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An example 7.5 st
X — 3xmod1

Itinerary of x € S:

0 T"(X) S Jo,
i(X)n =41 T"(X) S J1,
2 T(x) € b

X Jo J1 J2
i(x) =0012101210 1210 1210 1210. ..

continues periodically

The (left-)shift 0 : £ — X,  xoxixox3 -+ — X1X2X3 . . .

diagram commute:

il i coi=ioT

Partition S' as 7 = {Jo, J1, )}

makes the



Shift spaces
Let A=1{0,1,...,N — 1} be a finite alphabet. Let
¥ =AY or A%

be the space of one-sided (or two-sided) sequences of letters of the
alphabet.
Give X the product topology, i.e., the cylinder sets

Zana,,+1...a,,+/_1 = {X €EYX:iXp=an,... s Xn41—1 = an+lfl}

are all open, and form a basis for the topology.
Remark: Every cylinder set is at the same time closed, because:

Zanan+1~~an+/71 = Z\ U an--~bn+l71
bn...bpyi—17#an...anti—1

The space ¥ also has a metric (that induces the same topology):

o—max{k : xj=y; V]i|[<k}  if £V,

dy(x,y) = {

0 if x=y.



Is the itinerary map surjective?
Let T : X — X be a map, say on a compact metric space (X, d).
If the partition of {Jo, ..., Jy_1} is such that T(J;) = X for each
i, then i : X — X is surjective (modulo a small set, see later).

This suggests way where symbolic dynamics can prove chaos in the
sense of Devaney (provided i is also injective and continuous):
» The periodic sequences Per are dense in . Therefore
i~1(Per) is a dense set of periodic points in X.
» Suppose for simplicity N = #.A = 3. Then the sequence

s=01200010210 111220 21 22 000001 ...
has a dense o-orbit. Hence i~!(s) has a dense T-orbit in X.
» o has sensitive dependence on initial conditions:
Take § = % and s = 59515 -+ - € £, € > 0 arbitrary.
Let n € N be so large that 27" < e.
Take t = (595152 - .- Sp—15), ... ) for s/, # s,. Then
ds(a"(s),0"(t)) = ds(sp...,s,...) =1>0.

Consequently, T has sensitive dependence on initial conditions



Is the itinerary map injective?

Definition: A map T : X — X on a metric space (X, d) is
expansive with expansivity constant §, if for every x # y € X there
is n € Z such that d(T"(x), T"(y)) > 6.

Lemma: If Thas expansivity constant ¢ and the partition
{Jo, ..., In—1} is such that diam(J;) < § for all i, then the
itinerary map i : X — X is injective.

Proof: Since d(T"(x), T"(y)) > ¢ for some n, T"(x) and T"(y)
cannot belong to the same J;, so i(x), # i(y)n.



Is the itinerary map injective?

Definition: A map T : X — X on a metric space (X, d) is
expansive with expansivity constant §, if for every x # y € X there
is n € Z such that d(T"(x), T"(y)) > 6.

Lemma: If Thas expansivity constant ¢ and the partition
{Jo, ..., In—1} is such that diam(J;) < § for all i, then the
itinerary map i : X — X is injective.

Proof: Since d(T"(x), T"(y)) > ¢ for some n, T"(x) and T"(y)
cannot belong to the same J;, so i(x), # i(y)n.

For our example of the tripling map on the circle, T is expansive
and every 0 < % is an expansivity constant. But diam(J;) = %
However, if you take half-open intervals

1 12 2
J =10, = h=== bh=[=,1
0 [ 73)7 1 [373)7 2 [37 )7

then i is injective.



Is the itinerary map well-defined?
The problem with well-definedness is the boundary points of
0J = U;0J;. Which symbol to give if x € J; N J;?
1. If J is a true partition, i.e., J; N J; = 0 for i # j, then there is
no ambiguity. But i is discontinuous at 97 and i(X) is not
closed (and i not surjective). E.g., for the tripling map

fim i(x) = 012222 - £ 1000-- - = i(2)

x % 3
and there is no point x € St with i(x) = 012222...

2. Ignore the points x € X that ever hit 7. This is usually a
small set (countable if X is one-dimensional), but clearly i is
not defined everywhere, and not surjective.

