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Abstract

In 2007, Ye & Zhang introduced a version of local topological entropy. Since their
entropy function is, as we show under mild conditions, constant for topologically transi-
tive dynamical systems, we propose to adjust the notion in a way that does not neglect
the initial transient part of an orbit. We investigate the properties of this “transient”
version, which we call translocal entropy, and compute it in terms of Lyapunov expo-
nents for various dynamical systems. We also investigate how this adjustment affects
measure-theoretic local (Brin-Katok) entropy and local pressure functions, generalizing
some partial variation principles of Ma & Wen.
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1 Introduction and motivation

Topological and measure-theoretic entropy can be interpreted as indications of complexity of a
map f : X → X, but they provide a global view, without specifying on which subsets of X the
map is “more complicated” or “less complicated”. This motivated the study of local versions
of entropy and of pressure, as we will discuss presently.

Topological entropy is related to measure-theoretic entropy via the variational principle: If
f is a continuous of a compact metric space (X, d) (an assumption we will make throughout the
paper), then htop(f) = supµ hµ(f), where the supremum is taken over all f -invariant probability
measures µ on X. Measures µ such that htop(f) = hµ(f) are called measures of maximal entropy
or maximal measures. In thermodynamic formalism, one tries to maximize the sum of entropy
and energy (represented by an integral over a potential function ϕ : X → R), called free energy
or measure-theoretic pressure. The topological pressure can then be defined by the variational
principle as Ptop(f) = supµ{hµ +

∫
X
ϕ dµ}, see e.g. [33, 37].

Local versions of topological entropy were used by Bowen [9] to get an upper estimate of
the difference between hµ(f) and the entropy of a partition with diameter less than ε and by
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Misiurewicz [29], who proved that vanishing of his local entropy implies existence of maximal
measure. Different versions were used by Newhouse [30], and by and Buzzi & Ruette [13, 15],
to address questions about the (unique) existence of a measure of maximal entropy. All these
notions rely on Bowen balls (also called dynamical balls):

Bn(z; ε) = {z′ ∈ X : d(f j(z), f j(z′) < ε for all 0 ≤ j < n}.

A local view on measure-theoretic entropy goes back to at least Brin & Katok [11]. In particular,
Brin-Katok entropy hµ(f, x) (see (6) in Section 3.1 for the definition), when integrated over the
space yields the global measure-theoretic entropy:∫

hµ(f, x) dµ(x) = hµ(f).

Variational principles have been derived for this local version as well, see e.g. [18].

1.1 The Ye & Zhang entropy function and translocal entropy.

In 2007, Ye & Zhang [39] introduced a new version of local entropy, which they called entropy
function htop : X → [0,∞]. Their definition, see (3) below, is the starting point of our paper, but
one soon discovers that under mild conditions the entropy function is constant: htop(z) ≡ htop(f)
for very natural dynamical systems, see Theorem 2.1. It is not straightforward to find maps
with non-constant entropy functions, see Section 2.1. The reason is that in the Ye & Zhang
approach, only the limit behaviour of the orbit of z counts, not the “transient” behaviour at
finite time scales. The entropy function does not see if entropy is created “immediately” in
small neighbourhoods of z, or only at very distant time scales.

For this reason, we propose an adjustment to Ye & Zhang’s definition, which we call the
translocal entropy function and denote as hω, that takes into account the time scale needed
for Bowen balls to reach unit size. As a result, hω(z) depends non-trivially on z ∈ X, and
Lyapunov exponents at z play a central role. This interaction is most transparent in smooth
one-dimensional maps, see Theorem 2.2, where each point has at most one Lyapunov exponent
(because there is only one direction in which derivatives can be taken). As representatives of
higher-dimensional maps, we study toral automorphisms FA : Td → Td based on a d×d matrix
A. Theorem 2.3 shows that its translocal entropy function is determined by the Lyapunov
exponents, i.e., the logarithms of the eigenvalues of A.

In the second half of the paper, we turn to the local approach to pressure and study the
translocal version of pressure. Ma & Wen in [27] obtained a partial variational principle for
topological entropy. They noticed (see Theorem 3.2) the relations between topological entropy
of a map and its upper and lower measure-theoretic entropies. Using a Carathéodory-like
construction, elaborated by Pesin [32], we define a dimensional type of topological pressure
PZ(f, ϕ) for a continuous map f : X → X with potential ϕ, restricted to subsets Z ⊂ X.
Fixing a Borel probability measure µ on X we generalize the Ma & Wen result by means of
upper and lower local measure-theoretic pressures, see Theorem 3.3. In Theorem 3.4 we show
the same result for translocal version of local measure-theoretic pressures.

1.2 Structure of the paper

Our paper is organized as follows: In Section 2, we introduce the entropy function by Huang &
Ye, and study when it is constant and when not. In Section 2.2, we give our adaptation of the
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entropy function, and give its basic and more advanced properties in the remaining subsections
of Section 2.

Section 3 is devoted to local measure-theoretic approach to pressure. Section 3.1 deals
with measure-theoretic versions of local entropy, starting with the Brin-Katok entropy. We
discuss (local) topological pressure in Section 3.2 and give a variational principle in Section 3.3.
The variational principle of our translocal adaptation is covered in Section 3.4. We finish the
paper in Section 4 with a discussion and comparison of various notions of local entropy in the
literature.

2 Local topological entropy in sense of Ye & Zhang

Let f : X → X be a continuous map on a compact metric space (X, d). For closed subset
K ⊂ X we define the topological entropy htop(f,K) restricted to K as the limit of exponential
growth rates of (n, ε)-separated subsets of K as ε → 0, that is

htop(f,K) = lim
ε→0

lim sup
n→∞

1

n
logS(n, ε,K), (1)

where S(n, ε,K) is the maximal cardinality of (n, ε)-separated subsets of K. A point z ∈ X is an
entropy point if there are arbitrarily small closed neighbourhoods K such that htop(f,K) > 0
and a full entropy point if in addition htop(f,K) = htop(f), see [34, Definition 5.1] and [39,
Section 2]. Hence, only maps with positive entropy can have full entropy points.

It seems natural to define the local entropy of f at a point z as

lim
δ→0

inf{htop(f,K) : K is a closed δ-neighbourhood of z}. (2)

However, in [34] this step is not taken, and in fact, if f is locally eventually onto, for instance,
then there is NK such that fNK (K) = X. Notice that (n − Nk, ε)-separated points y1, y2 ∈
fNk(K) determine points x1, x2 ∈ K, with y1 = fNk(x1) and y2 = fNk(x2), such that x1, x2 are
(n, ε)-separated. Therefore S(n, ε,K) ≥ S(n−Nk, ε, f

Nk(K)). Thus the above quantity in (2)
is constant htop(f).

Instead, in [39, Definition 4.1] the local entropy function is defined as

htop(x) = lim
ε→0

htop(x, ε), (3)

where

htop(x, ε) = inf{lim sup
n→∞

1

n
logS(n, ε,K) : K is a closed δ-neighbourhood of x}.

This differs from (2) by the order in which the limits ε → 0 and δ → 0 are taken. In general,
htop(x) = htop(f(x)), so the local entropy is constant along forward orbits, see [39, Proposition
4.4(1)]. In fact, we have

Lemma 2.1 The entropy function takes its minimum at transitive points, i.e., points with a
dense orbit.

