then Lψf(x) =

∑
Ty=x

1
|T ′(y)|f(y) which, when integrated over [0, 1], we can recognise

as the integral formula for a change of coordinates x = T (y).

The following theorem can be seen as the operator-version of the Perron-Frobenius
Theorem for matrices:

Theorem 14. If Ω is a one-sided subshift of finite type, with aperiodic irreducible tran-
sition matrix, then there is a unique λ > 0 and continuous positive (or more precisely:
bounded away from zero) function h and a probability measure ν such that

Lψh = λ h L∗ψν = λ ν.

The Ruelle-Perron-Frobenius operator has the properties:

1. Lψ is positive: f > 0 implies Lψf > 0.
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2. Lnψf(x) =
∑

σny=x e
Snψ(y)f(y).

3. ν is in general not σ-invariant. Instead it satisfies

ν(σA) = λ

∫
A

e−ψ dν (28)

whenever σ : A → σ(A) is one-to-one and A is measurable. Measures with this
property are called λe−ψ-conformal.

4. Instead, the measure dµ = h dν is σ-invariant. We can always scale h such that
µ is a probability measure too.

5. We will see later that λ = eP where P is the topological pressure.

Proof. Property 1. is obvious, since eψ(y) is always positive. Property 2. follows by
direct computation. For Property 3., we have

λ

∫
A

e−ψ dν = λ

∫
Ω

e−ψ1IA dν =

∫
Ω

e−ψ1IA d(λν)

=

∫
Ω

e−ψ(x)1IA(x) d(L∗ψν) =

∫
Ω

Lψ(e−ψ(x)1IA(x)) dν

=

∫
Ω

∑
σy=x

eψ(y)e−ψ(y)1IA(y) dν =

∫
Ω

∑
σy=x

1IA(y) dν

Since σ : A → σ(A) is one-to-one,
∑

σy=x 1IA(y) = 1 if x ∈ σ(A) and = 0 otherwise.

Hence the integral
∫ ∑

σy=x 1IA(y) dν = ν(σA) as required.

For Property 4., first check that

Lψf(x) · g(x) =
∑
σy=x

eψ(y)f(y)g(x) =
∑
σy=x

eψ(y)f(y)g(σy) = Lψ(f · g ◦ σ)(x).

This gives ∫
Ω

f dµ =

∫
Ω

f · h dν =
1

λ

∫
Ω

f · Lψh dν

=
1

λ

∫
Ω

Lψ(h · f ◦ σ) dν =
1

λ

∫
Ω

h · f ◦ σ d(L∗ψν)

=

∫
Ω

f ◦ σ · h dν =

∫
Ω

f ◦ σ dµ

Property 5. will follow from the next proposition.

Proposition 4. For Hölder potential ψ, the measure dµ = h dν satisfies the Gibbs
property with P = log λ.
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Proof. For each z ∈ Ω and n-cylinder Z, there is at most one y ∈ Z with σny = z.
Take x ∈ Z arbitrary. Then

Lnψ(h · 1IZ) =
∑
σny=z

eSnψ(y)h(y)1IZ(y) 6 e
C

1−α‖h‖∞︸ ︷︷ ︸
C2

eSnψ(x).

Hence

µ(Z) =

∫
Z

h dν =

∫
Ω

h · 1IZ dν = λ−n
∫

Ω

h · 1IZ d(L∗nψ ν)

= λ−n
∫

Ω

Lnψ(h · 1IZ) dν 6 C2λ
−neSnψ(x). (29)

On the other hand, since the subshift of finite type is irreducible, there is some uniform
integer M and y ∈ Z such that σn+M(y) = z. Therefore

Lnψ(h · 1IZ) > eSn+Mψ(y)h(y) > e−M‖ψ‖∞e−
C

1−α · inf h︸ ︷︷ ︸
C1

eSnψ(x).

Integrating over Z gives us µ(Z) > C1λ
−neSnψ(x) by the same reasoning as in (29).

Therefore

C1 6
µ(Z)

λ−neSnψ(x)
6 C2,

for all n-cylinders and thus if we choose eP = λ, we obtain the Gibbs property.

Lemma 5. The Gibbs measure is unique.