3. x € J; N J; gets both symbols i and j. Effectively you “double
the point” x into x~ (with symbol /) and x* (with symbol ).
This changes the topology of X, but can make i : X — X into
a homeomorphism. (Take care when orb(x) visits 07 multiple
times.)



Is the itinerary map continuous?

Usually, i : X — X is discontinuous at every point x such that
orb(x) N0J # (). But this is, in general, a small set and we can
ignore it in, for example, the verification of Devaney chaos.



One-dimensional horse-shoes

Definition: Let T : | — | a map on a one-dimensional space (e.g.,
the interval or the circle). If fy, ..., Iy_1 are disjoint subintervals

such that
T(h) > UM .

L

o h

then we say that T has an (/N-fold) one-dimensional horse-shoe.

The restriction of T to
N—1
N={xel:T"(x)e U lj for all n > 0}
j=0
can be described symbolically by (X, ). If T is also expansive,
then T: A — Aand o : £ — X are conjugate.
In particular, T : A — A is chaotic in the sense of Devaney.

Remark: For most purposes we can relax the definition and allow /;
and /; to intersect at their end-points. This brings ambiguity of i at
these intersections, but this affects only a countable set of paints.



Markov partitions

Definition Let T : | — | be a one-dimensional map. A partition
J ={Jdo,...,In-1} f X is called a Markov partition if

T(J;i) D Jj whenever T(J;) N J; # 0.
We can assign a transition matrix to this partition:

1 if T(J,') D JJ‘,

A= (a;:)V"1 isan N x N matrix s.t. a;,: =
( U)'”_O "J 0 otherwise.

Example: A 01
T(J)=h 11
T(h)=HUAL

Jo J1



Markov partitions, an example

If a Markov partition J = {Jo, ..., v—_1} is used to define the
itinerary map, then

iX)DZa={s€{0,...,N}: a5, =1forall n>0}.

We call (£, 0) as subshift of finite type (SFT) because a finite
number of words (of length 2) are forbidden, name s,s,1 with
as,s,,1 = 0; for the rest, everything is allowed.

Lemma: If T has a Markov partition with transition matrix A, then
the number of n-periodic orbits of T is > trace(A").

In the example,

An Fn_1 F, \ for the Fibonacci numbers
N Fn Fn+l FO)F17F25F33F47F5"':0a151727375"'



Period 3 implies chaos
Theorem (Li & Yorke 1975): Let T be any continuous map on R.
If T has a periodic point of period 3, then T has a periodic point
of period p for every p > 1. In addition, T is Li-Yorke chaotic (i.e.,
has an uncountable scrambled set.)

Proof of existence of periodic orbits: If
T3(x) = x < T(x) < T?(x), then there are closed interval /o and
ly such that T(lh) D h and T(h) D lo U h:

/\-\/\

x = T3(x) T(x) T;(x)

lo h

Hence, symbolically, the restriction of T to

N={xel:T"(x)e€lUh forall n >0}

is the subshift of finite type X4 with A= (9 }\



Period 3 implies chaos: Proof continued

By the previous lemma, ¥4 has periodic sequences of every period.
In fact, for n > 2, choose an n-periodic sequence as

s=011...1011...1011...1 ...
—— = =

n—1 times n—1 times n—1 times

There is a subinterval K = ;17 1 such that T/(K) C I, for
n—1times

0<i<n, and T"(K) D K. This follows from the Intermediate

Value Theorem, which also gives the existence of an n-periodic

point in p € K C lp. Because T/(p) €  for 0 < i < n, the

smallest period is indeed n.

Finally, because T (/) D h, there must be a fixed point in /1 by the
Intermediate Value Theorem. This ends the proof.



Sharkovsky's Theorem
Unbeknownst to Li & Yorke (1975), the Ukrainian mathematician
Sharkovsky had proved in 1963 a far more general result.

Theorem (Sharkovsky 1963): Consider the following order (called
Sharkovskiy order) on the positive integers:

3579 ... odd numbers increasing
=6>=10> 14> 18 - ... 2 x odd numbers increasing
=12 >=20>28> 36> ... 4 x odd numbers increasing

o= 16>-8>4-2%>1 powers of 2 decreasing.

If T be a continuous map on R has a periodic point of period p,
then T has a periodic point of period ¢ for all g < p.



