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Abstract

We prove limit laws for infinite horizon planar periodic Lorentz gases when, as time n tends
to infinity, the scatterer size ρ may also tend to zero simultaneously at a sufficiently slow pace. In
particular we obtain a non-standard Central Limit Theorem as well as a Local Limit Theorem for the
displacement function. To the best of our knowledge, these are the first results on an intermediate
case between the two well-studied regimes with superdiffusive

√
n log n scaling (i) for fixed infinite

horizon configurations – letting first n→∞ and then ρ→ 0 – studied e.g. by Szász & Varjú (2007)
and (ii) Boltzmann-Grad type situations – letting first ρ→ 0 and then n→∞ – studied by Marklof
& Tóth (2016).
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1 Introduction

In this paper we are interested in limit laws for infinite horizon planar periodic Lorentz gases with
small scatterers. The Lorentz gas, a popular model of mathematical physics introduced by H. Lorentz
in 1905 ([23]), is a dynamical system on the infinite billiard table obtained by removing strictly convex
scatterers from R2. We study the periodic model when these scatterers are round disks of radius
ρ ∈ (0, 1/2) positioned at the points of the Euclidean lattice Z2. This table can be split up into
countably many compact cells, each congruent to the unit square, which can be also regarded as
the 2-dimensional flat torus. As usual, a point particle on the table moves with a unit velocity
vector along straight lines inside the table, and collides elastically – angle of incidence equals angle
of reflection - at the scatterers. This billiard flow produces a billiard map for to the Poincaré section
of outgoing collisions. The phase space of the billiard map in a single cell is M = ∂O × [−π

2 ,
π
2 ],

where O is a round disk at the origin with radius ρ. The phase space representing all cells together
is M̂ =M×Z2 and the displacement function κρ :M→ Z2 indicates the difference in cell numbers
going from one collision to the next. As O is strictly convex, the billiard is dispersing, and the
dynamics has good hyperbolicity properties.

∗MTA-BME Stochastics Research Group, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-
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For any ρ ∈ (0, 1/2), the horizon is infinite which means that the time between two consecutive
collisions – and accordingly, κρ : M → Z2 – is unbounded. This corresponds to corridors, that
is, infinite strips on R2 parallel to some direction ξ ∈ Z2 \ {0} which do not intersect any of the
scatterers of the infinite billiard table. The number and the geometry of these corridors depend on ρ,
which in turn strongly affect the billiard dynamics, and thus are highly relevant for our exposition.

1.1 Recalling limit laws for fixed ρ ∈ (0, 1/2) as time n→∞
A consequence of the infinite horizon is the superdiffusive behaviour of κρ with ρ ∈ (0, 1/2) fixed,
captured in the first place in the Central Limit Theorem (CLT) with non-standard normalization.
To recall this result along with its refinements, we introduce some notation to be used throughout
this paper. Let Tρ : M → M be the billiard map, recall that it preserves the canonical invariant
probability measure µ. Set

κn,ρ =
n−1∑
j=0

κρ ◦ T jρ , Σ =
1

π

(
1 0
0 1

)
. (1)

Choosing the initial point onM according to µ, we can regard κn,ρ as a family of random variables.
Throughout we let =⇒ stand for convergence in distribution. We recall the CLT with non-standard
normalization: for every ρ ∈ (0, 1

2) there exists a positive definite matrix Σρ such that:

For fixed ρ ∈ (0, 1/2),
κn,ρ√
n log n

=⇒ N (0,Σρ) as n→∞. (2)

This result was conjectured by Bleher [5] and proved rigorously via two different methods: Szász
& Varjú in [30], and Chernov & Dolgopyat in [11]. In the setting above, the requirement of having
two non-parallel corridors (present in [30, 11]) is automatically satisfied because the scatterers are
positioned at the lattice points.

It is important to note that there is an explicit formula for Σρ, which involves the scatterer
geometry for fixed ρ, see for example [11, Formula (2.1)]. A computation (similar to our proof of
Lemma A.4) shows that

lim
ρ→0

(4πρ2)Σρ = Σ, (3)

where Σ is the diagonal matrix given in (1). To compare these results with our Theorem A below,
we point out the following direct consequence of (2) and (3):

κn,ρ

(
√

4πρ)−1
√
n log n

=⇒ N (0,Σ) as first n→∞ and then ρ→ 0. (4)

The method of proof in [30] relies on the existence of a Young tower for Tρ as in [33, 9] and an
abstract result of Bálint & Gouëzel [4] along with several additional properties of (κρ, Tρ) established
in [30]. One notable feature of this method is that it provides a refinement of the CLT (2), namely
the Local Limit Theorem (LLT):

For fixed ρ ∈ (0, 1/2), (n log n)µ(κn,ρ = 0)→ ΦΣρ(0) as n→∞, (5)

where ΦΣρ is the density of a Gaussian random variable in (2).
The method of proof in [11] exploits exponential mixing for the sequence {κρ ◦ Tnρ }n≥1. The

authors of that work develop an argument based on standard pairs to establish a bound on the
correlations for κρ:

For fixed ρ ∈ (0, 1/2), there exist ϑ̂ρ ∈ (0, 1) and Ĉρ > 0

so that
∣∣∫
M κρ · κρ ◦ Tnρ , dµ

∣∣ ≤ Ĉρ · ϑ̂nρ for all n ≥ 1.
(6)
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Using (6), the CLT (2) is proved in [11, Proof of Theorem 8 a)] via blocking type arguments; we
refer to Denker [17] for a classical reference. Furthermore, as shown in [11, Proof of Theorem 8],
the limit law (2) together with a tightness argument for a truncated version of κρ provides another
refinement of the CLT, namely, the Weak Invariance Principle (WIP):

For fixed ρ ∈ (0, 1/2) and s ∈ (0, 1),
κbnsc,ρ+{ns}(κbnsc+1,ρ−κbnsc,ρ)√

n logn
converges as

n→∞ to a Brownian motion with mean 0 and variance Σρ.
(7)

Similar versions of the CLT (2) and the WIP (7) hold for the flight time function taking values in
R2, see [11].

In a different direction, a further important consequence of the LLT (5) established in [30] is
that it allows one to study mixing of the infinite measure preserving billiard dynamics on the entire
lattice M̂ =M× Z2. This can be modelled by a Z2 extension

T̂nρ (θ, φ, `) = (Tnρ (θ, φ), `+ κn,ρ(θ, φ)), (θ, φ) ∈M, ` ∈ Z2.