Proof. Suppose x ∈ X has a dense orbit. Let y ∈ Y with closed neighbourhood Ky be arbi-
trary. Then there is n ≥ 0 such that fn(x) ∈ Ky and Kx such that fn(Ky) ⊂ Kx. It follows
that htop(f,Kx) ≤ htop(f,Ky), and htop(x) ≤ htop(y) follows. □
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2.1 When is the entropy function non-constant?

The next theorem show the limitations of the local entropy function: under mild assumptions
it is constant. A version of this theorem, for much more specific dynamical systems, can be
found in [8].

A map f : X → X is topologically exact or locally eventually onto if for every open U ⊂ X,
there is N ∈ N such that fN(U) = X. Topological exactness gives a simple sufficient condition
for the entropy function to be constant.

Lemma 2.2 If f : X → X is topologically exact, then htop(z) ≡ htop(f) for any z ∈ X.

Proof. Given a closed neighbourhood K ∋ z, take N such that fN(K) ⊃ fN(K̊) = X. Then
1
n

logS(n, ε,K) ≥ 1
n

logS(n − N, ε,X) = n−N
n

1
n−N

logS(n − N, ε,X). So after taking limits
n → ∞ and ε → 0, we find htop(z) ≥ htop(f). □

Theorem 2.1 Let f : X → X be a continuous topological transitive map defined on a compact
metric space (X, d). If htop(f) = 0 or if each measure of maximal entropy is fully supported,
then htop(z) ≡ htop(f) for every z ∈ X.

Proof. Since htop(f) ≥ htop(z) for every z ∈ X, only the case that htop(f) > 0 needs a proof.
Assume by contradiction that there is z ∈ X is such that htop(z) < htop(f). Take compact

neighbourhoods K ′, K of z such that K ′ is compactly contained in K, such that

lim
ε→0

lim sup
n→∞

1

n
logS(n, ε,K) < b :=

htop(z) + htop(f)

2
.

The set Y = X \
⋃

n≥0 f
−n(K ′) is compact and forward invariant. Since measures of maximal

entropy are fully supported, h′ := htop(f |Y ) < htop(f). By the variational principle, we can
take a sequence of f -invariant probability measures µn such that hµn(f) → htop(f). Take n
so large that hµn(f) > h′. This means in particular that supp(µn) \ Y ̸= ∅ and by invariance
of supp(µn), also supp(µn) ∩ K ′ ̸= ∅. The Birkhoff Ergodic Theorem implies that orbf (x) is
dense in supp(µn) for µn-a.e. x. By the Ye & Zhang result, see [39, Proposition 4.4], we can
pick x such that additionally htop(x) ≥ h′. But there is k ∈ N such that fk(x) ∈ K ′. But
then there is a compact neighbourhood K ′′ ∋ x such that fk(K ′′) ⊂ K, which implies that
htop(x) ≤ htop(z) < h′. This contradiction proves the theorem. □

The assumption that the measures of maximal entropy are fully supported is not entirely
automatic, although it is conjectured that on manifolds the measure of maximal entropy (if
existent) is automatically fully supported if the map is topologically transitive, see [40, 14] for
results supporting this conjecture. In the context of subshifts (X, σ) of positive entropy (so X
is a Cantor set, not a manifold), Kwietniak et al. [25] presented a counter-example with all of
its measures of maximal entropy supported on a proper subsets of X. Loosely inspired by their
construction, we have the following topologically transitive (and in fact coded) subshift with a
non-constant entropy function.

Example 2.1 We construct a coded subshift of {0, 1, 2}Z on which the local entropy function
is not constant. Let {wk}k∈N be a denumeration of all finite words in {0, 1}+ such that |wk| ≤
|wk+1| for all k ∈ N. Let C = {Ck}k∈N the collection of code words, where

Ck = 20(10+k)!wk0(10+k)!2.
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A coded shift is the shift of which the language consists of subwords of free concatenations
of code words, see [26] and [31]. The structure of the code words in C implies that 22 is a
synchronizing word (i.e., if u22 and 22v are both allowed words in XC, then so is u22v), but
more importantly, htop(XC, σ) ≥ log 2, because the full shift on {0, 1} is a subshift of XC.

Now consider the cylinder set [2.2] and let z ∈ [2.2] be such that orbσ(z) is dense in XC and
z ∈ K ⊂ [2.2] any closed neighbourhood. From the theory of coded shifts, see [12, Section 3.3],
we can compute the exponential growth rate of the number of centered words x of length 2n+ 1
and with x−1 = x0 = 2, namely, this is the unique positive solution h of

∑
k e

−h|Ck| = 1, and it
is clear that h < log 2. It follows that htop(z) ≤ h < htop(XC, σ). In this case, work of Pavlov [31,
Theorem 1.1] implies that its measures of maximal entropy are supported on orbσ(z) \ orbσ(z),
i.e., {0, 1}Z. On the other hand, for every closed neighbourhood K of z, there is n such that
σn(K) ⊃ [2.2], and therefore htop(z) = log h < htop(XC, σ) = log 2.

Without the assumption of transitivity, maps with non-constant entropy are not hard to
find. A simple example of a map where htop(z) is not constant, and in fact, supz htop(z) = ∞,
is given in Figure 1; see [23] for Hölder continuous maps of this type. Maps of this type (i.e.,
with infinitely many transitive components, each with its own value for local entropy, and
infinite entropy altogether, are C0-generic on any manifold of dimension ≥ 2, see [17]. For such
examples, the values that local entropy assume forms a countable dense subset of [0,∞), and
with some more work (but giving up on genericity) one can find smooth examples with these
properties.

Figure 1: An infinite entropy map where htop(x) = log(2n+ 1) for x ∈ (2−n, 21−n] and htop(0) =
∞.
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2.2 Translocal entropy

Definition 2.1 For ω ≥ 0 and z ∈ X, the upper translocal entropy at z ∈ X is

hω(z) = max{lim
ε→0

lim sup
n→∞

1

n
logS(n, ε, B(z, e−ωn)) , 0}.

The lower translocal entropy hω(z) at z ∈ X is the same with lim inf instead of lim sup. If the
two are the same, then hω(z) := hω(z) = hω(z) is the translocal entropy at z.

Clearly hω(z) is decreasing in ω. Compared to the quantity (2), htop(x) is obtained by
swapping the limit limε→0 and infK , and hω(z) etc. comes from a simultaneous limit in between
the two. As a result:

Lemma 2.3 Let f : X → X be a continuos map on a compact metric space. For all x ∈ X
and ω ≥ 0, we have

0 = lim
ε→0

lim sup
n→∞

inf

{
1

n
logS(n, ε,K) : K is a closed δ-neighbourhood of x

}
≤ hω(x) ≤ hω(x) (4)

≤ inf{htop(f,K) : K is a closed δ-neighbourhood of x} ≤ htop(x).

