Dimension groups, orbit equivalence and eigenvalues

Fabien Durand

Université de Picardie Jules Verne

Workshop on substitutions and tiling spaces-Vienna

$$
\text { September, 26-30, } 2017
$$

Dye's theorem

Any two non atomic ergodic (invertible, bi-measurable) dynamical systems $\left(X_{1}, \mathcal{B}_{1}, \mu_{1}, T_{1}\right)$ and $\left(X_{2}, \mathcal{B}_{2}, \mu_{2}, T_{2}\right)$ are orbit equivalent:

There exists an invertible, bi-measurable, measure preserving map $\phi: X_{1} \rightarrow X_{2}$ satisfying:

$$
\phi(\mathcal{O}(T(x)))=\mathcal{O}(\phi(T(x)))
$$

for μ_{1}-a.e. $x \in X_{1}$.

Dye's theorem

Any two non atomic ergodic (invertible, bi-measurable) dynamical systems $\left(X_{1}, \mathcal{B}_{1}, \mu_{1}, T_{1}\right)$ and $\left(X_{2}, \mathcal{B}_{2}, \mu_{2}, T_{2}\right)$ are orbit equivalent:

There exists an invertible, bi-measurable, measure preserving map $\phi: X_{1} \rightarrow X_{2}$ satisfying:

$$
\phi(\mathcal{O}(T(x)))=\mathcal{O}(\phi(T(x)))
$$

for μ_{1}-a.e. $x \in X_{1}$.

Corollary
There is an unique class of measurable orbit equivalence.

Topological framework

Framework: (X, T) minimal Cantor system.

Topological framework

Framework: (X, T) minimal Cantor system.

- (X, T) O.E. (Y, S) :

$$
\exists h: X \xrightarrow{\text { homeo. }} Y ; \quad h\left(\mathcal{O}_{T}(x)\right)=\mathcal{O}_{S}(h(x))
$$

Topological framework

Framework: (X, T) minimal Cantor system.

- (X, T) O.E. (Y, S) :

$$
\exists h: X \xrightarrow{\text { homeo. }} Y ; \quad h\left(\mathcal{O}_{T}(x)\right)=\mathcal{O}_{S}(h(x))
$$

- unique cocycle map: $n: X \rightarrow \mathbb{Z} \quad h(T x)=S^{n(x)} h(x)$.

Topological framework

Framework: (X, T) minimal Cantor system.

- (X, T) O.E. (Y, S) :

$$
\exists h: X \xrightarrow{\text { homeo. }} Y ; \quad h\left(\mathcal{O}_{T}(x)\right)=\mathcal{O}_{S}(h(x))
$$

- unique cocycle map: $n: X \rightarrow \mathbb{Z} \quad h(T x)=S^{n(x)} h(x)$.
- (X, T) S.O.E. (Y, S) : the Cocycle map has just one point of discontinuity.

(Strong) Orbit Equivalence

[Giordano, Putnam, Skau,' 95]

- (X, T) S.O.E. (Y, S) iff
$\left(K^{0}(X, T), K^{0+}(X, T),\left[1_{X}\right]\right) \simeq\left(K^{0}(Y, S), K^{0+}(Y, S),\left[1_{Y}\right]\right)$.

(Strong) Orbit Equivalence

[Giordano, Putnam, Skau,' 95]

- (X, T) S.O.E. (Y, S) iff
$\left(K^{0}(X, T), K^{0+}(X, T),\left[1_{X}\right]\right) \simeq\left(K^{0}(Y, S), K^{0+}(Y, S),\left[1_{Y}\right]\right)$.
- (X, T) O.E. (Y, S) iff

$$
\left(K_{m}^{0}(X, T), K_{m}^{0+}(X, T),\left[1_{X}\right]\right) \simeq\left(K_{m}^{0}(Y, S), K_{m}^{0+}(Y, S),\left[1_{Y}\right]\right)
$$

Topological framework

Example: For a sturmian subshift of angle α,

Topological framework

Example: For a sturmian subshift of angle α,

$$
K^{0}(X, T)=\mathbb{Z}^{2}
$$

Topological framework

Example: For a sturmian subshift of angle α,

$$
K^{0}(X, T)=\mathbb{Z}^{2}
$$

$$
K^{0+}(X, T)=\left\{(x, y) \in K^{0}(X, T) ; x+\alpha y>0\right\} .
$$

Topological framework

Example: For a sturmian subshift of angle α,
$K^{0}(X, T)=\mathbb{Z}^{2}$
$K^{0+}(X, T)=\left\{(x, y) \in K^{0}(X, T) ; x+\alpha y>0\right\}$.
Corollary
There is uncountably many class of (strong) orbit equivalence.

Topological framework

Example: For a sturmian subshift of angle α,
$K^{0}(X, T)=\mathbb{Z}^{2}$
$K^{0+}(X, T)=\left\{(x, y) \in K^{0}(X, T) ; x+\alpha y>0\right\}$.
Corollary
There is uncountably many class of (strong) orbit equivalence.
Question:
What are the dynamical properties perserved under OE or SOE ?

Topological framework

Theorem (Sugisaki96, Ormes97, Boyle-Handelman94)
Within a SOE class any entropy is possible.

Topological framework

Theorem (Sugisaki96, Ormes97, Boyle-Handelman94)
Within a SOE class any entropy is possible.

Theorem (Giordano-Putnam-Skau95)
Within a SOE class the set of invariant probability measures are affinely homeomorphic.

Topological framework

Theorem (Sugisaki96, Ormes97, Boyle-Handelman94)
Within a SOE class any entropy is possible.

Theorem (Giordano-Putnam-Skau95)
Within a SOE class the set of invariant probability measures are affinely homeomorphic.

Corollary
Within a SOE class, if one system is uniquely ergodic, then all systems of this class are uniquely ergodic.

Eigenvalues

$\lambda=\exp (2 i \pi \alpha)$ eigenvalue of (X, T, μ) :

$$
f(T x)=\lambda f(x), \mu-\text { a.e. } x \in X, \quad f \in L^{2}(\mu)
$$

Eigenvalues

$\lambda=\exp (2 i \pi \alpha)$ eigenvalue of (X, T, μ) :

$$
f(T x)=\lambda f(x), \mu-\text { a.e. } x \in X, \quad f \in L^{2}(\mu)
$$

Continuous eigenvalue if $f \in C(X)$

Group of eigenvalues

Theorem (Ormes97)
Within an OE class, any countable subgroup of the circle \mathbb{S}^{1} can be realized as a group of eigenvalues.

Group of eigenvalues

Theorem (Ormes97)
Within an OE class, any countable subgroup of the circle \mathbb{S}^{1} can be realized as a group of eigenvalues.

Theorem (GPS95,Ormes97)
Within an SOE class, systems share the same continuous eigenvalues that are roots of the unity.

