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§0. REVIEW OF REAL AND COMPLEX NUMBERS

In this section we briefly recall some of the basic definitions and properties concerning the
sets of real and complex numbers (cf. [SS07]). This material is part of the prerequisites
and is presented here without proofs. It merely should remind the reader of facts used in
due course without further mentioning and serves to fix some notation.

0.1. Field axioms (Kérperaxiome) for R:

Axioms of addition

(A1) Law of associativity (Assoziativgesetz): for all z,y,z € R
(x+y)+z=z+(y+2).
(A2) Law of commutativity (Kommutativgesetz): for all z,y € R
r+y=y+uz
(A3) Existence of zero: there exists a number 0 € R such that

r+0=x Vz € R.

(A4) Existence of the additive inverse: for each z € R there exists a number —z € R such
that

r+ (—z) =0.

Axioms of multiplication

(M1) Law of associativity: for all z,y,z € R
(zy)z = x(y2).
(M2) Law of commutativity: for all z,y € R
Ty = Y.
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(M3) Existence of a unit: there exists a number 1 € R such that

z-1l==z Vr € R.

(M4) Existence of the multiplicative inverse: for each # € R with = # 0 there exists a
number ! € R such that
zx =1,

Distributive law (Distributivgesetz)

(D) For all z,y,z € R
z(y + 2) = xy + x2.

Recall some of the immediate consequences of the above axioms: the uniqueness of the zero
element 0 € R, the unit 1 € R, as well as of the additive and multiplicative inverses —x
and 7! for any nonzero element x € R. Furthermore, there are no zero divisors (Nullteiler)
in R, i.e., for all z,y € R\ {0} we have zy # 0. Integer powers 2™ (n € N) of a real number
x are always well-defined — as the n-fold product x-- -z ; finite sums and products are
well-defined and obey extended versions of the commutative and distributive law, thus
leading to standard notation involving the symbols ) and [] as, for example, in

n n
E a; and Haj ai,...,a, € R.
Jj=1 Jj=1

0.2. The complex number field C: The field axioms for C are of course
precisely the same with R replaced by C everywhere in the statements. (All axioms listed
above are just instances of the abstract field axioms for the set R.) Alternatively, we may
identify C as a set with R x R equipped with operations of addition and multiplication for
ordered pairs (z;,y;) € R? (j = 1,2) as follows:

(w1, 91) + (w2,2) = (21 + 22, Y1 + 12)
(*Tlu yl) ’ ($2,y2) = (951$2 — Y1Y2, T1Y2 + $2y1)~

Then we can prove that the field axioms are satisfied with (0,0) as the zero element and
(1,0) as the unit. Recall that the element ¢ := (0, 1) has the property that * = (—1,0)
and that every complex number z can be written as

z =z +1y,

where z and y are uniquely determined real numbers. We call x the real part (Realteil) and
y the imaginary part (Imaginérteil) of z, denoted by x = Re(z) and y = Im(z).
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As an additional structure on C there is complex conjugation (komplexe Konjugation) —: C —
C, defined by z = z + iy — zZ := x —iy. As a map complex conjugation is a field
automorphism (Kérperautomorphismus) (i.e., isomorphism onto itself) with the additional
property of involution (Involution), that is Z = z holds for all z € C.

Note that by embedding R as a subfield into C, z — z + i0, we may identify 0 € R with
0eCaswellas 1 € Rwith 1 € C.

0.3. R as an ordered field: There exists a relation > on R with the following
properties:

(01) Trichotomy (Trichotomie): for each z € R precisely one of the following holds
x>0 or z=0 or —x>0.

Elements x satisfying z > 0 are called positive (positiv). If —x > 0 we also write
x < 0 and call z negative (negativ). If x non-positive we thus have x = 0 or x < 0,
which we summarize by writing x < 0. Similarly, we use the notation x > 0 for a
non-negative element x € R.

(02) Forall z,y e R: If z > 0 and y > 0 then z +y > 0.

(03) For all z,y € R: If z > 0 and y > 0 then zy > 0.

DEFINITION: For z,y € R we henceforth write

x>y ifx—y>0,
<y if y > x,

x>y ifx>yorx=uy,
r <y ify—ax>0.

From (O1) we obtain that for z,y € R precisely one of the relations x < y, z =y, or & >y
holds. (Thus the mazimum and the minimum of two real numbers is well-defined.) We
list a few more simple consequences for elements x,y,a € R:

transitivity (Transitivitit): x < y and y < z implies x < z

ifr<ythenz+a<y+a

if x <y and a > 0 then za < ya

T<Yy &= —r>—y

if z # 0 then 22 > 0

y>r >0 o>y 1t>0.
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Recall that an interval (Intervall) in R is a set which is of any of the following types: let
a,b € R with a < b and define

the open bounded interval |a,b[:={z € R:a < z < b},

the open half-bounded intervals | — co,b[:={z € R: x < b}, Ja,00[:={r € R:a < z},
the half-open intervals |a,b] := {r € R:a < x < b}, [a,b):={zr € R:a <z < b},

the closed half-bounded intervals | — 00,b] ;== {z € R: x < b}, [a,00[={r € R:a <z},
the closed bounded interval [a,b] := {z € R:a <z < b},

and | — oo, 00[=R.

0.4. Absolute value in R: For a real number z we define its absolute value
(Absolutbetrag oder Betrag) by

T if z >0,
|| = .
—x ifx <0O.

The basic properties of the map | |: R — R, x + |z| are

(i) for all z € R we have |z| > 0 and |z| =0 <= z = 0.

(ii) for all z,y € R: |zy| = |z| - |y

(iii) Triangle inequality (Dreiecksungleichung): |x + y| < |z| + |y| for all z,y € R.

T

= % whenever y # 0, the so-called reverse
Yy
|z —y| > |x| — |y

(or equivalently, |z+y| > |z|—]y|), and the following formulae for maximum and minimum

Simple consequences are | — x| = |z,

triangle inequality

T+y+|r—yl
2

r+y—|r—yl
5 .

max(x,y) = min(z,y) =

0.5. Countable and uncountable sets in R: Recall that a set X is countable
(abzahlbar) if there exists a bijective map F': X — N. For example, N, N x N, and QQ are
countable sets, but R is not. Thus R is an uncountable set. In fact, any interval |a, b[ with
a < b is uncountable. (cf. [SS07, 4.4].)

0.6. Order completeness (Ordnungsvollstindigkeity and uniqueness of R:

AXIOM OF ORDER COMPLETENESS: Any non-empty subset of R which is bounded
above (resp. below) possesses a supremum (resp. infimum).



THEOREM (DEDEKIND) : Up to isomorphism (of ordered fields) R is the unique order
complete ordered field with the rational numbers Q as an ordered subfield®.

0.7. Some consequences of the order completeness of R: Based on
the order completeness one can prove the following important properties of the set of real

numbers (cf. [SSO07]):

THE ARCHIMEDIAN PROPERTY: If? ¢ > 0 and y € R then there exists n € N such
that na > y.

DENSITY OF Q AND R\ Q IN R: If 2,y € R with « < y, then there exists a
rational number ¢ € Q such that z < ¢ < y and an irrational number s € R\ Q such that
r<s<y.

EXISTENCE OF ROOTS: Ifa € R and a > 0, then for all n € N there exists a unique
x € R such that 2™ = a.

'Richard Dedekind (1831-1916) [Tigast 'derdokmt], German mathematician
2Archimedes (287-212 B.C.) (6 Apyw#drc), one of the greatest ancient Greek mathematicians, physi-
cists, engineers . ..



CHAPTER I

SEQUENCES, SERIES, AND
SUBSETS OF R




§1. N AS A SUBSET OF R AND SOME CONSE-
QUENCES OF THE ARCHIMEDIAN PROPERTY

1.1. N as a subset of R:

Here we briefly discuss how the natural numbers can be characterized as a subset of the
real number field by means of the following notion.

DEFINITION: A subset X C R is said to be inductive if
i)oe X
(i)reX = z+1€X.

THEOREM: There exists a smallest inductive subset N C R. The set N together with
the successor map S: N — R, n +— n + 1 satisfies Peano’s azioms®, that is

(PA1) 0eN

(PA2) Vn e N: S(n) e N,ie. SN)CN

(PA3) In e N: S(n) =0, ie 0¢& S(N)

(PA4) S is injective, i.e. Yn,m € N: S(n) = S(m) = n=m

(PA5) Induction azxiom: if M C N is inductive (as a subset of R) then M = N.

Proof. Define N to be the intersection of all inductive subsets of R. By construction N is
contained in every inductive subset of R, hence it is the smallest such set.

Furthermore, N is an inductive subset of R, since both defining properties of inductive sets
are preserved under intersection. Thus (PA1) and (PA2) are immediate.

(PA3): The set P := {z € N : z > 0} is inductive, since 0 € P and = > 0 implies z+1 > 0.
Therefore P must contain the smallest inductive set N (in fact, this yields P = N). In
other words, all elements of N are non-negative. If n € N with S(n) = 0 then n +1 = 0.
Hence n = —1 < 0 and n belongs to N — a contradiction % .

(PA4) follows from the field axioms (in R), since n + 1 = m + 1 implies n = m.

1Giuseppe Peano (1858-1932) [d3u'seppe pe'amno], Italian mathematician
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(PA5): M is an inductive set and must therefore contain the smallest inductive set N,
which implies M C N C M. Hence M = N. O

By the uniqueness of the set theoretic construction of the natural numbers N the set N is
isomorphic to N (cf. [SS07]). Thus we obtain a model of N inside R in the sense of the
following statement.

COROLLARY: We may identify N with N C R and can henceforth consider N as a
subset of R.

REMARK: In contrast with the totally ordered field R its subset N (as an ordered set
with the order inherited from that on R) is well-ordered, i.e., any non-empty subset of N
possesses a minimum. To see this, let ) # A C N. If A is a finite subset, the minimum
clearly exists (and can be found after finitely many comparisons of the elements in A). If
A is not finite, choose a € A arbitrary and define B :={z € A:x <a}, C := A\ B. Then
A= BUC, every element in C' is greater than any element in B, and B is finite, thus has
a minimum. By construction, the minimum of B is the minimum of A as well.

The following results are simple, but important, consequences of the Archimedian property.

1.2. THEOREM:

1
(i) For all € € R with € > 0 there exists n € N, n > 1, such that — < ¢,
n

1
(ii) Let r € R with » > 0. If for all n € N, n > 1, the inequality » < — holds, then r = 0.
n

Proof. (i): Application of the Archimedian property (with a = ¢ and y = 1) gives that
dn € N such that ne > 1 (note that this implies n > 0). Hence we obtain € > 1/n.

(ii): Let » > 0. If r > 0 then (i) implies the existence of m € N, m > 1, such that
0 < 1/m < r — a contradiction 4 . Thus only r = 0 is possible. 0J

1.3. LEMMA: Let 2z €R, 2> —1. Then we have

VneN: (1+2)">1+nx Bernoulli’s inequality’ .

2The Bernoulli family ['bernuli] was a family of Swiss mathematicians in the 17th and 18th century,
who originally came from Holland.



Proof. By induction on n.
If n =0 we clearly have (1+z)°=1>1+0"x.

Suppose the statement holds for n. Since 1+ z > 0 we conclude

1+2)"=1+2)"1+2)> (1+n2)(1+2)=1+nz+z+na’
=1+(n+Dz+nz>>1+(n+1)z.

>0

O

1.4. PROPOSITION: LetbeR.
(i) If b>1then VK e R In € N: b" > K.
(i) f 0 <b < 1thenVe>0dneN: b <e.

Proof. (i): Let x := b — 1, then x > 0. For all m € N Bernoulli’s inequality gives
" =1+2)">1+mue.

Let K € R. By the Archimedian property there is some n € N such that nx > K — 1.
Therefore using m = n in the above inequality we obtain

b*>14+ne>14+K—-1=K.

(ii): Put by := 1/b, then b; > 1. Let € > 0. Then (i) can be applied to b; with K :=1/¢,
i.e. there is some n € N such that b} > K. Thus we have
1

1
i"=— < —=c¢.
w oK

1.5. Geometric sums: Let n € N. We define the function s,: R — R by

sn(x)::Zxk:1+x+a:2+...+x" Vo e R.
k=0

If x =1 we obtain

sp(1) = l=n+1.



If x # 1 we take the differences on both sides of the following equations

sp(@) =14z +2°+.. . +2" 42"
sp(z) =+ 2 +2° +.. +a" + 2"

to obtain

Sp(x) — z8,(x) =1 — "

g

(1—z)sn(z)

which in turn yields the following formula

(1.1) Zx Lo (neN,z e R\ {1}).

11—z

Observation: We may rewrite (1.1) as

where the first term of the difference on the right-hand side is independent of n.

If |z| < 1 the absolute value of the second term of the above difference has numerator
(Zihler) |z|™™', which becomes arbitrarily small when n gets large. To be more precise,
for every €1 > 0 Proposition 1.4.(ii) guarantees that there exists an N € N such that
|z|V < ;. In fact, the latter inequality then holds for all n € N with n > N as well:
|z|" < €1. Therefore we obtain that

gt gt £

Vn > N.

1—=x l1—2z l1—2z

Let £ > 0 be arbitrary and put €; := ¢(1 — ). Then the above inequality implies that

1
1—=x

Sp(x) — <e VneNn>N.

Thus we see that for arbitrary fixed = with |z| < 1 the sum s, (x) is approximately equal
to 1/(1—x) as n gets large, in the sense that the error can be made smaller than any given
positive “tolerance” as soon as n is larger than an appropriately chosen “number of steps
in the computation”.



§2. SEQUENCES AND LIMITS

2.1. DEFINITION: A sequence (Folge) of real numbers is a map a: N — R. Thus
for every n € N a number a(n) € R is given.

We usually write sequences in indexed form, i.e. we set a,, := a(n) and denote the sequence
by (an)nen or (ag, ay, as, . ..) or simply (a,). Occasionally we will encounter index sets other
than N, as for example in the sequence (a, ax41,...) starting with index k, also denoted
by (an)n>k; sometimes k will be allowed to be a negative integer as well. (In fact, any
countable set can serve as index set as long as it is totally ordered.)

2.2. EXAMPLES:

1) Let ¢ € R and a,, = ¢ for all n € N. This gives the constant sequence (c, ¢, ...) = (¢)nen.
1 1 111
2) Let a, = — foralln € Nwithn > 1. Thenweget ( — ) =(1,=,=,—,...].
n n 2°3 4
3) a, = (—1)" (n € N) defines (a,) = (1,-1,1,—1,...).
n

4) Ay = nj—l gives the sequence (n+1) = (0, ) 7)

5) a, = 2% describes the sequence <2£n) = (0,

6) The Fibonaccit numbers: Let fo =0 and f; = 1. If n > 2 define f,, inductively by

fn = fnfl + fn72'

Thus we obtain (f,) = (0,1,1,2,3,5,8,13,21,...).
7) Let z € R and put a, = 2". Then we obtain the sequence (a,) = (1,x, 22 23,...).

8) Let # € R and define s, = >_,_,z* (= >}_,ar with aj as in 7)). This gives the
sequence of geometric sums (s,) = (1, 1+ 2,1 +z +22,...).

!Fibonacci [fibo'nat{fi], actually Leonardo Pisano (1170-1250 [?]) [leo'nardo pi'samo], an Italian math-
ematician, invented this series to solve a problem according to the breeding of rabbits.
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With the following notion the subject of mathematical analysis really gets started.

2.3. DEFINITION: Let (a,) be a sequence and a € R. The sequence (a,) is said
to be convergent (konvergent) to a if the following holds:

Ve > 03N € N such that  |a, —a] <e Vn > N.

|
|
a—¢€ a a-—+é¢e

In this case a is called the limit? (Grenzwert oder Limes) of the sequence (a,). In symbols

we describe this fact by a = lim a,,, briefly a = lima,,, or a, — a as n — o0, also a, — a
n—oo

Equivalently, a is the limit of (a,) if
Ve > 03N € Nsuch that a, €la—ec,a+¢[ Vn> N.

We then also say that the members a, of the sequence eventually or finally lie in the
interval Ja — €, a+ ¢[ or the property |a — a,| < € holds for almost all n € N, i.e. for all but
finitely many n (namely at most those with n < N) the statement is true.

If a sequence (a,) is not convergent (to any a € R) it is said to be divergent (divergent).
A sequence converging to 0, i.e. a,, — 0 as n — 00, is called a zero sequence or null sequence

(Nullfolge).

Note: In the conditions stated above € > 0 is “given arbitrarily” and our task in showing
convergence is to find N € N (which in general will depend on ¢!) such that for all n > N
the sequence element a,, belongs to the e-neighborhood (e-Umgebung) U.(a) :=]a —&,a+ ¢
of a € R.

Furthermore, the property of convergence as well as the value of the limit remains un-
changed upon alteration or dropping of finitely many members of a sequence.

2.4. Examples:

1) The constant sequence (a,) = (¢) is convergent to c¢: for given € > 0 choose N = 0, then
la, —c|=0< ¢ foralln > N.

2The term “limit” (from the Latin limes, literally “border”) was first used by Isaac Newton.



1
2) <—) is a null sequence: let ¢ > 0; by the Archimedian property there exists N € N
n
1 1 1
such that N > 1/e; then we have for n > N that |— — 0’ =—-< N < €.
n n

3) ((—1)™) is divergent, which we prove by contradiction (indirekt): suppose there is a € R
with (—1)" — a (n — 00); let € := 1/2 and choose N € N such that for all n > N we have
la, —a] < & =1/2. Note that |a,1 — a,] = [(—=1)"" = (=1)"] = |(-1)"(-1 - 1)| = 2.
Hence we obtain

1

1
Zz‘a”'i'l_a”‘:|(a”+1_a)+(a_an)| < |6Ln+1—a|—|—|a_an‘<_+_:1
[triangle inequ.] 2 2

— a contradiction % .

4) lim — =1, i.e.(
1

N > 1/¢, then we have for all n > N

) is convergent to 1: let ¢ > 0; choose N &€ N such that

n+1

: ’

n—(n+1)' 1 _1

n
5) lim — = 0: as a lemma we state that
n—oo

Yn > 4: n2 <2 [proof by induction, exercise!].

1
Using the above result we have o < —ifn >4;let ¢ > 0 and choose N € N such that
n n

N > max(4,2/¢), then we have for n > N

1<1<5<
n_- N~ 2 =

n n
L
AL 2n =

2.5. Definition: A sequence (a,) is said to be bounded (from) above (nach oben
beschrénkt) (resp. bounded (from) below (nach unten beschrinkt)), if there exists K € R
such that for all n € N we have a,, < K (resp. a, > K). The sequence is (bounded)
(beschrankt) if it is bounded above and below.

Thus we have the following equivalence:

(2.1) (a) is bounded <<= 3JK >0VneN:|a,| < K.

Note that the constant K is independent of n.



2.6. Proposition: A convergent sequence is bounded.

Proof. Let a = lima,, and choose N € N such that |a, —a| < 1 holds when n > N. Then
forall n > N

lan| = lan — a+al <lan, —al + |a] <1+ |al.

Put K := max(|ao|, |a1], ..., |lan-1], |a] + 1), then |a,| < K follows for all n € N. O

2.7. Remark: The converse statement of the above proposition is wrong. For ex-
ample, the sequence ((—1)") is bounded (since |a,| = 1 for all n) but not convergent [cf.
Example 2.4.3)].

2.8. Examples:
1) The sequence (f,) of Fibonacci numbers [cf. Example 2.2.6)] is divergent.

Proof. We assert that Vn > 5: f, > n.

Indeed, we have f; =5 and then for n > 6 inductively

fori=fotfor = nt(n-1)>2n+2-1)=n+1
[ind. hyp.]

The above assertion now implies that the sequence (f,,) is unbounded [Archimedian prop-
erty of R] and hence cannot be convergent [by the negation of Proposition 2.6]. O

2) Let € R and consider the sequence (2"),en. The convergence properties depend on
the value of z:

Case |z| > 1: Proposition 1.4.(i) implies that for every K € R there is an N € N such that
Vn > N we have |z|™ > K. Therefore (z") is not bounded, hence cannot be convergent.
Case || = 1: If 2 = —1 then (™) = ((—1)") is not convergent [cf. Example 2.4.3)]; if z =1
then (™) = (1),en is a constant sequence and thus convergent to 1.

Case |z| < 1: If z = 0 then (2"),>1 = (0),>; has limit 0.

Finally, if 0 < |z| < 1 we can show that (z™) also converges to 0: Let ¢ > 0. By Proposition
1.4.(ii) there is an N € N such that |z|" < ¢ holds for all n > N. In other words,

|z" = 0| = |2"| = |z|" <e  Vn >N,

which proves that lim z" = 0.

n—~o0
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2.9. Proposition (Uniqueness of the limit): If a sequence (a,) converges
toa € R and to b € R, then a = b.

(In particular, the notation lim a,, = a is justified by this statement.)

la =98l
3

Proof. (By contradiction.) Suppose a # b and put ¢ := . Then € > 0 and we observe

the following;:

lima, =a = 3Nj such that Vn > Ny: |a, —a|] <¢
as well as

lima, =b = 3N, such that ¥n > Ny: |a, — b| < e.

Thus for n > N := max(Ny, Ny) both of the above inequalities are valid and yield
2
la —b| =la—an +a, —b| < la—ap|+ |a, — 0 <25:§]a—b\.