Proof. If K is sufficiently small compared to n, then S(n, ε,K) = 1, so the first equality in (4)
is obvious. Since S(n, ε,K) ≥ 1, we have 1

n
logS(n, ε,K) ≥ 0 for all ε > 0, n ≥ 1 and closed

neighbourhoods K of x. Also, 1
n

logS(n, ε,K) is decreasing in n and in ε, but increasing in K.
Write S(ε,K) = limn→∞ S(n, ε,K); due to the subadditivity of log S(n, ε,K), the limit exists
and is bounded by htop(f). Therefore, for every closed neighbourhood K0 of x,

0 ≤ lim
diamK→0

S(ε,K) ≤ S(ε,K0) ≤ htop(f).

Taking the limit ε → 0 on both sides gives

0 ≤ lim
ε→0

lim
diamK→0

S(ε,K) ≤ lim
ε→0

S(ε,K0) ≤ htop(f).

Finally take the limit diamK0 → 0, and the lemma follows. □

The next example explores the role of Lyapunov exponents in the translocal entropy func-
tion. For one-dimensional maps, the Lyapunov exponent is defined as

λ(x) = lim
n→∞

1

n
log |Dfn(x)|,

provided the derivatives and the limit exist.

Example 2.2 (i) Let f : S1 → S1, x 7→ 3x mod 1. For any x ∈ S1 and K = [x − δ, x + δ],
we have fn0(K) = S1 for n0 ≥ − log 2δ

log 3
, and S(n, ε,K) ≥ 3n−n0/ε. Therefore htop(f,K) =

log 3 = λ(x) for every x ∈ S1, and so every point is a full entropy point. Regarding hω(z), if
Kn(z) = B(z, e−ωn), then after k = ωn/ log 3 iterates, fk(Kn(z)) = S1. Therefore

1

n
logS(n, ε,Kn(z)) ∼ 1

n
logS(n− k, ε, [0, 1])

= (1 − ω

log 3
)

1

n− k
logS(n− k, ε, [0, 1]) → (1 − ω

log 3
)htop(f).
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This is independent of z because the Lyapunov exponent is the same for every z.
(ii) However, if g : S1 → S1 is given by

g(x) =


2x if 0 ≤ x < 1

2
,

4x− 2 if 1
2
≤ x < 3

4
,

4x− 3 if 3
4
≤ x < 1,

then htop(g,K) = log 3, independent of the Lyapunov exponent which is non-constant for this
maps. Again every point is a full entropy point. But this time, the Lyapunov exponent λ(z)
varies with the point, and it takes k ∼ ω

λ(z)
iterates for Kn(z) to reach large scale. If the limit

λ(z) exists, then hω(z) = (1 − ω
λ(z)

)htop(f).

(iii) The same method shows that hω(z) = 0 for z = 0 and the Pomeau-Manneville map

gPM(x) =

{
x

1−x
if 0 ≤ x < 1

2
,

2x− 1 if 1
2
≤ x < 1.

For this map, gPM( 1
n
) = 1

n+1
, so if Kn(0) = [0, e−ωn], then it take eωn ≫ n iterates to reach

unit size. The above computation gives hω(0) = 0 for all ω > 0.
(iv) On the other hand, hω(z) = log 2 for z = 0 and every ω ≥ 0 for the map

g√(x) =

{√
2x if 0 ≤ x < 1

2
,

2x− 1 if 1
2
≤ x < 1.

This time, gk√(e−ωn) ≈ 2ke−ωn/2k , so it takes no more that k ≈ log n iterates to reach large

scale. Hence, hω(0) = htop(g√) = log 2 for all ω ≥ 0.

Figure 2: The maps g, gPM and g√.

2.3 Properties of translocal entropy

As the translocal entropy hω(z) = 0 if f is constant on a neighbourhood of z, we will assume
in the remainder of this paper that f : X → X is a local homeomorphism.

Lemma 2.4 The translocal entropy for iterates of the map f satisfies hω(fR, z) = Rhω(f, z)
for integers R ≥ 0 and also for hω(f−R, z) = Rhω(f, z) if f is invertible.
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Proof. The proof goes as for the analogous statement on topological entropy. □

Definition 2.2 We say that u has a super-exponential approach to v if

lim sup
k→∞

−1

k
log d(fk(u), v) = ∞

.

Clearly u has a super-exponential approach to every v ∈ orbf (u), but the definition refers
to other situations too. The following example shows this, but also that super-exponential
approach is not a symmetric or transitive notion.

Example 2.3 Let X = {0, 1}Z and σ : X → X be the left shift. Let w = 0∞.0∞ ∈ X the
sequence that is constant 0. Let

v = 1∞.1013!−2!04!−3!15!−4!06!−5!17!−6!08!−7! . . .

Note that the number of iterates 2 +
∑n−1

j=1 j! − (j − 1)! = (n − 1!) + 1 before the n-th block of
0s is reach is negligible compared to the length n! − (n− 1)! = (n− 1)(n− 1)! of that block, so
v exponentially approaches w, but as w is a fixed point, w does not approach v. Finally, let

u = 1∞.12!v1 . . . v3!−2!1
4!−3!v1 . . . v5!−4!1

6!−5!v1 . . . v7!−6!1
8!−7! . . .

Then u has super-exponential approach to v, but not to w.

Proposition 2.1 Let f : X → X be a Lipschitz continuous map on a metric space. If u has a
super-exponential approach to v, then hω(u) ≤ hω(v).

Proof. If ω = 0, then the translocal entopy function coincides with the topological entropy,
and there is nothing to prove. So assume that ω > 0.

Let L be a global Lipschitz constant of f ; for simplicity, we assume that log 2L > 1 + 2ω.
Choose ε > 0 and R > logL arbitrary and pick k ∈ N such that d(fk(u), v) ≤ e−Rk < ε/4.
Then for n = ⌈Rk/ω⌉ we have

fk(B(u, e−ω(n+k))) ⊂ B(fk(u), e−ω(n+k)+k logL) ⊂ B(v, 2e−ω(n+k)+k logL) ⊂ B(v, e−ω(n−k′))

for k′ := k( log 2L
ω

− 1) > k.

We can assume that diam f j(B(w, e−ω(n+k))) < ε for j ≤ k, so in the first k iterates, no

points in B(w, e−ω(n+k)) are ε-separated. Therefore

1

n + k
logS(n + k, ε, B(u, e−ω(n+k))) ≤ 1

n + k
logS(n, ε, B(fk(u), e−ω(n+k)+k logL))

≤ 1

n + k
log
(
S(n, ε, B(v, e−ω(n−k′)))

)
≤ 1

n + k
log
(
S(n− k′, ε, B(v, e−ω(n−k′))) · e(k′+k)htop(f)

)
≤ 1

n− k′ logS(n− k′, ε, B(v, e−ω(n−k′))) +
htop(f) log 2L

R
,

where in the last line we used k′+k
n+k

< log 2L
R

. Since htop(f) ≤ logL for Lipschitz maps and ε and

R are arbitrarily, hω(u) ≤ hω(v), as claimed. □
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Example 2.4 This example shows that no other inequality holds in Proposition 2.1. Let v and
w be the one-sided versions of the sequences v and w in Example 2.3, and interpret them as the
itineraries of two points pv ∈ [0, 1] and pw = 0 for the map g in Example 2.2(ii), with respect to
the partition I0 = [0, 1

2
), I1 = [1

2
, 3
4
) and I2 = [3

4
, 1]. Then v approaches w super-exponentially,

but hω(pu) = (1 − ω
log 4

) log 3 > (1 − ω
log 2

) log 3 = hω(pw) for every ω ∈ (0, log 2].

