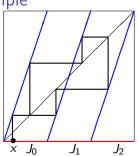
Symbolic dynamics, Markov partitions and Sharkovskiy's Theorem.

Andrei Markov (1856 - 1922) and Oleksander Sharkovsky (1936 -)

An example



$$T: \mathbb{S}^1 \to \mathbb{S}^1$$
$$x \mapsto 3x \bmod 1$$

Partition \mathbb{S}^1 as $\mathcal{J} = \{J_0, J_1, J_2\}$

Itinerary of $x \in \mathbb{S}^1$:

$$i(x)_n = \begin{cases} 0 & T^n(x) \in J_0, \\ 1 & T^n(x) \in J_1, \\ 2 & T^n(x) \in J_2. \end{cases}$$

$$i(x) = 001210 \underbrace{1210\ 1210\ 1210\ 1210\ 1210\dots}_{\text{continues periodically}}$$

The (left-)shift $\sigma: \Sigma \to \Sigma$, $x_0x_1x_2x_3 \cdots \mapsto x_1x_2x_3 \ldots$ makes the diagram commute:

$$\begin{array}{ccc} \mathbb{S}^1 & \stackrel{\mathcal{T}}{\longrightarrow} & \mathbb{S}^1 \\ \boldsymbol{i} \downarrow & & \downarrow \boldsymbol{i} \\ \Sigma & \stackrel{\sigma}{\longrightarrow} & \Sigma \end{array}$$

Shift spaces

Let
$$A = \{0, 1, \dots, N-1\}$$
 be a finite alphabet. Let

$$\Sigma:=\mathcal{A}^{\mathbb{N}}$$
 or $\mathcal{A}^{\mathbb{Z}}$

be the space of one-sided (or two-sided) sequences of letters of the alphabet.

Give Σ the product topology, i.e., the cylinder sets

$$Z_{a_n a_{n+1} \dots a_{n+l-1}} := \{ x \in \Sigma : x_n = a_n, \dots, x_{n+l-1} = a_{n+l-1} \}$$

are all open, and form a basis for the topology.

Remark: Every cylinder set is at the same time closed, because:

$$Z_{a_na_{n+1}\dots a_{n+l-1}}:=\sum \setminus \bigcup_{b_n\dots b_{n+l-1}\neq a_n\dots a_{n+l-1}} Z_{b_n\dots b_{n+l-1}}$$

The space Σ also has a metric (that induces the same topology):

$$d_{\Sigma}(x,y) = \begin{cases} 2^{-\max\{k \ : \ x_i = y_i \ \forall \ |i| < k\}} & \text{if } x \neq y, \\ 0 & \text{if } x = y. \end{cases}$$

Is the itinerary map surjective?

Let $T: X \to X$ be a map, say on a compact metric space (X, d). If the partition of $\{J_0, \ldots, J_{N-1}\}$ is such that $T(J_i) = X$ for each i, then $i: X \to \Sigma$ is surjective (modulo a small set, see later).

This suggests way where symbolic dynamics can prove chaos in the sense of Devaney (provided i is also injective and continuous):

- The periodic sequences *Per* are dense in Σ . Therefore $i^{-1}(Per)$ is a dense set of periodic points in X.
- ▶ Suppose for simplicity N = #A = 3. Then the sequence

$$s = 0 \ 1 \ 2 \ 00 \ 01 \ 02 \ 10 \ 11 \ 12 \ 20 \ 21 \ 22 \ 000 \ 001 \ \dots$$

has a dense σ -orbit. Hence $i^{-1}(s)$ has a dense T-orbit in X.

▶ σ has sensitive dependence on initial conditions: Take $\delta = \frac{1}{2}$, and $s = s_0 s_1 s_2 \cdots \in \Sigma$, $\varepsilon > 0$ arbitrary. Let $n \in \mathbb{N}$ be so large that $2^{-n} < \varepsilon$. Take $t = (s_0 s_1 s_2 \dots s_{n-1} s'_n \dots)$ for $s'_n \neq s_n$. Then

$$d_{\Sigma}(\sigma^n(s),\sigma^n(t))=d_{\Sigma}(s_n\ldots,s'_n\ldots)=1>\delta.$$

Consequently, T has sensitive dependence on initial conditions

Is the itinerary map injective?

Definition: A map $T: X \to X$ on a metric space (X, d) is expansive with expansivity constant δ , if for every $x \neq y \in X$ there is $n \in \mathbb{Z}$ such that $d(T^n(x), T^n(y)) > \delta$.