Proof. If both µ and µ′ satisfy (25) for some constants C1, C2, P and C ′1, C
′
2, P

′ then we
can first take (1) for µ′ and sum over all n-cylinders. This gives

C ′1e
−P ′n

∑
Z∈Pn

eSnψ(x) 6 1 6 C ′2e
−P ′n

∑
Z∈Pn

eSnψ(x),

so that P ′ = limn
1
n

log
∑

Z∈Pn e
Snψ(x), independently of µ′. Therefore P ′ = P .

Now divide (25) for µ′ by the same expression for µ. This gives

C ′1
C2

6
µ′(Z)

µ(Z)
6
C ′2
C1

independently of Z. Therefore µ′ and µ are equivalent: they have the same null-sets.
In particular, for each continuous f , the set of points x ∈ Ω for which the Birkhoff
Ergodic Theorem holds for µ′ and µ differs by at most a nullset. For any point which
is typical for both, we find

∫
f dµ′ = limn

1
n
Snf(x) =

∫
f dµ. Therefore µ = µ′.
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5.2 Upper semicontinuity of entropy

For a continuous potential ψ : X → R, and a sequence of measures (µn)n∈N such that
µn → µ in the weak∗ topology, we always have

∫
ψ dµn →

∫
ψ dµ, simply because that

is the definition of weak∗ convergence. However, entropy isn’t continuous in this sense.
For example, if (Σ, σ) is the full shift on two symbols, then the 1

2
-1

2
Bernoulli measure

µ is the measure of maximal entropy log 2. If x ∈ Σ is a typical point (in the sense of
the Birkhoff Ergodic Theorem), then we can create a sequence of measure µn by

µn =
1

n

n−1∑
j=0

δσjy

where y = x0x1 . . . xn−1 is the n-periodic point in the same n-cylinder as x. For these
measure µn → µ in the weak∗ topology, but since µn is supported on a single periodic
orbit, the entropy hµn(σ) = 0 for every n. Therefore

lim
n→∞

hµn(σ) = 0 < log 2 = hµ(σ).

Lacking continuity, the best we can hope for is upper semicontinuity (USC) of the
entropy function, i.e.,

µn → µ implies hµ(σ) > lim sup
n→∞

hµn(σ).

In other words, the value of h can make a jump upwards at the limit measure, but not
downwards. Fortunately, the entropy function µ 7→ hµ(σ) is indeed USC for subshifts
on a finite alphabet, and USC is enough to guarantee the existence of equilibrium states.

Proposition 5. Let (X,T ) be a continuous dynamical system on a compact metric
space X. Assume that potential ψ : X → R is continuous. If the entropy function is
USC, then there is an equilibrium state,

Proof. We use the Variation Principle

P (ψ) = sup{hν(T ) +

∫
ψ dν : ν is T -invariant probability measure}. (30)

Hence there exists a sequence (µn)n∈N such that P (ψ) = limn hµn(T )+
∫
ψ dµn. Passing

to a subsequence (nk) if necessary, we can assume that µnk → µ as k →∞ in the weak∗

topology, and therefore
∫
ψ dµnk →

∫
ψ dµ as k →∞. Due to upper semicontinuity,

P (ψ) = lim sup
k→∞

hµnk (T ) +

∫
ψ dµnk 6 hµ(T ) +

∫
ψ dµ,

but also hµ(T ) +
∫
ψ dµ 6 P (ψ) by (30). Hence µ is an equilibrium state.
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The following corollary follows in the same way.

Corollary 4. Let (X,T ) be a continuous dynamical system on a compact metric space
X, and suppose that the entropy function is USC. Let ψβ be a family (continuous in β)
of continuous potentials and β → β∗. If µβ are equilibrium states for ψβ and µβ → µβ∗
in the weak∗ topology as β → β∗, then µβ∗ is an equilibrium state for ψβ∗.

Upper semicontinuity of entropy also gives us another way of characterizing entropy:

Lemma 6 (Dual Variational Principle). Let (X,T ) be a continuous dynamical system
on a compact metric space. Assume that the entropy function is upper semi-continuous
and that P (0) <∞. Then

hµ(T ) = inf{P (ψ)−
∫
ψ dµ : ψ : X → R continuous}.

Proof. See [6, Theorem 4.2.9] or [9, Theorem 9.12].