By assumption, we have |a —b| > 0 and therefore obtain 1 < 2/3 — a contradiction 4. O

2.10. Basic operations with convergent sequences:

(i) Sum and product: If (a,), (b,) are convergent, then the sequences (a, + b,) and
(a, - b,) are also convergent and

22) Jim (a+) = (Jim ) + (Jm .
23) Jim ) = (Jim o) - (Jim D)

Proof. Let a :=lima, and b := limb,.

Sum: We have to show that a, + b, - a+b (n — o0).
Let € > 0. Then £/2 > 0 as well, thus we have

lima, =a = 3N; such that Vn > N;: |a, —a| < &/2
and
limb, =b = 3N, such that ¥n > Ny: |b, — b|] < £/2.

Therefore we obtain for n > N := max(Ny, Na)
€

(@n +B) = (@ D) = (@ = )+ (by = B < (an = ) +1(ba = B)| < 5 +3

=E&.

Product:  We have to show that a,b, — ab (n — 00).
Since (a,) is convergent it is bounded, thus 3K; > 0 such that |a,| < K for all n € N.
Define K := max(Ky, |b|), then K > 0.



11

£
Let ¢ > 0. Using Ve in place of ¢ in the defining property of convergence for (a,) and

(b,) we obtain
M, € N such that |a, —a| < ¢/(2K) for all n > M; as well as
M, € N such that |b, — b| < ¢/(2K) for all n > Ms.

Therefore we have for all n > M := max(M;, M>)

|anb, — ab| = |anb, — ayb + a,b — ab| = |a, (b, — b) + (a, — a)b

€ 9
< |an||bn, — b n—oallb| < K—+ —K ==¢.
< Jaallb = ] + lan — allb] < Ko+ 5K =«

O

(ii) Linearity of the limit: As a corollary to (i) we obtain: If A\, x € R and (a,), (b,)
are convergent, then the linear combination A - (an)neny + 1 (bp)nen = (Aay + by )nen
converges as well and

lim (Aa, + pb,) = A lim a, + p lim b,.
Proof. Let a :=lima, and b := limb,,. The constant sequence (\), resp. (u), converges to

A, resp. p, hence by (i) Aa, — Aa and pb, — ub; furthermore, again by (i), we have the
sum rule (Aa,) + (ub,) — Aa + ub. O

(iii) Quotient: If (a,), (b,) are convergent and b := limb, is nonzero, then there exists

Qp, . ..
ng € N such that b, # 0 for all n > ny and the sequence (b_) converges with limit
n/ n>ng

Proof. Let a := lim a,.

1 1
We first show that T3 (n — 00).

Put ¢’ := |b|/2 and note that ¢’ > 0. By convergence of (b,) to b, there is an ng € N such
that for all n > ng we have

b
%:gs b — | > 1b] = [bal.

[reverse tri. inequ.]

The outermost inequality implies |b,| > |b|/2 and thus b,, # 0 for all n > ny.

Let € > 0, then, again by the basic convergence estimate of (b,) applied to &” := |b|?c/2 > 0,
we obtain the existence of N; € N such that
0]

2
|bn—b\<s”:7€ Vn > Ni.
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We conclude that for n > N := max(ng, Ny)

1 1 b—b, 11 2 1 |b%e
by b bub | [ba] [B] [l o] 2
. “ . Qp 1 1 a
Finally, the product rule (i) gives — =a,- — —a- - = —. 0
by, b, b b
3n* + 13n
iv) E le: Let a, = —5——— .
(iv) Example: Let a o (n € N)

We rewrite a,, (upon division of the numerator and the denominator by the highest order
term with respect to n) in the form

13 1
and observe that repeated use of (i) and (ii) yields 3+ —=3+13-— —-3+13-0=3
n

n
and 11
l+—=1+2-—-——=1+2-0-0=1, hence by the quotient rule (iii)
n n n
, . 3n%4+13n . 3+ 2 lim3+ ¥ 3
lim a, = lim —— = lim 5 = = 5 =—-=3.

(v) If (ay), (b,) are convergent and a, < b, for almost all n (i.e. for all n > ng), then

lima, <limb,.

Proof. Put ¢, := b, — a,, then ¢, > 0 for almost all n and ¢ := lim¢, = limb,, — lima,, by
(ii). Thus it suffices to show that ¢ > 0, since this implies lim a,, < lim b,.

Suppose the contrary, that is ¢ < 0. Let ¢ := —¢, then € > 0 and there exists N € N such
that for all n > N we have

e > len = el = e = (=e)l = lew el [cn2§a>0] e S

But this implies that for all n > N we would have ¢,, < 0 — a contradiction % . O
(vi) The Sandwich Lemma: If (a,), (b,), (¢,) are sequences such that a, < b, < ¢,

holds for almost all n and a, — a, ¢, — a (n — o0), then also (b,) is convergent and
limb,, = a.
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Proof. Let € > 0 and choose N € N such that for all n > N the inequalities |a,, — a| < €
and |¢, — a| < € hold. Then
a—c<a,<b,<c¢c,<a+¢ Vn > N
and upon subtracting a we obtain
—e<b,—a<e Vn > N.

In other words, the inequality |b, —a| < € holds for all n > N, thus (b,) converges to a. O

(vii) Example: Consider the sequence (b,) given by

1 1
k;lkﬁ B n+1) * (n+2)2+'”+(2n)2'

1 1
Note that n + 1 < k < 2n implies — < — and therefore

22
1 1 1 1 1
0<b, <— +——i— A+ =<n-—w=——0 (n— )
n n? n? n
n terms

Hence we may apply the Sandwich lemma with a,, = 0, ¢, = 1/n and conclude that (b,)
is convergent with limit 0.

Remark: Note that the above example shows that strict inequalities a,, < b, for all n
do (in general) not imply a strict inequality for the respective limits, i.e. a, < b, %
lima, < limb,, but of course lima, < limb,.

2.11. Series: Many sequences (s,,) in applications occur through summation over the
first m members of a given sequence (a,,) of real numbers.

DEFINITION: The sequence (s,,)men of partial sums (Partialsummen) is defined by

m
sm::Zak:ao+a1+...+am (m € N)
k=0

and is called (infinite) series ((unendliche) Reihe), usually denoted by Zak. If (s,,) is

k=0
convergent, then lim s, is called the sum of the series and we write

o
E a,p = lim s, = lim E ay.
=0 m—oQ m—o0
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REMARK: (i) We will also consider series with summation starting at ng € N, that is
o0

Z ay, with corresponding partial sums (S, )m>n,-

k=ng

(ii) Every sequence can be interpreted as a series: Let (¢,) be an arbitrary sequence and
define ay, := ¢, — 1 (k> 1) and ag := ¢g. Then we obtain

n
Cp = E ag.
k=0

1 - 1
EXAMPLES: 1) Letay = WD) (k > 1), then the corresponding series is kz:; WD)
k k—1
Observe that ay = PEER hence
n n
k k—1
w=o=3 ()
k=1 k=1
1 1-1 n 2 2—-1 n +n—l n—2 n n n—1\ n
141 1 2+1 2 n n—1 n+1 n ) n+l
is convergent to 1, that is i 71 lim s 1
Y = n =
& ’ kE(k+1) n—oo

k=1

e¢]
2) The geometric series: Let z € R and consider Zxk
k=0
Recall that we have already determined the values of the partial sums (s,,) in 1.5, where
we have obtained
1 —amt!

Sm=m+1 ifx=1, Sm=——— ifx#1.
11—z

Case © = 1: s, = m + 1 is unbounded, hence (s,,) is divergent.

Case £ = —1: 89, = # %) = 0, hence (s,,) is not convergent (argue

as in Example 2.4.3)).

=1and Son+1 =

Case |z| > 1: s, = +— x;:l; as observed in Example 2.8.2), the sequence (z™*') is

- —
$m) as well. Therefore the series is not convergent.
T

A |~ - I
unbounded and thus (
1

$m+1

Case |z| < 1: 8 = — — where ™! — 0 [cf. Example 2.8.2)]. Applying the rules

1 -2
for the computation of limits in 2.10 yields lim s, = ﬁ, that is

> 1

k

= 1).
b= (lal<1)
k=0
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3) As special cases of 2) consider x = j:% in the geometric sum, then we obtain

L
2 4 8 1—3
1.1 1 12
R R i S S

PROPOSITION: If Z a, and Z b, are convergent series and A\, u € R, then

n=0 n=0
Z(Aan + pby,) is convergent and
n=0
> (Aan +pby) =A> an+p> b
n=0 n=0 n=0
Proof. Apply the limit rules 2.10 to the partial sums. 0

2.12. Infinite or improper limits:

DEFINITION: A sequence (a,) is said to have (improper or) infinite limit +oo (ist
uneigentlich konvergent oder bestimmt divergent gegen +oc), if for all K € R there is an
N € N such that a,, > K for all n > N. We then denote this fact by lim a, = +oc.

n—oo
A sequence (ay,) is said to have (improper or) infinite limit —oo, if (—a,) has infinite limit
+00.

Note that a sequence with infinite limit is necessarily unbounded, namely not bounded
above if the improper limit is +o0o0 and not bounded below if the improper limit is —oo.

EXAMPLES: 1) lim n = +o0 2) lim (—n?) = —oc0

3) Let a, = (—1)"n (n € N), then (a,) is unbounded hence not convergent. But (a,) is
not improperly convergent either, since as, — +00 and ag, 11 — —o0.

4) Let a, = n for even n, and a,, = 0 for odd n. Then (a,) is unbounded, divergent, and
also not improperly convergent.
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5) Some rules for operations with improper limits: if (a,) is convergent to a € R and (b,),
(¢n) have improper limit +o00, then

) = lim(
b,) = lim(

lim(a, —b,) = lim(=b, + a,) = —oc0
if a > 0 then lim(a,b,) = lim(
b,) = lim(

WARNING: There are no general limit relations for differences of sequences with infinite
limit +o00 or products of a zero sequence with an improperly convergent sequence. For
example,

limn = 400, limn? = +co and lim(n —n) = 0, but lim(n —n?) = —co

and

lim% =0, limni2 =0 and lim (n%) =1, but lim (nn%) =0.

PROPOSITION: (i) Let (a,) have infinite limit +00 or —oo, then there exists ny € N
1 1
such that <—) is well-defined and lim — = 0.
n>ngo

Qn Qn

1
(ii) If (ay) is a zero sequence with a, > 0 (resp. a, < 0) for all n € N, then lim — = 400
Qn

1
(resp. lim — = —o0)

n

Proof. (i) It suffices to consider the case lima,, = +o0. If we put K = 0, then by definition

1
there is an ng € N such that for all n > ng we have a,, > K = 0. Thus <—) is well
an n>ng

defined. Note that in addition - > 0 (n > no).

Let ¢ > 0. Putting K = 1/e we obtain some N € N such that a, > K = 1/¢ whenever
n > N. Therefore we have for n > max(ng, V) the inequality 0 < i < &, which shows

convergence of (=-) to 0.

(i) is left as an exercise. 0

EXAMPLE: lim 2 = 0 [cf. Example 2.4.5)] and 2% > 0, hence (ii) of the above Proposi-

n

2
tion implies that <—) has infinite limit +o0.
n

REMARK: If (a,), (b,) satisfy a, < b, for almost all n and lim a,, = 400, then limb,, =
~+oo follows directly.



3. COMPLETENESS OF R AND CONVERGENCE
PRINCIPLES

In this section we investigate important consequences of order completeness of R [cf. Sec-
tion 0] for sequences of real numbers. We recall the statement of the

3.1. Axiom of order completeness: A non-empty subset of R which is
bounded above (resp. below) possesses a supremum (resp. infimum).

We define the key notions for sequences which allow us to deduce strong methods for
convergence tests of sequences.

3.2. Definition: Let (a,)nen be a sequence of real numbers.

(1) If (ng)ren is a sequence of natural numbers (i.e. ny € N for all k) satisfying ng < ny <
ng < ... (L.e. ny < nggq for all k) then the sequence (ay,, )ren = (Gng, Gnys Gny, - - -) is called
a subsequence (Teilfolge) of the sequence (ay,).

(ii) A real number a is called cluster point (Hédufungswert) of the sequence (a,), if there
exists a subsequence (a,, )ren converging to a.

3.3. Proposition: A real number a is a cluster point of the real sequence (a,,) if and
only if every e-neighborhood of a contains infinitely many members of (a,), that is

(3.1) Ve >0VN eNIm>N: a,€cUla)=]a—ca+¢|

(recall that a,, € U.(a) is equivalent to |a,, —a| < €).

Proof. « We show the ‘only if’-part (i.e. necessity): a is cluster point = (3.1).

Let (an, )ren be a subsequence with limy_,o a,, = a and € > 0 arbitrary. We can choose
ko € N such that a,, € U.(a) holds for all k& > k.

Let N € N, then there exists k1 > ko such that ng, > N [since ... < ng_; < ng < ngp1 < ...
by definition of a subsequence|. Therefore, if we put m := ny,, then a,, = Qn,,, € U.(a) by
construction.

17
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e We show the ‘if’-part (i.e. sufficiency): (3.1) = a is cluster point.

Putting £ := 1 and N := 0 we obtain an ng € N sucht that a,, € U;(a). Then construct a
subsequence (an, )keny With the property

VkEeNk>1, In, € N:  ng>ng_y and a,, € Uﬁ(a)
inductively: For the basic case k = 1, (3.1) with € := 1/2 and N := ng + 1 gives some
ny > N > ng such that a,, € U%(a). If ay,, ..., an, have been defined, then applying (3.1)
with € := 1/(k+2) and N := n; + 1 we obtain n,,; > N > ny such that a,, , € U%H (a).

We assert that (a,, )xen converges to a: Let € > 0. Choose ky € N such that ﬁ < e |cf.
1.2.(i)], then we have for all k > k that

la,, —al < <e.

ko +1

3.4. Examples: 1) If a, = (—1)" then (a,) has 1 and —1 as cluster points, since
the subsequences (ag, ag, a4, . ..) (with even index only) and (ay, as, as, .. .) (with odd index
only) converge to these values:

lim a9, =lim1 =1 lim aggyy = lim(—1) = —1.
k—o0 k—o0

1
2) ((—1)” + —) also has cluster points 1 and —1, since
n>1

1
lim aq, = lim (1+—) =140=1 lim aggyq = lim (—1+ ) =—-1+0=—1.
k—o00 k—o0

2k 2k +1

3) (n) has no cluster points, since every subsequence is unbounded, hence divergent.

4) Let a, = n, if n is even, and a,, = %, if n is odd. The sequence (a,) is unbounded, since
for example ag, — 00 (kK — o0). But (a,) has 0 as cluster point, because the subsequence

(G2k+1)ken = (ﬁ) converges to 0.

3.5. Remark: If (a,) is a sequence with limit a, then a is the only cluster point of
a,) [cf. the Exercises].
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3.6. Theorem (of Bolzano-WeierstraBl): Every bounded sequence of real
numbers has a cluster point (that is, possesses at least one cluster point).

Proof. Let (a,) be a bounded sequence, then there exists K € R such that |a,| < K holds
for all n € N. Consider the subset

A:={z €R:a, > z holds for at most finitely many n} C R.

Since no a,, can be larger than K, we have K € A, thus A is nonempty.

A is bounded from below: If x < —K, then z € A [since a,, > —K for all n]; hence —K —1
is a lower bound for A.

By order completeness A has an infimum. Let a := inf A.
Claim: a is a cluster point of (a,).
Let € > 0.

e Since a + ¢ > a the number a + ¢ is not a lower bound of A [property of the infimum a!].
Hence there exists y € Asuch a <y <a+e.

By definition of A we have a,, <y < a + ¢ for almost all n. Therefore we obtain

(%) dng e NVn>ng:a, <a-+e.

e Since a is a lower bound of A we have that a — e ¢ A. Hence a, > a — ¢ holds for
infinitely many n, that is

(%) VN eNIm>N:a—e<ap.

Combining (x) and (xx) gives (3.1), therefore a is a cluster point of (ay,). O

3.7. Remark: Note that in the above proof we have found the greatest cluster point
of a given bounded sequence (a,). Indeed, if b > a — using the notation as in the proof
— we may choose ¢ € A with a < ¢ <b. If ¢ := b — ¢ > 0 then the e-neighborhood U, (b)
contains only finitely many members a,,. Thus b is not a cluster point of (a,). Similarly,
we can prove that a smallest cluster point exists.

!Bernhard Bolzano (1781-1848) ['beenhant bol'tsaino], German mathematician
Karl Weierstrafl (1815-1897) [kasl 'vawoe[tras], German mathematician, was the one who introduced the
letter € to mathematical analysis.
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3.8. Definition: (i) Let (a,) be a bounded sequence. The greatest cluster point of
the sequence is called the limit superior (Limes superior) of (a,) and is denoted by lim sup a,,
or lima,. The smallest cluster point of (a,) is called the limit inferior (Limes inferior) of
(a,) and is denoted by liminf a,, or lima,,.

(i) If (a,) is not bounded above (resp. below), then we set limsupa, = +oo (resp.
liminf a,, = —00).

3.9. Examples: 1) Let a, = (—1)" (1 + 1), then (a,) has cluster points 1 and —1,
thus

1 1
lim sup(—1)" (1 + —) =1,  liminf(-1)" (1 + _) = 1.
n n

2) (n) has no (real) cluster points and lim supn = +oc.

In deciding wether a certain sequence is convergent or not the defining property of con-
vergence requires to already be in the possession of a good guess for the value of the
prospective limit. Unless the sequence is simple enough to be analyzed directly by means
of the basic rules for computation of limits [cf. 2.10] (or is seen to be unbounded), it might
be difficult or even hopeless to guess the limit with complicated terms or when the sequence
members are not defined by an explicit formula or procedure.

To deal with such situations we strive for the development of methods that allows to decide
the question of convergence without having to know a candidate for the limit in advance. In
some cases, this then also leads to a successful determination of the limit a posteriori. There
are also situations where a reasonable candidate for the limit is easily guessed or the only
possible value can be determined (under the assumption that the sequence converges), but
direct convergence proofs are inaccessible. The principles of Cauchy? and that of monotone
bounded sequences [cf. 3.10 and 3.12] are among the most powerful alternative methods
to prove convergence of real sequences.

3.10. Cauchy sequences:

DEFINITION: A real sequence (a,) is a Cauchy sequence if

(3.2) Ve>03dNeN Yn>NVm>N: Ja,—an| <e.
THEOREM: Let (a,) be a real sequence. The following are equivalent:

(i) (a,) is convergent

(ii) (an) is a Cauchy sequence.

2 Augustin Louis Cauchy (1789-1857) [ogys'té lwi ko'[i], French mathematician
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REMARK: Note that condition (ii) can be checked without knowing the limit. Moreover,
if (ii) fails to hold we may conclude that the sequence is divergent.

Proof. (i) = (ii): Let a := lima, and € > 0. Choose N such that |a, — a|] < €/2 holds
Vn > N. Then we have for all n,m > N

e ¢
lan, — am| = [(an —a) + (a — ap)| < |a, —a|+ |a — ap| < 5—1—5 =e.
(ii) = (i): Let (a,) be a Cauchy sequence.
Step 1: (a,) is bounded.

We put ¢ = 1 in (3.2) and obtain that there is some N such that n,m > N implies
|a, — a,| < e = 1. In particular, if m = N this means that |a,| — |ax| < |a, — an| < 1,
hence |a,| < 1+]ay], holds for all n > N. Since clearly |a,| < 1+max(|ao|,...,|an|) =1 K
forn=1,..., N, we therefore have |a,| < K for all n € N.

Step 2: By the Theorem of Bolzano-Weierstra8 [cf. 3.6] (a,) has a cluster point a € R.
Step 3: a, — a (n — 00)

Let ¢ > 0. Choose N such that |a, — a;,| < £/2 for all n,m > N. Since a is a cluster
point there exists & > N such that |a; — a| < /2. Combining these facts we obtain that
forn > N

e €
]an—a\:](an—ak)—i—(ak—a)]g\an—akl+]ak—a]§§+§:5.

3.11. Example: Let (a;) be a sequence and suppose there is some 6 €]0, 1[ such that
lag| < 6 for all k. Consider the partial sums s, := >, _,a;". If m < n then

n n n m 1 — gntl 1 — gm+1
S ST SR S oY e e el
k=m-+1 k=m+1 k=0 k=0 B N
_ gt — gt _ 9m+1 1—om < 9m+1 1 '
1—-46 1-6 1—-46

Let ¢ > 0. Since 0 < 6 < 1 we can choose N such that 0 < 6™ < ¢(1 — 6) holds for all
m > N. Therefore we have for all N < m < n that

1
n— Sm| <O —— < g
|s Sm| < 7 €
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If n=m > N we have s, — s,,, = 0 and if N < n < m the roles of n and m can
be interchanged in the above estimates. In summary, we obtain that (s,) is a Cauchy
sequence.

We conclude that the series > - a," is convergent, although we have no clue what its
sum might be — and in the general case there is no way to determine the limit.

3.12. Monotone sequences:

DEFINITION: A real sequence (a,,) is (strictly) increasing ((streng) monoton wachsend)
if for all n € N: a,, < a,41 (resp. a, < an41). A real sequence (a,) is (strictly) decreasing
((streng) monoton fallend) if for all n € N: a, > a1 (resp. a, > an41). If ng € N such that
(@n)n>ne 18 (strictly) increasing (or decreasing) we shall occasionally express this by saying
that (a,) has the corresponding property for n > nq.

REMARK: A decreasing sequence (a,) which is bounded below is bounded. Indeed, if
C is a lower bound we have for all n € N

C<an<an,<---<ap.