2.4 Translocal entropy for one-dimensional maps

The next theorem is exemplary for the translocal entropy of one-dimensional maps. It holds by
and large also for smooth interval maps with critical points, but dealing with the technicalities
of distortion control is not the purpose of this paper, so we only state it for expanding circle
maps.

Theorem 2.2 Let f : S1 → S1 be a C2 expanding circle map and ω ≥ 0, then for every z ∈ S1

hω(z) =
(
1 − ω/λ(z)

)
htop(f),

where λ(z) is the upper Lyapunov exponent of z, and

hω(z) = (1 − ω/λ(z))htop(f),

where λ(z) is the lower Lyapunov exponent of z.

Proof. If ω = 0, then B(z, e−ωn) is independent of n, and the topological transitivity gives
h0(z) = h0(z) = htop(f) for all z ∈ S1. So let us fix ω > 0.

To explain the basic idea of the proof, we first assume that f is a C2 expanding circle map,
i.e., there are c, c+, A > 0 such that for all x ∈ S1 we have expansion: c+ ≥ |f ′(x)| ≥ c > 1
and Adler’s condition: A(f, x) := |f ′′(x)|/|f ′(x)|2 ≤ A for all x ∈ S1 (see [1, 10]). This means
that Adler’s conditions holds uniformly over all iterates. Indeed, due to a recursive formula
A(f ◦ g, x) = (Af, g(x)) + 1

f ′◦g(x) · A(g, x), we get

|(fn)′′|
|(fn)′|2

≤ Ac

c− 1
for all n ≥ 0.

Fix η := c−1
2cA

and abbreviate Kn(z) = B(z, e−ωn). Let

kn(z) = max{k ≥ 0 : diam(fk(Kn(z))) ≤ η}.

Take ξ ∈ Kn(z) such that (fkn(z))′(ξ)|Kn(z)| = |fkn(x)(Kn(z))| ∈ [η/c+, η]. Then∣∣∣∣ 1

(fkn(z))′(ξ)
− 1

(fkn(z))′(z)

∣∣∣∣ =

∣∣∣∣∫ ξ

z

(
1

(fkn(z))′(x)

)′

dx

∣∣∣∣ =

∫ ξ

z

A(fkn(z), x) dx ≤ Ac

c− 1
|ξ − z|.

This gives ∣∣∣∣1 −
∣∣∣∣(fkn(z))′(ξ)

(fkn(z))′(z)

∣∣∣∣∣∣∣∣ ≤ Ac

c− 1

∣∣(fkn(z))′(ξ)
∣∣ |ξ − z| ≤ Ac

c− 1
η =

1

2
,

so that 1
2
≤
∣∣∣ (fkn(z))′(ξ)

(fkn(z))′(z)

∣∣∣ ≤ 3
2
. Recalling that |Kn(z)| = 2e−ωn, we get η

3c+
eωn ≤ |(fkn(z))′(z)| ≤

ηeωn, so that

ω +
1

n
log

η

3c+
≤ kn(z)

n

1

kn(z)
log |(fkn(z))′(z)| ≤ ω +

1

n
log η.
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In the inferior/superior limit, we get lim infn
kn(z)
n

= ω
λ(z)

and lim supn
kn(z)
n

= ω
λ(z)

, respectively.

Let Nη be such that fNη(J) ⊃ S1 for every interval J of length η. Then for the statement
on the lim sup, we get

lim sup
n→∞

1

n
logS(n, ε,Kn(z)) ≥ lim sup

n→∞

1

n
logS

(
n− kn(z) −Nη, ε, f

kn(z)+Nη(Kn(z))
)

= lim sup
n→∞

n− kn(z) −Nη

n

logS(n− kn(z) −Nη, ε,S1)

n− kn(z) −Nη

=

(
1 − ω

λ(z)

)
lim sup
n→∞

logS(n− kn(z) −Nη, ε,S1)

n− kn(z) −Nη

→ε→0

(
1 − ω

λ(z)

)
htop(f).

For the other inequality, note that restrictions f j|B(z,e−ωn), 1 ≤ j ≤ kn(z), are homeomorphism,

and therefore it can separate at most 1/ε points per iterate. Therefore

lim sup
n→∞

1

n
logS(n, ε,Kn(z)) ≤ lim sup

n→∞

1

n
log

(
S
(
n− kn(z), ε, fkn(z)(Kn(z)

)
· kn(z)

ε

)
≤ lim sup

n→∞

n− kn(z)

n

logS(n− kn(z), ε,S1)

n− kn(z)
+

1

n
log

kn(z)

ε

=

(
1 − ω

λ(z)

)
lim sup
n→∞

logS(n− kn(z), ε,S1)

n− kn(z)

→ε→0

(
1 − ω

λ(z)

)
htop(f).

Similarly, for the statement on the lim inf, we get

lim inf
n→∞

1

n
logS(n, ε,Kn(z)) ≥ lim inf

n→∞

1

n
logS(n− kn(z) −Nη, ε, f

kn(z)+Nη(Kn(z))

= lim inf
n→∞

n− kn(z) −Nη

n

logS(n− kn(z) −Nη, ε,S1)

n− kn(z) −Nη

=

(
1 − ω

λ(z)

)
lim inf
n→∞

logS(n− kn(z) −Nη, ε,S1)

n− kn(z) −Nη

→ε→0

(
1 − ω

λ(z)

)
htop(f).

The other inequality is obtained as follows:

lim inf
n→∞

1

n
logS(n, ε,Kn(z)) ≤ lim inf

n→∞

1

n
log

(
S
(
n− kn(z), ε, fkn(z)(Kn(z))

)
· kn(z)

ε

)
≤ lim inf

n→∞

n− kn(z)

n

logS(n− kn(z), ε,S1)

n− kn(z)
+

1

n
log

kn(z)

ε

=

(
1 − ω

λ(z)

)
lim inf
n→∞

logS(n− kn(z), ε,S1)

n− kn(z)

→ε→0

(
1 − ω

λ(z)

)
htop(f).
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This finishes the proof. □

2.5 Translocal entropy for higher-dimensional maps

Lemma 2.5 If F = f × g : X → Y → X × Y is a Cartesian product and z = (x, y), then
hω(F, z) = hω(f, x) + hω(g, y).

Proof. We can take Cartesian product of (n, ε)-separated sets as (n, ε)-separated sets for the
Cartesian product f × g, and there are no more efficient sets. Inserting this in the definition of
translocal entropy proves the result. □

Theorem 2.3 For affine toral automorphisms FA : Td → Td, hω(z) = #{i : log |λi| ≥
ω}(log |λi| − ω), where λi, i = 1, . . . , d, are the eigenvalues of the d × d-matrix A that pro-
duces FA.