Group of eigenvalues

Theorem (Ormes97)
Within an OE class, any countable subgroup of the circle \mathbb{S}^{1} can be realized as a group of eigenvalues.

Theorem (GPS95,Ormes97)
Within an SOE class, systems share the same continuous eigenvalues that are roots of the unity.

Corollary
Within a SOE class, if some system has a non trivial root of unity as continuous eigenvalue, then this class has no weakly mixing systems.

Group of eigenvalues

Question: What about continuous eigenvalues that are not root of the unity?

Group of eigenvalues

Question: What about continuous eigenvalues that are not root of the unity?

$$
E(X, T)=\{\alpha \in \mathbb{R} \mid \exp (2 i \pi \alpha) \text { is a continuous eigenvalue }\}
$$

Group of eigenvalues

Question: What about continuous eigenvalues that are not root of the unity?

$$
E(X, T)=\{\alpha \in \mathbb{R} \mid \exp (2 i \pi \alpha) \text { is a continuous eigenvalue }\}
$$

$$
I(X, T)=\bigcap_{\mu \in \mathcal{M}(X, T)}\left\{\int f d \mu \mid f \in C(X, \mathbb{Z})\right\}
$$

Group of eigenvalues

Question: What about continuous eigenvalues that are not root of the unity?

$$
E(X, T)=\{\alpha \in \mathbb{R} \mid \exp (2 i \pi \alpha) \text { is a continuous eigenvalue }\}
$$

$$
I(X, T)=\bigcap_{\mu \in \mathcal{M}(X, T)}\left\{\int f d \mu \mid f \in C(X, \mathbb{Z})\right\}
$$

Theorem (Itza-Ortiz09, Bressaud-Durand-Maass10, Cortez-Durand-Petite16)

$$
E(X, T) \subset I(X, T)
$$

Sturmian case

Let (X, T) be a sturmian subshift of angle α.

Sturmian case

Let (X, T) be a sturmian subshift of angle α.
$E(X, T)=\{\alpha \in \mathbb{R} \mid \exp (2 i \pi \alpha)$ is a continuous eigenvalue $\}=I(X, T)$

Sturmian case

Let (X, T) be a sturmian subshift of angle α.
$E(X, T)=\{\alpha \in \mathbb{R} \mid \exp (2 i \pi \alpha)$ is a continuous eigenvalue $\}=I(X, T)$

From Ormes97, there exists (Y, S) SOE to (X, T) such that $E(X, T)=\{0\}$

Sturmian case

Let (X, T) be a sturmian subshift of angle α.
$E(X, T)=\{\alpha \in \mathbb{R} \mid \exp (2 i \pi \alpha)$ is a continuous eigenvalue $\}=I(X, T)$

From Ormes97, there exists (Y, S) SOE to (X, T) such that $E(X, T)=\{0\}$
Question: What are the subgroup of $I(X, T)$ that can be realized as a $E(Y, S)$?

For the sturmian case: Can we realize $\mathbb{Z}+2 \alpha \mathbb{Z}$?

Main results

Answer: NO!

Main results

Answer: NO!

Theorem (Cortez-Durand-Petite16)
Let (X, T) be a minimal Cantor system such that infinitesimal $f \in C(X, \mathbb{Z})$ are coboundaries. Then

$$
I(X, T) / E(X, T)
$$

is torsion free.

Main results

Answer: NO!

Theorem (Cortez-Durand-Petite16)
Let (X, T) be a minimal Cantor system such that infinitesimal $f \in C(X, \mathbb{Z})$ are coboundaries. Then

$$
I(X, T) / E(X, T)
$$

is torsion free.
Theorem (Giordano-Handelman-Hosseini17)
They deleted the condition on infinitesimals.

Dimension Group: $\left(G, G^{+}\right)$

- A Countable Partially Ordered Abelian Group with:
(i) $G^{+}+G^{+} \subset G^{+}$,
(ii) $G^{+}-G^{+}=G$,
(iii) $G^{+} \cap-G^{+}=\{0\}$,
(iv) $a \in G$ and na $\in G^{+}, n \in \mathbb{N}$ then $a \in G^{+}$.

Dimension Group: $\left(G, G^{+}\right)$

- A Countable Partially Ordered Abelian Group with:
(i) $G^{+}+G^{+} \subset G^{+}$,
(ii) $G^{+}-G^{+}=G$,
(iii) $G^{+} \cap-G^{+}=\{0\}$,
(iv) $a \in G$ and $n a \in G^{+}, n \in \mathbb{N}$ then $a \in G^{+}$.
- and should satisfy the Riesz interpolation Property:

$$
\forall a_{1}, a_{2}, b_{1}, b_{2}, a_{i} \leq b_{j}, i, j=1,2 \quad \exists c ; \quad a_{i} \leq c \leq b_{j} .
$$

Dimension Group: $\left(G, G^{+}\right)$

- A Countable Partially Ordered Abelian Group with:
(i) $G^{+}+G^{+} \subset G^{+}$,
(ii) $G^{+}-G^{+}=G$,
(iii) $G^{+} \cap-G^{+}=\{0\}$,
(iv) $a \in G$ and na $\in G^{+}, n \in \mathbb{N}$ then $a \in G^{+}$.
- and should satisfy the Riesz interpolation Property:

$$
\forall a_{1}, a_{2}, b_{1}, b_{2}, a_{i} \leq b_{j}, i, j=1,2 \quad \exists c ; \quad a_{i} \leq c \leq b_{j}
$$

Example:

- any lattice ordered group, \mathbb{Z}^{r}.
- any countable dense subgroup of \mathbb{R}^{n} with the relative ordering.

Exotic example of dimension group

G : set of real algebraic numbers

Exotic example of dimension group

G : set of real algebraic numbers
Partial ordering on K :

Exotic example of dimension group

G : set of real algebraic numbers
Partial ordering on K : for $a, b \in K$, we set $a \prec b$ if and only if $a-b$ is a root of a polynomial $p(x) \in \mathbb{R}[x]$ which is a finite sum of squares of other polynomials, $p(x)=\sum_{i=1}^{m} q_{i}(x)^{2}$
$\left(G, G^{+}, 1\right)$ is a dimension group

- [G. Elliott, '76] Any Dimension group is a direct limit of lattice ordered groups and positive homomorphisms,

$$
\begin{gathered}
G=\underset{n}{\lim _{n}} \mathbb{Z}^{r(n)} \xrightarrow{M_{n}} \mathbb{Z}^{r(n+1)} . \\
\cdots \longrightarrow \mathbb{Z}^{r(i)} \xrightarrow{M_{i}} \mathbb{Z}^{r(i+1)} \xrightarrow{M_{i+1}} \cdots \longrightarrow \mathbb{G}
\end{gathered}
$$

- [G. Elliott, '76] Any Dimension group is a direct limit of lattice ordered groups and positive homomorphisms,

$$
\begin{gathered}
G=\underset{n}{\lim _{n}} \mathbb{Z}^{r(n)} \xrightarrow{M_{n}} \mathbb{Z}^{r(n+1)} . \\
\cdots \longrightarrow \mathbb{Z}^{r(i)} \xrightarrow{M_{i}} \mathbb{Z}^{r(i+1)} \xrightarrow{M_{i+1}} \cdots \longrightarrow \mathbb{G}
\end{gathered}
$$

Direct limit:
$G=\prod_{i}\left(Z^{r(i)} \times\{i\}\right) / \sim \quad$ and $\quad[g, i] \sim[h, j]$ iff
$\exists k>i, j ; \quad M_{i} \circ M_{i+1} \circ \cdots \circ M_{k}(g)=M_{j} \circ M_{j+1} \circ \cdots \circ M_{k}(h)$.