Similarly for increasing sequences which are bounded above.

EXAMPLE: 1) The Fibonacci sequence ( f,,) [cf. Example 2.2.6)] is increasing and strictly
increasing for n > 2. We have fy =0< f; =1= f; and f, > 0 when n > 1, therefore

fori=fot a1 > fa+0=f, Vn>2
2) Let o > 0 and define the sequence (x,,) recursively by

1 3
Tpy1 = §($”+x_) (n € N).

Note that by induction x,, > 0 for all n, hence the recursion defines a sequence (x,,).
Claim 1: Vn > 1. a:i >3
This follows from

1 3 1 9
xn+12—3:Z(xn+_)2—321($n2+6+p)—3

n n
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Claim 2: (x,) is decreasing for n > 1

We have for n > 1 5 .
I L S o R
Tp Tpt+1 = Tn 9 an an (‘In 3)7

which is nonnegative by claim 1, hence x,, > x,1.

The theorem which we prove below will guarantee that the sequence (z,) is convergent,
since it is bounded below (by \/3) and decreasing for n > 1. What is the value of the limit
z:=limz,”

In this case we can make use of the recursion relation. Note first that > v/3 > 0 [since
Ty > \/3] and then take limits for n — oo on both sides of the recursion relation

Tpt1 = %(zn"i_%)
l 1 l 3

Therefore 2 = 3, that is z = /3.

THEOREM: If (a,) is increasing (for n > ng) and bounded above, then (a,) is conver-
gent. A corresponding statement holds for decreasing sequences that are bounded below.

Proof. Let A := {a, : n € N}. As noted in a remark above (a,) is bounded, thus the set
A is bounded. Put a := sup A. We show that (a,) converges to a:

Let ¢ > 0. Since a is the supremum of A we can find m € N such that a — e < a,, < a.
By monotonicity we obtain that a — ¢ < a,, < a, < a holds for every n > m. Hence
la — a,| < € for every n > m which proves that a, — a.

O

As an application of the preceding theorem we present a useful alternative to describe
the limit superior (resp. limit inferior) of an arbitrary bounded sequence as the limit of a
specifically constructed decreasing (resp. increasing) sequence.

3.13. Proposition: Let (a,) be a bounded real sequence, then

limsup a,, = lim (sup{ay : k > n})
n—o0 n—oo
and
liminfa, = lim (inf{ay : £ > n}).
n—oo n—oo
A corresponding statement holds for unbounded sequences with improper values +oo or
—o0 assigned to sup, inf, limsup, or liminf in the appropriate way.
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Proof. (For limsup, the case of liminf being very similar.)
Let M, = {ay : k > n} and z, := sup M,,. Since M,.; C M, the sequence (z,) is
decreasing.

Furthermore, if C' > 0 is a bound for (a,), that is |a,| < C for all n, then it also is one for
(x,), hence (z,,) is bounded too.

By Theorem 3.12 (x,,) is convergent. Let z := lim x,,.
Assertion: x is a cluster point of (a,).

Let ¢ > 0.
e We may choose N € N such that for all n > N: x < x, < x + . By construction
a, < x,, hence

Yn>N: a,<z+e.

e Since z,, is the supremum of the set M, = {a; : k > n} (and z,, — ¢ < x,,), we have the
following:

YneNdIm>n:a, >x,—c>x—¢.

Combining the two inequalities above we find that for all n there is some m > n such that
an, € U.(z). [Proposition 3.3] then implies that x is a cluster point of (a,).

Finally, if (a,,) is an arbitrary subsequence of (a,,), then clearly a,, < x,, holds for all k.
Therefore, if (a,,) converges we must have

lim a,, < lim z,, = .
k—o0 k—o0

Thus x is the largest cluster point, i.e. x = lim sup a,,. O
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3.14. Adherent points and accumulation points of subsets of R:

DEFINITION: Let A CR and a € R.

(i) a is an adherent point (Beriihrpunkt) of A if Ve > 0 we have that U.(a) N A # 0.
(Every e-neighborhood of a contains at least one point of A.)

(i) @ is an accumulation point (Haufungspunkt) of A if

Ve >0: U.(a)NA contains infinitely many points.

BASIC PROPERTIES: Clearly, every accumulation point of A and every element of A
is an adherent point of A.

(a) a is an adherent point of A <= there exists a sequence (a,) in A: a, — a (n — o)
[(an) in A means a, € A for all n]

Forn € N, n > 1, choose a,, € Uy/n(a) N A. Then (a,) is a sequence in A with a, — a.

(=) By assumption there exists (a,) with a,, € A for all n and satisfying for all € > 0 that
there is some N such that a, € U.(a) for all n > N. In particular, U.(a) N A is not empty.

(b) a is an accumulation point of A <= a is an adherent point of A\ {a}

Proof as an exercise.

1

EXAMPLES: 1) 0 is an accumulation point of A ={—:n € N,n > 1} (but 0 does not
n

belong to A).

2) Let A= {1} and a,, = 1 for all n. Then 1 is an adherent point of A and a cluster point
of (a,), but it is not an accumulation point of A.

Thus we learn that, in general, a cluster points of a sequence (a,,) need not be an accumu-
lation point of the set {a, : n € N}.

3) Consider Q@ C R. Then every point x € R is an accumulation point of Q. This follows
from the density of Q in R [cf. 0.7].

4) Let a < zp < b and A =|a, z9[U]xg, b]. Every = € [a,b] is an accumulation point of A.

REMARK: Let A be a bounded subset of R.

(i) By the Theorem of Bolzano-Weierstraf}, every sequence (a,) in A has a cluster point,
which is then also an adherent point of A.

(ii) The supremum (resp. infimum) of A is an adherent point of A. Moreover, sup A (resp.
inf A) is the limit of an increasing (resp. decreasing) sequence in A: Let o := sup A, choose
a —2 < ap < a, and construct (a,) inductively with the property

1
YvneNn>1: a,€A, a,>a,.1 anda—-—<a, <a.
n



26

3.15. Principle of nested intervals (Intervallschachtelungsprinzip):
Let a < b and I be the closed bounded interval [a, b], then

(3.3) diam (I):=b—a
is called the diameter?® or length of I. Note that

Ve,yel: |z —y| <diam (I).

THEOREM: Let I,, (n € N) be a sequence of closed bounded intervals with the following
properties:

) lh2LD...20, 21 ...

(i) lim diam (7,) = 0.

Then there is a unique point = € R which belongs to every I,, (n € N), i.e.

() L. = {=}.

neN
Proof. Let I, = [a,, b,] (n € N), where a,, < b,. By property (i) we have for all n, N € N
ap < ap <. < ap Sapgr Kby <oy <L < by <.

Thus (a,) is a Cauchy sequences, since by property (ii) for any n,m > N the right-hand
side of

0< |am - an‘ = Gmax(m,n) — Qmin(m,n) <by —an
can be made arbitrarily small when N is sufficiently large.

Hence there exists z € R such that z = lim a,,.

For all n > k we have the inequalities a, < a,, < b,, < b.

Sending n — oo yields ay < o < by, for every k, thus x € ﬂ I,.
neN

If z; and zy are arbitrary points in ﬂ I,, then (ii) implies
neN

0<|zg — 21| < diam (Iy) = 0 (k— o0).
Thus ﬂ I,, contains only a single point which then has to be x.
neN

To summarize, ﬂ I, = {x}, where x is uniquely determined as the limit of (a,). O
neN

3The word “diameter” was originally derived from the Greek 1) diduetpoc (literally “measurements”)
and is now common in most languages.
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3.16. Completeness revisited: The current section has been devoted to the
derivation of consequences of the Axiom of order completeness 3.1. Along the way, we
proved in succession the Theorem of Bolzano-Weierstra8 [cf. 3.6], the Cauchy convergence
principle [cf. 3.10], and (via the principle of monotone bounded sequences) also the principle
of nested intervals [cf. 3.15].

It is an intriguing fact, that in turn the statement of order completeness becomes a provable
theorem when any of the other three results is taken as an axiom instead. For example,
below we give a proof that the principle of nested intervals implies order completeness.

We summarize this situation in a diagram:

order completeness = principle of nested intervals
I )
Bolzano-Weierstrafl theorem = Cauchy principle

THEOREM: The principle of nested intervals implies order completeness.

Proof. Let A be a bounded and nonempty subset of R. We will construct a nested sequence of
intervals I, = [an, b,] (n € N) with the following properties

(i) every by, is an upper bound for A
(ii) no a,, is an upper bound for A.

Let by be an upper bound for A [A is bounded] and choose a € A arbitrary [A is nonempty!].
Then o < by and ag := a — 1 < by cannot be an upper bound for A.

We proceed by induction: supppose that [ag,bg] 2 ... D [an, by] have been constructed satisfying
(i) and (ii). Let m := (b, — a,,)/2 be the midpoint of I,, and define

[an,m] if m is an upper bound of A

[ant1,bpt1] := {

[m,by] otherwise.

By the principle of nested intervals we have ﬂ I, = {s} for some s € R.
neN

Claim 1: s is an upper bound for A

Assume the contrary, then there exists x € A such that = > s. Since a, < s < b, for all n and
by, — an — 0 (n — o00) there exists N such that

by —s<by—any <x—s.

Therefore by < x, which is a contradiction to property (i) above.
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Claim 2: s is the least upper bound of A

Supppose that s’ < s is also an upper bound of A. Then there is n € N such that diam (I,,) < s—s'.
Since s € I,, we have
5 —ap < diam (I,) < s — &,

which implies that a, > s and thus a,, is an upper bound of A — a contradiction 4 to (ii)
above. O



4. CONVERGENCE OF SERIES

Let (ax)ken be a sequence of real numbers. Recall that the series Z;‘;O ay, is defined to be
convergent if and only if the corresponding sequence (s,,)men of partial sums s,, = Y - ax
is convergent, with lim s,, being called the sum of the series.

4.1. Proposition (Cauchy principle for series): The series » ay is con-

k=0
vergent if and only if

(4.1) Ve > 0 3dN € N such that Vn > m > N : < e.

n
>
k=m

Proof. The sequence of partial sums (s,,) converges if and only if it is a Cauchy sequence
[cf. Theorem 3.10]. The latter is equivalent to the property that

Ve>03dNeN: s, —sp1]<e Vn,m—12>N,

where we may assume in addition that n > m — 1, which yields s, — s,,,_1 = Zzzm ap. U

4.2. Remark: Note that condition (4.1) is not affected by changing finitely many
ai’s in the series. Thus the convergence behavior of a series does not depend on alteration
of a finite number of terms. (However, the value of the sum might change, of course.)

4.3. Corollary: If > 7 a; is convergent, then (a,) is a null sequence.

Proof. Let ¢ > 0 and put m = n > N in condition (4.1). Thus |a,| < € holds for all
n > N, hence a,, — 0 (n — o00). O

29
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4.4. Proposition: Let Y a, be a series of nonnegative numbers, i.e. a, > 0 for all
n € N, then

e}

Z a, is convergent <= the sequence of partial sums (s,,) is bounded.
n=0

Proof. =) (s,) is convergent, hence bounded.
&) Smt1 = Sm + Qmy1 > Sm shows that (s,,) is increasing. Since, by assumption, (s,,) is
also bounded [3.12, Theorem| implies convergence. O

4.5. Examples: 1) Z(—l)" is divergent, since (—1)" /4 0.
n=0

2) The harmonic series Z — is divergent, since the partial sums are unbounded:

n=1
21 1 /1 1 1 1 1 1 1 1
D D A CRET Rl C Rl R B R e R
22t e 2ok k=)
11 1 2
Sldcdod >4
21yt 2l
kt;ms

Note that in this example a, := + — 0 (n — o0) but Y a, is divergent. Thus Corollary
4.3 gives a necessary condition for convergence which is not sufficient (a,, — 0 does not
imply that > a, converges)!

[ee]
1
3) If s € N with s > 2, then E — is convergent.
n
n=1

Since all terms are nonnegative it suffices to prove boundedness of the partial sums: Let
m € N and choose | € N such that m < 2! — 1, then we obtain

m 4 2l+1_q 1 1 2l+1_q
= < - =1 T _
m=Yms Xt ()t (D
n=1 n=1 2l
~—_———
<23 <2l L
<25
Lo LY &1 Y 1
<3 v - 3 (3) =1
Qs 25—1 25—1 1 — 5ot

which gives an upper bound independent of m. (The same proof would work for any s €]1, 0ol.)
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4.6. Theorem (Leibmiz’s1 criterion for alternating series): Leta, >0
for all n € N and consider the series with alternating signs

e}

Z(—l)"an:ao—a1+a2—a3+a4—...

n=0
If in addition (a,,) satisfies

(1) ap > apyq for all n, ie. (a,) is decreasing,
and

(ii) a, — 0 (n — 00),

then the series » (—1)"a, is convergent.

Furthermore, for the partial sums s, = >."" (—1)"a, and the sum of the series s =

lim,,— oo Sy = ZZO:O a, we have the error estimate
(4.2) |s — sm| < ams1 Vm € N.

(In other words, the error of each partial sum is not larger than the first neglected term.)

Proof. Observe that for all k

Sok+1 = Sok — Aok41 < Sok

Sok+2 = Sok — (Qok41 — Qokt2) < Sok

.

-~

>0 by (i)

Sok+3 = Sop41 + (Aokt2 — Qopy3) > Sokt1s

- J

>0 by (i)
which we summarize by

s1 <83 <85 <L < Sopgn S Sg S

o< 8y <89 < 8.

In other words, we have a sequence of nested intervals I, := [soxi1,S2r] (kK € N) with
diam (Iy) = Sox — Sok+1 = aok+1 — 0 as k — oo [by property (ii)]. Therefore [Theorem
3.15] implies that (), .y Ik = {s}.

Since sop11 < s < so for all £ we obtain for every m € N that
‘3 - Sm‘ < |3m+1 - Sm| = Um+1,

which gives (4.2) and also proves convergence of (s,): Let ¢ > 0 and choose N such that
0<a,<cforalln>N. Then for alln > N

|sp — 8| < ap1 <e.

U
1Gottfried Wilhelm Leibnitz (1646-1716) ['gotfrizt 'vilhelm 'larbnits], German philosopher and scientist
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[o.¢]
-1 n—1
4.7. Example: The alternating harmonic series Z = is convergent, since (+)
n
n=1

is decreasing and converges to 0.

4.8. Remark and warning: The value of the sum — and even the convergence
behavior (!) — of a convergent series may depend on the order of summation. To be more
precise, if "7 a, is a convergent series and 7: N — N is bijective, then the rearrangement
(Umordnung) Y 7 ar(,) need not have the same sum or need not converge at all.

For example, consider again the alternating harmonic series
i(—n”—l_l 1+1 1+1 1+
n 2 3 4 5 6 7

n=1

which is convergent as we have shown above. If we rearrange the terms in the series in the
following way

11— 4 - _ 4 -4
2 4+3 6 8+5 10 12+7 14 16+

—— ~—— ~—— ———

1/2 1/6 1/10 1/14

1 1+1 1+1 _11 1+1 1+1 1+
2 4 6 8 10 T2 2 3 4 5 6 )

then we obtain half of the original sum.

We can even find a divergent rearrangement of the (originally convergent) alternating
harmonic series, where the negative terms occur with more and more delay as we progress:
Let n > 2 and observe that

1 1 1 (/1 1\ 1 /1 1 1 1)\ 1
l—c4-——+ |-+ ]+ (z+=+=+—=) =+
——

2 3 4 5 7 6 A 9 11 13 15 ’ 8
>0 >2/8=1/4 >4/16=1/4
1 1 1 1
+§2”+1+2”—i—3+”'+2”+1—1)_2n+2
Son—1/gnt1-1/4
>n—1_(1+1+ N 1 )>n—1_n—1_n—1
4 6 8 2n+2/) 7 4 6 12 7

thus the partial sums corresponding to such a rearrangement must be unbounded.

The following definition introduces the appropriate convergence notion for series which is
stable under rearrangements.
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4.9. Definition: A series Y a,, is absolutely convergent (absolut konvergent) if > |ay,|
is convergent.

4.10. Remark: (i) Since |a,| > 0 absolute convergence is thus equivalent to the

boundedness of s, = > " |an|.

(ii) Convergence does not imply absolute convergence, as can be seen from the example of
n—1

the alternating harmonic series, where a,, = (_1; (n > 1): in this case > |a,| = > = is

the harmonic series, which is divergent.

Absolute convergence is a stronger condition than convergence.
4.11. Proposition: Every absolutely convergent series is convergent.

Proof. Suppose ) |a,| is convergent. Let € > 0. By the Cauchy principle for series we can
find N € N such that

n
VYn>m> N : Z\ak|<€.
k=m

Applying the triangle inequality (for finitely many terms) we obtain

n n
VYn>m > N: Zak gZ\ak\<5,
k=m k=m
which in turn by the Cauchy principle for series yields convergence of Y a,,. O

4.12. Rearrangement theorem for absolutely convergent series:
Let ) a, be an absolutely convergent series. Then every rearrangement ) a,(,), where
7: N — N is a bijection, is absolutely convergent and has the same limit.

Proof. Let s := Zan.
n=0

o0

Clatm 1: Z ar(ny is convergent with sum s
n=0

I
Let ¢ > 0 and choose N such that for all [ > N we have Z lag| < % [Cauchy principle
k=N

for the convergent series »_ |ag|]. Sending | — oo yields Z lag| < % and therefore for all
k=N
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m > N also that

m N-1 m m 0o c
PRITED SI'1 D SENIEED SITHED SIS
k=0 k=0 k=N k=N k=N

Upon taking limits as m — oo we find

<

c

5

Choose M € N with M > N and large enough to ensure {7(0),7(1),...,7(M)} D
{0,1,...,N — 1}. [Since 7 is a bijection of N such an M exists.] Then we have for
allm > M

Z Qr(k)y — S
k=0

N-1

m
EE:QT%)_'EZ:&k
k=0

k=0

<

[o¢]
thus Z G7(n) cOnverges to s.
n=0

Claim 2: Y |ar@m| is convergent

This follows by application of Claim 1 to the series Y b, with b, := |a,| (and its corre-
sponding sum s’ := > by,). O

4.13. Remark: One can prove that absolute convergence of a series is, in fact,

equivalent to the property that all its rearrangements converge to the same limit. [cf.
[BF0O]

Now that we have established the importance of absolute convergence we come to the
question of how to determine wether a given series is absolutely convergent.

4.14. Proposition (Basic comparison test): (i) Let 3¢, be convergent
with nonnegative terms ¢, > 0. If |a,| < ¢, holds for almost all n, then > a, is absolutely
convergent. (> ¢, ist eine konvergente Majorante fiir > ay,.)

(ii) Let > d,, be divergent and have nonnegative terms d,, > 0. If a,, > d,, holds for almost
all n, then > a, is divergent. (3" d, ist eine divergente Minorante fiir 3 ay,.)

Proof. (i) WLOG (= without loss of generality) we may assume that |a,| < ¢, holds for
all n. > |ag| is a series with nonegative terms and for all m € N

m oo
0<) lad <) e
k=0 k=0
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proves that the partial sums are bounded. Thus the convergence of »_ |a,| follows from
[Proposition 4.4].

(ii) If > a, were convergent, then by (i) > d, would converge — a contradiction 4. O

o
1
4.15. Examples: 1) Z —— is divergent, since
n=1 \/ﬁ
1 1 =1
Vn>1: —> — and Z — diverges.
vVn T n “—n

2) Let (a,) be a sequence with |a,| < 1 for all n and let ¢ €]0,1[. Since |a,q¢"| < ¢" and
the geometric sum »_ ¢" is convergent, we deduce that

(e e
Z a,q" is absolutely convergent.
n=0

4.16. Proposition (Root test (Wurzeltest)): The series 3" a,, is
(a) absolutely convergent, if there exist € R with 0 < 6 < 1 and ng € N such that

Vn>ng:  a|Y" <6

(b) divergent, if
lan|™ > 1 for infnitely many n.

Proof. (a) Since |a,| < " for almost all n and the geometric series > 0" is convergent, the
basic comparison test implies convergence of Y |a,|.

(b) Since it follows that |a,| > 1 for infinitely many n, the sequence (a,) does not tend to
0, thus ) a, is divergent. O

4.17. Remark: (i) There are variants of the above statement, for example [cf. [BF00]]:
Let a := limsup |a,|"/", then 3" a, is

(a) absolutely convergent, if o < 1

(b) divergent, if o > 1.
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(ii) In practice, we often have that 3 := lim |a, |/ exists. Then 3 < 1 implies case (a) of the

root test, hence absolute convergence, and > 1 implies condition (b), hence divergence.
(Note that also @ = 3 in such situations.)

(iii) Note however, that achieving § = 1 in condition (a) of the root test (or &« = 1 or
B =1) is not conclusive! For example,

1 1 1/n
Z is convergent and ( ) <1,

n? n?
1 1 1/n

Z — is divergent and (—) < 1.
n n

4.18. Proposition (Ratio test (Quotiententest)): Let a, # 0 for almost all n.
The series ) ay, is
(a) absolutely convergent, if there exist § € R with 0 < 6 < 1 and ng € N such that

Qn
Yn > ng : 1 <4
Qn
(b) divergent, if there exists ny € N such that
Qn
Vn > ng : 1 >1
Qn

Proof. (a) We obtain for all n > ny
|ania| < Olan| < ... < 0"an|,

where > 0" |a,, | = |an, |07 > 0™ is convergent. Thus the comparison theorem implies
convergence of Y |a,|.