Proof. Let µ1 > µ2 > · · · > µk be the set of absolute values of eigenvalues. Each µj represents
(possibly several) eigenvalues, and the direct sums of their generalized eigenspaces is denoted as
Ej; it is a hyperplane and we let 1 ≤ dj ≤ dim(Ej) be the size of the largest Jordan block in the
Jordan representation of FA|Ej

. If Kn,j(z) is the intersection of B(z, e−ωn) and a local plane in
the direction of Ej, then F k

A(Kn,j(z)) reaches unit size after kn(z) = Cn1−djen log µj iterates, for
some uniform constant C > 0. Here we assume that log µj ≥ ω, because otherwise F k

A(Kn,j(z))
does not reach unit size for k ≤ n iterates. Therefore, S(n, ε,Kn,j(z)) ≈ S(n− kn(z), ε, Ej(z)),
where Ej(z) is a unit size κj-dimensional ball centered at z in the direction of Ej. Tak-

ing the logarithm and the limit n → ∞, we obtain hω(z) = limn→∞
n−kn(z)

n
1

n−kn(z)
logS(n −

kn(z), ε, Ej(z)) = κj max{log µj −ω, 0}. Locally, FA acts as the Cartesian product of FA|E1(z)×
· · ·×FA|Ek(z). Therefore hω(z) =

∑
log µj≥ω(log µj−ω) =

∑
log |λi|≥ω(log |λi|−ω), as claimed. □

In fact, if F is a toral automorphism (or Anosov map) that is not necessarily affine, but has
bounded distortion, then the formula becomes hω(z) = htop(f) −

∑
log |λi(z)|≥ω(log |λi|(z) − ω),

where λi stands for the i-th upper Lyapunov exponent. The same result works for affine
hyperbolic horseshoe maps (or non-affine but with bounded distortion). The global product
structure of these maps is important to get this outcome, because the formula can be quite
different too, as the following example shows.

Example 2.5 Let D be the closed unit disk, and let f : D → D be given in polar coordinates
by f(r, ϕ) 7→ (r(2 − r), 3ϕ (mod 2π)). The derivative of r 7→ r(2 − r) at r = 0 is 2. Therefore
it takes Kn(z) := B(z, e−ωn) about ωn+log ε

log 2
iterates to reach size ε, and at this point, the ϕ-

component will let S(n, ε,Kn(z)) grow, with exponential rate log 3. It follows that hω(0) =
log 3(1 − ω

log 2
).

It is maybe good at this point to make a comparison with the notion of local entropy of
f : X → X used by Buzzi & Ruette [13, 15] and Newhouse [30]. In their definition, an (n, ε)-
Bowen ball takes the place of our exponentially small ball B(z, e−ωn). Thus the local entropy
is

hloc(f) = lim
ε→0

hloc(f, ε) for hloc(f, ε) = lim sup
n→∞

1

n
sup
x∈X

logS(n, ε, Bn(z, ε)). (5)
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In fact, Buzzi uses (n, ε)-spanning sets rather than (n, ε)-separating sets, but that is of no
consequence. Also, by taking the supremum over x ∈ X, hloc(f) becomes a quantity independent
of the point in space. Buzzi shows that hloc(f) ≤ dimM

r
log infn

n
√
∥Dfn∥∞ if f : M → M is

a Cr-smooth map on a manifold M , and hence hloc(f) = 0 for C∞ maps. But if we adjust
Example 2.5 to (r, ϕ) = (r, 3ϕ (mod 2π)), then the point 0 gives local entropy log 3.

Compared to hω(z), for conformal maps (such as the C2 expanding circle maps of Theo-
rem 2.2), we find hloc(f) = hω(z) = 0 for ω = λ(z), but for non-conformal maps we don’t expect
hloc(f) and hω(z) = 0 to coincide.

3 Local measure-theoretic entropy and pressure

3.1 Brin-Katok local measure entropy

For a continuous map f : X → X defined on a compact metric space (X, d) and f -invariant
Borel probability measure µ, Brin & Katok [11] introduced notions of local lower (resp. local
upper) measure-theoretic entropy w.r.t. µ as followshµ(f, x) := limε→0 lim infn→∞ − 1

n
log µ(Bn(x, ε)),

hµ(f, x) := limε→0 lim supn→∞− 1
n

log µ(Bn(x, ε)).
(6)

Theorem 3.1 ([11]) For a continuous map F : X → X on a compact metric space (X, d) and
Borel F -invariant probability measure µ, the equality hµ(f, x) = hµ(f, x) := hµ(f, x) holds for
µ-a.e. x ∈ X . Moreover, hµ(f, x) is F-invariant and∫

X

hµ(f, x) dµ(x) = hµ(f).

In addition, for an ergodic measure µ the equality hµ(f, x) = hµ(f) holds for µ-a.e. x ∈ X.
A variational principle for the Brin-Katok entropy was proved by Feng & Huang [18]:

htop(f,K) = sup{hµ(f) : µ is ergodic and f -invariant and µ(K) = 1}, (7)

where htop(f,K) is as in (1) for a compact set K.
Ma & Wen [27] noticed relationship between topological entropy restricted to a set Z ⊂ X

and local measure entropies on Z.

Theorem 3.2 ([27]) For a continuous map f : X → X on a compact metric space (X, d), a
Borel probability measure µ, a Borel subset Z ⊂ X and s ≥ 0 we have:

1. If hµ(f, x) ≤ s for all x ∈ X, then htop(f, Z) ≤ s,

2. hµ(f, x) ≥ s for all x ∈ X and µ(Z) > 0, then htop(f, Z) ≥ s.

In the next section we provide a generalization of Theorem 3.2.
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3.2 Topological pressure and Carathéodory structures

We recall the notion of topological pressure, in the spirit of Carathéodory structures elaborated
by Pesin [32], for a continuous map f : X → X defined on a compact metric space (X, d), and
restricted to a subset Z ⊂ X. Fix a continuous map (called potential) ϕ : X → R, N ∈ N,
r > 0 and s ≥ 0, define

MZ(s, r, ϕ,N) := inf

{∑
j∈J

exp[−s · nj +

nj−1∑
m=0

ϕ(fm(xj))] : Z ⊂
⋃
j∈J

Bnj
(xj, r); nj ≥ N

}
,

where the infimum is taken over all finite or countable coverings of the Z by Bowen balls
{Bnj

(xj, r)}j∈J with nj ≥ N. Here, the Bowen balls are indexed by the elements of a finite or
countable set J Using standard arguments (see [32]) one can easily show that for any N ∈ N,
the inequality MZ(s, r, ϕ,N + 1) ≥ MZ(s, r, ϕ,N) holds. Therefore, there exists a limit

MZ(s, r, ϕ) := lim
N→∞

MZ(s, r, ϕ,N).

The graph of the function s 7→ MZ(s, r, ϕ) is very similar to the graph of s-Hausdorff measure
function, i.e., there exists a unique critical parameter s0, where the function s 7→ MZ(s, r, ϕ)
drops from ∞ to 0. Thus, we can define

MZ(r, ϕ) := sup{s ≥ 0 : MZ(s, r, ϕ) = ∞} = inf{s ≥ 0 : MZ(s, r, ϕ) = 0} = s0.

Fix r1 ≤ r2 and consider a cover {Bnj
(xj, r1)}j∈J of Z, with nj ≥ N . Then {Bnj

(xj, r2)}j∈J is
a covering of Z, so MZ(s, r1, ϕ) ≥ MZ(s, r2, ϕ). Therefore

MZ(r1, ϕ) = inf{s ≥ 0 : MZ(s, r1, ϕ) = 0} ≥ inf{s ≥ 0 : MZ(s, r2, ϕ) = 0} = MZ(r2, ϕ).