- [G. Elliott, '76] Any Dimension group is a direct limit of lattice ordered groups and positive homomorphisms,

$$
\begin{gathered}
G=\underset{\xrightarrow[n]{\lim }}{\mathbb{Z}^{r(n)} \xrightarrow{M_{n}} \mathbb{Z}^{r(n+1)} .} \\
\cdots \longrightarrow \mathbb{Z}^{r(i)} \xrightarrow{M_{i}} \mathbb{Z}^{r(i+1)} \xrightarrow{M_{i+1}} \cdots \longrightarrow \mathbb{G}
\end{gathered}
$$

Direct limit:
$G=\prod_{i}\left(Z^{r(i)} \times\{i\}\right) / \sim \quad$ and $\quad[g, i] \sim[h, j]$ iff
$\exists k>i, j ; \quad M_{i} \circ M_{i+1} \circ \cdots \circ M_{k}(g)=M_{j} \circ M_{j+1} \circ \cdots \circ M_{k}(h)$.

- So we have a Bratteli diagram.

Example:

$$
\mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \xrightarrow{\times 2} \cdots \longrightarrow \mathbb{G} \simeq \mathbb{Z}\left[\frac{1}{2}\right]
$$

$[b, m] \sim[a, n], m \leq n \Leftrightarrow 2^{k-m} b=2^{k-n} a \Leftrightarrow b=\frac{a}{2^{n-m}}$.

Example:

$$
\begin{gathered}
\mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \xrightarrow{\times 2} \cdots \longrightarrow \mathbb{G} \simeq \mathbb{Z}\left[\frac{1}{2}\right] . \\
{[b, m] \sim[a, n], m \leq n \Leftrightarrow 2^{k-m} b=2^{k-n} a \Leftrightarrow b=\frac{a}{2^{n-m}} .}
\end{gathered}
$$

$$
\mathbb{Z}^{2} \xrightarrow{\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]} \mathbb{Z}^{2} \xrightarrow{\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]} \cdots \xrightarrow{G} \simeq \mathbb{Z}\left[\frac{1}{2}\right]
$$

Example:

$$
\begin{gathered}
\mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \xrightarrow{\times 2} \cdots \longrightarrow \mathbb{G} \simeq \mathbb{Z}\left[\frac{1}{2}\right] . \\
{[b, m] \sim[a, n], m \leq n \Leftrightarrow 2^{k-m} b=2^{k-n} a \Leftrightarrow b=\frac{a}{2^{n-m}} .} \\
\mathbb{Z}^{2} \xrightarrow{\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]} \mathbb{Z}^{2} \xrightarrow{\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]} \cdots \longrightarrow \mathbb{G} \simeq \mathbb{Z}\left[\frac{1}{2}\right] . \\
\mathbb{Z}^{2} \xrightarrow{\left[\begin{array}{cc}
a_{1} & 1 \\
1 & 0
\end{array}\right]} \mathbb{Z}^{2} \xrightarrow{\left[\begin{array}{cc}
a_{2} & 1 \\
1 & 0
\end{array}\right]} \cdots \xrightarrow{\mathbb{G} \simeq \mathbb{Z}+\theta \mathbb{Z} .}
\end{gathered}
$$

where $\theta=\left[a_{1}, a_{2}, a_{3}, \cdots\right]$.

- An order unit, u, in the Dimension group G is an element in G^{+}that

$$
\forall g \in G, \quad \exists n \in \mathbb{N} ; \quad n u \geq g
$$

- An order unit, u, in the Dimension group G is an element in G^{+}that

$$
\forall g \in G, \quad \exists n \in \mathbb{N} ; \quad n u \geq g
$$

- A state on the dimension group $\left(G, G^{+}, u\right)$ is a homomorphism $p: G \rightarrow \mathbb{R}$ that

$$
p(u)=1, \quad \text { and } \quad p\left(G^{+}\right) \geq 0
$$

- An order unit, u, in the Dimension group G is an element in G^{+}that

$$
\forall g \in G, \quad \exists n \in \mathbb{N} ; \quad n u \geq g .
$$

- A state on the dimension group $\left(G, G^{+}, u\right)$ is a homomorphism $p: G \rightarrow \mathbb{R}$ that

$$
p(u)=1, \quad \text { and } \quad p\left(G^{+}\right) \geq 0
$$

The set of all the states on G is denoted by $S(G, u)$.

- An order unit, u, in the Dimension group G is an element in G^{+}that

$$
\forall g \in G, \quad \exists n \in \mathbb{N} ; \quad n u \geq g
$$

- A state on the dimension group $\left(G, G^{+}, u\right)$ is a homomorphism $p: G \rightarrow \mathbb{R}$ that

$$
p(u)=1, \quad \text { and } \quad p\left(G^{+}\right) \geq 0
$$

The set of all the states on G is denoted by $S(G, u)$.

$$
\operatorname{Inf}(G)=\{g \in G: \quad p(g)=0, \forall p \in S(G, u)\}
$$

Example:

- $\theta=\frac{1+\sqrt{5}}{2}=[1,1,1, \cdots]$.

Example:

- $\theta=\frac{1+\sqrt{5}}{2}=[1,1,1, \cdots]$.

ν be the left Perron-Frobenius eigenvector.

$$
\tau_{k}(m, n)=\frac{\nu \cdot(m, n)}{\theta^{k}}
$$

Example:

- $\theta=\frac{1+\sqrt{5}}{2}=[1,1,1, \cdots]$.