Lemma: If T has expansivity constant δ and the partition $\{J_0, \ldots, J_{N-1}\}$ is such that $\operatorname{diam}(J_i) \leq \delta$ for all i, then the itinerary map $i : X \to \Sigma$ is injective.

Proof: Since $d(T^n(x), T^n(y)) > \delta$ for some $n, T^n(x)$ and $T^n(y)$ cannot belong to the same J_i , so $\mathbf{i}(x)_n \neq \mathbf{i}(y)_n$.

Is the itinerary map injective?

Definition: A map $T: X \to X$ on a metric space (X, d) is expansive with expansivity constant δ , if for every $x \neq y \in X$ there is $n \in \mathbb{Z}$ such that $d(T^n(x), T^n(y)) > \delta$.

Lemma: If T has expansivity constant δ and the partition $\{J_0, \ldots, J_{N-1}\}$ is such that $\operatorname{diam}(J_i) \leq \delta$ for all i, then the itinerary map $i : X \to \Sigma$ is injective.

Proof: Since $d(T^n(x), T^n(y)) > \delta$ for some $n, T^n(x)$ and $T^n(y)$ cannot belong to the same J_i , so $\mathbf{i}(x)_n \neq \mathbf{i}(y)_n$.

For our example of the tripling map on the circle, T is expansive and every $\delta < \frac{1}{3}$ is an expansivity constant. But $\operatorname{diam}(J_i) = \frac{1}{3}$. However, if you take half-open intervals

$$J_0 = [0, \frac{1}{3}), \quad J_1 = [\frac{1}{3}, \frac{2}{3}), \quad J_2 = [\frac{2}{3}, 1),$$

then *i* is injective.

Is the itinerary map well-defined?

The problem with well-definedness is the boundary points of $\partial \mathcal{J} = \cup_i \partial J_i$. Which symbol to give if $x \in \overline{J_i} \cap \overline{J_j}$?

1. If \mathcal{J} is a true partition, i.e., $J_i \cap J_j = \emptyset$ for $i \neq j$, then there is no ambiguity. But i is discontinuous at $\partial \mathcal{J}$ and i(X) is not closed (and i not surjective). E.g., for the tripling map

$$\lim_{x \nearrow \frac{1}{3}} \boldsymbol{i}(x) = 012222 \cdots \neq 1000 \cdots = \boldsymbol{i}(\frac{1}{3})$$

and there is no point $x \in \mathbb{S}^1$ with i(x) = 012222...

- 2. Ignore the points $x \in X$ that ever hit $\partial \mathcal{J}$. This is usually a small set (countable if X is one-dimensional), but clearly i is not defined everywhere, and not surjective.
- 3. $x \in \overline{J_i} \cap \overline{J_j}$ gets both symbols i and j. Effectively you "double the point" x into x^- (with symbol i) and x^+ (with symbol j). This changes the topology of X, but can make $i : X \to \Sigma$ into a homeomorphism. (Take care when $\operatorname{orb}(x)$ visits $\partial \mathcal{J}$ multiple times.)

Is the itinerary map continuous?

Usually, $i: X \to \Sigma$ is discontinuous at every point x such that $\operatorname{orb}(x) \cap \partial \mathcal{J} \neq \emptyset$. But this is, in general, a small set and we can ignore it in, for example, the verification of Devaney chaos.

One-dimensional horse-shoes

Definition: Let $T:I\to I$ a map on a one-dimensional space (e.g., the interval or the circle). If I_0,\ldots,I_{N-1} are disjoint subintervals such that

$$T(I_i)\supset \bigcup_{j=0}^{N-1}I_j$$

l₁ l₀

then we say that T has an (N-fold) one-dimensional horse-shoe.

The restriction of T to

$$\Lambda = \{x \in I : T^n(x) \in \bigcup_{j=0}^{N-1} I_j \text{ for all } n \ge 0\}$$

can be described symbolically by (Σ, σ) . If T is also expansive, then $T: \Lambda \to \Lambda$ and $\sigma: \Sigma \to \Sigma$ are conjugate. In particular, $T: \Lambda \to \Lambda$ is chaotic in the sense of Devaney.

Remark: For most purposes we can relax the definition and allow l_i and l_j to intersect at their end-points. This brings ambiguity of i at these intersections, but this affects only a countable set of points.