5.3 Smoothness of the pressure function

In Section 5.1 we have given conditions under which a Gibbs measure is unique. Gibbs
measures are equilibrium states, but that doesn’t prove uniqueness of equilibrium states.
There could in principle be equilibrium states that are not Gibbs measures. In this
section we will connect uniqueness of equilibrium states of a parametrised family ψβ of
potentials to smoothness of the pressure function β 7→ P (ψβ). In fact, the remaining
part of the Griffith-Ruelle Theorem is about smoothness, more precisely analyticity, of
pressure function when ψβ = β · ψ, for inverse temperature β ∈ R.

Theorem 15 (Griffith-Ruelle Theorem (continued)). If ψ is Hölder continuous poten-
tial function on an aperiodic irreducible subshift of finite type, then the pressure function

β 7→ P (β · ψ)

is real analytic.

We will not prove this here, but rather focus on how differentiability of β 7→ P (ψβ) is
related to equilibrium states. In the simplest case when ψβ = β · ψ, then the graph of

β 7→ P (β · ψ) := sup{hν(T ) + β

∫
ψ dν : ν is T -invariant probability measure }

is the envelope of straight lines β 7→ hν(T ) + β
∫
ψ dν, and therefore continuous. We

think of ψ (or at least
∫
ψ dν) as non-positive, so that maximising P (β) corresponds
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to maximising entropy and minimising energy in agreement with the Laws of Ther-
modynamics. Hence the graph β 7→ P (β), as the envelop of non-increasing lines, is
non-increasing and convex.

Furthermore, if µ0 is an equilibrium state for β0, and β 7→ P (β) is differentiable at
β = β0, then P ′(β0) =

∫
ψ dµ0. Hence if µ0 and µ′0 are two different equilibrium states

for β0 with
∫
ψ dµ0 6=

∫
ψ dµ′0, then β 7→ P (β) cannot be differentiable at β = β0.

Definition 15. Given a continuous potential ψ : X → R, we say that:

• a measure ν on X is a tangent measure if

P (ψ + φ) > P (ψ) +

∫
φ dν for all continuous φ : X → R. (31)

• P is differentiable at ψ if there is a unique tangent measure.

It would be more correct to speak of tangent functional since a priori, we just have
ν ∈ C∗(X), but in all cases ν turns out to be indeed an “unsigned” probability measure.

So compared to differentiability of β 7→ P (β · ψ), differentiability in the above sense
requires (31) not just for φ = (β−1) ·ψ (which follows from convexity of β 7→ P (β ·ψ)),
but for all continuous φ : X → R.

Theorem 16. Let (X,T ) be a continuous dynamical system on a compact metric space
X, and suppose that the entropy function is USC. Let ψ : X → R be a continuous
potential. Then P is differentiable at ψ with derivative µ if and only if

lim
ε→0

P (ψ + εφ)− P (ψ)

ε
=

∫
φ dµ (32)

for all continuous φ : X → R. In this case, µ is the unique equilibrium state for ψ.

Proof. We start by proving that the tangent measures are exactly the equilibrium states.
Assume that µ is an equilibrium state for ψ. Then

P (ψ + φ) = sup
ν
{hν(T ) +

∫
ψ dν +

∫
φ dν}

> hµ(T ) +

∫
ψ dµ+

∫
φ dµ = P (ψ) +

∫
φ dµ

for all continuous φ : X → R, so µ is a tangent measure.

For the converse, assume that ν satisfies (31). Since ψ : X → R is continuous on a
compact space, we have

−∞ < inf ψ 6 P (ψ) 6 P (0) + supψ <∞,
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because by the Variational Principle and upper semicontinuity, P (0) = supν hν(T ) <∞.
Since ν satisfies (31), we have{

P (ψ) + 1 = P (ψ + 1) > P (ψ) +
∫
dν,

P (ψ)− 1 = P (ψ − 1) > P (ψ)−
∫
dν,

so
∫
dν = 1 follows. Furthermore, if φ > 0, we have

P (ψ) > P (ψ − φ) > P (ψ)−
∫
φ dν,

so
∫
φ dν > 0. This shows that ν is an “unsigned” probability measure. To prove

T -invariance, recall about cohomologous functions that

P (ψ) = P (ψ + η · (φ ◦ T − φ)) > P (ψ) + η

∫
φ ◦ T − φ dν,

hence 0 > η
∫
φ ◦ T − φ dν. Since η can be both positive or negative, there is only one

possibility: 0 =
∫
φ ◦ T − φ dν, and so ν is indeed T -invariant.