This proves that the function r → MZ(r, ϕ) is non-increasing, so there exists a limit

PZ(f, ϕ) := lim
r→0

MZ(r, ϕ).

The quantity PZ(f, ϕ) is called the topological pressure of f , restricted to Z, with respect to the
potential ϕ : X → R. Basic properties of the topological pressure are presented in the following
lemma.

Lemma 3.1 For a continuous map f : X → X defined on a compact metric space (X, d),
r > 0, s ≥ 0, N ∈ N and a continuous potential ϕ : X → R we have:

1. If Z1 ⊂ Z2 ⊂ X, then MZ1(s, r, ϕ,N) ≤ MZ2(s, r, ϕ,N).

2. If Z1 ⊂ Z2 ⊂ X, then PZ1(f, ϕ) ≤ PZ2(f, ϕ).

3. If Z =
⋃

k∈N Zk, then PZ(f, ϕ) = sup{PZk
(f, ϕ) : k ∈ N}.

Next, we give a modification of the classical covering lemma (see Section 2.8.4 in [19]).

Lemma 3.2 [Lemma 1 in [27]] Let f : X → X be a continuous map on a compact metric
space. Let r > 0 and B(r) = {Bn(x, r) : x ∈ X,n ∈ N}. For any family F ⊂ B(r) there exists
a subfamily G ⊂ F consisting of disjoint Bowen balls such that⋃

Bn(x,r)∈F

Bn(x, r) ⊂
⋃

Bn(x,r)∈G

Bn(x, 3 · r).
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3.3 Local measure-theoretic pressures

For a continuous map f : X → X defined on a compact metric space (X, d), a Borel probability
measure µ defined on X, a continuous potential ϕ : X → R and x ∈ X, we define the upper
local measure-theoretic pressure of f at x, with respect to µ, by

P µ(f, ϕ, x) := lim
ε→0

lim sup
n→∞

1

n

(
n−1∑
m=0

ϕ(fm(x)) − log(µ(Bn(x, ε)))

)
. (8)

Similarly, we define the lower local measure-theoretic pressure of f at x, with respect to µ, by

P µ(f, ϕ, x) := lim
ε→0

lim inf
n→∞

1

n

(
n−1∑
m=0

ϕ(fm(x)) − log(µ(Bn(x, ε)))

)
.

Remark 3.1 Notice that local measure-theoretic pressures, calculated with respect to the po-
tential ϕ ≡ 0, coincide with local measure-theoretic Brin-Katok entropies. Moreover, local
measure-theoretic pressures and topological pressure are related. We have the following partial
variational principle, extending Ma & Wen’s result Theorem 3.2.

Theorem 3.3 Given a continuous map f : X → X on a compact metric space, a Borel subset
Z ⊂ X and a Borel probability measure µ on X, we have for any s ≥ 0 and continuous
ϕ : X → R:

1) If P µ(f, ϕ, x) ≤ s for all x ∈ Z, then PZ(f, ϕ) ≤ s.
2) If µ(Z) > 0 and P µ(f, ϕ, x) ≥ s for all x ∈ Z, then PZ(f, ϕ) ≥ s.

Proof. (1) Fix a Borel subset Z ⊂ X, a Borel probability measure µ, a continuous potential
ϕ : X → R and ε > 0. Assume that there exists s ≥ 0 such that P µ(f, ϕ, x) ≤ s for every
x ∈ Z. Define a sequence of sets (Zk)k∈N by

Zk :=

{
x ∈ Z : lim sup

n→∞

1

n

(
n−1∑
m=0

ϕ(fm(x)) − log(µ(Bn(x, r)))

)
≤ s + ε for all r ∈ (0,

1

3k
)

}
.

Then Z =
⋃

k∈N Zk. Now we fix k ∈ N and r ∈ (0, 1
3k

). The definition of Zk yields that for any
x ∈ Zk, there exists a strictly increasing sequence (nj(x))j∈N with

nj(x)−1∑
m=0

ϕ(fm(x)) − log(µ(Bnj(x)(x, r))) ≤ (s + ε) · nj(x).

Notice that Zk is contained in the union of elements of the family

FN := {Bnj(x)(x, r)) : x ∈ Zk, nj(x) ≥ N, j ∈ J}.

By Lemma 3.2, there exists a subfamily GN of FN , by pairwise disjoint Bowen balls,

GN := {Bni(xi)(xi, r)) : xi ∈ Zk, ni(x) ≥ N, i ∈ I},

where I ⊂ J such that Zk ⊂
⋃

i∈I Bni(xi)(xi, 3 · r) and

µ(Bni(xi)(xi, r))) ≥ exp

−(s + ε)ni(xi) +

ni(xi)−1∑
m=0

ϕ(fm(xi))

 .
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Therefore,

MZk
(s + ε, 3 · r, ϕ,N) ≤

∑
i∈I

exp

−(s + ε)ni(xi) +

ni(xi)−1∑
m=0

ϕ(fm(xi))


≤

∑
i∈I

µ(Bni(xi)(xi, r))) ≤ 1,

where the last inequality follows by the disjointness of Bowen balls in the family GN . Passing
to the limit N → ∞, we get

MZk
(s + ε, 3 · r, ϕ) ≤ 1.

This means that MZk
(3 · r, ϕ) ≤ s + ε. As r → 0, we obtain PZk

(f, ϕ) ≤ s + ε. Finally, by
Lemma 3.1, we obtain

PZ(f, ϕ) = sup{PZk
(f, ϕ) : k ∈ N} ≤ s + ε

and consequently
PZ(f, ϕ) = sup{PZk

(f, ϕ) : k ∈ N} ≤ s,

since ε > 0 is arbitrarily small.

(2) Fix Z ⊂ X such that µ(Z) > 0 and s ≥ 0. Assume that P µ(f, ϕ, x) ≥ s for all x ∈ Z.
Fix ε > 0 and for any k ∈ N define

Vk :=

{
x ∈ Z : lim inf

n→∞

1

n

(
n−1∑
m=0

ϕ(fm(x)) − log(µ(Bn(x, r)))

)
≥ s− ε, for every r ∈ (0,

1

k
)

}
.

Since the sequence of sets (Vk)k∈N increases to Z, by continuity of the Borel probability measure
µ we get

lim
k→∞

µ(Vk) = µ(Z) > 0.

There exists k0 ∈ N such that µ(Vk0) > 1
2
µ(Z) > 0. Now define a sequence of sets (Vk0,N)N∈N

by

Vk0,N :=

{
x ∈ Z :

1

n

(
n−1∑
m=0

ϕ(fm(x)) − log(µ(Bn(x, r)))

)
≥ s− ε, for all n ≥ N, r ∈

(
0,

1

k0

)}
.