The dynamics T̂ρ preserves the measure µ̂ = µ× LebZ2 , where LebZ2 denotes the counting measure.
An immediate consequence of (5) is:

For fixed ρ ∈ (0, 1/2), (n log n)µ(κn,ρ = 0) = (n log n)µ̂(M∩ T̂−nρ M)→ ΦΣρ(0) as n→∞. (8)

A first refinement of the LLT (5) and of the mixing statement (8) was obtained by Pène [28] who
proved the analogue of these statements for the class of dynamically Hölder observables. Later on,
Pène & Terhesiu [29], building on the results in [4], obtained sharp error rates in LLT and mixing for
dynamically Hölder observables, including observables supported on compact sets. Furthermore, [29]
establish optimal error rates for mean zero observables.

1.2 Recalling results as first ρ → 0 and then n → ∞ (Boltzmann-
Grad limit)

In a series of works [24, 25], Marklof & Strömbergsson studied the Boltzmann-Grad limit of the
periodic Lorentz gas. This corresponds to letting the scatterer size ρ → 0 and investigating the
displacement in the rescaled continuous time T = ρt (so that the mean free path remains bounded).
In particular, [24] proves that, in this Boltzmann-Grad limit, the displacement of the particle con-
verges, on any finite time interval, to an explicitly given Markov process. Marklof & Tóth [26] then
studied the large time asymptotic of this Markov process, and obtained the CLT and WIP with
non-standard normalization

√
T log T .

These results on the Boltzmann-Grad limit scenario hold in any dimension, not just in d = 1, 2 as
the results mentioned in the previous subsection. For more details, we refer to the original references.
What is most relevant for us is that [26, Theorem 1.1] and [26, Theorem 1.3] are reduced to discrete
time statements that can be formulated in terms of the behavior of κn,ρ in the limits ρ→ 0 first and
then n→∞. In particular, [26, Theorem 1.2] states for d = 2 that:

κn,ρ

(
√

4πρ)−1
√
n log n

=⇒ N (0,Σ) as ρ→ 0 followed by n→∞, (9)

where κn,ρ and Σ are as in (1) 1, while [26, Theorem 1.4] is the corresponding WIP which, when
d = 2, reads as (7) with the main difference of the limit paths: ρ→ 0 followed by n→∞, as opposed
to fixed ρ.

1Actually, [26, Theorem 1.2] is stated for the flight time function taking values in R2, as opposed to the displacement
function taking values in Z2, but these are equivalent as the difference between the two processes is uniformly bounded, see
Remark 6.5.
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In [26], the authors state that an open problem is to consider the joint limit ρ→ 0 and n→∞.
In the Boltzmann–Grad limit scenario with diffusive behaviour, this type of question is answered by
Lutsko & Tóth in [22] for random Lorentz gases, in dimension d = 3, where, on top of the initial
condition, additional randomness comes from the random placement of the scatterers. However,
their model is very different from the model considered in [26] and it is characterized by diffusion
(Brownian motion with standard normalization).

1.3 Main results as ρ→ 0 and n→∞ in the joint limit

Our main result takes a step in answering the open question in [26] for the planar periodic Lorentz
gas. It reads as follows.

Theorem A Let κn,ρ and Σ be as in (1), and let

bn,ρ =

√
n log(n/ρ2)√

4π ρ
.

There exists a function M(ρ) with M(ρ)→∞ as ρ→ 0 such that,

κn,ρ
bn,ρ

=⇒ N (0,Σ), as n→∞ and ρ→ 0 such that M(ρ) = o(log n).

For a precise expression of M(ρ) we refer to Theorem 7.1 in Section 7. At this stage we mention
that M(ρ) depends on the rate of correlation decay for Hölder observables as ρ→ 0. How this decay
rate depends on ρ is not known and we do not attempt to study this in the present paper. However,
we comment on some relevant aspects of correlation decay below.

In the remainder of this section, we make some further comments on how our results compare to
various other works, and on some key ingredients of our argument.

Comments on the rate of correlation decay. Statistical limit laws in dynamical settings in
general, and our results in particular are strongly related to effective bounds on time correlations.
For several decades, it has been a major problem to prove exponential decay of correlations for
Hölder observables in dispersing billiards, that is, bounds of the form:∣∣∣∣∫

M
ψ1 · ψ2 ◦ Tnρ dµ

∣∣∣∣ ≤ Cρ(ψ1, ψ2) · θ̂nρ for all n ≥ 0, (10)

where ψ1 : M → R and ψ2 : M → R are Hölder continuous, centered, and θ̂ρ < 1 may depend
on the Hölder exponent, while Cρ(ψ1, ψ2) > 0 on the Hölder norm of these functions, and both of
these constants depend also on ρ (i.e. on the billiard table). Several powerful methods have been
designed to prove bounds of the form (10), in particular using quasi-compactness of the transfer
operator on Young towers ([33]) or anisotropic Banach spaces ([14]), coupling of standard pairs ([10,
Chapter 7]) or most recently, Birkhoff cones ([13]). However, each of these methods involve some
non-constructive compactness argument which is the reason why there is no explicit information
available on how the rate of decay (i.e. Cρ and θ̂ρ) depends on ρ. For instance, in the framework
of quasi-compact transfer operators, this corresponds to having effective bounds on the essential
spectral radius, but not on the spectral gap.

In fact, depending on the method, ψ1 and ψ2 may belong to a larger space (that contains Hölder
functions), however, these spaces do not contain the unbounded observable κρ. Hence, even for
fixed ρ, it requires additional effort to obtain correlation bounds for unbounded observables, in
particular, to derive (6). As mentioned above, in our context of the infinite horizon Lorentz gas,
(6) was proved by Chernov and Dolgopyat in [11, Proposition 9.1], which is an important reference
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for our work. Let us also mention [3, Lemma 3.2] on a similar bound for the induced return time
arising in dispersing billiards with cusps, and the more recent paper [31] where correlation bounds for
unbounded observables are studied in an axiomatic framework that includes further billiard models.
Nonetheless, all these works consider the large time asymptotics of a fixed billiard system. To treat
the simultaneous scaling of ρ → 0 and n → ∞, in Appendix C of the present paper we extend [11,
Proposition 9.1] in two directions. On the one hand, on top of the mere existence of some Ĉρ > 0

and ϑ̂ρ < 1 in (6), we explicitly relate these constants to Cρ and θ̂ρ of (10), as expressed in (66).2

On the other hand, to exploit correlation bounds of the type (6) when taking the joint limit, these
have to be combined with the action of the perturbed transfer operator Rρ(t) (introduced below) as
stated in our Proposition C.1.