ν be the left Perron-Frobenius eigenvector.

$$
\tau_{k}(m, n)=\frac{\nu \cdot(m, n)}{\theta^{k}}, \quad \tau[(m, n), k]=\tau_{k}(m, n)
$$

Example:

- $\theta=\frac{1+\sqrt{5}}{2}=[1,1,1, \cdots]$.

$$
\mathbb{Z}^{2} \xrightarrow{\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]} \mathbb{Z}^{2} \xrightarrow{\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]} \xrightarrow{\tau_{1}}
$$

ν be the left Perron-Frobenius eigenvector.

$$
\tau_{k}(m, n)=\frac{\nu \cdot(m, n)}{\theta^{k}}, \quad \tau[(m, n), k]=\tau_{k}(m, n)
$$

- $\operatorname{ker}\left(\tau_{k}\right)=\{(0,0)\}$.

Example:

- $\theta=\frac{1+\sqrt{5}}{2}=[1,1,1, \cdots]$.

$$
\mathbb{Z}^{2} \xrightarrow{\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]} \mathbb{Z}^{2} \xrightarrow{\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]} \xrightarrow{\tau_{1}}
$$

ν be the left Perron-Frobenius eigenvector.

$$
\tau_{k}(m, n)=\frac{\nu \cdot(m, n)}{\theta^{k}}, \quad \tau[(m, n), k]=\tau_{k}(m, n)
$$

- $\operatorname{ker}\left(\tau_{k}\right)=\{(0,0)\}$.
- G is totally ordered and so with unique state. So

$$
\operatorname{Inf}(G)=\{0\}
$$

- An ordered ideal of the Dimension group G is a subgroup, J, that $J=J^{+}-J^{+}$and

$$
\text { if } 0 \leq a \leq b \text { and } b \in J \text { then } a \in J .
$$

- An ordered ideal of the Dimension group G is a subgroup, J, that $J=J^{+}-J^{+}$and

$$
\text { if } 0 \leq a \leq b \text { and } b \in J \text { then } a \in J
$$

- A simple Dimension group is a dimension group without non-trivial ordered ideal.
- A Dimension group is simple iff it is the direct limit of a Bratteli diagram with positive incidence matrices.

Associated to any minimal Cantor system, (X, T), we have two simple dimension groups:

- (i) $K^{0}(X, T):=C(X, \mathbb{Z}) /\{f-f \circ T: f \in C(X, \mathbb{Z})\}$,

Associated to any minimal Cantor system, (X, T), we have two simple dimension groups:

- (i) $K^{0}(X, T):=C(X, \mathbb{Z}) /\{f-f \circ T: f \in C(X, \mathbb{Z})\}$,

$$
K^{0^{+}}(X, T)=\{[f]: \quad f \geq 0\}, \quad u=\left[1_{X}\right] .
$$

Associated to any minimal Cantor system, (X, T), we have two simple dimension groups:

- (i) $K^{0}(X, T):=C(X, \mathbb{Z}) /\{f-f \circ T: f \in C(X, \mathbb{Z})\}$,

$$
K^{0^{+}}(X, T)=\{[f]: \quad f \geq 0\}, \quad u=\left[1_{X}\right] .
$$

$$
\mathcal{M}_{T}(X)=\{\mu: \quad T \mu=\mu\} \sim S\left(K^{0}(X, T), u\right)
$$

In fact, $\forall \mu \in \mathcal{M}_{T}(X), \tau: G \rightarrow \mathbb{R}:[f] \mapsto \int f d \mu$.

Associated to any minimal Cantor system, (X, T), we have two simple dimension groups:

- (i) $K^{0}(X, T):=C(X, \mathbb{Z}) /\{f-f \circ T: f \in C(X, \mathbb{Z})\}$,

$$
K^{0^{+}}(X, T)=\{[f]: \quad f \geq 0\}, \quad u=\left[1_{X}\right] .
$$

$$
\mathcal{M}_{T}(X)=\{\mu: \quad T \mu=\mu\} \sim S\left(K^{0}(X, T), u\right)
$$

In fact, $\forall \mu \in \mathcal{M}_{T}(X), \tau: G \rightarrow \mathbb{R}:[f] \mapsto \int f d \mu$.

$$
\operatorname{Inf}\left(K^{0}(X, T)\right)=\left\{[f]: \quad \int f d \mu=0, \forall \mu \in \mathcal{M}_{T}(X)\right\}
$$

Associated to any minimal Cantor system, (X, T), we have two simple dimension groups:

- (i) $K^{0}(X, T):=C(X, \mathbb{Z}) /\{f-f \circ T: f \in C(X, \mathbb{Z})\}$,

$$
K^{0^{+}}(X, T)=\{[f]: \quad f \geq 0\}, \quad u=\left[1_{X}\right] .
$$

$$
\mathcal{M}_{T}(X)=\{\mu: \quad T \mu=\mu\} \sim S\left(K^{0}(X, T), u\right)
$$

In fact, $\forall \mu \in \mathcal{M}_{T}(X), \tau: G \rightarrow \mathbb{R}:[f] \mapsto \int f d \mu$.

$$
\operatorname{Inf}\left(K^{0}(X, T)\right)=\left\{[f]: \quad \int f d \mu=0, \forall \mu \in \mathcal{M}_{T}(X)\right\}
$$

- (ii) $K_{m}^{0}(X, T)=K^{0}(X, T) / \operatorname{Inf}\left(K^{0}(X, T)\right)$.
[Giordano, Putnam, Skau,' 95]
- (X, T) S.O.E. (Y, S) iff
$\left(K^{0}(X, T), K^{0+}(X, T),\left[1_{X}\right]\right) \simeq\left(K^{0}(Y, S), K^{0+}(Y, S),\left[1_{Y}\right]\right)$.
[Giordano, Putnam, Skau,' 95]
- (X, T) S.O.E. (Y, S) iff
$\left(K^{0}(X, T), K^{0+}(X, T),\left[1_{X}\right]\right) \simeq\left(K^{0}(Y, S), K^{0+}(Y, S),\left[1_{Y}\right]\right)$.
- (X, T) O.E. (Y, S) iff
$\left(K_{m}^{0}(X, T), K_{m}^{0+}(X, T),\left[1_{X}\right]\right) \simeq\left(K_{m}^{0}(Y, S), K_{m}^{0+}(Y, S),\left[1_{Y}\right]\right)$.
- [Herman, Putnam, Skau,' 92]:
i) \forall simple dimension group $(G, u), \exists \mathrm{CMS}(X, T)$;

$$
K^{0}(X, T) \simeq G, \quad u=\left[1_{X}\right] .
$$

ii) Using Kakutani-Rokhlin partitions, (X, T) is conjugate to a Vershik system on a properly ordered Bratteli diagram, (V, E, \leq) for G.

$$
\begin{gathered}
M(1)=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
M(n)=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]
\end{gathered}
$$

Example:

- Odometer based on $a=\left(a_{1}, a_{2}, \cdots\right)$:

$$
\begin{gathered}
\mathbb{Z} \xrightarrow{\times a_{1}} \mathbb{Z} \xrightarrow{\times a_{2}} \cdots \longrightarrow K^{0}(X, T)=\mathbb{Z}\left[\frac{1}{a}\right] . \\
Z\left[\frac{1}{a}\right]=\left\{\frac{m}{a_{1} a_{2} \cdots a_{k}}: m \in \mathbb{Z}, k \in \mathbb{N}\right\}
\end{gathered}
$$

- A Denjoy's with rotation number θ :

$$
\mathbb{Z}^{2} \xrightarrow{\left[\begin{array}{cc}
a_{1} & 1 \\
1 & 0
\end{array}\right]} \mathbb{Z}^{2} \xrightarrow{\left[\begin{array}{cc}
a_{2} & 1 \\
1 & 0
\end{array}\right]} \cdots \xrightarrow{ } K^{0}(X, T)=\mathbb{Z}+\theta \mathbb{Z}
$$

where $\theta=\left[a_{1}, a_{2}, a_{3}, \cdots\right]$.