Notice that the sequence (Vk0,N)N∈N increases to Vk0 , so by continuity of the Borel probability
measure µ, there exists N0 ∈ N such that µ(Vk0,N0) >

1
2
µ(Vk0) > 0. By definition of Vk0,N0 , for

any x ∈ Vk0,N0 , nj ≥ N0 and r ∈ (0, 1
k0

), we have

nj−1∑
m=0

ϕ(fm(x)) − log(µ(Bnj
(x, r))) > (s− ε) · nj,

so

µ(Bnj
(x, r)) < exp

[
−(s− ε) · nj +

nj−1∑
m=0

ϕ(fm(x))

]
.
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Next, consider a countable cover C of Vk0,N0 by Bowen balls, defined by

C :=

{
Bnj

(yj, r) : yj ∈ Vk0,N0 , nj ≥ N0, r ∈ (0,
1

k0
), Bnj

(yj, r) ∩ Vk0,N0 ̸= ∅, j ∈ J

}
.

Notice that for any δ ∈ (0, 1
2
µ(Vk0,N0)), there exists a countable family Jδ such that

MVk0,N0
(s− ε, r, ϕ,N) ≥ −δ +

∑
j∈Jδ

exp

(
−(s− ε) · nj +

nj−1∑
m=0

ϕ(fm(xj))

)

≥ −δ +
∑
j∈Jδ

µ(Bnj
(yj, r)) ≥ −δ + µ(Vk0,N0) ≥

1

2
µ(Vk0,N0).

Since Vk0,N0 ⊂ Z, for any potential ϕ : X → R and N ∈ N, Lemma 3.1 gives

MZ(s− ε, r, ϕ,N) ≥ MVk0,N0
(s− ε, r, ϕ,N) ≥ 1

2
µ(Vk0,N0) > 0.

Passing to the limit N → ∞, we get MZ(s − ε, r, ϕ) > 0. This means that MZ(r, ϕ) > s − ε.
Finally passing to the limit r → 0 and taking into account that ε is arbitrary small, we obtain
PZ(f, ϕ) ≥ s. The proof is complete. □

3.4 The translocal version of measure-theoretic local pressure

We suggest for translocal version for the upper measure-theoretic local pressure P µ(f, ϕ, z) from
(8) is the following:

P µ,ω(f, ϕ, z) := lim sup
n→∞

1

n

(
n−1∑
m=0

ϕ(fm(z)) − log µ(B(z, e−ωn))

)
,

and an analogous replacement for lower measure-theoretic local pressure.

P µ,ω(f, ϕ, z) := lim inf
n→∞

1

n

(
n−1∑
m=0

ϕ(fm(z)) − log µ(B(z, e−ωn))

)
,

The topological translocal pressure itself we will define in the spirit of [32]. That is, define

Mf,Z,ω(s, ϕ,N) := inf

{∑
j∈J

exp[−s · nj +

nj−1∑
m=0

ϕ(fm(xj))] : Z ⊂
⋃
j∈J

B(xj, e
−ωnj); nj ≥ N

}
,

where the infimum is taken over all finite or countable coverings of the Z by metric balls
{B(xj, e

−ωnj)}j∈J with nj ≥ N. Let

M f,Z,ω(s, ϕ) := lim sup
N→∞

Mf,Z,ω(s, ϕ,N),

M f,Z,ω(s, ϕ) := lim inf
N→∞

Mf,Z,ω(s, ϕ,N).
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Lemma 3.3 The graph of the function s 7→ M f,Z,ω(s, r, ϕ) has a unique critical parameter
s0, where the function s 7→ M f,Z,ω(s, r, ϕ) drops from ∞ to 0. The graph of the function
s 7→ M f,Z,ω(s, r, ϕ) has a unique critical parameter s1, where the function s 7→ M f,Z,ω(s, r, ϕ)
drops from ∞ to 0.

Proof. Proof of the lemma is similar to the proof of Proposition 1.2 in [32]. □
Thus, we define

PZ,ω(f, ϕ) := sup{s ≥ 0 : M f,Z,ω(s, ϕ) = ∞} = inf{s ≥ 0 : M f,Z,ω(s, ϕ) = 0} = s0,

PZ,ω(f, ϕ) := sup{s ≥ 0 : M f,Z,ω(s, ϕ) = ∞} = inf{s ≥ 0 : M f,Z,ω(s, ϕ) = 0} = s1.

A metric space X is called boundedly compact if all bounded closed subsets of X are compact.
In particular Rn and Riemannian manifolds (see [22, p.9]) are boundedly compact.

Lemma 3.4 (Vitali Covering Lemma, Theorem 2.1 in [28]). Let X be a boundedly compact
metric space and a family of closed balls B = {B(x, r) : x ∈ X, r > 0} in X such that

sup{diam(B(x, r)) : B(x, r) ∈ B} < ∞.

Then, there is a finite or countable sequence B(xi, ri) ∈ B, indexed by i ∈ I, of disjoint balls
such that ⋃

B(x,r)∈B

⊂
⋃
i∈I

B(xi, 5 · ri).

Properties analogous to those of Lemma 3.1 hold for this version of topological pressure.

Theorem 3.4 Given a continuous map f : X → X on a compact metric space, a Borel subset
Z ⊂ X and a Borel probability measure µ on X, we have for any s ≥ 0 and continuous
ϕ : X → R:

1) If P µ,ω(f, ϕ, x) ≤ s for all x ∈ Z, then PZ,ω(f, ϕ) ≤ s.
2) If µ(Z) > 0 and P µ(f, ϕ, x) ≥ s or all x ∈ Z, then PZ,ω(f, ϕ) ≥ s.

Proof. (1) Fix a Borel subset Z ⊂ X, a Borel probability measure µ, a continuous potential
ϕ : X → R and ε > 0. Assume that there exists s ≥ 0 such that P µ,ω(f, ϕ, x) ≤ s for every
x ∈ Z. Therefore, for x ∈ Z, there exists a strictly increasing sequence (nj(x))j∈N with

nj(x)−1∑
m=0

ϕ(fm(x)) − log(µ(B(x, e−ωnj(x)))) ≤ (s + ε) · nj(x).

Notice that Z is contained in the union of elements of the family

FN := {B(xj, e
−ωnj(xj)) : xj ∈ Z, nj(xj) ≥ N, j ∈ J}.

Choose n0 minimal such that eωn0 ≥ 5. By Lemma 3.4 there exists a subfamily GN of FN ,
indexed by elements of a set I, by pairwise disjoint metric balls,

GN := {B(xi, e
−ωni(xi))) : xi ∈ Z, ni(xi) ≥ N, i ∈ I},
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where I ⊂ J , such that Z ⊂
⋃

i∈I B(xi, e
−ω(ni(xi)−n0))) and

µ(B(xi, e
−ωni(xi)))) ≥ exp

−(s + ε)ni(xi) +

ni(xi)−1∑
m=0

ϕ(fm(xi))

 .

Therefore,

MZ,ω(s + ε, ϕ,N + n0) ≤
∑
i∈I

exp

−(s + ε)[ni(xi) − n0] +

ni(xi)−n0−1∑
m=0

ϕ(fm(xi))


≤ exp[(s + ε) · n0]

∑
i∈I

exp

−(s + ε)ni(xi) +

ni(xi)−1∑
m=0

ϕ(fm(xi))


≤ exp[(s + ε) · n0]

∑
i∈I

µ(B(xi, e
−ωni(xi)))) ≤ exp[(s + ε) · n0],

where the last inequality follows by the disjointness of metric balls in the family GN . Taking
the lim sup as N → ∞, we get

MZ,ω(s + ε, ϕ) ≤ exp[(s + ε) · n0] < ∞

and therefore
PZ,ω(f, ϕ) ≤ s + ε.