Comparison with results on the random Lorentz gas. To compare our Theorem A with the
results of Lutsko & Tóth on the random Lorentz gas, it is important to emphasize that although both
[22] and our paper consider a joint limit of scatterer radius tending to 0 and time tending to infinity
simultaneously, the settings of these two papers are quite different. In particular, the starting point
of Lutsko & Tóth is the Boltzmann Grad limit of the random Lorentz gas, and accordingly, [22] can
handle situations when time tends to infinity at a sufficiently slow pace in relation to the scatterer
size tending to 0. In contrast, the starting point of our work is the superdiffusive limit in the infinite
horizon periodic Lorentz gas with fixed scatterer size (see subsection 1.1 for a summary of previous
results), and accordingly we can handle situations when time tends to infinity at a sufficiently fast
pace in relation to the scatterer size tending to 0.

It is also important to note that under the condition M(ρ) = o(log n) we have

bn,ρ

(
√

4πρ)−1
√
n log n

→ 1,

which shows that our Theorem A is indeed a direct analogue of both (4) and (9). To simplify the
exposition, we omit the case d = 1 (i.e., the Lorentz tube), but believe that similar results can be
obtained by the same arguments.

Further comments on some corollaries of our result and some elements of our proofs.
A main advantage of the current method of proof via spectral methods is that it allows us to obtain
(with no additional effort) the LLT (5) and the mixing statement (8) with appropriate limit paths
ρ→ 0 simultaneously with n→∞, as opposed to fixed ρ. For the LLT we refer to Theorem 7.3 and
for the mixing result we refer to Corollary 7.5.

We mention up front that unlike in the fixed ρ scenario with main results recalled in Subsection 1.1,
we cannot exploit the existence of a Young tower because it seems undoable to build such a tower in
a fashion that it depends continuously on ρ. Instead, we prove Theorem A via the Nagaev method
on Banach spaces of distributions introduced by Demers & Zhang [14, 15, 16] in the spirit of the
spaces constructed in Demers & Liverani [12]. See Aaronson & Denker [1, 2] for a classical reference
on the Nagaev method in (Gibbs Markov) dynamics beyond the CLT with standard normalization
(that is

√
n). However, as we shall explain below, the standard pairs argument in [11] plays a crucial

role in our proof.
We end this introduction summarizing the main steps and challenges of our proofs. A main

difficulty comes from the fact that as ρ→ 0, more and more corridors open up and controlling their
number and geometry is a non-trivial task. Another challenge for the proofs of Theorem A and
the LLT in Theorem 7.3 comes from the fact that the spaces in [14, 15, 16] cannot be used in a
straightforward way even in the infinite horizon case with fixed ρ.

The Nagaev method requires: 1) the existence of a Banach space (B, ‖ ‖B) on which the transfer
operator Rρ of Tρ has a spectral gap; 2) the perturbed transfer operator (Rρ(t)ψ = R(eitκρ · ψ) for

2We will also use the notations γρ = 1− θ̂ρ and γ̂ρ = 1− ϑ̂ρ.
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ψ ∈ B) has sufficiently good continuity estimates ‖Rρ(t) − Rρ(0)‖B ≤ C|t|ν ; the larger ν > 0, the
better.

Regarding 1), using a Lasota-Yorke inequality on a strong space B and a weak space Bw, Demers
& Zhang [14, 15, 16] established the spectral gap for every fixed ρ, see Section 4. This is the main
reason why we resorted to the use of such Banach spaces.

Regarding 2), as in Keller & Liverani [20], one could work with the weak space. For infinite
horizon billiards, continuity estimates in the strong or weak Banach spaces in [14, 15, 16] have not
been obtained previously. In Section 5.2, we give continuity estimates in such Banach spaces (strong
or weak); the estimates there rely heavily on a version of the growth lemma, namely Proposition 3.1.
These continuity estimate are O(|t|ν) for ν < 1/2 with explicit dependence on ρ, in both the strong
and weak spaces. This exponent ν is too small to obtain the asymptotics of the leading eigenvalue
of Rρ(t) directly. Therefore we resort to a decomposition of the eigenvalue in several pieces (see the
proof of Proposition 6.3) and exploit the standard pairs arguments in [11] to deal with some parts of
the estimate, see Appendix C. Along the way, we give a new proof of the LLT (5) for fixed ρ which is
new at an abstract level as well, namely by working on the Banach spaces [14, 15, 16] in the absence
of good continuity estimates but in the presence of exponential decay of correlations.

The paper is organised as follows: In Section 2 we recall some basic properties of hyperbolic billiards
and also estimate widths of corridors that open up as ρ → 0. Section 3 gives the Growth Lemmas,
following [14, 15, 16] but with estimates made explicit in terms of ρ, and including sums over
unbounded number of corridors (this is the reason why the estimates are worse than for the usual
Growth Lemmas). Section 4 introduces the Banach spaces and recalls the proof of the spectral gap
property for the unperturbed transfer operator Rρ, showing that the ρ-dependence can be controlled.
Section 5 is devoted to the continuity estimates of the perturbed transfer operator Rρ(t) and Section 6
gives the asymptotics of the corresponding leading eigenvalue. The precise statements and proofs of
the limit theorems are gathered in Section 7.

The appendices give further technical details on corridor sums (Appendix A), distortion (Ap-
pendix B) and decay of correlations by a combination of tower and standard pair arguments (Ap-
pendix C).

Acknowledgements: We thank the anonymous referees for useful comments. HB was supported by
the FWF Project P31950-N35. PB was supported by National Research, Development and Innova-
tion Office - NKFIH, Projects K123782, K142169 and K144059. PB and HB acknowledge the support
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2 Preliminaries on Lorentz gas on Z2

Our general reference on hyperbolic billiards is Chernov & Markarian [10], the conventions of which
are followed in our exposition, except for some minor differences. In particular, we use coordinates
(θ, φ) ∈ S1 × [−π

2 ,
π
2 ] on M, where

• θ ∈ S1 in clockwise orientation describes the collision point on the scatterer (so the correspond-
ing point on ∂O is (ρ sin θ, ρ cos θ));

• φ ∈ [−π
2 ,

π
2 ] denotes the outgoing angle that the billiard trajectory makes after a collision at a

point with coordinate θ with the outward normal vector ~Nθ at this point (so φ = π
2 corresponds
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to an outgoing trajectory tangent to O in the positive θ-direction).

In these coordinates (θ, φ), the measure µ has the same form dµ = 1
4π cosφdφ dθ for all values of

the radius ρ > 0. Integrals involving the displacement function κρ, however, do depend on ρ. If the
flight between (x, `) and (Tρ(x), ` + κρ(x)) goes through a corridor for a long time before hitting a
scatterer at the boundary of this corridor, then the angle at which the second scatterer is hit is close
to ±π

2 . This sparks another long flight in the same corridor, i.e., ‖κρ(Tρx)‖ is large too.
In the remainder of this section, we record some properties of Tρ and κρ. In Subsection 2.1

the geometry of corridors is described, with special emphasis on the asymptotics of small ρ. In
Subsection 2.2 we focus on the singularities, which, in addition to strong hyperbolicity, are the other
main feature of the map Tρ :M→M. In Subsection 2.3, the hyperbolic properties of Tρ :M→M
are discussed. Some lemmas of technical character are moved to Appendices A and B.