(b) Let ny > ng such that a,, # 0 then the stated condition implies that |a,| > |a,,| > 0
for all n > ny. Thus (a,) cannot be a null sequence and therefore ) a,, diverges. O

4.19. Remark: (i) Again, there exist variants of the ratio test [e.g., cf. [BF00]]: Let
= , then " a, is

an+1 an+1
Qan

Qan

a = limsup and v := liminf

(a) absolutely convergent, if o < 1

(b) divergent, if v > 1.
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(ii) Suppose that 8 := lim “** exists. Then 3 < 1 implies case (a) of the ratio test,
hence absolute convergence, and > 1 implies condition (b), hence divergence. (Note that
consequently o = 3 = ~.)

(iii) As with the root test, having # = 1 in condition (a) of the ratio test (or« =1 ory =1
or 3 =1) is not conclusive! The same examples illustrate this:

1 : Ap41 77,2
— is convergent and = <1,
Z n2 & an (n+1)?
1 ap, n
E — is divergent and o < 1.
n an n+1

(iv) One can prove that condition (a) of the ratio test implies that condition (a) of the
root test holds [cf. [BF00, Section 5.3]]. In other words, whenever the ratio test concludes
positively the root test is applicable as well. On the other hand, there are absolutely
convergent series for which the root test is successful, whereas the ratio test is inconclusive.
(We give an example below.)

0 2

4.20. Examples: 1) Z Z—n is absolutely convergent, since
n=1
2
1| (41220 1/ 1 1
| = e =a\ltn) T o)

2) Consider

27" if n is even
ay, =
37" if nis odd.

Then ) a, is absolutely convergent as can be seen by the root test:
11 1
]anll/n <max|-=,- | <= Vn
2°3 2
showing that we may choose §# = 1/2. In this case the quotient test is not conclusive, since

a1 (2\*" agrsa 1 (3\*
—_(Z — 0, == — 00 (k — o00).
asy, 3\3 agpr1 2 \ 2
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4.21. Decimal and b-adic expansion of real numbers: In everyday life
we are used to seeing rational numbers (e.g. purchase prices of certain products) expressed
as decimal numbers like 17,8041 (or 17.8041). The corresponding number z € Q is in this
case determined by the expansion with basis 10 and decimal digits from {0,1,2,...,9} as

r=1-10"4+7-104+8-10"'+0-102+4-10%+1-10"*
_10°+7-10"+8-10° +4-10+1 178041
N 104 ~ 10000

There are two immediate ideas to generalize such representations: The above expansion
has finitely many terms. Can this be extended to infinite sums of the same type and be
considered then as a representation of the limit? A very similar kind of expansion can be
defined with an integer basis other than 10.

DEFINITION: LetbeN,b>2 N € Z and a, € {0,1,2,....,b—1} (n € Z, n > N).
The series
iZanb’"
n=N

is called a b-adic expansion (b-adische Entwicklung) with digits (Ziffern) a, (n > —N).
Three questions arise:

1. Is every b-adic expansion convergent?

2. Can every x € R be represented as the limit of such an expansion?

3. Are the digits of an expansion uniquely determined by x?

The answer to the third one is negative, as can be seen from the following simple example
with decimal expansions:

S = w9 1 9 10
0,999...= ) 9-107"=9-10"" oY= 2.~ 2 T 1-1.000...
’ nzl nz%( ) =1 1-1/10 10 101 ’

But questions 1 and 2 can be shown to have positive answers.

THEOREM: Letbe N, b> 2.
(i) Every b-adic expansion is convergent (in R).

(ii) Every real number z is the sum of a b-adic expansion (with a sequence of digits that
can be constructed recursively).

Proof. (i) Since |a,b™"| < (b—1)b~" for all n and (b— 1) >_b~™ is convergent, this follows
from the basic comparison theorem.

(ii) It suffices to show this for the case z > 0.
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By the Archimedian property there is m € N such that x < b™*!. Let mg be the minimum
of all m € N such that 0 < 2 < ™. Put N := —my. We shall construct a sequence
(an)n>n of integers a, € {0,1,...,b— 1} inductively such that

(x)  Yn>N 3¢ with0<E <b™™: 2= Zakb’k + &,
k=N

Since by (%) lim¢,, = 0, hence x = Z axb™*, the assertion of the theorem will then follow.
k=N

Before we proceed, recall that the floor function | |: R — R is defined by |y| := max{l €

Z 1<y}, and that 0 <y — |y| < 1 holds.

Induction base, n = N: The definition of N implies 0 < z - bY < b. We define ay €
{0,1,....b—1} by

ay = [#b"| and &y = (2N —ay) -0V
Then we clearly have

x:aNb_N+§N and 0§5N<b_N.

Induction step, n — n + 1: Property (x) yields 0 < &, - 0" < b. If we define a,,; €
{0,1,....,b— 1} by

Ap41 = I_é‘nanrlJ and €n+1 = (gnanrl - anJrl) ’ bin71>

then &, = @, 10" + &,41 and therefore

=Y b+ an b+ G,
k=N

where 0 < &, < b~ "1, Thus (x) holds with n replaced by n + 1. O

COROLLARY: Every real number is the limit of a sequence of rational numbers.
(Q is dense in R. Compare with the variant of this statement in [0.7].)

(e e}
Proof. Let x € R have decimal expansion x = Z a,107". For every m > N the partial

n=N
m

sum S, = E a, 107" is a rational number and z = lim s,,,. O
n=N
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REMARK: Let z = +£> 7 a,b™" be a b-adic expansion. One can prove (cf. [AE02,
I1.7]) that z is a rational number if and only if the sequence of digits is periodic from a
certain index m > N onward, that is, with some p € N\ {0} we have a,4, = a, for all
n > m (including the case that almost all a,, vanish, which decsribes a finite sum).

4.22. The Cauchy product of absolutely convergent series:

We begin with a simple observation about the product of finite sums.

N N
Let Ay := Zan and By = an, then
n=0 n=0

Ay By = (éak) : <l§;bl> = > > ab

0<k<N O0<ZI<N

For the investigation of convergence (as N — o00) of such a double sum it is helpful to
introduce some notation and to illustrate rearrangements of the terms in a 2-dimensional

picture:
l

(N,N)
(0, N) 1 k+l=2oN
[ ) /5 QN [ ]
X/ ®
N
4\
Ay
2
E4+1=0 (N,0)

Here, Qn := {(k,1) e N> : k< N,I < N} and Ay := {(k,]) € Qn : k+1 < N}. Then the
above double sum can be rewritten as

Ay - By = Z apb; = Z apb; + Z ab

(k,l)EQN (k,l)EAN (k,l)EQN\AN
N N n
DD TR SEFTES 3 BTN SR
n=0 “3;216: N (BDEQN\AN n=0 k=0 (k. EQN\AN
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PROPOSITION: Let Y a, and >_b, be absolutely convergent series and define
Cp = Z arby_r (n € N).
k=0

Then ) ¢, is absolutely convergent and

Lo (Be) (24)

Proof. We use the notation introduced above. Let Sy := Zivzo Cp, then
AN'BN—SN: Z akbl.
(k,D)EQN\AN

> k=0 1=0
N N

Put A} ::Z|an| and By ::Z\bn|, then AyBy = Z lag|[by].  Using Q(ny2y €
n=0 n=0

= (kvl)EQN
Ayx C Qn we obtain

(x)  JANBy = Sx[ < ) lallbl < > |ag|bi]
(k,)EQN\AN (k,1)EQN\Q | N/2)

= ANBy = Alnja) Binyay-

By hypothesis, (A% By)nen is convergent, hence a Cauchy sequence, which implies that
o0 [ee]
]\}%ANBN — Alny2)B{nj2) = 0. Since ]\}%ANBN = (; ak) . (; bl>, the assertion

now follows from (%) .

Claim 2: Y ¢, is absolutely convergent

N n
Let Sy == Z Z |a||bn—k|, then an application of Claim 1 shows that (Sy)wnen is conver-

n=0 k=0
gent. Since ) |c,| < S% the assertion follows. O



42

4.23. The exponential function: Forevery € R the series Z — is absolutely

convergent, as can be verified by the ratio test: The terms a,, := 2" /n' are all nonzero if
x # 0, and in this case

B i L
ozt 1) 41

Ap+1
Qp

—0 (n— o0);

in the case x = 0 absolute convergence is clear.

We may thus define a real-valued function on R by assigning the value of the sum %T to
each x.

DEFINITION: The exponential function (Exponentialfunktion) exp: R — R is defined by

oo n

exp(x) = Z % (x € R).

n=0

The value e := exp(1) is called Euler’s number (Eulersche Zahl)?.

Many important properties of the exponential function are a direct consequence of the
so-called functional equation of the exponential function, which we prove in the following
theorem. In fact, the exponential function can be characterized as the unique function
satisfying this particular equation on R and being bounded on some closed finite interval
[cf.[BF00, Section 7.5]].

THEOREM (FUNCTIONAL EQUATION FOR THE EXPONENTIAL FUNCTION):
For all z,y € R

(4.3) exp(z +y) = exp(z) - exp(y).

Proof. Both series ) % and > i’l—r,b are absolutely convergent, hence the Cauchy product
[4.22] gives exp(x) exp(y) = Y ¢, where

_ T C o O
= e () e S

Thus we obtain

o0 o
exp(x) exp(y ch Zm+y = exp(z + ).
n=0 n=0

O

2Leonhard Euler (1707-1783) [leonhast 'oiloe], Swiss mathematician and physicist, introduced many
of the modern mathematic’s symbols (e.g. e, 7,4, ., f(z) etc.).
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1
exp(x

COROLLARY: (i) For all z € R: exp(z) > 0 and exp(—x) =
(ii) For all n € Z: exp(n) = e".

~—

Proof. (i) The functional equation (4.3) implies

1 =exp(0) = exp(z — z) = exp(z) exp(—x),

which proves the second equation in the assertion. If x > 0 then

72
exp(x):1+x+?+...21>0,

since all neglected terms are nonnegative. If © < 0 then exp(z) = 1/exp(—xz) > 0 by what
we have just proved.

(i) Since exp(—n) = 1/ exp(n) it suffices to show this for n € N. First, exp(0) = 1 = ¢°

and then inductively

exp(n + 1) = exp(n) exp(l) = e" - e* = "™

0

REMARK: The above Theorem and Corollary (i) show that exp is a group homomor-
phism of the additive group (R, +) into the multiplicative group (]0, ool, ).

Finally, we provide a (crude, but useful!) bound on the error of partial sum approximations
of the exponential function. (The error bound shall be improved on later as we learn more
about functions of a real variable and Taylor series.)

PROPOSITION: Let N € N. For all x € R we have

N o n

(4.4) exp(a) = Y = + Ry (@),

n=0

where the remainder term Ry.i(z) satisfies the following estimate for all x € R with
o] <1+ 5
‘x|N+1

(4.5) [Ry1(z)] <2 N

Proof. The remainder term is
n n n

N 00 N 0
Ryy1(z) == exp(z Zx—, Z , Zaj—: Z %,

n=0 n=0 n=0 n=N+1

8

S
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which is absolutely convergent. Therefore we have for all |z| < 1+ N/2 the following chain
of inequalities

jz[* _ JxM |z |z[”
R < _ (1 + + )
R (@)] < nzN:H al (N + 1) Nt2 (Ni(N+3)
<@
00 k o] k
o ( 2] ) PR (1) g ™
(N+ D AN +2) qjevazyzz) (N + 1D =012 (N +1)!
O
. Yo
EXAMPLE: Since e = exp(1 Z o + Ry41(1) and 1 <1+ N/2 for all N € N, we
=0
obtain for N = 2
1+1+1+R(1) h 0<R(1)<21 2_1
e = — where — === .
9 | TRV e T
Therefore . £ 1 17
2<-<e<—-4-=—<3.
< 5 <e< 5 + 3= 6 <

As a matter of fact, the exponential series is numerically efficient. For example, one obtains
a value for e which is accurate up to 100 digits by summation of 73 terms; to give just the
first few digits

e~ 271828 ...



CHAPTER II

CONTINUOUS FUNCTIONS
OF A REAL VARIABLE
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§5. CONTINUITY

In this section we study real (valued) functions' on subsets of R, i.e., maps f: D — R,
where D C R. Recall that the graph (Graph) of f is defined as the following subset of R:

G(f) :={(z, f(x)) € R*: 2 € D}.

5.1. Examples: 1) Let ¢ € R arbitrary, then f: R — R, f(z) := c for all z € R

defines a constant function.
Y

G(f)

X

2) The identity map (identische Abbildung) on R is given by idg: R — R, z +— x.

Y Yy=1
G(idr)

Slightly more general are linear functions [: R — R, x + a -z, where a € R gives the slope

of the graph:

Y (1)

X

!The mathematical term, “function” (from the Latin functio, meaning performance, execution) was
first used by Leibniz in 1694 to describe curves.

46
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3) The absolute value (function) (Betragsfunktion oder Absolutbetrag) is defined by
abs: R — R, z +— |z|.

Y G (abs)

4) floor: R — R, 2+ |x], where (as on page 39) |z] = max{n € Z: n < x}.

) *—

G (floor)
[

[ u—

The floor function is sometimes called Gaufl bracket? (GauBklammer) and the values are
also denoted by [z] (z € R).

5) The square root sqrt: [0, 00] — R, = +— /x
)

2Carl Friedrich GauB (1777-1855) [kasl frirtrig gaus], one of the most outstanding German mathemati-
cians
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6) The exponential function exp: R — R, z — exp(z) as defined in 4.23.

//-1

7) Polynomial functions (Polynomfunktionen): Let m € N and ag,aq,...,a, € R. We
define

p:R—=R by p@):=anz™+an12™ ' +...a17+ag Vo € R.

The constants ay, . . . a,, are called the coefficients (Koeffizienten) of the polynomial function.
If a,, # 0 then p is said to be of degree m (vom Grad m).

For example, when m = 2 and ag = 0, a; = —1, as = 1 we obtain p(x) = 2° — z

8) Rational functions (rationale Funktionen): Let p and ¢ be polynomial functions, that is
p(r) = apa™ + ...+ ax+ag and q(x) =bx" + ...+ bz + by

with given coefficients ay, ..., an, by, ...b, € R. Then a rational function is the quotient
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function with domain D := {z € R : g(z) # 0}, defined by

r:D—R, )

Note that polynomial functions are just rational functions with denominator ¢ = 1.

For example, here is the graph of the rational function r: R\ {1} — R, r(z) = z?/(z — 1)

9) Simple functions (or step functions) (Treppenfunktionen): Let a,b € R with a < b. A
function ¢: [a,b] — R is called a simple function (or step function), if there is a finite
partition a =ty < t; < ... < t,_1 <t, = b of the interval [a, b] and coefficients ¢, ...¢c, €
R such that

o(x) = ¢ when z €]tp_1,t[ (1 <k <n).

Therefore ¢ is constant on each open subinterval |tx_1,tx[ (1 < k < n) but the finitely
many values ¢(tx) (0 < k < n) are arbitrary.

)
to = a tl t2 t3 t4 b= t5 X
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Note that the restriction floor |4 of the floor function provides an example of a simple
function.

10) The characteristic function of Q (charakteristische Funktion von Q) or Dirichlet function?
is given by
1 2€Q

lg: R—>R, lg(z) = {0 + Q.

In this case the graph is
G(lg) ={(¢;1) : ¢ € Q}U{(5,0) : s e R\ Q},

which would be somewhat hard to depict ...

5.2. Review of basic operations with functions:
Let f,g: D — R be functions on D C R and A € R.

e Then the functions
f+9: D—R, A1 D — R, f-g:D—R

are defined in terms of the corresponding pointwise operations (with real numbers)
for all z € D by

(f +9)(@) = fz) + g(2),
(Af)(@) == A~ f(z),
(f-9)(x) == f(z) - g(x).
Remark: It is easy to check that the set F(D) := {f: D — R} of all real valued

functions on the set D together with the addition and scalar multiplication as defined
by the first two lines above forms a vector space over R.

o Let D':={x € D:g(zx) # 0}. The quotient function is defined by

i:D’—>R, x%@
g 9(x)

e Let £ C R such that f(D) C E and h: E — R. Recall that the composition of f
and h is given by

hof:D—R, (hof)(x):=h(f(z)) Vr e D.

3Johann Peter Gustav Lejeune Dirichlet (1805-1859) [jothan 'peitoe 'gustaf lo'zcen diri'kle], German
mathematician with Belgish origins (the French words Lejeune Dirichlet literally mean “the young chap
from Richelet”)
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Examples: 1) If ¢: R — R, ¢(z) = 22, then ¢ = id - id.

2) More generally, if p is a polynomial function, given by
p(x) = anx™ + ... a1z + ap,

then

p=apy,-(id-id---id)+...a; - id+ao - 1,
—_——

m factors

where 1 denotes the constant function 1(x) =1 for all x € R.

3) With ¢ as in example 1) we have abs = sqrt o ¢, since for all z € R

(sart o q)(z) = Va2 = |z| = abs(z).

5.3. Continuity (Stetigkeit): The notion of continuity of a function is a precise way
to express an intuitive requirement, which is often implicitly made in model applications:
Namely, that small perturbations of a function argument should not result in extreme
changes of the function values.

How to specify such a property for a given function f near a point zy of its domain?
It might seem practically desirable to first prescribe the acceptable tolerance around the
value f(zo) and then to look for a safety interval around the argument zy on which function
values near f(zg) within tolerance are guaranteed. If the tolerance is given in terms of an
interval |f(xo) — e, f(zo) + €] with ¢ > 0 and the safety interval is sought in the form
|zg — 0,29 + 6] with 6 > 0 we obtain the following picture:

By requiring that for every tolerance ¢ > 0 — chosen arbitrarily small — an appropriate
safety guard ¢ > 0 can (in principle) be found we arrive at the notion of continuity.
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DEFINITION: Let 2o € D CR and f: D — R. The function f is continuous (stetig) at
ZTo if

(5.1) Ve>030>0: VYexeD: |z—x<d = |f(z)— flzo)] <e.

Equivalently, upon recalling that |z — 0,20 + 0] = Us(xo) and |f(xo) — ¢, f(xo) + €] =
U(f(x0)), we can define the continuity of f at xq in terms of neighborhoods:

Ve>036>0: f(Us(wo) N D) C U.(f(x0)).

The function f is said to be continuous (on D) if it is continuous at each point in D. If f
is not continuous at a point b € D then f is said to be discontinuous (unstetig) at b.

EXAMPLES: 1) Clearly, a constant function f is continuous (at every point zg in its
domain), since f(z) — f(zo) = 0 and therefore (5.1) is satisfied for all e > 0 and § > 0
arbitrary:.

2) Every linear function f: R — R, x — axz, is continuous (at every zp € R): If a = 0
this is clear from Example 1), hence consider a # 0. Let ¢ > 0. From the preparatory
observation |f(z) — f(zo)| = |a||z — x| we learn that we can simply choose ¢ := ¢/|a| to
achieve (5.1): Indeed, if |z — 2| < 6 = ¢/|a| then

|f(x) = fxo)| = lal |z — 20| < |a]d = e.

3) The exponential function exp: R — R is continuous: Let x5 € R and € > 0. By the
properties of the exponential function we have

| exp(x) — exp(zo)| = exp(xp) | exp(z — xo) — 1],
where exp(zg) > 0. From (4.5) we obtain for |z — x| < 1 that
|exp(x — o) — 1] < 2]z — 0.

Thus, putting § := min(1, m) and combining the above inequalities we obtain for all
x with |z — zo| < 0 the required estimate

|exp(x) — exp(zo)| < 2exp(xg) | — zo] < 2exp(x)d < €.

4) abs: R — R, x + |z|, is continuous: Let xy € R and ¢ > 0. Put 0 := ¢ then we have
for all z € Us(zo)

|abs(x) — abs(xg)| = [|z] — |xo]| < |z — 2| < d = &.

5) The Dirichlet function 1o [Example 5.1, 10)] is discontinuous at every point in R: Let
zo € R and put ¢ = 1/2.
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If 2o € R\ Q then lg(zg) = 0. By the density of Q in R, for every § > 0 we might
choose the interval Us(zg) = |xg — 0,29 + 0] will always contain some (in fact, many)
rational number(s) r [cf. 0.7 or the Corollary in 4.21]. In other words, we can find r with
|1 — x| < d but

[Ho(r) = Lo(zo)l =1 -0[ =1 =

=E&.

N =

If 7o € Q then lg(zp) = 1. Recall that also R\ Q is dense in R [cf. 0.7]. Hence for every
d > 0 we can find s € Us(zp) N (R \ Q), which implies

[Ha(s) — Lo(zo)l = 10-1] =12

=&

N | —

while |s — | < 6.

Knowing that a specific value of a continuous function has positive distance to a certain
real number ¢ already guarantees that the function values will stay away from c in a whole
neighborhood. In the following statement we formulate this for the special case with ¢ = 0.
This can easily be adapted to the case ¢ # 0 by a simple translation of the function graph.

5.4. Lemma: Let f: D — R be continuous at zq € D ey
and assume that f(xg) # 0. Then there is § > 0 such that
for all z € Us(xg) N D we have f(x) # 0. .
o x
——
Proof. Put € := |f(z0)|/2. Then clearly ¢ > 0 and by con- Us(zo)

tinuity there exists some é > 0 such that for all x € D with
|z — x| < & we have |f(x) — f(zo)| < e =|f(x0)|/2. Therefore x € Us(zo) N D implies

|.f (zo)]

> 0.
2

[f(@)] = |f (o) + f(x) = f(xo)| = [f(z0)] = [f(x) = flwo)| > [f(x0)] — € =

O

5.5. Continuity test by sequences:

THEOREM: Leta € D CR and f: D — R. The following are equivalent:
(i) f is continuous at a.