Markov partitions

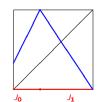
Definition Let $T: I \to I$ be a one-dimensional map. A partition $\mathcal{J} = \{J_0, \dots, J_{N-1}\}$ f X is called a Markov partition if

$$T(J_i) \supset J_j$$
 whenever $T(J_i) \cap J_j \neq \emptyset$.

We can assign a transition matrix to this partition:

$$A = (a_{ij})_{i,j=0}^{N-1}$$
 is an $N \times N$ matrix s.t. $a_{i,j} = \begin{cases} 1 & \text{if } T(J_i) \supset J_j, \\ 0 & \text{otherwise.} \end{cases}$

Example:
$$T(J_0) = J_1 \\ T(J_1) = J_0 \cup J_1$$



$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

Markov partitions, an example

If a Markov partition $\mathcal{J} = \{J_0, \dots, J_{N-1}\}$ is used to define the itinerary map, then

$$extbf{\emph{i}}(X)\supset \Sigma_{\mathcal{A}}:=\{s\in\{0,\ldots,\textit{N}_1\}^{\mathbb{N}}: \textit{a}_{\textit{s}_n\textit{s}_{n+1}}=1 \text{ for all } n\geq 0\}.$$

We call (Σ_A, σ) as subshift of finite type (SFT) because a finite number of words (of length 2) are forbidden, name $s_n s_{n+1}$ with $a_{s_n s_{n+1}} = 0$; for the rest, everything is allowed.

Lemma: If T has a Markov partition with transition matrix A, then the number of n-periodic orbits of T is $\geq \operatorname{trace}(A^n)$.

In the example,

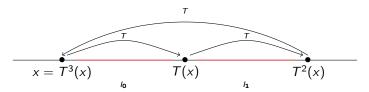
$$A^n = \begin{pmatrix} F_{n-1} & F_n \\ F_n & F_{n+1} \end{pmatrix} \text{ for the Fibonacci numbers } F_0, F_1, F_2, F_3, F_4, F_5 \cdots = 0, 1, 1, 2, 3, 5 \dots$$

Period 3 implies chaos

Theorem (Li & Yorke 1975): Let T be any continuous map on \mathbb{R} . If T has a periodic point of period 3, then T has a periodic point of period p for every $p \geq 1$. In addition, T is Li-Yorke chaotic (i.e., has an uncountable scrambled set.)

Proof of existence of periodic orbits: If

 $T^3(x) = x < T(x) < T^2(x)$, then there are closed interval I_0 and I_1 such that $T(I_0) \supset I_1$ and $T(I_1) \supset I_0 \cup I_1$:



Hence, symbolically, the restriction of T to

$$\Lambda = \{x \in I : T^n(x) \in I_0 \cup I_1 \text{ for all } n \ge 0\}$$

is the subshift of finite type Σ_A with $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$

Period 3 implies chaos: Proof continued

By the previous lemma, Σ_A has periodic sequences of every period. In fact, for $n \geq 2$, choose an n-periodic sequence as

$$s = 0 \underbrace{11 \dots 1}_{n-1 \text{ times}} 0 \underbrace{11 \dots 1}_{n-1 \text{ times}} 0 \underbrace{11 \dots 1}_{n-1 \text{ times}} \dots$$

There is a subinterval $K = I_{0} \underbrace{11 \dots 1}_{n-1 \text{times}}$ such that $T^i(K) \subset I_{s_i}$ for

0 < i < n, and $T^n(K) \supset K$. This follows from the Intermediate Value Theorem, which also gives the existence of an *n*-periodic point in $p \in K \subset I_0$. Because $T^i(p) \in I_1$ for 0 < i < n, the smallest period is indeed n.

Finally, because $T(I_1) \supset I_1$, there must be a fixed point in I_1 by the Intermediate Value Theorem. This ends the proof.

Sharkovsky's Theorem

Unbeknownst to Li & Yorke (1975), the Ukrainian mathematician Sharkovsky had proved in 1963 a far more general result.

Theorem (Sharkovsky 1963): Consider the following order (called Sharkovskiy order) on the positive integers:

$$3 \succ 5 \succ 7 \succ 9 \succ \dots$$
 odd numbers increasing $\rightarrow 6 \succ 10 \succ 14 \succ 18 \succ \dots$ $2 \times$ odd numbers increasing $\rightarrow 12 \succ 20 \succ 28 \succ 36 \succ \dots$ $4 \times$ odd numbers increasing \vdots \vdots \vdots \vdots powers of 2 decreasing.

If T be a continuous map on \mathbb{R} has a periodic point of period p, then T has a periodic point of period q for all $q \prec p$.