Notation: For functions (or sequences) f and g, we use the Vinogradov notation f � g and the
Landau big O notation interchangeably: there is a constant C > 0 such that f ≤ Cg. Similarly
f � g means that there exists C > 1 such that C−1g ≤ f ≤ Cg.

2.1 Corridors and their widths

Let O` denote the circular scatterer of radius ρ placed at lattice point ` ∈ Z2. The computation of
µ(x ∈ ∂O0 × [−π

2 ,
π
2 ] : κρ(x) = (p, q)) is based on the division of the phase space in corridors. These

are infinite strips in rational directions given by ξ ∈ Z2 \{0} for ρ sufficiently small, that are disjoint
from all scatterers (but maximal with respect to this property), and they are periodically repeated
under integer translations. As soon as ρ < 1

2 , there are infinite corridors parallel to the coordinate

axes. If ρ < 1
4

√
2, then corridors at angles of ±45◦ open up, and the smaller ρ becomes, the more

corridors open up at rational angles.
Given 0 6= ξ ∈ Z2 and ρ > 0 sufficiently small, there are two corridors simultaneous tangent to

O0 and Oξ, one corridor on either side of the arc connecting 0 and ξ. The widths of the corridors
are denoted by dρ(ξ) and d̃ρ(ξ), see Figure 1.

L d̃ρ(ξ)

dρ(ξ)

ξ′

ξ′′

0

ξ

• • • • • • • •

• • • • • • • •

• • • • • •• •

• • • • • • • •

• • • • • • • •

Figure 1: Corridors tangent to the scatterers at 0 and ξ = (3, 2)

7



Lemma 2.1 If ρ = 0 and ξ = (p, q) ∈ Z2 is expressed in lowest terms, then

d0(ξ) = d̃0(ξ) =
1

|ξ|
.

For ρ > 0, the actual width of the corridor is then dρ(ξ) = d̃ρ(ξ) = max{0, |ξ|−1 − 2ρ}.

Remark 2.2 Let us call these two corridors in the direction ξ the ξ-corridors. They open up only
when ρ < d0(ξ)/2 = d̃0(ξ)/2. For ρ = 0, the common boundary (called ξ-boundary) of the two ξ-
corridors is the line through 0 and ξ. The other boundaries are lines parallel to the ξ-boundary, going
through lattice points that are called ξ′ and ξ′′ in the below proof. For ξ = (p, q) (with gcd(p, q) = 1),
these points ξ′ = (p′, q′), ξ′′ = (p′′, q′′) are uniquely determined by ξ in the sense that p′/q′ and p′′/q′′

are convergents preceding p/q in the continued fraction expansion of p/q. In particular |ξ′|, |ξ′′| ≤ |ξ|.
In the sequel, we usually only need one of these two ξ-corridors, and we take the one with ξ′ in its
other boundary.

Proof. If (p, q) = (0,±1) or (±1, 0), then clearly d0(ξ) = d̃0(ξ) = 1, so we can assume without loss
of generality that p ≥ q > 0. Let L be the arc connecting (0, 0) to (p, q). The corridors associated
to ξ intersect [0, p]× [0, q] in diagonal strips on either side of L.

Let q
p = [0; a1, . . . , an = a] be the standard continued fraction expansion with a ≥ 1, and the

previous two convergents are denoted by q′/p′ and q′′/p′′, say q′′/p′′ < q/p < q′/p′ (the other
inequality goes analogously). Therefore q′p− qp′ = 1 and q′′p′ − q′p′′ = −1. Also

(a− 1)q′ + q′′

(a− 1)p′ + p′′
<
q

p
<
q′

p′

are the best rational approximations of q/p, belonging to lattice points ξ′ above L and ξ′′ below L.
The vertical distance between ξ′ and the arc L is |q′ − p′ qp | =

1
p |q
′p− p′q| = 1

p . The vertical distance

between L and ξ′′ is

((a− 1)p′ + p′′)
q

p
− ((a− 1)q′ + q′′) =

1

p
((a− 1)(qp′ − q′p) + qp′′ − q′′p)

=
1

p
(1− a+ (aq′ + q′′)p′′ − (ap′ + p′′)q′′)

=
1

p
(1− a+ a(q′p′′ − q′′p′)) =

1

p
.

The corridor’s diameter is perpendicular to ξ, so d0(ξ) is computed from this vertical distance as the
inner product of the vector (0, 1/p)T and the vector ξ = (p, q)T rotated over 90◦:

1√
p2 + q2

〈(
0

1/p

)
,

(
−q
p

)〉
=

1√
p2 + q2

=
1

|ξ|
.

The computation for d̃0(ξ) = |ξ|−1 is the same. �

2.2 Singularities of the billiard map

In the coordinates (θ, φ, `) ∈ S1×[−π
2 ,

π
2 ]×Z2 (or ×Z if it is a Lorentz tube), the size of the scatterers

ρ doesn’t appear, but it comes back in the formula of the billiard map Tρ and in its hyperbolicity. Also
the curvature of the scatterers is K ≡ 1/ρ. We recall some notation from the Chernov & Markarian
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φ = −π
2

φ = +π
2

θ = 0 θ = 2π

S0

S0

S−1

from
O−ξ

S−1

from
Oξ

S−1

from
O−κρ

Hk0

H−k0

θ−ξ•
θκρ•

(θ′κρ , φ
′
κρ)

•

•

Figure 2: The parameter subset M0 with singularity lines and κρ = ξ′ −Mξ.

book [10] (going back to the work of Sinăı), bearing in mind that we have to redo several of their

estimates to track the precise dependence on ρ. The phase space is M̂ = M× Z2 =
⋃
`∈Z2M`,

where each M` is a copy of the cylinder S1 × [−π
2 ,

π
2 ], see Figure 2.

Let S0 = {φ = ±π
2 } be the discontinuity of the billiard map corresponding to grazing collisions.

The forward and backward discontinuities are

Sn = ∪ni=0T
−i
ρ (S0) and S−n = ∪ni=0T

i
ρ(S0),

so that Tnρ :M\Sn →M\S−n is a diffeomorphism. We line the curve S0 with homogeneity strips
Hk bounded by curves | ± π

2 − φ| = k−r0 and | ± π
2 − φ| = (k + 1)−r0 , k ≥ k0, for a fixed number

r0 > 1. The standard value is r0 = 2, but as distortion results and some other estimates improve
when r0 is larger, we choose the optimal value of r0 later.