Finally, by Lemma 6,

hν(T ) = inf{P (ψ + φ)−
∫
ψ + φ dν : φ : X → R continuous}

> inf{P (ψ) +

∫
φ dν −

∫
ψ + φ dν : φ : X → R continuous}

= P (ψ)−
∫
φ dν > hν(T ).

Therefore ν is indeed an equilibrium state.

Now for the second half of the proof, assume that P is differentiable at ψ with derivative
µ, so µ is the only tangent measure, and therefore only equilibrium state. We need to
establish (32). For ε 6= 0 and given φ, let µε be an equilibrium state for ψ + εφ. Then
µε → µ as ε→ 0 by Corollary 4. Since µ is a tangent measure

P (ψ + εφ)− P (ψ) > ε

∫
φ dµ,

and since µε are also tangent measures,

− (P (ψ + εφ)− P (ψ)) = P (ψ + εφ− εφ)− P (ψ + εφ) > −ε
∫
φ dµε.

Combining the two, we find∫
φ dµ 6

P (ψ + εφ)− P (ψ)

ε
6
∫
φ dµε
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if ε > 0 or with reversed inequalities if ε < 0. Now
∫
φ dµε →

∫
ψ dµ as ε→ 0, so (32)

follows.

Conversely, if (32) holds for all continuous φ : X → R and ν is an arbitrary tangent
measure, then ∫

φ dµ = lim
ε↘0

P (ψ + εφ)− P (ψ)

ε
>
∫
φ dν,

and also ∫
φ dµ = lim

ε↗0

P (ψ + εφ)− P (ψ)

ε
6
∫
φ dν.

Hence
∫
φ dµ =

∫
φ dν for all continuous φ : X → R, whence µ = ν, and P is indeed

differentiable with single derivative.

In view of the Griffith-Ruelle Theorem, this motivates the definition:

Definition 16. The system (X,T ) with potential ψ : X → R undergoes a phase
transition at parameter β0 if β 7→ P (β · ψ) fails to be analytic at β0.

It is where pressure fails to be analytic, that equilibrium states may be non-existent
(possible, if the potential is non-continuous), non-unique (possible, if the potential is
non-Hölder) and/or discontinuous under change of parameters.

6 Hausdorff Dimension of Repellors

Let f : D ⊂ [0, 1] → [0, 1] be defined on a domain D = ∪N−1
k=0 Dk, where each Dk

is a closed interval and f : Dk → [0, 1] is surjective, C2-smooth and expanding, i.e.,
inf{|f ′(x)| : x ∈ D} > 1. Recall that fn = f ◦ · · · ◦ f is the n-fold composition of a
map and define

X = {x ∈ [0, 1] : fn(x) ∈ D for all n > 0}.

This set X is sometimes called the repellor of f , and is usually a Cantor set, i.e.,
compact, totally disconnected and without isolated points.

Example 13. If

f(x) =

{
3x if x ∈ [0, 1

3
] = D0,

3x− 2 if x ∈ [2
3
, 1] = D1,

then X becomes the middle third Cantor set.

Example 14. The full tent-map is defined as

T (x) =

{
2x if x ∈ [0, 1

2
] = D0,

2(1− x) if x ∈ [1
2
, 1] = D1.
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Here X = [0, 1], so not a Cantor set. (In this case, D0 and D1 overlap at one point,
and that explains the difference.)

Definition 17. Given some set A, an (open) ε-cover U = {Uj}j∈N of A is a collection
of open sets such that A ⊂ ∪jUj and the diameters diam(Uj) < ε for all j.6

The δ-dimensional Hausdorff measure is defined as

µδ(A) = lim
ε→0

inf{
∑
j

(diam(Uj))
δ : U is an open ε-cover of A}.

It turns out that there is a unique δ0 such that

µδ(A) =

{
∞ if δ < δ0,

0 if δ > δ0.