(ii) For every sequence (z,) with z,, € D we have: if limz,, = a then lim f(z,) = f(a),

ie.,| f(limz,)=1lim f(z,) |asan abbreviated slogan.




o4

Proof. (i) = (ii): Let x, € D (n € N) with limx,, = a and let £ > 0. Choose § > 0 such
that the continuity condition (5.1) is satisfied. There exists ny € N such that |z, —a| <
holds for all n > ny. Thus (5.1) implies

[f(zn) = f(a)] <& Vn =ny,

which proves that lim f(z,) = f(a).
(ii) = (i): (proof by contradiction) Assume that (ii) holds but (5.1) is false. That is,

e >0V >0:3x € Us(a)ND: f(x) & U(f(a)).

In particular, with this same € > 0, we can choose the d-values to be 1/n (n € N, n > 1)
successively and obtain:

1
VnEN,nZl:HmneD:|xn—a|<g, but |f(z,) — f(a)| > e.

Therefore lim x,, = a whereas f(z,) /4 f(a) (n — 0o0) — a contradiction % . O

EXAMPLE: The function floor: R — R, x +— |z is continuous in R\Z and discontinuous
in all points a € Z.

If @ € Z then |a] = a and the sequence z, := a — = (n > 1) has limz, = a but

lim|z,| =lim(a—1) =a—1# |a].

If a € R\ Z then |a| < a < |a] 4+ 1. Hence for every sequence (z,) with limz,, = a there
exists some ng such that |a| < x, < |a] + 1 when n > ny. Therefore |z, | = |a] for all
n > ng, in particular lim|z, | = |a].

3

5.6. Basic operations and continuity: The following results show that we do
not leave the class of continuous functions when applying the basic operations summarized
in 5.2 to continuous functions. In other words, we can generate many “new” continuous
functions from a set of given continuous functions simply by pointwise addition, scalar
multiplication, multiplication, division (when the denominator does not vanish), and com-
position (where the images and domains match appropriately).

PROPOSITION: (i) Letae€ D CRand A € R. If f,g: D — R are continuous at a then
also
f+g:D—R, A:D — R, f-g:D—R

are continuous at a. Furthermore, if a € D' := {z € D : g(z) # 0} then

i:D/—>R
g

1s continuous at a.
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(ii)) Let DCR, ECRand f: D — R, g: F — R such that f(D) C E. If f is continuous
at a € D and g is continuous at b := f(a) € E then the composition go f: D — R is
continuous at a.

Proof. (i) Let (x,) be a sequence in D, respectively D', such that x, — a. Then by the
corresponding properties of basic operations with convergent sequences in 2.10 we obtain
that

(f +9)(wn) = f2n) + 9(2n) = fla) +g(a) = (f +9)(a) (n— o)
and similarly for the other types of operations. Thus Theorem 5.5 proves continuity at a.

(ii) Let (z,,) be a sequence in D such that z,, — a. Since f is continuous at a we have
Yn := f(zn) — f(a) = b. Continuity of g at b implies g(y,) — g(b). Therefore

lim (g o f)(zn) = lim g(f(zn)) = limg(yn) = g(b) = g(f(a)) = (g0 f)(a)

n—oo

and again by Theorem 5.5 the continuity at a follows. U

COROLLARY: Polynomial functions and rational functions are continuous (on their
respective domains).

Proof. By 5.3, Examples 1) and 2), constant functions and the identity map id: R — R
are continuous. In 5.2, Example 2), we noted that polynomial functions are just finite
linear combinations of products of id by itself plus a constant function, thus the above
Proposition (i) shows continuity.

Rational functions are quotients of polynomial functions, defined where the denominator
does not vanish, and are therefore also continuous by the second part of (i) in the above
Proposition. ]

EXAMPLE: 1) p(z) := —2? defines a continuous function on R and exp is continuous
on R. Hence the function expop: R — R, x — exp(—z?) is continuous R — R.

2) The hyperbolic sine and cosine (hyperbolischer Sinus und Cosinus) are defined by

sinh(z) := exp() —2exp(—x) and  cosh(x) := exp(2) —i—2exp(—x) (x € R),

hence are continuous functions on R.

5.7. Limit of a function: Recall that a € R is an adherent point of D C R if and
only if there exists a sequence (x,,) in D (i.e., z,, € D for all n) such that x,, — a (n — o0).
If a is an element of D then the latter condition is clearly satisfied by the constant sequence
rn, = a for all n. In general, an adherent point of D need not be a member of the set D.
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DEFINITION: Let f: D — R and a an adherent point of D. The function f has limit
¢ € R as x tends to a, if every sequence (z,,) in D such that z, — a (n — o0) satisfies

lim f(x,) = c. A short-hand notation for this fact is

lim f(x) =c¢  or f(z) = c (z—a).

r—a

We also define ¢ € R to be the limit of f at a from the right (rechtsseitiger Grenzwert)

li = Iso i =

x{r}zf(x) ¢, or also xirgrf(a:) c

if a is an adherent point of D N]a, 00| and for all sequences (z,,) with z,, € D and z,, > a
such that z,, — a we have lim f(z,) = c.

The notion of limit from the left (linksseitiger Grenzwert) li;n f(z), also denoted by lim f(x),

r—a—

is defined analogously using | — co,a[N D and x,, < a instead.

Finally, we define limits of f at infinity as follows:

lim f(x)=c
means that D is unbounded from above and for every sequence (x,) with x, € D and
x, — oo we have lim f(z,) = c.
We define lim f(z) similarly when D is unbounded from below using z,, — —oc.

Of course, we will often find it convenient to also use the above notions with improper
limits ¢ = +00. The required adaptations of the definition should be routine and are left
to the reader.

EXAMPLES: 1) For the rational function f: R\ {1} —» R, f(z) = (22 — 1)/(z — 1), we
have
lim f(x) = 2.

rz—1

Indeed, if z,, — 1 with z, # 1 then

flan) = (& _xi)(—x; 1) =r,+1—2 (n— o0).

2) li\ni |z] =1, since |z,] = 1 when 1 < z,, < 2. On the other hand, li/rri lz] =0 as

|z, ] =0 when 0 < z,, < 1.
We conclude that lirq |z] does not exist, because otherwise the limits from the left and

from the right would have to be equal.
3) Let m € N, m > 1, and p: R — R be a polynomial function of the form

p(z) = 2™ + apm1™ ..+ ap.
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Then we have lim p(x) =00 and lim — =0.
T—00 z—o0 ()

To see this, we first note that for all x > 0 we have the estimate

m Am—1 Qo m |6Lm_1| ‘CL()‘
= 1 et —) > 1-— — = ).
plr) =@ ( + T + +xm)_$ ( |z| \xm‘)
Let x > M :=2m - max(1, |apm_1], ..., |ag|), then the above inequality implies
1 m 1
plz) > 2™ (1—m- %) = % (in particular, p(z) > 5)

Let x, — oo and choose ng € N such that x, > M for all n > ng. Then we obtain for
n > ng

m

n

p(,) > %—>oo (n — 00),
therefore lim p(x,) = oo, which proves the first assertion above. The second assertion
follows immediately from the first, if we note that 1/p(z) is defined for z > M (since
p(z) > 1/2 then, as noted above).

REMARK: (i) Note that if a € D and lim f(z) exists then the limit has to be f(a) (since

r—a

x, = a is a special sequence in D converging to a).
(ii) An e-d-version for a function f: D — R to have limit ¢ € R reads as follows:

Ve>030>0:xz€D,|lx—al|<éd = |f(x)—c|<e.

Warning: The notion of ‘limit of a function’ is not used in exactly the same way as we do here
throughout the literature. Some texts (e.g. [Heu88]) require the admissible sequences (z,) in the
definition to be in D\ {a}, so that the special choice z,, = a is excluded even in the case where a
belongs to D. If a is an adherent point of D and does not belong to D, both notions give the same
result concerning existence and value of the function limit. However, if a € D the conclusions
may differ, as can be seen from the following example: Let D := R\ {0} and define f: D — R by
f(z):=1ifz # 0, and f(0) := 0. Then in the sense of our definition f does not have a limit at 0,
whereas we obtain for all sequences (z,) with x,, # 0 and z,, — 0 that lim f(x,,) = 1 (note that
this value differs from f(0)), which would give existence of the limit of f at 0 in the alternative
definition.

Since the notion of ‘limit of a function’ is essentially a short-hand notation to describe
the way how a function translates converging sequences into sequences of corresponding
function values, we can rephrase the sequence test of continuity 5.5 in these terms.

PROPOSITION: A function f: D — R is continuous at a point a € D if and only if
lim f(z) = f(a).
Tr—a

Proof. This is immediate from Theorem 5.5 and the remark made above. O
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5.8. The intermediate value property (Zwischenwertsatz):

THEOREM: Suppose f: [a,b] — R is continuous and ¢ € R Y

lies between f(a) and f(b), that is f(a) < ¢ < f(b) or f(b) < f\/
¢ < f(a). Then there exists zg € [a,b] such that f(zg) = c. /

In other words, a continuous function on [a,b] attains every

value between f(a) and f(b) at least once — there are no gaps

in f([a,b]).
An important special case of the Theorem is the following: If f: [a,b] — R is continuous

and f(a) < 0and f(b) > 0 (resp. f(a) >0 and f(b) <0), then f has a zero (Nullstelle) in
la,b], i.e., Fzo € [a,b]: f(xg) =0.

EXAMPLE OF AN APPLICATION: Let p: R — R be a polynomial function of odd
degree m = 2n + 1 (with n € N), say,

() = by 12T 4 by 4 .. 4 by (x € R),
where by, 1 # 0. Then p has at least one real zero.

To show this, we first write

bon b
p(x) = by - (&7 4 2
b2n+1 b2n+1

) = bant1 - q(2),

where the polynomial function q is of the form q(x) = "™ + ag,z* + ... + ag
(Wlth a; = bj/b2n+1 for j = 0, “ ey 2n)
By 5.7, Example 3), we have lim ¢(x) = oo, hence there exists x > 0 such that ¢(z,) > 0.

Similarly, upon observing that

_ .2n+l

q(—z) = —x + agnr® — ...+ ag = — (¥ —

Aon2®" + ... — ap)
we obtain that lim ¢(x) = —oo, hence there exists z_ < 0 such that ¢(z_) < 0.
T——00

Since ¢ |z_ )¢ [#—,24] — R is continuous and ¢(z_) < 0 < g(zx4), the above Theorem
implies that there exists xy € [z_, z;] such that g(zo) = 0 (in fact, z_ < zy < x4, because
the values of ¢ at x4 are known to be nonzero). Therefore also p(z¢) = ban41 q(z0) = 0.

Proof of the Theorem.

WLOG (:= without loss of generality) (OBdA (:= ohne Beschréankung der Allgemeinheit)) we
may assume that f(a) < ¢ < f(b). [otherwise we just have to consider — f instead]

If ¢ # 0 we can reduce the statement to that of the special case of a zero by putting
fi(z) := f(z) —c. Then fi(a) = f(a) —c < 0 and fi(b) = f(b) — ¢ > 0 and the assertion
of the Theorem is equivalent to the existence of a zero xg € [a, b] of the function f;.

X
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So, again WLOG we may assume that ¢ =0 and f(a) < 0 < f(b). We have to show that
there is some xg € [a, b] such that f(zg) = 0.

We will find xy by constructing a sequence of nested intervals in the fashion of a so-called
bisection method. To be more precise, we claim that we can define [a,,b,] C [a,b] for all
n € N with the following properties:

1. Vn e N, n > 1: [an, b,] C [an—1,bp1]
2. b, —a, = b—a

on
3. f(a,) <0 and f(b,) > 0.

Put ag := a and by := b, then properties 2 and 3 are satisfied. We proceed inductively
and assume that [ag, bo], ..., [an, b,] have been defined satisfying properties 1-3. Let m :=
(ay, + b,)/2 (this is the midpoint of [a,, b,]) and distinguish two cases:

If f(m) >0 put apq1:=a, and b, :=m
If f(m) <0 put a,yq :=m and b, 1 :=b,.

Then properties 1-3 are valid for [a,, 11, b,+1] as well. By the principle of nested intervals we
obtain that (a,) and (b,) converge to the same limit xy € [a, b], that is lim a,, = lim b,, = xy.
Since f is continuous we have that

f(xo) = lim f(ay,) = lim f(by).

By property 3 we obtain in addition

f(xo) = lim f(a,) <0 <lim f(by) = f(0),

which proves that f(zy) = 0. O

COROLLARY: Let I C R be a nonempty interval and f: I — R be continuous. Then
f(I) C R is an interval as well.

Proof. Let A := inf f(I) and B := sup f(I), where we allow for the improper values
A = —oo (unbounded below) and B = oo (unbounded above). If A = B then f([)
contains just a single point, in which case the statement is true. So we henceforth assume
that A < B.

We assert that |A, B[ C f(I): Let y €]A, BJ, then there exist r, s € I such that f(r) <y <
f(s). By the above Theorem we have some zg € I such f(xy) = y. Therefore y € f(I).

To summarize, |A, B[ C f(I) C [A, B], hence f(I) equals one of the intervals |A, B| or
JA, B] or [A, B] or [A, BJ. O
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5.9. Continuous functions on bounded closed intervals:

DEFINITION: A function f: D — R is called bounded (beschrinkt) if the image set
f(D) C R is bounded, i.e.,

dM >0 VezeD: |f(x)] <M.

THEOREM: Let f: [a,b] — R be continuous. Then f is bounded and attains maximum
and minimum values, i.e., there exist x, x5 € [a, b] such that

f(x1) = min f([a,b]) = min {f(z) : © € [a,b]} (= inf f([a, 0]))
f () = max f(la, b]) = max {f(z) : x € [a,b]} (= sup f(la, b])).

REMARK: (i) In the hypothesis of this theorem it is essential that the interval [a, b],
where f is defined and continuous, is bounded (i.e., —00 < a < b < o0) and closed (i.e.,
the boundary points a and b belong to the interval). Otherwise the statement is not true
in general as can be seen from the following examples: Consider the continuous functions

1
fi:10,1] = Rz — —, f2:10,1] = R,z — x, f3:[0,00[ = R,z — .
x

Then f; and f3 are unbounded and do not attain a maximum, f, does neither attain a
maximum nor a minimum.

(ii) As is shown by the simple example of a constant function, the locations x; and x5 of
a minimum or a maximum need not be unique.

Proof of the Theorem. It suffices to give the proof for boundedness from above and con-
cerning the maximum, the case of minimum and boundedness from below can be reduced
to the latter by switching to —f.

Let A := sup f([a,b]) € RU {oo}, then there exists a sequence (a,) in [a,b] such that
fla,) — A (n — o0).

Since [a, b] is a bounded subset of R the Theorem of Bolzano-Weierstra$ implies that there
is a convergent subsequence (an, )ren. Let o := klim an, € [a,b)].
— 00

Since f is continuous we obtain that
B3 f(r2) = Jim f(an,) = A=sup f([a,b]).

In particular, f([a,b]) is bounded above and the supremum is a maximum, which is attained
by f at s € [a,b]. O
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5.10. Uniform continuity: If we are to check continuity of a real valued function
f at a certain point xg in its domain D, then for given ¢ > 0 we have to find 6 > 0 such
that the condition |f(z) — f(z0)| < € is met whenever x € D satisfies |z — x¢| < §. We
observe that, in general, 6 will dependend on € > 0 as well as on the point zy. Consider the
following example, where the range of possible values for ¢ is strictly shrinking as e gets
smaller or zy varies: Let D =]0,1] and f: D — R with f(x) = 1/z, which is continuous in

every point zg € D. y

Fix some zq € D and ¢ > 0 arbitrarily and let
us test the allowed tolerance in varying the
argument in 0 < xz < xg while maintaining
|f(z) — f(zo)| < e. For every 0 < ¢ < xq let
T5:= 29 — 0. Then

1
x

Flas) - flag) = = —

Ts Zo
To — Xs 0

Toxs o (1o —0)
Thus requiring |f(x) — f(zo)| < € for all x €
10,1] with |z — 2| < § implies ¢ > gcg%m. ]
0
Equivalently, ez — exd > ¢ and hence

1+ e ' - - - -

This shows that the smaller xg > 0 is the

smaller we have to choose § > 0 (even at fixed
value of € > 0). 0 5 5 1

We thus obtain a stronger form of continuity notion, if we require that for each ¢ > 0 a
suitable 6 > 0 can be found which guarantees the typical e-d-estimate to hold for all pairs
of points in the domain of relative distance less than ¢.

DEFINITION: Let D C R. A function f: D — R is uniformly continuous (gleichméBig
stetig) (in D), if the following holds:

Ve>030>0Ve, 2’ € D: |z —2'| <d=|f(z) — f(2)] <e.

REMARK: It is immediate from the definition that every uniformly continuous function
is continuous (at every point in the domain). The converse is not true as is illustrated by
the example above with D = ]0,1], f(z) = 1/z: If x, = 1/n and 2/, = 1/(2n) (n € N,
n > 1) then
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is arbitrarily small when n is sufficiently large, but

() = F@) =20 —n =n

is unbounded, hence will never stay below a given e-tolerance.

However, as the following theorem will show, there is no distinction between continuity
and uniform continuity if D is a bounded closed interval.

THEOREM: If f: [a,b] — R is continuous then f is uniformly continuous (on [a, b]).

Proof. (by contradiction) If f is not uniformly continuous then
1
Je >0Vn e N,n>03z,,2, €la,b]: |z, — 2| <— and |f(x,)— f(z))] > e.
n

The sequence (x,) is bounded, thus by the Theorem of Bolzano-Weierstrafl possesses a
convergent subsequence (z,, ken. Let zo = limz,, € [a,b)].

Since |z, — 27, | < 1/ny,, — 0 (k — oo) we have that limx;, = limz,, = zo. Then the
continuity of f at zq yields

0 <e<|[f(n) = fla, )| =0 (k—o00),

— a contradiction 4 . O

5.11. Approximation by step (or simple) functions: As an application
of the above Theorem 5.10 we show that “the area under the graph of a continuous function”
can be approximated by sums over areas of small vertical rectangles. This will be used
later in the chapter on integration theory.

¥ -

K )

The rectangles can be represented as graphs of step or simple functions and the approxi-
mation result is stated in terms of these as a uniform approximation from above and from
below.
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PROPOSITION: Let f: [a,b] — R be continuous. For every & > 0 there exist simple
functions ¢, v : [a,b] — R with the following properties valid for all x € [a, b]:

(a) p(z) < f(z) < ¢(x)
(b) [¥(z) — @(z)| = ¥(x) —p(x) <e.

Proof. By Theorem 5.10 f is uniformly continuous on [a,b]. Therefore we can find § > 0
such that

Ve, o' € la,b] : |z — 2| <d = |f(x) — f(2')| <e.
Choose n € N large enough to ensure (b — a)/n < 0 and define partition points

b—a
n

tk::a—l—k-

In this way we obtain an equidistant partition of [a, 0]

by to =a <ty <...<t,=>bwith

b_
a<5.

g =l =

As heights of the approximating rectangles we choose the maximum or minimum values
of f on the corresponding subintervals [ty_1,tx] (K = 1,...,n) of the partition, that is we
define

cp i =max{f(z)  tp_1 <z <ty}, c:=min{f(z):tr_1 <ax <t}
By Theorem 5.9 there exist &, & € [ty—1,tx] such that f(&) = ¢, and f(§,) = ¢, (k =

1,...,n). Since |& — &,| < 6 we have |¢; — ¢,| < ¢ from the uniform continuity property
noted in the beginning.

Finally, we define the simple functions ¢, v : [a,b] — R as follows:
Let ¢(a) = f(a) and v(a) := f(a),
for t_1 < x <ty we set ¥(z) = ¢ and p(z) :=c), (k=1,...,n).

Then the conditions (a) and (b) follow by construction of ¢ and . O
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5.12. Continuous inverse function: Let A, B C R. Assume that the function
f: A — B is bijective, then the inverse function f~': B — A exists. If we know that f is
continuous, does this imply that f~! is also continuous? In general, the answer is ‘no’ (see
the exercises for an example).

It turns out that there is a positive answer to the above question under the two additional
hypotheses of strict monotonicity on f and that A is an interval.

Recall that f is strictly increasing (resp. decreasing) if 1 < xo implies f(x1) < f(x2) (resp.
f(z1) > f(xq)) and that a strictly monotone function necessarily is injective.

THEOREM: Let I C Rbeaninterval and f: I — R be continuous and strictly increasing
(resp. decreasing). Then f maps the interval I bijectively onto the interval J := f(I) and
the corresponding inverse function J — I is also continuous and strictly increasing (resp.
decreasing).

(Strictly speaking, we deal here with the inverse of the map f:I — J, &~ f(z); but
we will follow the common abuse of language and denote f again by f and its inverse by
ftJ—1)

Proof. We present the proof for the case that f is strictly increasing, the case where f is
strictly decreasing is reduced to this by considering — f instead.

Corollary 5.8 implies that J = f(I) is an interval. Since f is strictly increasing it is
injective, hence f is bijective as a map I — J. Let f~': J — I denote the inverse of this
map.