O0O−ξ

Oκρ

α

Figure 3: A corridor collision map from O−ξ and O−κρ to O0.

The set S−1 consists of multiple curves inside M0, one for each scatterer from which a particle
can reach O0 in the next collision. In Figure 2 we consider the corridor in the direction of ξ ∈ Z2,

9



and drew the parts of S−1 coming from scatterers Oξ, O−ξ and O−κρ for some scatterer on the other
side of this corridor.

Lemma 2.3 For the ξ-corridor, let (θ−ξ,
π
2 ) ∈M0 be the point of intersection of S0 and the part of

S−1 associated to the scatterer O−ξ, and (θκρ ,
π
2 ) ∈ M0, κρ = ξ′ −Mξ, be the point of intersection

of S0 and the part of S−1 associated to the scatterer Oκρ = Oξ′−Mξ at the other side (i.e., the
ξ′-boundary) of the ξ-corridor, see Figure 3. Let (θ′κρ , φ

′
κρ) be the intersection of the parts of S−1

associated to the scatterers O−ξ and the scatterer Oκρ, see Figure 2. Then

|θ−ξ − θκρ | =
dρ(ξ)

|ξ|M

(
1 +O

(
ρ

|ξ|M

))
and

π

2
− φ′κρ =

√
2dρ(ξ)

ρM

(
1−O

(
ρ

|ξ|
− 1

M
+

√
dρ(ξ)ρ

|ξ|
√
M

))
.

Proof. The angle θ−ξ refers to the point where the common tangent line of O0 and O−ξ touches
O0. For the value θκρ , κρ = ξ′ −Mξ, we take the common tangent line to O0 and Oκρ which has

slope
dρ(ξ)
M |ξ|

(
1 +O( ρ

|ξ|M )
)

. This is then also |θ−ξ − θκρ |.

O0O−ξ• •

•R

•Q
•

P
•Q
′

α

−θ′κρ

−φ′κρ
φ′κρ

|ξ|

|ξ| − ρ sin θ′κρ

Figure 4: Illustration of the proof of Lemma 2.3

Now for the other endpoint of this piece of S−1, consider the common tangent line to O−ξ and

Oκρ which has slope tanα :=
dρ(ξ)

(M−1)|ξ|(1+O( ρ
|ξ|(M−1))), hitting the scatterer O0 in point P and when

extended inside O0 hits the vertical line through the center O0 in point Q. Let also R be the tangent
point of O0 to the corridor, and Q′ is the point on O0R at the same horizontal height as P , see
Figure 4. Then |RQ| = |ξ| sinα whereas |O0Q

′| = ρ − (|ξ| − ρ sin θ′κρ) sinα = ρ cos θ′κρ . The latter
gives

θ′κρ =

√
2|ξ|
ρ

sinα

(
1−O(

ρ

|ξ|
sin θ)

)
=

√
2dρ(ξ)

ρM

(
1−O(

ρ

|ξ|
− 1

M
)

)
.

The triangle 4PO0Q has angles φ′κρ , α+ π
2 and θ′κρ , which add up to π. Hence

π

2
− φ′κρ = α+ θ′κρ =

√
2dρ(ξ)

ρM

(
1−O

(
ρ

|ξ|
− 1

M
+

√
dρ(ξ)ρ

|ξ|
√
M

))
(11)

10



as claimed. �

2.3 Hyperbolicity of the Lorentz gas with small scatterers

The derivative DTρ : TM→ TM preserves the unstable cone field

Cux =

{
(dθ, dφ) ∈ TxM : 1 ≤ 1

2π

dφ

dθ
≤ 1 +

ρ

τmin

}
. (12)

This is [10, page 74] in the coordinates θ = r/2πρ, and we can sharpen this cone by replacing τmin

by τ(x), the flight time at x before the next collision. The derivative of the inverse of the billiard
map preserves the stable cone field

Csx = {(dθ, dφ) ∈ TxM : −1− ρ

τmin
≤ 1

2π

dφ

dθ
≤ −1}. (13)

Clearly, these cone-fields are transversal uniformly overM, and Sn is a unstable (or stable) curve if
n > 0 (or n < 0).

In the billiard literature it is common to use a pseudo-norm, the p-norm for unstable vectors,
defined as ‖dx‖p = cosφdr. When restricted to the unstable cone, the p-norm is non-degenerate.
With the notation R(x) = 2

ρ cosφ , the expansion/contraction factor Λ on unstable vectors in the
p-norm satisfies

Λ ≥ 1 + τ(x)R(x) ≥ 1 + τminRmin = 1 +
2τmin

ρ
.

This proves uniform hyperbolicity of the billiard map.
In our coordinates the p-norm can be also expressed as ‖dx‖p = 2π ρ cosφdθ, and it is related

to the standard Euclidean norm as

‖dx‖ =

√
1 + (dφdr )2

cosφ
‖dx‖p =

√
4π2ρ2 + (dφdθ )2

2πρ cosφ
‖dx‖p.

The expansion of DTρ of unstable vectors is uniform in the p-norm, see [10, Formula (3.40)]:

‖DTρ(dx)‖p
‖dx‖p

= 1 +
τ(x)

cosφ
(K +

dφ

dr
) =

τ(x)

ρ cosφ

(
1 +

1

2π

dφ

dθ
+
ρ cosφ

τ(x)

)
.

Expressed in Euclidean norm, this gives, for DTρ(dx) = (dθ1, dφ1),

‖DTρ(dx)‖
‖dx‖

=

√√√√4π2ρ2 + (dφ1

dθ1
)2

4π2ρ2 + (dφdθ )2

τ(x)

ρ cosφ1

(
1 +

1

2π

dφ

dθ
+
ρ cosφ

τ(x)

)
. (14)

For later use, if Tρ(x) is in the homogeneity strip Hk, then cosφ1 ≈ k−r0 .

3 Growth lemmas

As already mentioned in the introduction, the main line of our argument uses perturbed transfer
operators acting on the Banach spaces constructed in [14] and [16]. These works, as essentially all
other methods studying statistical properties of hyperbolic billiards, rely on appropriately formulated
growth lemmas, which quantify the competition of the two main dynamical effects, singularities and

11



expansion, in these systems. The constructions of [14] and [16] involve several exponents, which
thus are present in our setting, too. Additionally, we have to introduce some further exponents as
we study perturbed transfer operators. Before stating the growth lemmas, here we include a table
summarizing the role and the interrelation of these exponents. Essentially, we use the same notation
as in [14] except for some subscripts 0, and in fact some of the constants reduce to their value in [14]
if r0 = 2.

r0 ≥ 2 is the exponent of the homogeneity strips:

H±k = {| ± π
2 − ϕ| ∈ [(k + 1)−r0 , k−r0)},

0 < ν < 1
2 −

1
2r0

the exponent of κρ in the continuity estimate for the

transfer operator,

ς0 = 1− 2r0ν
r0−1 upper bound on ς in the Jensenized growth lemma, see (25),

α0 < min
(

1
2(r0+1) , ς0

)
needed for [14, Lemma 3.7] for general r0,

s0 = 1−α0(r0+1)
2r0

> 0 used in Lemma 6.1,

0 < q0 < p0 <
1

r0+1 cf. Lemma B.2,

0 < β0 < min{α0
2 , p0 − q0}.