This δ0 is called the Hausdorff dimension of A, and it is denoted as dimH(A).

Lebesgue measure on the unit cube [0, 1]n coincides, up to a multiplicative constant,
with n-dimensional Hausdorff measure. However, for “fractal” sets such as the middle
third Cantor sets, the “correct” value of δ0 can be non-integer, as we will argue in the
next example.

Example 15. Let X be the middle third Cantor set. For each n, we can cover X with
2n closed intervals of length 3−n, namely

[0, 3−n] ∪ [2 · 3−n, 3 · 3−n] ∪ [6 · 3−n, 7 · 3−n] ∪ [8 · 3−n, 9 · 3−n] ∪ · · · ∪ [(3n − 1) · 3−n, 1].

We can make this into an open cover Uε (with ε = 3−n(1 + 2 · 3−n)) by thickening these
intervals a little bit, i.e., replacing [m · 3−n, (m+ 1) · 3−n] by (m · 3−n − 3−2n, (m+ 1) ·
3−n + 3−2n). Then

µδ(X) 6 2n · (3−n + 2 · 3−2n)δ = 2n · 3−δn · (1 + 2 · 3−n)δ =: En.

Then

lim
n→∞

En =


∞ if δ < log 2

log 3
,

1 if δ = log 2
log 3

,

0 if δ > log 2
log 3

.

This shows that dimH(X) 6 log 2
log 3

. In fact, dimH(X) = log 2
log 3

, but showing that covers Uε
are “optimal” is a bit messy, and we will skip this part.

6We can include Uj = ∅ for some j, so finite covers {Uj}Rj=1 can always be extended to countable
covers {Uj}j∈N if necessary.
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Coming back to our expanding interval map f , we choose the potential

ψβ(x) = −β log |f ′(x)|,

which is C1-smooth on each Dk, and negative for β > 0. The ergodic sum

Snψβ(x) = −β
n−1∑
k=0

log |f ′ ◦ fk(x)|

= −β log
n−1∏
k=0

|f ′ ◦ fk(x)| = log |(fn)′(x)|−β (33)

by the Chain Rule.

Theorem 17. Let ([0, 1], f) with repellor X = {x ∈ [0, 1] : fn(x) ∈ D = ∪kDk for all n >
0} and potential ψβ = −β log |f ′| be as above. Then there is a unique β0 at which the
pressure P (ψβ) vanishes, and dimH(X) = β0.

Sketch of Proof. We use symbolic dynamics on X by setting

e(x) = y0y1y2 . . . with yn = k ∈ {0, . . . , N − 1} if fn(x) ∈ Dk.

This uniquely associates a code y ∈ Σ := {0, . . . , N − 1}N0 to x provided the Dk’s don’t
overlap, as in Example 14. If some Dk’s overlap at one point, this affects only countably
many points, and therefore we can neglect them. Conversely, since f is expanding, each
code y ∈ Σ is associated to no more than one x ∈ X.

To each n-cylinder set [y0y1 . . . yn−1] = Z ⊂ Σ, we can associate a closed interval J such
that fk(J) ⊂ Dyk for 0 6 k < n, and in fact fn−1(J) = Dyn−1 and fn(J) = [0, 1].

The C2-smoothness of f guarantees that ψβ transfers to a Hölder potential ψ̃β(y) :=
ψβ ◦ e−1(y) on Σ, and therefore, for each β, we can apply the Griffith-Ruelle Theorem
and obtain a unique equilibrium state which is also a Gibbs measure. Use the coding
map e : X → Σ to transfer this to (X, f, ψβ): For each β ∈ R, there is a unique
equilibrium state µβ which is also a Gibbs measure, for ψβ.

Therefore, there are C1, C2 > 0 depending only on f and β, such that for all n, all
interval J associated to n-cylinders and all x ∈ J ∩X,

C1 6
µβ(J ∩X)

eSn(ψβ(x)−P )
6 C2, (34)

where P = P (ψβ) is the pressure.