Vershik map:

- An Odometer:

$$
\{0,1,2\}^{\mathbb{N}} \rightarrow\{0,1,2\}^{\mathbb{N}}
$$

$(2,2,2,0, a, \cdots) \mapsto(0,0,0,0+1, a, \cdots)$.

Vershik map:

- An Odometer:

$$
\begin{gathered}
\{0,1,2\}^{\mathbb{N}} \rightarrow\{0,1,2\}^{\mathbb{N}} \\
(2,2,2,0, a, \cdots) \mapsto(0,0,0,0+1, a, \cdots)
\end{gathered}
$$

- Let (B, \leq) be an ordered Bratteli diagram and

$$
x=\left(a_{1}, a_{2}, \cdots, a_{i_{0}}, \cdots\right)
$$

be an infinite path on it. Suppose that i_{0} is the first i that a_{i} is not the max edge. Then

$$
T\left(a_{1}, a_{2}, \cdots, a_{i_{0}}, \cdots\right)=\left(0,0, \cdots, 0, a_{i_{0}}+1, \cdots\right)
$$

Recall

Dimension group

$$
\cdots \longrightarrow \mathbb{Z}^{r(i)} \xrightarrow{M_{i}} \mathbb{Z}^{r(i+1)} \xrightarrow{M_{i+1}} \cdots \longrightarrow \mathbb{G}
$$

Recall

Dimension group

$$
\cdots \longrightarrow \mathbb{Z}^{r(i)} \xrightarrow{M_{i}} \mathbb{Z}^{r(i+1)} \xrightarrow{M_{i+1}} \cdots \longrightarrow \mathbb{G}
$$

For minimal Cantor systems (X, T)

$$
K^{0}(X, T)=C(X, \mathbb{Z}) /\{f-f \circ T: f \in C(X, \mathbb{Z})\}
$$

Kakutani-Rohlin partitions

$$
\left(\mathcal{P}(n)=\left\{T^{-j} B_{k}(n) ; 1 \leq k \leq d(n), 0 \leq j<h_{k}(n)\right\} ; n \in \mathbb{N}\right)
$$

Kakutani-Rohlin partitions

$$
\left(\mathcal{P}(n)=\left\{T^{-j} B_{k}(n) ; 1 \leq k \leq d(n), 0 \leq j<h_{k}(n)\right\} ; n \in \mathbb{N}\right)
$$

$(\mathrm{KR1}) B(n+1) \subseteq B(n)$ with $B(n)=\cup_{i} B_{i}(n)$ called the base

Kakutani-Rohlin partitions

$$
\left(\mathcal{P}(n)=\left\{T^{-j} B_{k}(n) ; 1 \leq k \leq d(n), 0 \leq j<h_{k}(n)\right\} ; n \in \mathbb{N}\right)
$$

$(\mathrm{KR} 1) B(n+1) \subseteq B(n)$ with $B(n)=\cup_{i} B_{i}(n)$ called the base (KR2) $\mathcal{P}(n+1) \succeq \mathcal{P}(n)$

Kakutani-Rohlin partitions

$$
\left(\mathcal{P}(n)=\left\{T^{-j} B_{k}(n) ; 1 \leq k \leq d(n), 0 \leq j<h_{k}(n)\right\} ; n \in \mathbb{N}\right)
$$

$(\mathrm{KR} 1) B(n+1) \subseteq B(n)$ with $B(n)=\cup_{i} B_{i}(n)$ called the base
(KR2) $\mathcal{P}(n+1) \succeq \mathcal{P}(n)$
$(\mathrm{KR} 3) \bigcap_{n \in \mathbb{N}} B(n)$ consists of a unique point

Kakutani-Rohlin partitions

$$
\left(\mathcal{P}(n)=\left\{T^{-j} B_{k}(n) ; 1 \leq k \leq d(n), 0 \leq j<h_{k}(n)\right\} ; n \in \mathbb{N}\right)
$$

(KR1) $B(n+1) \subseteq B(n)$ with $B(n)=\cup_{i} B_{i}(n)$ called the base
(KR2) $\mathcal{P}(n+1) \succeq \mathcal{P}(n)$
(KR3) $\bigcap_{n \in \mathbb{N}} B(n)$ consists of a unique point
(KR4) the sequence of partitions spans the topology of X

Theorem (Herman-Putnam-Skau '92)
Any minimal Cantor system has a sequence of Kakutani-Rohlin partitions.

Theorem (Herman-Putnam-Skau '92)
Any minimal Cantor system has a sequence of Kakutani-Rohlin partitions.

We define the k-th tower of $\mathcal{P}(n)$:

$$
\mathcal{P}(n, k)=\bigcup_{0 \leq j<h_{k}(n)} T^{-j} B_{k}(n)
$$

Theorem (Herman-Putnam-Skau '92)
Any minimal Cantor system has a sequence of Kakutani-Rohlin partitions.

We define the k-th tower of $\mathcal{P}(n)$:

$$
\mathcal{P}(n, k)=\bigcup_{0 \leq j<h_{k}(n)} T^{-j} B_{k}(n)
$$

Incidence matrices: $M(n)=m_{l, k}(n)$

$$
m_{l, k}(n)=\#\left\{0 \leq j<h_{l}(n) ; T^{-j} B_{l}(n) \subseteq B_{k}(n-1)\right\} .
$$

Some observations

Let $f \in C(X, \mathbb{Z})$:

Some observations

Let $f \in C(X, \mathbb{Z})$: There exists n such that f is constant on each atom of $\mathcal{P}(n)$

Some observations

Let $f \in C(X, \mathbb{Z})$: There exists n such that f is constant on each atom of $\mathcal{P}(n)$

$$
f=\sum_{A \in \mathcal{P}(n)} w_{A} 1_{A}
$$

Some observations

Let $f \in C(X, \mathbb{Z})$: There exists n such that f is constant on each atom of $\mathcal{P}(n)$

$$
f=\sum_{A \in \mathcal{P}(n)} w_{A} 1_{A}
$$

f is cohomologuous to

$$
g=\sum_{k}\left(\sum_{A \in \mathcal{P}(n, k)} w_{A}\right) 1_{B_{k}(n)}
$$

Some observations

Let $f \in C(X, \mathbb{Z})$: There exists n such that f is constant on each atom of $\mathcal{P}(n)$

$$
f=\sum_{A \in \mathcal{P}(n)} w_{A} 1_{A}
$$

f is cohomologuous to

$$
g=\sum_{k}\left(\sum_{A \in \mathcal{P}(n, k)} w_{A}\right) 1_{B_{k}(n)}
$$

$$
g-f=\beta h=h \circ T-h, h \in C(X, \mathbb{Z})
$$

C_{n} : continuous functions constant on atoms of $\mathcal{P}(n)$.