(15)

We use a classWs of admissible stable leaves defined as C2 leaves W in the phase space such that
all its tangent lines are in the stable cone bundle, their second derivative is uniformly bounded, W
is contained in a single homogeneity strip, κρ(x) is constant on W and there is a ρ-dependent upper
bound on |W |, namely

sup
W∈Ws

|W | = δ0 := cρν , (16)

where the small c > 0, to be fixed below, is independent of ρ.
Let W ∈ Ws be an admissible stable leaf. The preimage T−1

ρ (W ) is cut by the discontinuity lines
S1 and boundaries of homogeneity strips into at most countably many pieces Vi. Note that we may
have to cut the pieces Vi further into curves Wi of length ≤ δ0.

3.1 The growth lemma in terms of Vi

The particle can reach the scatterer O0 at the origin from corridors in all directions, indexed by
(ξ, ξ′) ∈ Ψ, see Figure 3. If the previous scatterer is ±ξ itself, we call this a trajectory from the
ξ-boundary; if the previous scatterer is at lattice point ξ′ −Mξ, the trajectory comes in from the
ξ′-boundary, see Remark 2.2. To each such scatterer and homogeneity strip Hk belongs at most
one Vi, and the contraction |TρVi|/|Vi| is governed by (14), where the distortion Tρ : Vi → TρVi is
uniformly bounded, see Appendix B.

Proposition 3.1 Assume 0 ≤ ν < 1
2 −

1
2r0

. Then there is a constant C > 0, uniform in ρ, ν and r0

such that ∑
i

|κρ(Vi)|ν
|TρVi|
|Vi|

≤ C
(
ρ+ ρ−ν δ0

)
for every stable leaf W ∈ Ws.

Remark 3.2 (i) Since |W | ≤ δ0 ≤ cρν , there is θ∗ < 1 such that∑
Vi

|κρ(Vi)|ν
|TρVi|
|Vi|

≤ 3C(ρ+ c) ≤ θ∗,

12



for ρ sufficiently small, and c chosen appropriately small. In addition, we assume that

δ1 ∈ (0, δ0/2) is such that θ∗e
Cdδ

1/(r0+1)
1 =: θ1 < 1 (17)

for distortion constant Cd from Lemma B.2;

(ii) As later we will need ν > 1
3 , we can take r0 = 5 and ν = 3

8 .

Proof. The homogeneous admissible preimage curves T−1
ρ W = ∪iVi are obtained by partitioning

according to

• incoming corridors ξ;

• for a fixed corridor ξ, the scatterer on which Vi is located. Accordingly, κρ(Vi) = Mξ − ξ′ for
some M ∈ N, and the summation is over M ;

• for a fixed scatterer, the homogeneity strip containing Vi, that is, Vi ⊂ Hk for some k.

If W is on the scatterer O0 and Vi is on the scatterer Oξ′−Mξ, then both of these scatterers are

tangent to the same corridor. The trajectory makes and angle ∼ dρ(ξ)
M |ξ| with the corridor and there is

a lower bound on the collision angle given by (11). This puts restrictions on how M is related to k;
as reflected by allowed intersections of homogeneity strips and M -cells on Figure 2. In particular

k ≥ C(ρdρ(ξ)
−1M)

1
2r0 (18)

which determines the range of k for M fixed.
We sum over the homogeneity strips for ξ and M fixed on the ξ′ boundary.∑

Vi∈Mξ′−Mξ

|κρ(Vi)|ν
|TρVi|
|Vi|

� ρ|ξ|νMν

|ξ|M
∑

k≥(max{C( ρM
dρ(ξ)

,1})
1

2r0

1

kr0

� ρ
1

2r0
+ 1

2 |ξ|ν−1dρ(ξ)
1
2
− 1

2r0M
ν− 3

2
+ 1

2r0

� ρ
1

2r0
+ 1

2 |ξ|ν−
3
2

+ 1
2r0M

ν− 3
2

+ 1
2r0 ,

where we used that the exponent 1
2−

1
2r0

of dρ(ξ) is non-negative. By our assumption that ν < 1
2−

1
2r0

,
this expression is summable over M , and therefore the sum over the ξ′-boundary of the entire ξ-
corridor is ∑

corridor ξ

|κρ(Vi)|ν
|TρVi|
|Vi|

� ρ
1
2

+ 1
2r0 |ξ|ν−

3
2

+ 1
2r0 .

The sum over homogeneity strips for ξ fixed on the ξ-boundary is no different:∑
Vi∈M−ξ

|κρ(Vi)|ν
|TρVi|
|Vi|

� ρ|ξ|ν

|ξ|
∑
k≥1

1

kr0
� ρ|ξ|ν−1.

Next we sum over all opened-up corridors, indexed by all the “visible” lattice points inside a
sector of angle |W |/

√
1 + 4π2, because only trajectories from scatterers within such a narrow sector

can hit O0 at coordinates in W . The “visible” corridors will be denoted by ΨW . It can happen that
a single corridor, or even a single scatterer in a corridor blocks the entire sector, and we reserve one
term for |ξ| ≥ 1 (which is the worst case because the contraction of Tρ is the weakest). Apart from

13



this corridor, and since we need an upper bound, we can replace we replace |W | by a stable curve of
length δ0, and apply Lemma A.6 for a = 1− ν and a = 3

2 − ν −
1

2r0
. This gives∑

Vi

|κρ(Vi)|ν
|TρVi|
|Vi|

� ρ+
∑

(ξ,ξ′)∈ΨW

ρ|ξ|ν−1 + ρ
1
2

+ 1
2r0 |ξ|ν−

3
2

+ 1
2r0

� ρ+ ρ−νδ0 + ρ1−ν log(1/ρ) + ρ1−νδ−1
0

+ ρ−νδ0 + ρ1−ν log(1/ρ) + ρ2−νδ−1
0

� ρ+ ρ−νδ0 + ρ1−ν log(1/ρ) + ρ1−νδ−1
0 .