Recall from (33) that eSn(ψβ(x)−P ) = e−nP |(fn)′(x)|−β for x ∈ J ∩ X; in fact the same
holds for all x ∈ J . By the Mean Value Theorem, and since fn(J) = [0, 1], there is
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xJ ∈ J such that |(fn)′(xJ)| = 1/diam(J). Now we don’t know if xJ ∈ X, but we use
a distortion argument7 to rewrite (34) to

µβ(J)

C2

6 e−Pndiam(J)β 6
µβ(J)

C1

and summing over all cylinder sets, we arrive at

1

C2

6 e−Pn
∑
J

diam(J)β 6
1

C1

. (35)

Now for β = 0, this gives 1
C2

6 e−Pn#{ intervals J} 6 1
C1

, and since there are Nn

intervals, we get P (ψ0) = limn
1
n

logNn = logN > 0, which is indeed the topological
entropy of the map f .

We have
∑

J diam(J) 6 1, and therefore, for β > 1,
∑

J diam(J)β → 0 exponentially
in n. Hence (35) implies that P (ψβ) < 0 for all β > 1. Now since β 7→ P (ψβ) is
non-increasing and convex, this means that there is a unique β0 such that P (ψβ) = 0
for β = β0.

For this β0, we find
1

C2

6
∑
J

diam(J)β0 6
1

C1

.

The sets J can be thickened a bit to produce an open ε-cover Uε (with ε < 2(inf |f ′|)−n)→
0 as n → ∞). This gives dimH(X) 6 β0. To show that also dimH(X) > β0, we need
a similar argument that covers Uε are “optimal” that we skipped in Example 15, and
which we will omit here as well.

Exercise 21. Assume that ∪kDk = [0, 1] as in Example 14. Show that β0 = 1 and that
the unique equilibrium state µ1 is equivalent to Lebesgue measure.

7 Gibbs distributions and large deviations - an ex-

ample

The following is an adaptation of Example 1.2.1. from Keller’s book [6]. Assume first
that the entire system consists of a single particle that can assume states in alphabet
A = {0, . . . , N−1}, with energies −βψ0(a) (where parameter β ∈ R denotes the inverse
temperature). We call

P(x = a) = qβ(a) :=
e−βψ0(a)∑

a′∈A e
−βψ0(a′)

(36)

7which we will sweep under the carpet
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a Gibbs distribution. (The Gibbs distribution in this section should not be confused
with a Gibbs measure that satisfies the Gibbs property (1).) Note that a Gibbs dis-
tribution isn’t a fixed state the particle is in, it is a probability distribution indicating
(presumably) what proportion of time the particle assumes state a ∈ A.

In this simple case, the configuration space Ω = A and as there is no dynamics, entropy
is just

H(qβ) = −
∑
p∈P

qβ(p) log qβ(p)

with respect to the only sensible partition, namely into single symbols: P = {ω = a}a∈A.
We know from Corollary 3 that

H(qβ)− β
∫
ψ0 dqβ > H(π)− β

∫
ψ0 dπ

for every probability measure π on A with equality if and only if π = qβ. Hence the
Gibbs measure is the equilibrium state for ψ0. We take this as inspiration to measure
how far π is from the “optimal” measure qβ by defining

dβ(π) =

(
H(qβ)− β

∫
ψ0 dqβ

)
−
(
H(π)− β

∫
ψ0 dπ

)
. (37)

Let us now replace the single site by a finite lattice or any finite collection G of sites, say
n = #G, with particles at every site assuming states in A. Thus now the configuration
space is Ω = AG of cardinality #Ω = Nn, where we think of n as huge (number of
Avogadro or like).

Assume that the energy ψ(ω) of configuration ω ∈ Ω is just the sum of the energies
of the separate particles: ψ(ω) =

∑
g∈G ψ0(ωg). So there is no interaction between

particles whatsoever; no coherence in the set G.

We can still define the Gibbs measure (and hence equilibrium state for ψ) as before; it
becomes the product measure of the Gibbs measures at each site:

µβ(ω) =
e−βψ(ω)∑

ω′∈Ω e
−βψ(ω′)

=
∏
g∈G

e−βψ0(ωg)∑
a′∈A e

−βψ0(a′)
.

It is convenient to denote the denominator, i.e., partition function, as Z(β) =∑
ω′∈Ω e

−βψ(ω′).