Note that for 1,29 € I the inequality f(z1) < f(z2) in turn implies 27 < x5 (since then
r1 = X9 is impossible with different function values and x; > x5 contradicts the fact that
f increases), therefore we have

Vo, a0 €10 11 < 29 <= f(11) < f(29),

which shows that f~! is strictly increasing as well.
It remains to prove that f~! is continuous at every point b € J.

Case 1, if b € J is not a boundary point of J: Let a := f~!(b) € I. Then a is not a
boundary point of I (for otherwise by monotonicity b would have to be boundary point
of J). Choose £ > 0 so small that both a — ¢ and a + € belong to I. Since f is strictly
increasing we have

fla—e) < fla)=b< fla+e).
Thus we can find § > 0 such that

fla—e)<b—=56<b+d< flate),

which simply means that

fHUs(b)) S UL(f7H (D))
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and therefore proves the continuity of f~! at b.

Case 2, if b € J is the left boundary point of J: Then a := f~!(b) has to be the left
boundary point of I (since f is strictly increasing). We can copy the proof of case 1 with
the only changes that we use Us N J and U.(f (b)) NI as neighborhoods and the chain of
inequalities reads f(a) =b < b+ 0 < f(a+¢).

Case 3, it b € J is the right boundary point of J: Similarly to case 2. O
REMARK: The second part of the above proof shows,

in fact, the following result: If I C R is an interval and /

f: 1 — R is strictly increasing (not necessarily contin- I’

wous!), then f~': f(I) — I is continuous. But f(I) ~

need not be an interval, if f is discontinuous: | ;

ROOT FUNCTIONS: As an application of the above Theorem we consider for any
k €N, k > 1, the functions*

k

for: [0,00] — [0, 00][, @+ 2, and fors1: R = R, x+— 2L,

All these functions are continuous, strictly increasing, and bijective, therefore the corre-
sponding inverse functions

for': [0, 00] — [0, 00] and fo: R—R

are continuous and strictly increasing. We use the the following notation for their function
values (for z in the appropriate domain)

n>2: Yr=an = f(2).

4Altough the origin of the radical symbol va is rather unclear, many believe that it is an abbreviation
of the Latin word radix (root). The symbol was first used in Germany in the 16th century without the
winkulum (i.e. the term v/a + b was originally denoted by ,/(a + b))



6. ELEMENTARY TRANSCENDENTAL FUNCTIONS

6.1. Proposition: The exponential function exp: R — R is continuous, strictly
increasing, and exp(R) =10, oo[. Its inverse function log: |0, co[ — R is continuous, strictly
increasing and is called the natural logarithm (natiirlicher Logarithmus).! Furthermore, the
following functional equation holds for all x,y €0, ool:

(6.1) log(z - y) = log(z) + log(y).

expx

log x

—_

!Logarithms have been introduced by the Scottish mathematician John Napier in 1614, the term loga-
rithm being derived from the Greek words Aéyoc (“proportion”) and dpriudc (“number”).
Nowadays, there are different notations used for logarithmic functions: While mathematicians often write
log(z) for the natural logarithm and log, () for the base-b logarithm, in many calculus textbooks a nota-
tions such as In(z) can be found for the natural logarithm, lg(x) for the base-10 logarithm etc. In these
lecture notes we will always use log(z) to denote the natural logarithm and log, (x) for the base-b logarithm.

66
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Proof. The continuity of exp has already been established in the previous section.
Step 1: We show that exp is strictly increasing.

For every £ > 0 we have
exp(f):1+§+Zg>1+§>l.
k=2

Let 1 < x5 then £ := x5 — x; > 0 and
exp(xg) = exp(x1 + &) = exp(x1) - exp(§) > exp(xy).

Step 2: We show that exp(R) =]0, co].
Since exp(z) > 0 for all x € R [4.23] we have exp(R) C ]0, co[. To show the reverse inclusion
relation, it suffices to show that

lim exp(n) =00 and  lim exp(—n) =0,

since then by the intermediate value theorem all values in |0, co[ are indeed attained.

For n € N we had shown exp(n) = €". Since e > 2 we therefore have " — oo (n — o0),

which implies that
(-n)=— =0 (n— o)
exp(—n) = =— — n — 00).
P exp(n) e

We may thus define the function f: R —]0, 00, f(x) := exp(z), which is again continuous
and strictly increasing. Due to Theorem 5.12 the inverse function log := f~1: ]0,00[— R
is also continuous and strictly increasing.

Step 3: We prove the functional equation (6.1).

Let z,y €]0, 00 and put £ := log(z), n := log(y). Then exp(é+1n) = exp(§) -exp(n) =z -y
and therefore

log(z - y) = & 4+ n = log(x) + log(y).

Remark: As a simple consequence we obtain

log(2*) = klog(x) forall x > 0 and k € N.

6.2. Real powers and general exponentials: We can use the exponential
function and the logarithm to give a simple definition of expressions of the form r* when r >
0 and s € R. Observe that if s is a natural number then r* = exp(log(r*)) = exp(slog(r)).
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DEFINITION: (i) Let 7 > 0 and s € R then
r® = exp(slog(r)) € ]0, 00l
As an immediate consequence of this definition we thus obtain the formula
log(r®) = slog(r) (r>0,s €R).
(ii) For any o € R we define general power or root functions w,: |0, co[— R by

x — x% = exp(alog(z)).

(iii) The Exponential function with base a € ]0, o[ is given by
exp,: R — R, exp,(z) :=a” = exp(xlog(a)).
Note that exp(z) = exp, (z) = e* for all x € R.

We list basic properties of the exponential function with base a > 0, which are immediate
consequences of those for the exponential function and the logarithm.

PROPOSITION: exp, is continuous on R and we have the following:
i) If @ > 1 then exp, is strictly increasing, if 0 < a < 1 then exp, is strictly decreasing.
ii) The functional equation: a®*¥ = a” - a¥ for all z,y € R.

iii) Let a > 0. For all m € Z: exp,(m) =a™ =a-a---a (m factors).
In other words, the notation a™ is consistent with the algebraically defined integer powers.)

(
(
(
(
(iv) Let a > 0. IfpeZand g €N, ¢ > 1, then as :\q/a_p:(ap)%.
(Consistency with the root functions as defined in 5.12.)

(

(

(

v) Let @ > 0. For all z,y € R: (a®)¥ = a™ = (a¥)".
vi) Foralla > 0,b >0, and z € R: a” - b* = (a - b)".

1
vii) Let a > 0. For all z € R: (=)* =a™".
a

Proof. Immediate from the definition. O

6.3. A collection of useful limits:

xT

1) For all k € N: lim & = o

T—00 xk
& " xk‘-{—l
We may assume that x > 0, which yields e* = — > —— . Therefore
Y Y nz% nl ~ (k+ 1)

* T

(&
— > .
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k
2) For all K € N: lim R} (Follows directly from 1).)

r—oo0 ¥

3) For all k € N: lim zFe'/* = cc.
z\0

Y
Writing y = 1/ gives li{r(ljackel/x = lim e_k =oo (by 1)).

4) lim log(z) =00 and limlog(x) = —c0.
T—00 \,0

Both assertions follows from Proposition 6.1, which implies that log: |0, co[— R is strictly
increasing and bijective.

5) For all @ > 0: limz® =0 and limx~% = oc.

\,0 z\0
The second assertion follows from the first. To prove the first we write z = e %/* (equiva-
lently, y = —alog(z)) and compute

limz® = lim e ¥ = 0.
z\,0 Yy—00

1
6) For all o > 0: lim 221

r—oo

= 0.
We may assume that x > 0 and write 2 = e¥ (equivalently, y = alog(z)) to obtain

1 1
lim 108@) _ 1
rx—oo ¢ o y—oo ey

7) For all o > 0: h{r(l] % log(z) = 0.

Upon writing = 1/y (so that y — oo) we have 2 log(z) = — log(y)/y®, then use 6).

T

8) lim ¢ =
o

The remainder term estimate (4.4), (4.5) for the exponential sum gives for all x with

2| < 3/2 that

1

2
T
le” — (1+2)| < 2% = |z|%

In other words, if 0 < |z| < 3/2 then

e =1 le? — 1 — x|

| 1| = <|z] -0 asz—0.

||
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6.4. The Landau-symbols’ — comparison of asymptotic growth:

DEFINITION: (i) Let a € R and f,g: ]Ja, oo[— R. We write

f(x) = o(g(x)) (z— o0),
to mean that Ve 3R > a: |f(x)| < e]g(x)| holds for all z > R.
(“f(x) is a little-oh of g(z) as x tends to infinity”.)

We write
f(z) =0(g(z)) (z — o0),

to mean that 3K > 0 3R > a: |f(z)| < K |g(x)| holds for all z > R.
(“f(x) is a big-oh of g(x) as = tends to infinity”.)

(ii) Let D C R and xy be an adherent point of D and f,g: D — R. We write

f(x) =olg(z)) (z =z, € D),

to mean that Ve > 039 > 0: |f(z)| < e|g(x)| holds Va € Us(xy) N D.

We write
f(z) =0(g(z)) (z— o,z € D),

to mean that 3K > 036 > 0: |f(z)| < K |g(x)] holds Yz € Us(zo) N D.

REMARK: (i) If, for example, g(z) # 0 for all x near zy and lim % =0, then f(z) =
T—x0 g\ T
o(g(x)) (x — o).

(ii) We will occasionally make use of a notation like
f(x) = h(z) + O(g(x))
to mean that f(x) — h(x) = O(g(x)).

EXAMPLES: 1) If @ > 0 then log(z) = o(z®) (x — 00) [cf. 6.3.6)].
2)e® =1+z+ O(2?) (z — 0), since |[e® — 1 — z| < |z|* when |z| < 3/2 [as seen in 6.3.8)].

3) f(x) = f(zo) +0(1) (x — xg) <= }E’B f(z) = f(zg) <= [ is continuous at x.

4) If p is a polynomial function of degree m, then p(z) = O(2™) (x — o0).

2Edmund Georg Hermann Landau (1877-1938) ['edmunt 'ge'oek 'heeman landau], German mathemati-
cian
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6.5. A digression into basic analysis on C:

Let z = x + 1y € C, so that x = Re(z), y = Im(2) and Z = x + iy € C. Then the product
2z = (x+iy)(z —1y) = x* +y* always gives a non-negative real number and we may define
the absolute value of z by

2| = V2Z = /22 + 42 = /Re(2)?2 + Im(2)2.

Note that, since real numbers = are embedded as complex numbers® of the form z + 0,
the absolute value of x as a real number is the same as its absolute value as a complex
number.

LEMMA: The absolute value as a map |.|: C — R has the following properties, valid for
all 2,21, 20 € C:

i)|z] >0and |z =0< 2=0
i) [z = [2]

(

(

(iii) [21 - 22| = [z1] - |22]

(iv) [Re(z)| < 2] and [Im(2)] < |2|
(

V) |21 + 29| < |21] + |22| (triangle inequality).

Proof. Let z = x + iy, 2z, = x + iy, (k= 1,2).

i): |z] > 0 and |0] = 0 is immediate. If |z| = 0, then 0 < 2? < 22 + y? = 0 as well as
(): 2| y
0<y?<a2?+y?>=0, hence x =0 and y = 0.

ii): Clear from the definition.
iii): |z2120]* = (2122)(21%2) = (2171) (22%2) = |21’ 2.
iv): |z|* =22 <2? +y? and |y|* = y? < 2% + 92

v): |21 4 2’ = (21 + 2)(F + 2) = |a]® + 2 Re(z122) + |22]* < [by (iv)]
|21|” + 2|21 |22] + |22 = (|| + |22])*. 0

(
(
(
(

(a) Convergence in C:
DEFINITION: (i) Let zyp € C and € > 0, then the e-neighborhood U.(z) of zy is defined
by

Uc(z9) i ={2€C:|z— 2| <&}

In a planar representation of the complex numbers, U.(zp) is an open disk with radius
around zg:

3Square roots of negative numbers were “invented” by the Italian mathematicians Gerolamo Cardano
and Raffaele Bombelli. In modern mathematics, complex numbers are generally denoted by z = a + bi or
sometimes z = a + bj.
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x
(i) A sequence of complex numbers is a map ¢: N — C. We use the notation (¢, )nen with
Cpn = c(n).
(iii) The complex sequence (c,) converges to zy € C, denoted by ¢, — 2y (n — 00) or

lim ¢, = z, if
n—oo

Ve>03ng e NVn>n: |, — 2| <e.

Equivalently, we may require that

Ve>03dng e NVn>n: ¢, € Ulz).

PROPOSITION: Let (¢,) be a complex sequence. Then the following are equivalent:
(i) (¢p) is convergent (in C).
(ii) Both sequences (Rec,) and (Imc¢,) converge (in R).

In this case we have lim ¢, = lim Rec¢,, + ¢ limIm ¢,

Proof. Let a, := Rec,, b, :==Imc¢, (n € N).
(i) = (ii): Let ¢:=lim¢,, a := Rec and b := Imec.

If £ > 0 is given arbitrarily, we can find ng € N such that |¢, — ¢| < € holds for all n > ny.
Therefore we have for all n > nyg

la, —a] = |Re(e, — )| < e, —c| <e aswell as |b, —b] =|Re(c, — )| < e, —¢| <e,

which proves that a, — a and b,, — 0.

(ii) = (i): Let € > 0. Put a := lima,, b := limb,, and ¢ := a + ib. Choose ny € N such
that |a, — a| < /2 and |b, — b| < €/2 holds for all n > ng. Then we have for n > ng

3

5~ &

(@n -+ iba) = (@ +8)] = |(an — @) +i(bu = B)] < |an — al + [bn — b < 5 +

thus ¢, — ¢ (n — 00).
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COROLLARY: If (c,) is a convergent complex sequence, then lim ¢, = lim c,,.
Proof. lim¢, =limRec, —ilimImc¢, = limRe¢, +¢limIm¢, = lime,. O

Precisely as in the case of real sequences one proves the following rules for basic operations
with convergent sequences:

If (¢,), (d,) are convergent complex sequences and A € C, then

lim(e, +d,,) = lim¢, + limd,
lim(Ac,) = Aime,
lim(c,d,) = (lim¢,)(limd,)
I
lim Z—Z = hlrr;l ;Z (if d,, # 0 for almost all n).

THEOREM (COMPLETENESS OF (C): A sequence (c,) of complex numbers con-
verges if and only if it is a Cauchy sequence, i.e.,

(6.2) Ve >0dng e NVn,m >ng: e —cm| <e.

Proof. (6.2) < both (Rec,) and (Im¢,) are Cauchy sequences in R < both (Rec,) and

(Im¢,) are convergent in R [ = } (¢,) is convergent in C. O
Prop.

(b) Complex series:

o0
DEFINITION: Let (c,) be a sequence of complex numbers. The series ch is conver-

k=0
n

gent, if the corresponding sequence (s,) of partial sums s, := Z ¢ 1s convergent (in C).

k=0
The series Z cx 1s absolutely convergent, if the (real) series Z |ck| converges (in R).
k=0 k=0

PROPOSITION: (i) Basic comparison test: Let (a,) be a sequence with a,, > 0 (thus,
reall) and such that > a, is convergent. If (¢,) is a complex sequence with the property

dng e NVn >ng:  |eu| < ap,

o0
then the series Z ¢, is absolutely convergent.

n=0
(ii) The root test and the ratio test both are valid for complex sequences literally as stated
in Section 4. In particular, if a complex sequence (c,) with ¢, # 0 (for almost all n)

satisfies

Cn—l—l < 9

— Y

30 € [0, 1]:

Cn

(e e}
then the series Z ¢, is absolutely convergent.

n=0
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(iii) The Proposition concerning the Cauchy product for absolutely convergent series holds
literally as stated in Section 4.

Proof. Can be literally copied from those of the corresponding statements about real series.
O

(c) Continuity of functions of a complex variable:
DEFINITION: Let D CC, z € D. A function f: D — C is continuous at z, if
Ve>030>0VzeD: |z—2z|<d=|f(2)— f(20)| <&,

or equivalently

f is said to be continuous on D, if f is continuous at all points in D.

REMARK: As in the case of functions on R, continuity can be tested by sequences (the
proof is also a literal translation of that in the real case): f: D — C is continuous at
w € D if and only if or all sequences (z,) with z, € D and 2, — w (n — 00) we have that
lim f(z,) = f(w). We also express the latter fact by Zhrrzlu f(z) = f(w).

6.6. The complex exponential function:

ok
THEOREM: (i) For all 2 € C the series Z % is absolutely convergent. We thus define

k=0 "~
the complex exponential function exp: C — C by

o0

exp(z Z Z— (z € C).

k=0

When restricted to R it coincides with the exponential function defined in Section 4. We
will continue to use the same notation for both functions.

(ii) For all N € N

N
exp(z Z + Ryyi(2
k=0

where
|Z‘N+l

|Ry11(2)] < QW

N
(ZEC,|Z‘§1+§).

(iii) We have the functional equation

Vzi,20 € C: exp(21 + 22) = exp(z1) - exp(22).
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(iv) For all z € C: exp(Z) = exp(2).
(v) For all z € C: exp(z) # 0.

z

-1

(vi) lim ¢ =
2#0,2—0 V4

1.

(vii) exp: C — C is continuous (at all points of C).

Proof. (i): If z = 0 the assertion is trivial. If z # 0 we apply the ratio test with ¢, = 2% /k!.
For all n > 2|z| we have

ZnJrln!

27(n+1)!

Cn—l—l
Cn

= < <1,

which proves absolute convergence.

If we temporarily use the notation expg for the (real) exponential function defined in
Section 4, then for z € R we have exp(z +i0) = > 7, “”fc—],c = expg ().

(ii), (iii): Literally as in the corresponding proofs in Section 4.

(iv): Let s,(2) := > 1_,2"/k! and use 6.5(a): exp(z) = lim s, (2) = lim s, (2) = exp(z).

(v): The functional equation gives exp(z)exp(—z) = exp(z — z) = exp(0) = 1, hence
exp(z) # 0.
(vi): By (ii) we have |e* — 1 — z| < 2% = |z|? for all |z| < 3/2, hence

er —1

z

—1'§|z\—>0 (z — 0).

(vii): By (vi) we have e —1 = O(z) (z — 0). Therefore lim, g exp(z) = 1 = exp(0), which
shows continuity of exp at 0.

Let w € C arbitrary and assume that (z,) is a sequence in C such that z, — w (n — 00).
Then z, — w — 0, thus

1 =exp(0) = lim exp(z, —w) = lim exp(z,)exp(—w),

which implies that lim exp(z,) = exp(w), hence the continuity of exp at w. O
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6.7. Trigonometric functions (trigonometrische Funktionen oder Winke]funktionen>4:
DEFINITION: We define the cosine (function) (Cosinus (Funktion)) by

cos: R = R, cos(z) := Re(exp(iz)) = Re(e™),
and the sine (function) (Sinus (Funktion)) by

sin: R — R, sin(z) := Im(exp(iz)) = Im(e™).

BASIC PROPERTIES: (i) Since ¢ = Re(e™®) + i Im(e®) we obtain Euler’s formula
(6.3) VreR: " = cos(z) + isin(z).

Furthermore, cos and sin are continuous R — R, since exp(iz,) — exp(ia) if and only if
Re(exp(iz,)) — Re(exp(ia)) and Im(exp(iz,)) — Im(exp(ia)).

ii) Geometric interpretation: Since any real ¢ gives |e]|? = e’ - (eit) = ele™ = ¥ = 1, we
y g

obtain
e |=1 VteR.

Therefore every number of the form e lies on the unit circle
St:={z€C:|z| =1} =2 {(z1,20) €ER?: 22 + 23 =1}

and (cos(t),sin(t)) represents the (Cartesian) coordinates in the plane. In particular, we
have the relation

(6.4) cos?(z) +sin’(z) = 1 Vo € R.

m .

sin x

COS T

4These so-called trigonometric functions have a very long history: They were first used by the Babylo-
nians in around 1900 BC and later in the Hellenistic world, in medieval India, in the Islamic Persia and
in the medieval Europe. The terms sine and cosine (from the Latin sinus, i.e. “arch ”) were introduced by
the German mathematician Georg von Peuerbach.



7

Remark: Note that we avoided any reference to notions like arc length (Bogenldnge) or angle
(Winkel) in defining the trigonometric functions for reasons of a deductive presentation. Arc
length will be introduced rigorously, and in more generality, later during the course (based on
the notion of integrals along curves), but it certainly is useful to have the intuitive meaning at
hand already as suggested by the above geometric interpretation.

(iii) Recall that for any complex number w the real and imaginary part can be obtained
from Re(w) = (w 4+ w)/2 and Im(w) = (w — w)/2i. Therefore we have

eix + efix ) eix . efix
cos(x) = —5 sin(x) = —
which in turn implies
cos(—x) = cos(x) and sin(—z) = —sin(x),

telling that cos is an even (gerade) function (the graph is symmetric with respect to the
vertical axis) and sin is an odd (ungerade) function (the graph is reflected by lines through
the origin (0,0)).

(iv) The fundamental relations for the addition of arguments (“angles”) (Additionstheoreme)

are the following: For all x,y € R

cos(x + y) = cos(z) cos(y) — sin(x) sin(y)
sin(z + y) = cos(x) sin(y) + sin(z) cos(y)

and
cos(z) — cos(y) = —2sin i ;_ Y gin Z ; i
sin(x) — sin(y) = 2cos z ;L Ysin 2 ; Y.