Since δ0 = cρν and ν < 1
2 , this completes the proof. �

3.2 The growth lemma in terms of Wi

The pieces of preimage leaf Vi ⊂ T−1
ρ (W ) emerge by natural cutting at the discontinuity set S1 and

the homogeneity strips, but even so, their lengths can be larger than δ0, the bound of admissible
stable leaves. We therefore need to cut them into shorter pieces, denoted as Wi. In the worst case,
each Vi needs to be cut into δ−1

0 pieces, which gives the estimate∑
i

|κρ(Wi)|ν
|TρWi|
|Wi|

≤ C
(
ρδ−1

0 + ρ−ν
)
� ρ−ν . (19)

Although this estimate suffices for some purposes, it is not always good enough for larger iterates Tnρ .
The next lemma (which follows [14, Lemma 3.2] or [16, Lemma 3.3]) achieves an estimate, uniform
in n, for ν = 0.

For the next lemma we recall some notation used in [16]. For W ∈ Ws, we construct the
components Gk(W ) of T−kρ W inductively on k = 0, . . . , n. That is G0(W ) = {W}, and to obtain
Gk+1(W ) first we apply Proposition 3.1 to each curve in Gk(W ), and then we partition curves that
are longer then δ0 into pieces of length between δ0 and δ0/2. We enumerate the leaves of the k-th
generation Gk(W ) as W k

i .

Lemma 3.3 There is a constant Cs > 0, independent of ρ, such that∑
Wn
i ∈Gn(W )

|TnρWn
i |

|Wn
i |
≤ Cs, (20)

and ∑
Wn
i ∈Gn(W )

|Wn
i |ς

|W |ς
|TnρWn

i |
|Wn

i |
≤ C1−ς

s , (21)

for all ς ∈ [0, 1).

Proof. Define Lk as the collection of indices such that W k
i ∈ Gk(W ) is long, i.e., |W k

i | ≥ δ1 for
i ∈ Lk, and In(W k

j ) as the collection indices of Wn
i such that their most recent long ancestor is

W k
j ∈ Gk(W ). If for some Wn

i1
no such long ancestor exists, then set k(i1) = 0 and Wn

i1
belongs

to In(W ); if Wn
i2

is itself long, then set k(i2) = n. Fix some j ∈ Lk. As for W i
n ∈ In(W k

j ) the

preimages under Tn−kρ of Tn−kρ W i
n need not be cut artificially (they are already short), and due to

the distortion bound from Lemma B.2,∑
i∈In(Wk

j )

|Tn−kρ Wn
i |

|Wn
i |

≤ θn−k1 , for θ1 = θ∗e
Cd|δ1|

1
r0+1

. (22)
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Recall that by our assumption δ1 is so small that θ1 < 1. In the estimate below, we group Wn
i ∈

Gn(W ) according to their most recent long ancestors.

∑
i

|TnρWn
i |

|Wn
i |

=

n∑
k=1

∑
Wk
j ∈Lk(W )

∑
i∈In(Wk

j )

|TnρWn
i |

|Wn
i |

+
∑

i∈In(W )

|TnρWn
i |

|Wn
i |

≤
n∑
k=1

∑
Wk
j ∈Lk(W )

 ∑
i∈In(Wk

j )

|Tn−kρ Wn
i |

|Wn
i |

 eδ
1/r0+1
1 Cd

|T kρW k
j |

|W k
j |

+ θn1

≤
n∑
k=1

∑
Wk
j ∈Lk(W )

θn−k1 δ−1
1 |T

k
ρW

k
j |+ θn1

≤ Cδ−1
1 |W |

n∑
k=1

θn−k1 + θn1 ≤ Cs, (23)

where we have used that for fixed k and W k
j ∈ Lk(W ), (i) |W k

j | ≥ δ1, (ii) the T kρW
k
j are pairwise

disjoint subcurves of W , and (iii) |W | ≤ δ1. By Jensen’s inequality and (23),

∑
i

|Wn
i |ς

|W |ς
|TnρWn

i |
|Wn

i |
=

∑
i

(
|W |
|Wn

i |

)1−vs |TnρWn
i |

|W |
≤

(∑
i

|TnρWn
i |

|Wn
i |

)1−ς

� C1−ς
s ,

which proves the second statement. �

It is worth including the following bound, which follows from (22) by Jensen inequality:∑
i∈In(W )

|Wn
i |ς

|W |ς
|TnρWn

i |
|Wn

i |
≤ θ(1−ς)n

1 , for all ς ∈ [0, 1). (24)

Remark 3.4 For further reference, we state a version of (21) for ν > 0, n = 1. Let ς0 = 1− 2r0ν
r0−1 .

∑
i

|κρ(Wi)|ν
|TρWi|
|Wi|

|Wi|ς

|W |ς
� ρ−ν , for all ς ∈ [0, ς0). (25)

This follows by Jensen’s inequality from (19), applied with ν
1−ς in place of ν. The condition ς < ς0

ensures that ν
1−ς <

1
2 −

1
2r0

. For the choices r0 = 5, ν = 3
8 we have ς0 = 1

16 .

4 Banach spaces and spectral gap

For the exponents p0 and q0 defined in (15) we define the Banach spaces (of distributions) Cp0 ,B,Bw, (Cq0)′

in analogy to [16]. 3 We recall that (Cq0)′ is the topological dual of Cq0 .
Given W ∈ Ws, let mW be the Lebesgue measure on W , and define

|ψ|W,α,p0 := |W |α cosW |ψ|Cp0 , |ψ|Cp0 := |ψ|C0 +Hp0

W (ψ),

for α ≥ 0, cosW = |W |−1
∫
W cosφdmW (note that cosW � k−r0 if W ⊂ H±k), and Hp0

W (ψ) the
Hölder constant of ψ along W . Also let dW (W1,W2) stand for the distance between leaves as in [14,

3Note that our set-up fits the conditions (H1)-(H5) in [16, Section 2.1], with f(x) = f(θ, φ) = cosφ and κρ = 1 in (H1),
rh = r0 + 1 in (H2), ξ = 1

2 and t0 = 1 in (H3), p0 = 1
r0+1 in (H4) and γ0 = 0 in (H5).
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Section 3.1] or [16, Section 3.1]; in particular, if W1 and W2 belong to the same homogeneity strip,
dW (W1,W2) is the C1 distance of their graphs in the (θ, φ) coordinates, and otherwise infinite.