The measures µβ(ω) for each singular configuration are minute, even if ω minimises
energy. Note however, that for small temperature (large β), configurations with minimal
energies are extremely more likely to occur than those with large energies. For high
temperature (small β), this relative difference is much smaller. As argued by Boltzmann,
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see the Ehrenfest paper [5], the vast majority of configurations (measure by µβ) has the
property that if you count proportions at which states a ∈ A occur, i.e.,

πω(a) =
1

n
#{g ∈ G : ωg = a}

you find that πω is extremely close to qβ. So without interactions, the effect of many
particles averages out to qβ.

We can quantify “large majority” using distance dβ of (37). Write

Uβ,r = {ω ∈ Ω : dβ(πω) < r}

as the collection of configurations whose emperical distributions πω (i.e., frequencies of
particles taking the respective states in A) are r-close to qβ.

Theorem 18. For 0 < r < H(qβ)− β
∫
ψ0 dqβ, we have

lim
n→∞

1

n
log µβ(Ω \ Uβ,r) = −r,

so µβ(Ω \ Uβ,r) ∼ e−nr as n = #G grows large.

Proof. It is an exercise to check that H(µβ) = nH(qβ). Next, for some configuration
ω ∈ Ω, we have

log µβ(ω) = −β
∑
g∈G

ψ0(ωg)− logZ(β) rewrite Z(β) by Corollary 3

= −βn
∫
ψ0 dπω −

(
H(µβ)− β

∫
ψ dµβ

)
= −βn

∫
ψ0 dπω − n

(
H(qβ)− β

∫
ψ0 dqβ

)
= −n

(
(H(qβ)− β

∫
ψ0 dqβ)− (H(πω)− β

∫
ψ0 dπω)

)
− nH(πω)

= ndβ(πω)− nH(πω).

Every πω represents a way to choose n = #G times from N = #A boxes. The order
of choosing is not important, only how many are drawn from each box. This can be
indicated by a non-negative integer vector v = (va)a∈A where

∑
a∈A va = n. In fact, v

n

indicates the same probability distribution on A as πω. We can compute

M(v) := #{ω ∈ Ω : πω leads to v} =
n!∏

a∈A va!
.

Stirling’s formula gives n! ∼
√

2πn nne−n, neglecting an error factor that tends to 1 as
n→∞. Thus

M(v) ∼
√

2πn nne−n∏
a∈A
√

2πva vvaa e
−va
∼
√

2πn∏
a∈A 2πva

∏
a∈A

(va
n

)−va
,

52



and

logM(v) ∼ 1

2
log

2πn∏
a∈A 2πva

+ n
∑
a∈A

−va
n

log
va
n
.

Note that va
n

= πω(x = a), so the dominating term in logM(v) is just nH(πω)! The
remaining terms, including the one we neglected in our version of Stirling’s formula,
are O(log n).

Therefore

1

n
log µβ(Ω \ Uβ,r) =

1

n
log

∑
ω∈Ω\Uβ,r

µβ(ω) =
1

n
log

∑
ω∈Ω\Uβ,r

e−ndβ(πω)−nH(πω)

6
1

n
log

∑
v=(va)a∈A

M(v) · e−nr−nH( v
n

)

=
1

n
log

∑
v=(va)a∈A

enH( v
n

)+O(logn) · e−nr−nH( v
n

)

=
1

n
log

∑
v=(va)a∈A

e−nr+O(logn) 6
1

n
log nNe−nr+O(logn) → −r

as n → ∞, where we used in the last line that there are no more than nN ways of
choosing non-negative integer vectors v = (va)a∈A with

∑
a∈A va = n.

Now for the lower bound, take r′ > r. For sufficiently large n, we can find some vector
v = (va)a∈A such that r < dβ( v

n
) < r′. Therefore

1

n
log µβ(Ω \ Uβ,r) >

1

n
log

∑
ω,πω= v

n

µβ(ω) =
1

n
log

∑
ω,πω= v

n

e−ndβ(πω)−nH(πω)

>
1

n
log
(
M(v) · e−nr′−nH( v

n
)
)

>
1

n

(
nH(

v

n
) +O(log n)− nr′ − nH(

v

n
)
)
→ −r′

as n→∞. Since r′ > r is arbitrary, limn
1
n

log µβ(Ω \ Uβ,r) = −r as claimed.
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