C_{n} : continuous functions constant on atoms of $\mathcal{P}(n)$.

Idea of the SOE proof

Suppose (X, T) and (Y, S) has the same dimension group

Idea of the SOE proof

How to construct a (continuous) eigenfunction
$\lambda=\exp (2 i \pi \alpha)$ eigenvalue of (X, T, μ).

How to construct a (continuous) eigenfunction

$\lambda=\exp (2 i \pi \alpha)$ eigenvalue of (X, T, μ).
Let $r(x)$ be the first return time of x to some fixed clopen set U.

How to construct a (continuous) eigenfunction

$\lambda=\exp (2 i \pi \alpha)$ eigenvalue of (X, T, μ).
Let $r(x)$ be the first return time of x to some fixed clopen set U.
We "almost" have $r(x)-r(T x)=1$

How to construct a (continuous) eigenfunction

$\lambda=\exp (2 i \pi \alpha)$ eigenvalue of (X, T, μ).
Let $r(x)$ be the first return time of x to some fixed clopen set U.
We "almost" have $r(x)-r(T x)=1$
Thus $f(x)=\lambda^{r(x)}$ "almost" satisfies $f \circ T=\lambda f(x)$.

More precisely

r_{n} : the first return times map to $B(n)$.

More precisely

r_{n} : the first return times map to $B(n)$.
Proposition
Let (X, T) be a minimal Cantor systems. The following conditions are equivalent,

More precisely

r_{n} : the first return times map to $B(n)$.

Proposition

Let (X, T) be a minimal Cantor systems. The following conditions are equivalent,

- λ is a continuous eigenvalue of (X, T);

More precisely

r_{n} : the first return times map to $B(n)$.
Proposition
Let (X, T) be a minimal Cantor systems. The following conditions are equivalent,

- λ is a continuous eigenvalue of (X, T);
- $\left(\lambda^{r_{n}(x)} ; n \geq 1\right)$ converges uniformly in x;

More precisely

r_{n} : the first return times map to $B(n)$.

Proposition

Let (X, T) be a minimal Cantor systems. The following conditions are equivalent,

- λ is a continuous eigenvalue of (X, T);
- $\left(\lambda^{r_{n}(x)} ; n \geq 1\right)$ converges uniformly in x;
- the sequence $\left(\alpha r_{n}(x) ; n \geq 1\right)$ converges $(\bmod \mathbb{Z})$ uniformly in x.

Heights: $H(n)=\left(h_{l}(n) ; 1 \leq I \leq C(n)\right)^{T}$.

Heights: $H(n)=\left(h_{l}(n) ; 1 \leq I \leq C(n)\right)^{T}$.

$$
H(1)=M(1)
$$

$$
\text { Heights: } H(n)=\left(h_{l}(n) ; 1 \leq I \leq C(n)\right)^{T} \text {. }
$$

$$
H(1)=M(1)
$$

$$
H(n)=M(n) H(n-1)=H(n)=P(n) H(1)
$$

$$
\text { Heights: } H(n)=\left(h_{l}(n) ; 1 \leq I \leq C(n)\right)^{T} \text {. }
$$

$$
H(1)=M(1)
$$

$$
H(n)=M(n) H(n-1)=H(n)=P(n) H(1)
$$

where

$$
P(n)=M(n) M(n-1) \cdots M(2)
$$

Numeration systems for minimal Cantor systems

For each $x \in X$ there exists a sequence $\left(s_{n}(x)\right)_{n}$ such that

$$
r_{n}(x)=\sum_{k=1}^{n-1}\left\langle s_{k}(x), H(k)\right\rangle
$$

Conditions to be a continuous eigenvalue

Corollary

If λ is a continuous eigenvalue of (X, T) then

Conditions to be a continuous eigenvalue

Corollary

If λ is a continuous eigenvalue of (X, T) then

- \|\| $\|(n)\| \rightarrow_{n} 0$.

Conditions to be a continuous eigenvalue

Corollary

If λ is a continuous eigenvalue of (X, T) then

- $\left\|\|\alpha H(n)\| \rightarrow_{n} 0\right.$.
- $\sum_{n} \max _{x \in X} \mid\left\|\alpha H_{n}\right\| \|<\infty$.

Conditions to be a continuous eigenvalue

Corollary

If λ is a continuous eigenvalue of (X, T) then

- $\left\|\|\alpha H(n)\| \rightarrow_{n} 0\right.$.
- $\sum_{n} \max _{x \in X} \mid\left\|\alpha H_{n}\right\| \|<\infty$.

Theorem (Durand-Frank-Maass15)
λ is a continuous eigenvalue of (X, T) if and only if

$$
\sum_{n} \max _{x \in X}\| \|\left\langle s_{n}(x), \alpha H_{n}\right\rangle\| \|<\infty .
$$

Numeration for dynamical systems

Let $\alpha \in E(X, T) \cap[0,1[$.

$$
\alpha H(n)=\alpha P(n) H(1)=P(n) \alpha H(1) \rightarrow 0 \quad \bmod \mathbb{Z}
$$

Numeration for dynamical systems

Let $\alpha \in E(X, T) \cap[0,1[$.

$$
\begin{aligned}
& \alpha H(n)=\alpha P(n) H(1)=P(n) \alpha H(1) \rightarrow 0 \quad \bmod \mathbb{Z} \\
\Longrightarrow & \exists n_{0}, \alpha H\left(n_{0}\right)=v+w, w \in \mathbb{Z}^{C\left(n_{0}\right)}
\end{aligned}
$$

Numeration for dynamical systems

Let $\alpha \in E(X, T) \cap[0,1[$.

$$
\begin{aligned}
& \alpha H(n)=\alpha P(n) H(1)=P(n) \alpha H(1) \rightarrow 0 \quad \bmod \mathbb{Z} \\
\Longrightarrow & \exists n_{0}, \alpha H\left(n_{0}\right)=v+w, w \in \mathbb{Z}^{C\left(n_{0}\right)} \\
& M(n) \ldots M\left(n_{0}+1\right) v \rightarrow 0
\end{aligned}
$$

Numeration for dynamical systems

Let $\alpha \in E(X, T) \cap[0,1[$.

$$
\begin{aligned}
& \alpha H(n)=\alpha P(n) H(1)=P(n) \alpha H(1) \rightarrow 0 \quad \bmod \mathbb{Z} \\
\Longrightarrow & \exists n_{0}, \alpha H\left(n_{0}\right)=v+w, w \in \mathbb{Z}^{C\left(n_{0}\right)} \\
& M(n) \ldots M\left(n_{0}+1\right) v \rightarrow 0
\end{aligned}
$$

(We will suppose $n_{0}=1$.)