Proof. The first two equations are obtained by taking real and imaginary parts in the

relation
ez(a:—l—y) — ol . o

The third (resp. fourth) equation follows from the first (resp. second) equation upon setting
u=(z+y)/2andv=(z—y)/2 (r=utv,y=u—v):

cos(z) — cos(y) = cos(u + v) — cos(u — v)

= cos(u) cos(v) — sin(u) sin(v) — (cos(u) cos(v) + sin(u) sin(v))

= —2sin(u) sin(v) = —2sin ’ ; Y sin :

and similarly for the last equation. O
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(v) The natural integer powers of i show a simple repetitive pattern: Since > = —1,
i =% = —i, i* =% = —i® = 1, we have for n € N that

1 if n=4m for somem €N (& n=0 mod4)

i ifn=4m+1forsomem eN (& n=1 mod4)
-1 ifn=4m+2forsomemeN (< n=2 mod4)
—1  ifn=4m+3 forsome meN (& n=3 mod4).

Therefore we obtain for all x € R

®© - \n o0
cos(z) +isin(r) = e = Z (Zi') = Z an!
" " 00 & . a2
_l;(_ .1;(_1) (2k+ 1)
Rezerm) Imzer“”)
which proves the following series expansions for cosine and sine:
o0 o0 22K+
cos(z Z sin(z Z 2 [ 1)

k=0 k=0

(vi) Suppose we are to use the above series expansions to approximate cosine and sine
for small x by simply dropping all terms that contain x to quadratic or higher order. If
justified, this would give the following simple heuristic relations when |z| is small:

cos(z) ~1 and sin(z) =~ x.

As a matter of fact, we have the limit equations

m @1y T LG Y
z#£0,2—0 €T x#0,2—0 €T
Proof. By Theorem 6.6(vi) we have that
' ) 62'9: _ ) T ) T 1
1+¢-0=lim — = lim Re(———) + 4 - lim Im(———).
z—0 1T z—0 1T z—0 1
Therefore we have forz € R as v — 0
cos(z) — 1 _ _Im(cos(x) - 1 +7Jsin(x)) _ —Im(em‘_ 1) 0
x i i
sin(x) _ Re(cos(ac) - 1 + isin(a:)) _ Re(eix._ 1) L
x i i
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6.8. Definition of m: We will show that cos is strictly decreasing on the interval
[0, 2] and possesses a unique zero o in that interval. We will define 7 as the value of 2x.
We postpone the precise identification of 7 with half the (length of the) circumference of
the unit circle until integration theory allows us to provide a simple calculation.®

cos
LEMMA: (i) cos(0) =1 and cos(2) < —1/3. 1
(ii) If 0 < = < 2 then sin(z) > 0. 2
(iii) cos is strictly decreasing on [0, 2]. BETAN x

cos2 <0

Proof. (i): We clearly have cos(0) = Re(e™®) = 1. The series expansion for the cosine
function gives the alternating sum

22 o X 22k
where r represents the error when approximating cos(2) by the partial sum s; = —1. Thus

the error estimate (4.2) from the Leibniz criterion tells that |r| is bounded by the absolute
value of the first neglected term. Therefore we have

2) < —1 <124—116—12—1
cos()_—+]7"\_—+1—— to = +t3=-3

(ii): Let 0 < 2 < 2. We have the alternating sum for the sine function

[e§)
$2k+1

sin(z) =z + Z(—l)km =z +r(x),

where r(z) now denotes the error when approximating sin(x) by the partial sum s;(x) = x.
We apply again the estimate (4.2), which now reads

x3 B x? < 4 2z
I
and therefore 9
sin(x)2x—|r(x)|2x—§:§>0.

(iii): Let 0 < 2y < 29 < 2, then we have 0 < (7 4+x2)/2 < 2aswell as 0 < (zo—x1)/2 < 2.
By 6.7(iv) and property (ii) proved above we obtain
Ty +T Ty —I

cos(xg) — cos(xy) = —2 - sin <0,

hence cos(z2) < cos(z1). O

5This constant was first named “7” by the Welsh scientist William Jones in 1706 because it is the first
letter of the Greek words nepipepeiar (“periphery”) and nepipetpoc (“circumference”). This notation was
later adopted by Euler.
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PROPOSITION: There exists a unique xq € [0, 2] such that cos(xg) = 0.

Proof. By the above lemma, cos is strictly decreasing on [0, 2], hence cos ||g 9 is injective.
Furthermore, the same lemma gives that cos(0) > 0 and cos(2) < 0. Since cos is continuous,
the intermediate value theorem implies the existence of a zero zg € [0,2]. This zero must
be unique, since cos is injective on that interval. O

DEFINITION: Let z denote the unique zero of cos in the interval [0,2] (according to
the above proposition). Then the real number 7 is defined by 7 := 2x.

The properties of cos and sin established above can now be reformulated in more familiar
terms: For example, we obtain that

cos(x) >0 for0<z< g, cos(g) =0, cos(z) <0 for g <x <2
Since sin*(%) = 1 — cos?(3) = 1 and sin(%) > 0 (by the above lemma), we have

sin(g) =1 and ¢'2= cos(g) —i—isin(g) = i.

e =cosx +isinx

Taking integer powers for all k € Z we obtain e’*2 = (e’? )k = i*. In particular,

¢'® =1 =cos(0) +isin(0), €% =i= cos(g) +isin(=), €7 = —1=cos(m)+isin(r),

3 3 3 ,
s — = cos(%) —|—isin(7ﬂ-), €™ =1 = cos(2m) + isin(27),
‘ 0 % T 37” 2
which is summarized in the table sin(z) [0 1 0 =1 0
cos(z) |1 0 -1 0O 1
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6.9. Further properties of the trigonometric functions: Forallz ¢ R
we have the following properties:

(a) cos and sin are periodic (periodisch) with period (Periode) of 2, i.e.,
cos(z + 2m) = cos(x), sin(z + 27) = sin(x).
This follows from 6.7(iv) and the fact that cos(27) = 1, sin(27) = 0:

cos(x + 2m) = cos(x) cos(2m) — sin(z) sin(27) = cos(x).

(b) Since cos(z + m) = cos(x) cos(m) — sin(x) sin(7w) = — cos(z), and a similar calculation
for sin, we have
cos(x + ) = — cos(z), sin(z + 7) = —sin(z).

(c) By sin(§ — ) = sin(5) cos(—x) 4 cos(3) sin(—z) = cos(z), and a similar calculation for
cos, we obtain

sin(g —x) = cos(x), cos(g —x) = sin(x).
(d) sin(z) =0 <= zenZ:={kn:keZ}

Proof. By 2m-periodicity it suffices to show the assertion for z € [0, 27].
Let 0 < x < 7 arbitrary, then § — 2 €] — 7, 5[ and therefore sin(x) = cos(§ — z) > 0.
Furthermore, note that |m,2n[={r+7:0 <r < n} and sin(xz + 7) = —sin(z) < 0.

Thus, 0 and 7 are the only zeros of sin in the interval [0, 27[, which proves the assertion. [
() cos(z) =0 <= ze{f}+nZ:={5+kn:kecZl}
Proof. Use cos(z) = —sin(x — 7) and apply (d). O
(f) e =1 < xe2rZ:={2kn:kelZ}
Proof. We have ¢ — 1 =¢'2 - (e'2 —e7'2) = 2i¢'2 sinZ and 2ie'? # 0. Therefore
, . T x
e’x:1<:>s1n(§):0<:>§GWZ<:>:1:€27TZ.
O

Using the above list of basic properties of cos and sin we can get a good qualitative picture
of their graphs. Note in particular the following features: a shift of the graph of cos by 3
along the horizontal axes gives the graph of sin; cos is even and strictly decreasing on [0, 7]

(thus increasing on [—, 0]), sin is odd and strictly increasing on [—7, 7]; besides the zeros



82

we can read off locations of maximum and minimum values, where each functions changes
monotonicity type from increasing to decreasing or vice versa.

COS

sin

N\
DO |
o
3
o]
DO
3

DEFINITION: (i) The tangent (function)® (Tangens (-Funktion)) tan: R\ (5 +7Z) — R
is given by

tan(z) :=

(ii) The cotangent (function) (Cotangens (-Funktion)) cot: R\ 7Z — R is given by

cos(x)

cot(x) = n(z)”

A geometric interpretation of tan(x), when —% < x < 7, is easy by comparing the right-
angled triangles in the following illustration:

T

tanx

sin

COoS ™

6The term tangent was first used by the Danish mathematician Thomas Fincke in 1583.
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Here is the part of the graph of tan above the interval | — 7, Z[, whose basic qualitative

features can be derived from the properties of cos and sin:

cos(xz+)

T T

OH]—E,E

bo| 3
bo| 3

6.10. Inverse trigonometric functions (Arcusfunktionen):

Arc cosine: We assert that cos is strictly decreasing on [0, 7] and cos([0, 7]) = [—1, 1].

™

Indeed, that cos is strictly decreasing on [0, 7] follows from the
Lemma in 6.8; since cos(m — z) = —cos(x) the same follows
for the interval [Z,7]; by continuity and injectivity, cos([0,7]) =
[cos(m), cos(0)] = [—1,1].

Thus cos is continuous, strictly decreasing, and bijective as a map
[0,7] — [—1,1], hence possesses a strictly decreasing continuous
inverse function

arccos: [—1,1] — [0, 7],

called the arc cosine (function) (Arcus Cosinus).

Note that tan(z + r) = Snim) _
tan(z), so that the complete graph of tan
can be obtained from shifts of the basic part
[ by integer multiples of 7.

We have for all = € [0, ] that arccos(cos(x)) = x and cos(arccos(y)) =y for all y € [—1,1].

Of course we could have constructed similar inverses on any interval of strict monotonicity
for cos. Unless stated otherwise we will usually refer to the one constructed above as

arccos.

2
sin is strictly increasing on [—7

corresponding inverse function

, 5] and sin([

arcsin: [—1,1] — [—g, g],

increasing.

s

272

Arc sine: Using sin(x) = cos(5 —z) and (i) we deduce the following:
[—1,1]. The

called the arc sine (function) (Arcus Sinus), is continuous and strictly



84

Arc tangent: We claim that tan is strictly increasing on ] — 7, 7[ and tan(] — 5, 5[) = R.

Proof. Since

() — sin(—x) _ — sin(x) —  tan(e
tan(—z) cos(—) cos(x) tan(z),

it suffices to consider the subinterval [0, 5[. If 0 < z < 2’ < 7 then sin(z) < sin(2’) and
cos(x) > cos(z’) > 0, hence

() — sin(x)  sin(z’) E—
tan(z) cos(x)<cos(x’) tan(z’).

Note that <2 > 0 for all z €]0, 7[ and that

0s
sin(x)

lim cos(x) _ Cos(?r
2

z,/T sin(z)  sin(

Therefore we obtain that tan(z) — oo asx / § and by the intermediate value theorem (tan
is continuous!) that tan([0, 5[) = [0, co[. By symmetry of tan we obtain that tan(]—%, 7[)
| — 00, .

O

We conclude that the restriction of tan to | — 7, 7[ has a continuous and strictly increasing

inverse function arctan: R —] — 7, 7, called arc tangent (function) (Arcus Tangens).
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6.11. Polar coordinates’ for complex numbers: If z = z + iy € C we
may interpret the absolute value |z| = /2% 4 y? as the distance of z to the origin in the

plane:
Y

T+ 1y
2|

How do we obtain information on the direction towards
z as seen from the origin with respect to the positive real P
axis (the z-axis)?
Recall that for any ¢ € R we have [¢*?] = 1 and e'¥ =
cos(p) + i sin(ep).

1
Furthermore, the points where the unit circle S* inter-
sects the Cartesian axes are given by ¢ = 1, ¢’z = g,
. .37 3 . . .
e = —1, "2 = —i and we have 2m-periodicity
6i(s0+27r) _ eigo‘
Let z # 0 and set w := é Then w lies on the unit circle and can be written in the form

w=¢+in, where £,n € R are such that 1= |w|®> = & +n*
Therefore £ € [—1,1] and « := arccos(§) € [0, 7] and we have

sin?(a) = 1 — cos?(a) = 1 — €2 = 7?,

hence sin(a) = 7 or sin(a) = —n. If we define
_Ja if sin(a) =7
AR QPNET; sin(a) = —n,

then we obtain w = cos(y) + i sin(p) = €, which in turn yields the polar representation
(Polardarstellung) of z in the form
z=|z| - €.

In this representation ¢, the so-called the argument (Argument) of z, ¢ = arg(z), is unique
up to an addition of integer multiples of 2.

“The history of polar coordinates is about as long as the one of trigonometry. The term polar coordinates
was introduced by 18th-century Italian mathematicians.
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§7. DIFFERENTIABILITY AND DERIVATIVE

7.1. Definition: Consider V C R, f: V — R, and let z € V be an accumulation
point of V. Then f is said to be differentiable at x (differenzierbar in x) if the limit

f(&) — f(=)

— X

(7.1) f(z) == lim

geVi\{z}

exists. The value f'(x) is the derivative of f at x (Ableitung von f an der Stelle z). The
function f is called differentiable in V| if f is differentiable at all points z € V.

7.2. Remark: (i) An alternative expression to (7.1) is

/ L . f(:L’—}-h)—f(:E)
(7.2) fi(x) = lim .

x+heV,h#0

(We will often supress the additional conditions on A in the specification of the limit.)

(ii) Geometric interpretation: Let V' be an interval and consider the graph of f of a
differentiable function f: V — R.

87
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The difference quotient (Differenzenquotient)

f(&) — f(z)
E—x

gives the slope of the straight line, the so-called secant (Sekante), through the points
(x, f(x)) and (&, f(&)). As £ is getting closer and closer to z, the slopes of the corre-
sponding secant lines approach the limit f’(x), which therefore can be thought of being
the slope of the tangent (Tangente) to the graph of f at the point (z, f(z)).!

df (z)

(iii) A common notation for f'(x) is the differential quotient (Differenzialquotient) ———,

x
which however is not a quotient but merely a reminder of the fact that f’(z) is the limit

A _
of the difference quotients /() = 1) f(x)

Ax E—=x
(iv) If f is differentiable in V' then the derivative of f defines a function f': V. — R,

z i f'(x).

7.3. Examples: 1) Let ¢ € R. The constant function f: R — R, f(z) = ¢, is
differentiable in R and has derivative

o) — i TEER) S @) e
fla)=lm === ——=ln
h#0 h#0

2) Let ¢ € R and n € N with n > 1. The function f: R — R, x — cz™, is differentiable in
R and has derivative

by o @ h)t =™ (z+h)"—a”
f (x) - Ojéllgo n == C()jél]go .
=c lim T+ Y (Rt —an =c lim he 3k ()Rl
0#£h—0 h ohm 5

o : n n—1 - n k—1_n—k o n—1
_coilg()((l)x +;<k)h T )—cnx .

In particular, we have (cz) = c2® = ¢ and (2?) = 2x.

3) f: R\ {0} = R, z — 1, is differentiable at every x # 0 and

Flx) =i 1 11 — 1 1 _7]1_1' -t 1
VTR \z+h z)  hoh x(a:+h)_hlgcl1x(x+h)_ z?

IThis solution of the so-called “tangent problem” was developed independently by Isaac Newton and
Gottfried Wilhelm Leibnitz in the 17th century, thereby inventing modern calculus.
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4) The exponential function is differentiable and

1o i SXP(@ A h) —exp(a) _exp(h) =1 _
exp'(z) = }Zlir(l) . = exp(x) }Zlir(l) . 000 exp(x) - 1 = exp(x).

5) sin: R — R is differentiable and

sin(z + h) — sin(z) 2 cos(x + %) sin(%)

-/ IERT o .
R — Ol —
h. sin(h/2 h h/2
= ]lgr(l) cos(x + 5) % = ]lllil(l) cos(x + 5) . }ILE% % = cos(x)
—————
[cos continuous] [—1 by 6.7(vi)]
Similarly, one can show that cos is differentiable and cos’(z) = — sin(x) (left as an exercise).

6) abs: R — R, x — ||, is differentiable for all  # 0. This follows easily from the fact
that abs [jg,co;= id and abs [j_o o= —id.

X

But abs'(0) does not exist: Let h, := (—1)"/n, then lim h,, = 0 and the difference quotients
do not converge

abs(0 4 h,) —abs(0)  1/n (—1)"
hn (=D n '
Thus abs is a continuous function on R but not differentiable at the point 0.

7.4. One-sided derivatives: Let x be an accumulation point of V' C R such that
xeV. f:V — Ris differentiable from the right (rechtsseitig differenzierbar) at x € V, if

o f(&) — f(=)
fi(z) = lim —=———+
RV {—a
exists. f is differentiable from the left (linksseitig differenzierbar) at x € V| if

£ —z
eeV\{z} §
exists.

For example, abs’” (0) = —1 and abs’, (0) = 1. (Compare with the graph!)
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7.5. Proposition: If f: V — R is differentiable at x € V, then f is continuous at .

Proof. Let V 3 £ # x, then we have

19 - 1) = LD o)~ iy 0=0 -
U
7.6. Proposition: Let f,g: V — R be differentiable in z € V.
(i) If A\, p € R then Af 4 pg is differentiable at x and
(Af + png)'(z) = Af'(2) + pg'(x).
(ii) Leibniz or product rule: f - g is differentiable at z and
(f - 9)'(x) = fi(x)g(z) + f(x)g'(z).
(ili) Quotient rule: If g(&) # 0 for all £ € V' then g: V' — R is differentiable at = and
N\ _ f@)g(e) - fz)g'(2)
(9)@ﬂ_ g(z)” '
Proof. (i) Follows from the basic rules for limits.
(ii) Let h # 0 such that x +h € V. Then we have
h h) —
Pt ate W) = T@9E) _ (g0 4y (gla + ) - g(@) + (£ + ) — £(x))(x)
iy T@ g @+ fz)-gl)

since f is continuous at x by Proposition 7.5.

(iii) Consider first the case that f(§) = 1 for all £ € V. Then we have with h # 0 such
that z +h eV
1 1

glath) — g(@) _ g9(@) —glz+h) — —M (h — 0).

h hg(x)g(z + h) g(x)?
Thus (1/g)'(x) = —¢'(x)/g(z)? and the general case now follows from the product rule:

(z)’ - (r ;)’ o) — )L @) _ P @) @) @),

g g9() g(x)? g(x)?
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7.7. Examples: 1)LetneN n>1and f: R\ {0} - R, z+— 1/2™
1\ —na"! n
, —_— —_— —_—
f (ZE) - (E) - r2n - _anrl’

in other words, (z™") = —nz™ "L

2) tan: R\ (§ + 7Z) — R is differentiable and

) — sin() / B cos(x) cos(z) — sin(x)(—sin(x))
(t ) (cos(x) ) cos?(x)
_ cos?(x) + sin®(z) 1

cos?(x) " co2(z) L+ tan’(z).

7.8. The derivative as linear approximation: LetV C R and 2y € V be
an accumulation point of V. Suppose that f: V' — R is differentiable at xq. We have seen
that in a geometric interpretation the tangent to the graph of f at the point (x¢, f(xo) has
slope f'(zg). Thus we define the tangent (Tangente) to the graph of f at (xq, f(z0)) as the
straight line given by the following linear equation for (z,y) € R?

(7.3) y = f(xo) + f'(x0)(x — o).

Intuitively, if f is sufficiently “well-behaved” then the tangent, considered as the affine
linear function x +— f(xo) + f'(zo)(x — x¢), should give a reasonable approximation of the
function values when z is close to zg, i.e., f(z) ~ f(xo) + f'(xo)(x — xo) as x — xo. The
following statement makes this more precise.

THEOREM: The following statements are equivalent:
(i) f is differentiable at z.

(i) There exist a constant ¢ € R and a function 7: V' — R with lim riz) = 0 such that

T—T _
m;émg T — X

(7.4) f(z) = f(xg) + ¢ (x —xo) +7(2) Ve eV.

In this case ¢ = f(xo).

Note that, in particular, r(z) = o(|z — x¢|) (x — z0).

Proof. (i) = (ii): Put r(z) := f(z) — f(xo) — f'(z0)(x — x9) and let x € V with = # x.

Then
T(.T) _ f(.l") - f(-TO) . f,(-TO) _ f/(xo) _ f’(xo) =0 (x — xo).

r — X r — X




92

(ii) = (i): Let z € V with = # 2. Then (7.4) implies

fla) = fla) _ | )

—c+0 (x — z0).
T — 2o T — 2o

Thus f is differentiable at z¢ and f'(xy) = c. O

EXAMPLE: Consider sin: R — R with sin’(0) =
cos(0) = 1. We obtain the relation

sin(z) = sin(0) + sin’(0)(x — 0) + r(x) sin
=0+1-2+r(x)=x+r(z),

where r(x) = sin(z) — z = o(x) (z — 0).

7.9. The chain rule:

THEOREM: Let VW CRand f: V — R, g: W — R such that f(V) C W.
If f is differentiable at x € V and g is differentiable at y := f(x) € W, then the composition
go f: V — R is differentiable at x and

(go f)(z) =g'(f(x))- f'(x)-

Idea of the proof: We will need a little extra technical finesse to make use of the following
heuristics: for £ € V with £ # x

note that we cannot guarantee that f(§) — f(z) # 0.

Proof. Define the modified difference quotient ¢*: W — R of ¢ at y by

9(n)—g(y) if
. E—— n#y
g'm):=q "7 .

J(y) if n=y.