Since ε > 0 is arbitrarily small, PZ,ω(f, ϕ) ≤ s.

(2) Fix Z ⊂ X such that µ(Z) > 0 and s ≥ 0. Assume that P µ,ω(f, ϕ, x) ≥ s for all x ∈ Z.
Fix ε > 0 and for any N ∈ N, define

VN :=

{
x ∈ Z :

1

n

(
n−1∑
m=0

ϕ(fm(x)) − log(µ(B(x, e−ωn)))

)
≥ s− ε, for all n ≥ N

}
.

Notice that the sequence (VN)N∈N increases to Z, so by continuity of the Borel probability
measure µ there exists N0 ∈ N such that µ(VN0) > 1

2
µ(Z) > 0. By definition of VN0 , for any

x ∈ VN0 and nj ≥ N0, we have

nj−1∑
m=0

ϕ(fm(x)) − log(µ(B(xj, e
−ωnj))) > (s− ε) · nj,

so

µ(B(x, e−ωnj))) < exp

[
−(s− ε) · nj +

nj−1∑
m=0

ϕ(fm(x))

]
.

Next, consider a countable cover C of VN0 by metric balls, defined by

C :=
{
Bnj

(yj, e
−ωnj) : yj ∈ VN0 , nj ≥ N0, B(yj, e

−ωnj) ∩ VN0 ̸= ∅, j ∈ J
}
.
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Notice that for any δ ∈ (0, 1
2
µ(VN0)), there exists a countable family Jδ such that

MVN0
,ω(s− ε, ϕ,N) ≥ −δ +

∑
j∈Jδ

exp

(
−(s− ε) · nj +

nj−1∑
m=0

ϕ(fm(xj))

)

≥ −δ +
∑
j∈Jδ

µ(B(xj, e
−ωnj))) ≥ −δ + µ(VN0) ≥

1

2
µ(VN0).

Since Vk0,N0 ⊂ Z, for any potential ϕ : X → R and N ∈ N, we get

MZ,ω(s− ε, ϕ,N) ≥ MVN0
(s− ε, ϕ,N) ≥ 1

2
µ(VN0) > 0.

Taking the lim inf as N → ∞, we get MZ,ω(s − ε, ϕ) > 0. This means that MZ,ω(ϕ) > s − ε.
Finally taking into account that ε is arbitrary small, we obtain PZ,ω(f, ϕ) ≥ s. The proof is
complete. □

4 Discussion on local entropy

In the literature on dynamical systems there are several attempts to define local entropy. Bowen
[9] introduced the notion of ε-entropy to get an upper estimate of the difference between hµ(f)
and the entropy of a partition with diameter less than ε. Another notion of local entropy (called
conditional topological entropy) was given by Misiurewicz [29], who proved that vanishing of his
local entropy implies existence of maximal measure. Finding (uniqueness of) measures of maxi-
mal entropy was also the reason for Newhouse [30] and Buzzi & Ruette [13, 15] to define a version
the local entropy hloc(f), see (5). Buzzi & Ruette [15] proved that for C1 maps f : [0, 1] → [0, 1]
with critical set Crit(g) = {x ∈ [0, 1] : f |U is not monotone on each neighborhood U ∋ x}, if
htop(g) > htop(g, Crit(g)) + hloc(f), then f admits a measure of maximal entropy.

In 1993, Blanchard [6] introduced a notion of entropy pairs, in order to localize “where” in
the system entropy is generated. This was generalized to entropy n-tuples and entropy sets by
Huang & Ye [24] and Blanchard & Huang [7].

Definition 4.1 Let f : X → X be a continuous map on a compact space. A set E ⊂ X
is an entropy set if at least two of these points in E are distinct, and if for each open cover
U = {U1, . . . , Un} of X with the property that for each i there is x ∈ E such that x /∈ Ui,
the topological entropy htop(T,U) (in the sense of Adler-Konheim-McAndrew [2]) of the cover
is positive. An entropy set of n points is an entropy n-tuple, so an entropy pair is an entropy
2-tuple.

Dou et al. [16] characterize maximal entropy sets, and prove that E is an entropy set if and
only if each n-tuple in E with at least two distinct point is an entropy n-tuple.

The survey paper of Glasner & Ye [21] is largely on the relation between the topological and
ergodic approach to dynamical systems from the global point of view. In particular, they discuss
topological and measure entropy pairs and n-tuples and they present the relation between the
topological entropy of open covers and the measure-theoretic entropy of finer partitions. The
second part of the survey is on local properties of dynamical systems. They introduce n-tuples
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for an invariant measure, and establish their relation to topological entropy n-tuples. Glasner
& Ye [21] discuss in detail the notion of entropy set, in order to find where the entropy is
concentrated. In particular, it was shown that any topological dynamical system with positive
entropy admits an entropy set with infinitely many points. For any topological dynamical
system, there exists compact countable subset such that its Bowen entropy is equal to the
entropy of the original system.

Glasner & Ye discuss notions of completely positive entropy and uniform positive entropy,
introduced by Blanchard [5] in a topological context: A topological dynamical system has
completely positive entropy if every non-trivial factor has positive topological entropy, and it
has uniform positive entropy if the topological entropy of every non-dense finite open cover is
positive. Uniform positive entropy implies weak mixing as well as completely positive entropy,
which in turn implies the existence of a fully supported invariant measure.

The paper by Garcia-Ramos & Li [20] is also a survey about recent developments in the
local entropy theory for topological dynamical systems; they cover similar material as Glasner
& Ye, but for general (continuous) group actions.

In 1992, Thieullen [36] introduced a local form of entropy which he called α-entropy. In
his definition, the ε in the Bowen (n, ε)-balls is replaced by an n-dependent quantity e−αn,
but unlike our translocal entropy, he still uses Bowen balls. Ben Ovaria & Rodriguez-Hertz [4]
introduced neutralized (local) entropy as

Eµ(x) := lim
α→0

lim sup
n→∞

− 1

n
log µ(Bn(x, e−αn)); (9)

this is α-entropy where eventually the limit α → 0 is taken. Ben Ovadia & Rodriguez-Hertz
study the role it can play in hyperbolic dynamics and compare it with the Brin-Katok local
entropy, see (6). They show that the neutralized local entropy for C1+β diffeomorphism f :
M → M of a compact closed manifold M , calculated with respect to an f -invariant probability
measure µ, coincides with Brin-Katok local entropy almost everywhere.

In a recent paper, Yang, Chen & Zhou [38], extending (7), obtained a variational principle
for neutralized entropy of a continuous map f : X → X on a compact metric space. For a
non-empty compact K ⊂ X they prove the equality

hB̃
top(f,K) = lim sup

α→0
{hB̃K

µ (f, α) : µ is f -invariant and µ(K) = 1},

where hB̃
top(f,K) denotes a neutralized version of the Bowen topological entropy of f (defined

via a Carathéodory construction), restricted to K, and hB̃K
µ (f, α) is the lower neutralized Brin-

Katok local entropy of µ, defined as

hB̃K
µ (f, α) :=

∫
X

lim inf
n→∞

− 1

n
log µ(Bn(x, e−nα)) dµ(x).
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