Invariant measures and eigenvalues

$$
\text { Let } \mu \in \mathcal{M}(X, T) \text {. }
$$

Invariant measures and eigenvalues

$$
\begin{aligned}
& \text { Let } \mu \in \mathcal{M}(X, T) \text {. } \\
& \text { Let } \mu(n)=\left(\mu\left(B_{i}(n)\right)^{t} .\right.
\end{aligned}
$$

Invariant measures and eigenvalues

Let $\mu \in \mathcal{M}(X, T)$.
Let $\mu(n)=\left(\mu\left(B_{i}(n)\right)^{t}\right.$.
One has $\mu(n)^{t} M(n)=\mu(n-1)^{t}$

Invariant measures and eigenvalues

Let $\mu \in \mathcal{M}(X, T)$.
Let $\mu(n)=\left(\mu\left(B_{i}(n)\right)^{t}\right.$.
One has $\mu(n)^{t} M(n)=\mu(n-1)^{t}$
Thus,

$$
\langle\mu(1), v\rangle=\mu(1)^{t} v=\mu(n)^{t} M(n) M(n-1) \cdots M(2) v \rightarrow_{n} 0
$$

Invariant measures and eigenvalues

$$
\text { Let } \mu \in \mathcal{M}(X, T)
$$

$$
\text { Let } \mu(n)=\left(\mu\left(B_{i}(n)\right)^{t}\right. \text {. }
$$

One has $\mu(n)^{t} M(n)=\mu(n-1)^{t}$
Thus,

$$
\begin{aligned}
& \langle\mu(1), v\rangle=\mu(1)^{t} v=\mu(n)^{t} M(n) M(n-1) \cdots M(2) v \rightarrow_{n} 0 \\
\alpha= & \alpha \mu(1)^{t} H(1)=\mu(1)^{t}(v+w)=\mu(1)^{t} w \in I(X, T)
\end{aligned}
$$

Observation

Recall : $\alpha \in I(X, T)=\bigcap_{\mu \in \mathcal{M}(X, T)}\{\mu(U) \mid U \subset X$ clopen set $\}$

Observation

Recall : $\alpha \in I(X, T)=\bigcap_{\mu \in \mathcal{M}(X, T)}\{\mu(U) \mid U \subset X$ clopen set $\}$
Proposition
For $\alpha \in E(X, T)$ there exists a clopen set U such that $\alpha=\mu(U)$ for all $\mu \in \mathcal{M}(X, T)$.

Main arguments of

Main arguments of
Theorem (Cortez-Durand-Petite16)
Let (X, T) be a minimal Cantor system such that infinitesimal $f \in C(X, \mathbb{Z})$ are coboundaries. Then

$$
I(X, T) / E(X, T)
$$

is torsion free.

Main arguments of
Theorem (Cortez-Durand-Petite16)
Let (X, T) be a minimal Cantor system such that infinitesimal $f \in C(X, \mathbb{Z})$ are coboundaries. Then

$$
I(X, T) / E(X, T)
$$

is torsion free.

- " $\alpha=\mu(U)$ "

Main arguments of
Theorem (Cortez-Durand-Petite16)
Let (X, T) be a minimal Cantor system such that infinitesimal $f \in C(X, \mathbb{Z})$ are coboundaries. Then

$$
I(X, T) / E(X, T)
$$

is torsion free.

- " $\alpha=\mu(U)$ "
- Characterization of continuous eigenvalues

Limitation of the main result of CDP

$\left(X_{\alpha}, S\right)$: sturmian subshift with angle α, the golden mean.

Limitation of the main result of CDP

$\left(X_{\alpha}, S\right)$: sturmian subshift with angle α, the golden mean.
$\left(X_{2 \alpha}, S\right): \ldots$
choose (Y, T) SOE to $\left(X_{2 \alpha}, S\right)$ and weakly mixing.

Limitation of the main result of CDP

$\left(X_{\alpha}, S\right)$: sturmian subshift with angle α, the golden mean.
$\left(X_{2 \alpha}, S\right): \ldots$
choose (Y, T) SOE to $\left(X_{2 \alpha}, S\right)$ and weakly mixing.
$\left(X_{\alpha} \times Y, S \times T\right)$ is minimal and uniquely ergodic.

Limitation of the main result of CDP

$\left(X_{\alpha}, S\right)$: sturmian subshift with angle α, the golden mean.
$\left(X_{2 \alpha}, S\right): \ldots$
choose (Y, T) SOE to $\left(X_{2 \alpha}, S\right)$ and weakly mixing.
($\left.X_{\alpha} \times Y, S \times T\right)$ is minimal and uniquely ergodic.
$I\left(X_{\alpha} \times Y, S \times T\right)=\mathbb{Z}+2 \alpha \mathbb{Z}$

Limitation of the main result of CDP

$\left(X_{\alpha}, S\right)$: sturmian subshift with angle α, the golden mean.
$\left(X_{2 \alpha}, S\right): \ldots$
choose (Y, T) SOE to $\left(X_{2 \alpha}, S\right)$ and weakly mixing.
$\left(X_{\alpha} \times Y, S \times T\right)$ is minimal and uniquely ergodic.
$I\left(X_{\alpha} \times Y, S \times T\right)=\mathbb{Z}+2 \alpha \mathbb{Z}$
$E\left(X_{\alpha} \times Y, S \times T\right)=\mathbb{Z}+\alpha \mathbb{Z}$

Limitation of the main result of CDP

$\left(X_{\alpha}, S\right)$: sturmian subshift with angle α, the golden mean.
$\left(X_{2 \alpha}, S\right): \ldots$
choose (Y, T) SOE to $\left(X_{2 \alpha}, S\right)$ and weakly mixing.
$\left(X_{\alpha} \times Y, S \times T\right)$ is minimal and uniquely ergodic.
$I\left(X_{\alpha} \times Y, S \times T\right)=\mathbb{Z}+2 \alpha \mathbb{Z}$
$E\left(X_{\alpha} \times Y, S \times T\right)=\mathbb{Z}+\alpha \mathbb{Z}$
Thus $I / E=\mathbb{Z} / 2 \mathbb{Z}$ has torsion element \ldots

Giordano-Handelman-Hosseini theorem

Theorem (GHH17)
Let (X, T) be a minimal Cantor system. Then

$$
K^{0}(X, T) / \Theta(E(X, T))
$$

is torsion free where ...
Proposition
$\Theta: E(X, T) \rightarrow K^{0}(X, T)$ defined by

$$
\Theta(\alpha)= \begin{cases}\lfloor\alpha\rfloor\left[1_{x}\right]+\left[{u_{\{\alpha\}}}\right] & \text { if } \alpha \geq 0, \\ \lceil\alpha\rceil\left[1_{\chi}\right]+\left[1_{\left.u_{\{\alpha\}}\right]}\right] & \text { if } \alpha<0 .\end{cases}
$$

is an injective homomorphism where ...