Since lim, ., g*(n) = ¢'(y) = g*(y) we deduce that ¢g* is continuous. Furthermore, by
construction we have for all n € W

gn) —gy)=g"(n) (n—y).
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Therefore we obtain for £ € V with £ # x

g(f(f)g:i(f(x)) _ g*(f(ﬁ))g(f_(ﬁi — f(z) _ 7)) - f(&g) - i”(fr)
o 9" () - f'(x) = g'(f(2)) - f'(2)

APPLICATION: Let D,WW C R and f: D — W be a bijective map. Suppose that f is
differentiable at € D and that f~! is differentiable at y := f(x) € W as well. Then the
chain rule applied to f~' o f = idp yields

Y (f(@) - f(x) =id'(z) = 1.

In particular, this implies f'(x) # 0 and thus we may rewrite the above relation with

y = f(x) in the form
1

() (y) = )

7.10. Differentiability and derivative of the inverse function: Let
I,J C R be intervals and f: I — J be bijective, continuous, and strictly increasing with
(therefore continuous!) inverse function f~*: J — I.

THEOREM: Under the assumptions stated above: If f is differentiable at x € I with
f'(z) # 0, then f~1 is differentiable at y := f(z) € J and

1
(7.5) (f(y) = )
Proof. Let (n,) be a sequence with n,, € J\ {y} (for all n € N) such that n, — y (n — 00).

If we put &, := f~(n,) then &, € I\ {z} and &, — z as n — oo (by continuity of f~! [cf.
5.12]). Therefore

) =) bmw B
TR [ R (B T B
which proves that f~! is differentiable at y and (f~')'(y) equals 1/f'(f~(y)). O

7.11. Examples: 1) Let z > 0 then

I
g () = Cplog@) ~ oxpliog(@)) =
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A simple application of this result proves a famous limit relation: Since log'(1) = 1 we
have (using the continuity of exp)

log(1 + %) — log(1)

1 1
1= lim =limn -log(1 + —) = limlog(1 + —)"
n n

1 1
= logexplimlog(l + —)" = log(lim(1 + —)")
n n

and upon exponentiation

(7.6) lim (1 + %)n = exp(1) = e.

n—oo

2) If z €] —1,1] then

1 1 1
arcsin’(z) = =

sin’(arcsin(z))  cos(arcsin(z)) [Coszjm] V1—a?

1 1 1
 tan’(arctan(x)) 1+ tan®(arctan(z)) 1+ 22
4) If f: R — R is differentiable and a,b € R then g(x) := f(ax + b) is differentiable and
by the chain rule

3) arctan’(x)

g (x) = f'(ax +b) (ax + 1) = a f'(ax + D).

5) For a € R the function z +— z%, |0, c0[— R is differentiable and

(2%)" = (exp(a log(2)))" = exp’(a log(2)) (a log(x))’

= exp(a log(z)) a log'(z) = 2%a— = ax
x

7.12. Higher derivatives: Let f: V — R be differentiable and f': V — R be its
derivative. If f’ is differentiable in x € V, then

f(@) = (1) (=)

is called the second derivative (zweite Ableitung) of f at x. A classical notation for f”(x)
d’f(z)

dz?
Suppose that f’is differentiable in U (x)NV. Then we can consider the function f”: U.(z)N
V' — R and investigate its differentiability properties in turn. In this way, we can define

is also
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the property of a function f to be k times differentiable at = (k € N, k > 2) inductively,
if there exists € > 0 such that f |y (»)nv is (K — 1) times differentiable (in all points of
U.(z) NV) and the (k — 1)st derivative f*~Y is differentiable at x. In this case we set

fO() = (VY ().

It is common to put f©(z) = f(z). A function f: V — R is called infinitely (often)
differentiable (unendlich oft differenzierbar) at x if it is k times differentiable for all k € N.?

EXAMPLE: sin is infinitely (often) differentiable on all of R. We have sin’ = cos, sin” =
—sin, sin® = — cos, and sin™® = sin ete.

Let w € R be a constant (frequency). Then u(z) := sin(wz) is infinitely differentiable
on R. We have v/(z) = w cos(wz) and v”(x) = —w? sin(wz) = —w?u(z). Therefore u
satisfies the differential equation of the isochronous pendulum

u" + wru = 0.

ZNote that the case k = 1 is not included in the above definition and that mere differentiability of a
function at a point does not imply differentiability in a whole e-neighborhood. For example, consider the
function f: R — R, defined as f(r) = 2% when 2 € Q and f(x) = 0 otherwise. Then f is discontinuous at
every x # 0 but differentiable in z = 0.



8. BASIC PROPERTIES OF DIFFERENTIABLE
FUNCTIONS

8.1. Definition: Let f:]a,b[— R. A point z €]a,b[ is a local mazimum (lokales
Maximum) (resp. local minimum (lokales Minimum)) of f, if

Je >0V € Ue(x): f(zx) = f(§) (resp. f(z) < f(§)).

If f(z) > f(&) (vesp. f(x) < f(§)) for all £ € U.(z) with £ # =, then x is a strict local
mazimum (resp. minimum) (striktes lokales Maximum (bzw. Minimum)). In either case x is
called a local extreme (lokles Extremum) of f.

Y
loc. max.
/” f
al t " 1 ll) "
—~—
Ue()
loc. max.
Geometrically, if [ 1is differentiable we
expect that the graph of f has a horizontal
tangent in a local extreme, which means that
the slope f'(z) must be 0.

96
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8.2. Proposition: Suppose that f: |a,b[— R has a local extreme in x and is differ-
entiable at x. Then f'(x) = 0.

Proof. Let x be a local maximum of f (the case of a local minimum is analogous). There
is € > 0 such that

Ve e Ue(z) s flx) = f(£).

Since f is differentiable at x we deduce that

lim fE) = 1) _ f'(z) = lim fE) — fl@)

N {—x &/ E—x
N’ N’
<0 >0

and therefore 0 < f’(z) <0, hence f'(x) = 0. O

8.3. Remark: (i) The above proposition gives a 3
necessary condition, namely f’(z) = 0, for a local ex-
treme at a point x where f is differentiable. This con- /
dition is, in general, not sufficient as the following sim-

ple example shows: Let f: ] —1,1[— R, z +— z?; then x
f(0) = 0, but & = 0 is neither a local maximum nor a

local minimum.

Thus a solution of the equation f’(z) = 0 merely provides a candidate for a local extremum.

(ii) Let f: [a,b] — R be continuous. By the results in
Max Section 5 we know that f possesses a (global) maximum
and a minimum in the closed interval [a,b]. Such an
extreme point can lie at the boundary, i.e., x = a or
x = b, in which case the derivative need not vanish. For
example, the function f:[0,1] — R, f(z) = z, has a
maximum in z = 1, but f'(1) =1 #0.
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8.4. Example: Consider the function sin: R — R.

We already deduced from its strict Max Max
monotonicity properties on the in-
tervals [k3, (k + 1)3] that we have -

|~
TN
o ¢

strict maxima at the points 7 + 2k7
and strict minima at the points 7 +
(2k + 1)m (k € Z). And indeed we
have sin(§ +km) = cos(5 +km) = 0. Min Min

ol ST
vo| 51
v

8.5. The mean value theorem of differential calculus: In the following
statements we suppose that f: [a,b] — R is continuous and differentiable in ]a, b[.!

PROPOSITION (ROLLE’S THEOREM): If f(a) = f(b) then there exists £ €]a,b]
such that f/(¢) = 0.2

f(€)=0

f(b
f@?\/ )
. y e

Proof. If f is a constant function the assertion is trivial, hence we may assume that f
is not constant. Then there exists xy € |a,b[ such that f(zo) > f(a) = f(b) or f(zo) <
f(a) = f(b). Thus the maximum or minimum of f must be attained at some & € ]a,b|.
Since £ has to be a local extreme as well we obtain that f'(£) = 0. O

MEAN VALUE THEOREM: There exists £ € |a, b such that

f(b) = f(a)

L=

(8.1)

In case you are wondering about the relation between the two conditions ’continuity on the closed
interval [a,b]’ and ’differentiability in the open interval |a, b or their implying ’differentiability on the
closed interval [a, b]’: First, recall that continuity at a point 2 does not imply differentiablity at x; second,
consider the examples f1: [0,1] — R, fi(z) = +/z and f2:]0,1] — R, fa(xz) = 1/z; then f; is continuous

n [0,1], differentiable in ]0,1[, but not differentiable at 0 and fo is differentiable in ]0,1] but has no
continuous extension to [0, 1].
2Michel Rolle (1652-1719) [mi'[el rol], French mathematician
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fla) 1

a b
Proof. Define g: [a,b] — R by g(z) := f(z) — M

Then g is continuous on [a, b], differentiable in ]a, b_[, and g(a) = f(a) = g(b). Therefore
Rolle’s theorem implies that there is some & € ]a, b] such that

f(b) — f(a)

b—a

(z —a).

0=g'(&)=r(&—
which proves the assertion. O

COROLLARY: (i) If f’ is bounded, i.e., there are m, M € R such that m < /(&) < M
holds for all £ € |a, b[, then we have for all 21, x5 € [a,b] with 21 < x9

m(zy — 1) < f(22) — f(21) < M (32 — 71).

In particular, f is Lipschitz continuous (Lipschitz-stetig) with Lipschitz constant L =
max(|m|,|M]|), that is

‘f(xQ)_f(‘IlH SL“IQ_xl‘ vxthE [CL?b]‘
(ii) If f'(z) =0 for all z €]a,b[ then f is constant.

Proof. (i) Apply (8.1) to each interval [z, z3].
(i) follows from (i) with m = M = 0. O
APPLICATION: Let c € R and f: R — R be differentiable. If f satisfies the differential

equation

fl(x)=c- f(x) Vz e R,
then f has to be of the form f(x) = f(0)exp(cz).
To prove this we put g(x) := f(x)exp(—cx) and observe that
g(x) = —ce™ f(x) + e f'(x) = —ce” f(ax) + e flz) =
Thus g(x) = g(0) = f£(0) for all z, which implies f(z) = f(0) exp(cz).
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8.6. Proposition: Suppose f: [a,b] — R is continuous and differentiable in ]a, b|.
(i) If f'(x) > 0 (resp. f'(x) > 0) for all © €]a,b[ then f is increasing (resp. strictly
increasing) on [a, b].

(ii) If f is increasing on [a,b] then f'(z) > 0 for all z € [a, b)].

Corresponding statements hold for decreasing functions.

Proof. (i) Proof by contradiction: If f is not increasing (resp. strictly increasing) there are
x1,29 € [a,b], v1 < x9 such that f(z1) > f(z2) (vesp. f(x1) > f(x3)). By the mean value
theorem there is a £ € |zy, x| such that

2 — L1
which implies that f'(£) < 0 (resp. f'(£) < 0) — a contradiction % .
(ii) Since f is increasing we have for all z,£ € |a, b[ with = # £ that
f(&) — fx)
E—x
Thus f'(x) > 0. O

> 0.

REMARK: Note that strict monotonicity does not imply that the derivative is strcitly
greater or smaller than 0: For example, f: [—1,1] — R, f(x) = 23, is strictly increasing
whereas f’(0) = 0.

8.7. Corollary (Sufficient condition for a local extreme): Let f: ]a,b[—
R be differentiable. Suppose that = € ]a,b[ and that f is twice differentiable at x. If

f(£)=0 and f"(x)>0 (resp. f"(x)<0)

then x is a strict local minimum (resp. maximum) of f.

Proof. Assume that f'(z) =0 and f”(z) > 0 (the case f”(z) < 0 is analogous.)

We obtain that ) )
0< f'(z) = x;igxw.

Hence there exists € > 0 such that for all £ with 0 < | —z| < ¢
7O _FEO- 1w
{—a {—x

From this we deduce the following: If £ € |x — e, z] then f'(§) < 0 and if £ € |z, x + ¢[ then

f'(€) > 0. Therefore f is strictly decreasing in [x — e, z] and strictly increasing in [z, z + €],
which implies that x is a strict local minimum for f. O

> 0.
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8.8. Examples: 1) We already know that sin: R — R has strict local maxima at the
points 7 + 2k7 and strict local minima at 7 4 (2k +1)7, where k € Z. We can now confirm
this earlier observation by observing sin’(3 + Im) = cos(§ + Im) = 0 for all | € Z

and that sin”(§ 4 2k7) = —sin(§ + 2k7) = -1 <0,

sin”(§ + (2k + 1)m) = —sin(5 + (2k + 1)m) =1 > 0.

2) The function f:]—1,1[— R, f(z) = 2, has a strict (global) minimum at 0 since
f(x) =2 >0 for all z # 0 and f(0) = 0. But we also have f”(0) = 0.

This example illustrates that the condition f”(x) > 0 is sufficient but not necessary for a
strict local extreme.

8.9. Convexity:

DEFINITION: Let I C R be an interval and f: I — R. The function f is conver
(konvex) if for all 21,25 € I and for all A € [0, 1]

(8.2) FOay + (1= Naa) < Af(w1) + (1= A) ().
f is said to be concave (konkav) if — f is convex.

When the parameter A runs through [0, 1] the
corresponding point = A\xy + (1 — N)ag € 1
runs through the closed interval with bound-
ary points z; and zo. The inequality (8.2) ()
means that the points (z, f(z)) of the graph !
of f do not lie above the secant line through

(21, f(z1) and (z9, f(22)). ; .

T xT i)

Remark: A subset B of a real vector space W is conver (konvex) if for all u,v € B the
entire line segment {Au + (1 — AN)v : 0 < A < 1} connecting u and v belongs to B. In the
definition given above the convexity of a function f: I — R corresponds to convexity of the
subset B := {(z,y) € R?: 2z € I,y > f(z)} C R? that lies above the graph of f.
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PROPOSITION: Let I C R be an open interval and f: I — R twice differentiable. Then

f(x) >0 Vzel — f is convex.

Proof. When checking (8.2) we may assume that z; < 29 and 0 < A < 1. If 2z :=
Az1 + (1 — Ao then 1 < 2 < 9.

By the Proposition in 8.5 f’ is increasing and the mean value theorem provides us with

& €lxy, [ and & € |z, x5] such that

Since x — x1 = (1 — A)(2g — 1) > 0 and x9 — x = A(x2 — x1) > 0 we obtain from (%) that

f(z) — f(x1) <f($2)_f(x)
1—AX - A ’

which implies
f(@) S Af() + (1= A) f(2),
thus the convexity of f.
(Proof by contradition) Suppose there is an ¢ € I such that f”(z¢) < 0.

Let p(x) := f(z) — f(x0)(z — x¢) (x € I). Then ¢: I — R is twice differentiable and ¢'(z9) =
1 (xo)—f'(x9) = 0. Since ¢"(xg) = f"(x0) < 0 we deduce that ¢ possesses a strict local maximum
at xp.

Therefore we have gy > 0 (sufficiently small) such that p(z) < ¢(xg) holds for all x € U.(zg) C I.
In particular, we obtain for 0 < € < gg that p(zg —¢) < p(xo) and p(xg + €) < @(xg), which in
turn yields

F(wo) = plao) > 5 (9l — &) + plamo +€)) = 3 (Flwo — &) + (o +2).

If we put A :=1/2, x1 := x9—¢, and x9 := xo+¢, the latter inequality means f(Az;+(1—A)z2) >
Af(x1) + (1 = N)f(z2) — a contradiction % to the convexity of f. O

EXAMPLES: 1) Consider the quadratic polynomial function f: R — R, f(x) = az? +
bx + ¢, where a, b, c € R are constants, a # 0. Since f”(z) = 2a we have:

f is convex if and only if a > 0 \_/
f is concave if and only if a < 0 /\

2) exp” = (exp’)’ = exp’ = exp > 0, hence exp is convex.

3) log'(z) =1/ (x > 0) and log”(z) = —1/2* < 0, hence log: |0, co[— R is concave.
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An interesting application of the concavity of log is the following: Let p,q €]1, co[ such
1 1
that — + — = 1. For all z,y > 0 we have that z/p +y/q = x/p+ (1 — 1/p) y is a convex

p q
combination and thus
1 1 1 1
log(~ + _y) > — log(a) + - log(y) = log('/7) + log(y"/?) = log(z'/7 - y'/9).

Upon applying the exponential function we obtain the following inequality

1 1
(8.3) E—i—g2x1/7’~(y1/‘1 (x,y > 0;p,g>1and — 4+ - =1).

p q P g
As a special case with p = ¢ = 2 we have proved the inequality between the arithmetic
and the geometric mean (Ungleichung zwischen arithmetischem und geometrischem Mittel)

T+
Y > vzy  (z,y>0).

(8.4) 52

8.10. Generalized mean value theorem and de I’Hospital’s rules:

LEMMA: Let f,g: [a,b] — R continuous and differentiable in ]a,b[. Then there exists
€ €la, b] such that

(f(0) = f(a) g'(€) = (9(b) — g(a)) £(£)-

(Generalized mean value theorem.)

Proof. Define h: [a,b] — R by
h(x) = (f(b) = f(a)) g(z) — (9(b) — g(a)) f(2).

Then h is continuous on [a, b] and differentiable in ]a, b[. Furthermore, h(a) = f(b)g(a) —
g(b)f(a) = h(b) implies that there is some & €]a,b] such that 0 = A'(§) = (f(b) —

f(a)g'(€) — (g(b) — g(a)) f'(§), which proves the assertion. O
PROPOSITION (RULES OF DE L’HOSPITAL?): Let —oo < a < b < oo and
f,g: ]Ja,b|— R be differentiable functions such that ¢’(z) > 0 for all @ < = < b (resp.

g'(z) <0 for all a < x < b). Suppose that the following limit exists

e
(8.5) n = i/b 7o)

3Guillaume Francois Antoine, Marquis de 'Hospital (1661-1704) [gijorm frdswa mar'ki do lopi'tal] was
a French mathematician. He is the author of the first known textbook on differential calculus, 1’Analyse
des Infiniment Petits pour I'Intelligence des Lignes Courbes, published in 1696. It includes the lectures of
his teacher, Johann Bernoulli, who was paid 300 Francs a year to tell de L’Hospital about his discoveries
which, including the above rule, were then published under the Marquis’ name.
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(i) If in addition lim, » f(x) = lim, » g(x) = 0, then g(x) # 0 for all @ < x < b and

i

g(z)

(ii) If in addition lim, » g(x) = £oo, then there is some z, € ]a, b[ such that g(z) # 0 for
all zg < x < b and
f(z)

lim —=* =
z/b g(x) n

Analogous statements hold for the limits = \, a.

REMARK: The exact same statement is true if the limit in (8.5) is improper (cf. [Heu88,
Abschnitt 50]).

Proof. (i) Since ¢’ is positive (resp. negative) ¢ is strictly increasing (resp. decreasing),
hence g is injective. Therefore lim, » g(x) = 0 implies that g(x) # 0 for all x (since
g(xo) = 0 with 2y < b would contradict the strict monotonicity).

Let £ > 0. By (8.5) we may choose (3 € ]a, b such that f'(r)/¢'(r) € U.(n) for all § < r < b.
Let x,y €]03,b[, ¢ # y. By the above Lemma there is some £ between x and y such that

e U.
9(x) —g(y)  g(&) )
In other words, % —n| < e. Since g(z) # 0 we may send y — b while keeping
g\r)—gly
x fixed and obtain
@) n' <e,
g(x)

which in turn shows that f(x)/g(xz) — n as x — b.

(ii) There is some xq € |a, b[ such that |g(z)| > 1 for all x > zy. In particular, g(z) # 0 for
T > Xp.

Let £ > 0 and choose (3 € ]z, b| such that

f'(r)

Vr>(: 70

€U.(n) and |g(r)| >

™| =

Let (x,) be a sequence in |3, b[ such that limx, = b. For each n € N the above Lemma
provides some ¥, between 3 and z,, such that
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Thus we have

fan) _ ga) =9(B) J(ym)  F(B)
9(@n) 9(zn) 9'(n)  g(@n)
and
flzn) 9(xn) —g(B) f'(yn) f(B)
'9(%) n' =" o) 9'(yn) n' i ‘g(xn)
_l9(@n) —g(B) (['(ya) 9(@n) —g(B) f(B)
B ’ 9(n) (gf<yn> ") ! ( 9(n) 1) "’ ' 'gm)
g(‘xn) B g(ﬂ) f,(yn) . g(xn) _ g(ﬂ) o f(ﬂ)
e s B A e e (R e
9B || f ) _9(8) f(B)
’1 9(@n) |19 (yn) ' 9(xn) bl + 'g(frn)
<A +elgB))e+elgB)lnl+elf(B)
= (L+elg(B)| +1g(B)llnl + | f(B)]) - & < Ke,
for some K > 0 if € stays less than 1, say. Therefore f(x,)/g(x,) — n as n — oo. O
EXAMPLES: 1) We can give an alternative proof for 6.3,6): lim log(w) =0 (> 0).

r—oo ¢

With f(z) := log(z) — oo, g(z) := 2% — oo, f'(z) = 1/x, and ¢'(z) = az* ! we obtain

that
filx) 1
g(x) az®

=:n  (z— 00),

hence Proposition (i) proves the above limit assertion.
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1 x—sinx
Note that — — — = ———— hence we attempt to apply the Proposition with f(z) :=
sin(z) xsinz
x—sinz — 0 and g(z) ;== zsinz — 0 as z — 0.
We have

f'(z)=1—cosz — 0 and ¢'(x) =sinz +zcosx — 0asz — 0
f"(z) =sinz — 0 and ¢"(z) = cosz + cosx — xsinz — 2 as x — 0.

At this point we may observe that de I’'Hospital’s rule is applicable with f replaced by f’
and g replaced by ¢’. Therefore we may summarize as follows

lim ( L 1) = lim /() = lim f'(z) li () = 9 =0.
z\0
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