Theorem
$\alpha \in E(X, T) \cap[0,1]$ if and only if there exists a clopen set $U=U_{\alpha}$ such that

$$
1_{U_{\alpha}}-\alpha \cdot \mathbf{1}
$$

is a real coboundary. Moreover, for every $\mu \in \mathcal{M}(X, T)$,

$$
\mu\left(U_{\alpha}\right)=\alpha
$$

Realization of subgroups

$\left(X_{\alpha}, S\right)$ and $\left(X_{\beta}, S\right)$ with α and β rationally independent with $0<\alpha+\beta<1$.

Realization of subgroups

$\left(X_{\alpha}, S\right)$ and $\left(X_{\beta}, S\right)$ with α and β rationally independent with $0<\alpha+\beta<1$.
($X_{\alpha} \times X_{\beta}, S \times S$) is minimal and uniquely ergodic.

Realization of subgroups

$\left(X_{\alpha}, S\right)$ and $\left(X_{\beta}, S\right)$ with α and β rationally independent with $0<\alpha+\beta<1$.
($X_{\alpha} \times X_{\beta}, S \times S$) is minimal and uniquely ergodic.

Realization of subgroups

$\left(X_{\alpha}, S\right)$ and $\left(X_{\beta}, S\right)$ with α and β rationally independent with $0<\alpha+\beta<1$.
($X_{\alpha} \times X_{\beta}, S \times S$) is minimal and uniquely ergodic.

$$
I\left(X_{\alpha} \times Y, S \times T\right)=\mathbb{Z}+\alpha \mathbb{Z}+\beta \mathbb{Z}+\alpha \beta \mathbb{Z}
$$

Realization of subgroups

$\left(X_{\alpha}, S\right)$ and $\left(X_{\beta}, S\right)$ with α and β rationally independent with $0<\alpha+\beta<1$.
($X_{\alpha} \times X_{\beta}, S \times S$) is minimal and uniquely ergodic.
$I\left(X_{\alpha} \times Y, S \times T\right)=\mathbb{Z}+\alpha \mathbb{Z}+\beta \mathbb{Z}+\alpha \beta \mathbb{Z}$
$E\left(X_{\alpha} \times Y, S \times T\right)=\mathbb{Z}+\alpha \mathbb{Z}+\beta \mathbb{Z}$

Realization of subgroups

$\left(X_{\alpha}, S\right)$ and $\left(X_{\beta}, S\right)$ with α and β rationally independent with $0<\alpha+\beta<1$.
($X_{\alpha} \times X_{\beta}, S \times S$) is minimal and uniquely ergodic.
$I\left(X_{\alpha} \times Y, S \times T\right)=\mathbb{Z}+\alpha \mathbb{Z}+\beta \mathbb{Z}+\alpha \beta \mathbb{Z}$
$E\left(X_{\alpha} \times Y, S \times T\right)=\mathbb{Z}+\alpha \mathbb{Z}+\beta \mathbb{Z}$
Thus $I / E=\alpha \beta \mathbb{Z}$...

Recipe to realize the "maximal" group of eigenvalues for $K^{0}=\mathbb{Z}+\alpha \mathbb{Z}+\beta \mathbb{Z}$ and with 3 towers (letters)

Recipe to realize the "maximal" group of eigenvalues for $K^{0}=\mathbb{Z}+\alpha \mathbb{Z}+\beta \mathbb{Z}$ and with 3 towers (letters)

Let $v_{\alpha}=\alpha \mathbf{1}-e_{2}, v_{\beta}=\beta \mathbf{1}-e_{3}$

Recipe to realize the "maximal" group of eigenvalues for $K^{0}=\mathbb{Z}+\alpha \mathbb{Z}+\beta \mathbb{Z}$ and with 3 towers (letters)

Let $v_{\alpha}=\alpha \mathbf{1}-e_{2}, v_{\beta}=\beta \mathbf{1}-e_{3}$
We need some $(M(n))(3 \times 3$ integer matrices) such that

$$
M(n) M(n-1) \cdots M(2) v_{\alpha} \rightarrow_{n \rightarrow \infty} 0
$$

Recipe to realize the "maximal" group of eigenvalues for $K^{0}=\mathbb{Z}+\alpha \mathbb{Z}+\beta \mathbb{Z}$ and with 3 towers (letters)

Let $v_{\alpha}=\alpha \mathbf{1}-e_{2}, v_{\beta}=\beta \mathbf{1}-e_{3}$
We need some $(M(n))(3 \times 3$ integer matrices) such that

$$
M(n) M(n-1) \cdots M(2) v_{\alpha} \rightarrow_{n \rightarrow \infty} 0
$$

and even more

$$
\sum_{2 \leq n \leq N}\left(\max _{i, j} M(n+1)_{i, j}\right)\left\|M(n) M(n-1) \cdots M(2) v_{\alpha}\right\| \rightarrow_{n \rightarrow \infty} 0
$$

Recipe to realize the "maximal" group of eigenvalues

 for $K^{0}=\mathbb{Z}+\alpha \mathbb{Z}+\beta \mathbb{Z}$ and with 3 towers (letters)Let $v_{\alpha}=\alpha \mathbf{1}-e_{2}, v_{\beta}=\beta \mathbf{1}-e_{3}$
We need some $(M(n))(3 \times 3$ integer matrices) such that

$$
M(n) M(n-1) \cdots M(2) v_{\alpha} \rightarrow_{n \rightarrow \infty} 0
$$

and even more

$$
\sum_{2 \leq n \leq N}\left(\max _{i, j} M(n+1)_{i, j}\right)\left\|M(n) M(n-1) \cdots M(2) v_{\alpha}\right\| \rightarrow_{n \rightarrow \infty} 0
$$

Observation: in this case

$$
\cap_{n} \mathbb{R}^{d} M(n) M(n-1) \cdots M(2)=\mathbb{R}(1-(\alpha+\beta), \alpha, \beta)
$$