Given W ∈ Ws and h ∈ C1(W ), define the weak norm4

‖h‖Bw := sup
W∈Ws

sup
|ψ|∈Cp0 (W )

|ψ|W,0,p0≤1

∫
W
hψ dmW . (26)

With q0 < p0 fixed we define the distance between functions d(ψ1, ψ2) in the same way as in [14,
Section 3.1]. We define the strong stable norm by

‖h‖s := sup
W∈Ws

sup
ψ∈Cq0 (W )

|ψ|W,α0,q0
≤1

∫
W
hψ dmW . (27)

Choosing ε0 ∈ (0, δ0) and β0 ∈ (0,min{α0, p0 − q0}), we define the strong unstable norm by

‖h‖u := sup
ε≤ε0

sup
W1,W2∈Ws

d(W1,W2)≤ε

sup
ψi∈Cp0 (W ),
|ψi|C1(W )≤1

dq0 (ψ1,ψ2)≤ε

1

εβ0

∣∣∣∣∫
W1

hψ1 dmW −
∫
W2

hψ2 dmW

∣∣∣∣ . (28)

The strong norm is defined by ‖h‖B = ‖h‖s + cu‖h‖u, where we will fix cu � 1 (but independent of
ρ) at the beginning of Subsection 5.2.

Since Cp0 ⊂ B ⊂ Bw ⊂ (Cq0)′ (see Subsection 4.1), we have ‖h‖Bw + ‖h‖B ≤ C‖h‖C1 . As in [16],
we define B to be the completion of C1 in the strong norm and Bw to be the completion in the weak
norm.

4.1 Transfer operator on B
Throughout we let Rρ : L1(m) → L1(m) be the transfer operator of the billiard map Tρ. We recall
that [14, Lemmas 3.7-3.10] ensure that: i) Rρ(C

1) ⊂ B and as a consequence R is well defined on B;
Bw; ii) the unit ball of B is compactly embedded in Bw, and iii) Cp0 ⊂ B ⊂ Bw ⊂ (Cq0)′.

It follows that Rρ is well defined on B and Bw, and we also let Rρ denote the extension of this
transfer operator to Bw.

4.2 Lasota-Yorke inequalities

Using Proposition 3.1 with ν = 0 and Lemma 3.3 we obtain the analogue of the Lasota-Yorke
inequality [16, Proposition 2.3]. As our set-up fits [16], our only concern is the dependence on ρ. It
is important to point out that our all estimates in Section 3 and Appendix B are independent of ρ,
except that δ1 < δ0 � ρν .

Lemma 4.1 (Weak norm) There exists a uniform constant C > 0 so that for all h ∈ B and for
all n ≥ 0,

‖Rnρh‖Bw ≤ C · Cs ‖h‖Bw ,

where Cs is given by (20).

4In the definition of the weak norm [16] uses test functions with |ψ|W,γ,p ≤ 1 for some γ > 0, and requires p < γ.
However, this is needed only to ensure that the inclusion Bw ↪→ (Cp)′ is injective, cf. [16, Lemma 3.8]. Since we do not use
this property, we can take γ = 0 in the definition of the weak norm, and avoid additional restrictions on p0.
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Proof. For W ∈ Ws, h ∈ C1(M0), ψ ∈ Cp0(W ) with |ψ|W,α0,p0 ≤ 1,∫
W
Rnρhψ dmW =

∑
Wn
i ∈Gn(W )

∫
Wn
i

h
JWn

i
Tnρ

|DTnρ |
ψ ◦ Tnρ dmW .

Using the present definition of the weak norm,∫
W
Rnρhψ dmW ≤

∑
Wn
i ∈Gn(W )

∫
Wn
i

‖h‖Bw
|JWiTρ|Cp0 (Wi)

|DTρ|
|ψ ◦ Tρ|Cp0 (Wi) cos(Wn

i ) dmW .

From here on the argument goes almost word for word as the argument in [16, Section 4.1], except
for the use of equation (20) (the analogue of [16, Lemma 3.3(a)] with ς = 0). �

Lemma 4.2 (Strong stable norm) Take δ1 as in (17) and θ1 as in (22). There exists a uniform
constant C > 0 so that for all h ∈ B and all n ≥ 0,

‖Rnρh‖s ≤ C
(
θ

(1−α0)n
1 + C1−α0

s Λ−q0n
)
‖h‖s + Cδ−α0

1 ‖h‖Bw .

Remark 4.3 The compact term Cδ−α0
1 ‖h‖Bw in Lemma 4.2 is the only point in the Lasota-Yorke

inequalities where a ρ-dependence arises, via δ1 = cρν .

Proof. The argument goes almost word for word as the [16, Argument in Section 4.2], except for
the differences:

i) We use of equation (21) with ς = α0 instead of [16, Lemma 3.3 (b)] (also with ς = α0) in [16,
Equation (4.5)]. In particular, using the present definition of the stable norm, with the same notation
as in [16, Section 4.2], we have the following analogue of [16, Equation (4.5)]:∑

Wn
i ∈Gn(W )

∫
Wn
i

h
JWn

i
Tnρ

|DTnρ |
(
ψ ◦ Tnρ − ψ̄i

)
dmW

� Λ−q0n‖h‖s
∑

Wn
i ∈Gn(W )

|Wn
i |α0

|W |α0

|TnρWn
i |

|Wn
i |

� Λ−q0n‖h‖s,

where we have used the distortion bounds of Appendix B and Formula (21) (with ς = α0).
ii) To obtain the analogue of [16, Equation (4.6)], as in [16, Section 4.2], we split the sum

n∑
k=0

∑
j∈Lk

∑
i∈In(Wk

j )

|W |−α0(cosW )−1

∫
Wn
i

h
JWn

i
Tnρ

|DTnρ |
dmW

into a term for k = 0 and further terms for k = 1, . . . , n. For k = 0, we use the strong stable norm

and (24) (the analogue of [16, Lemma 3.3(a)]) with ς = α0, giving a contribution � ‖h‖sθn(1−α0)
1 .

For the terms k = 1, . . . n, we use the weak norm, (21) (the analogue of [16, Lemma 3.3(b)]) with
ς = α0, and the fact that |W k

j | ≥ δ1 for j ∈ Lk(W ), resulting in a contribution of O(‖h‖Bwδ
−α0
1 ). �

As in [16], dealing with the strong unstable norm is the most delicate part of the Lasota-Yorke
inequality. The only difference from [16, Argument in Section 4.3] is that we apply (20) (instead
of [16, Lemma 3.3 (b)]) multiple times. Note that our bound in (20) is independent of ρ, so no
ρ-dependence arises here.
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Lemma 4.4 (Strong unstable norm) There exists a uniform constant C > 0 so that for all h ∈ B
and for all n ≥ 0,

‖Rnρh‖u ≤ C · Cs · Λ−β0n‖h‖u + C · Cs · n‖h‖s.

Proof. Given W1,W2 ∈ Ws with d(W1,W2) ≤ ε, we may identify matched and unmatched pieces
in T−nρ W`, ` = 1, 2. The estimates of [16] on the length of the unmatched pieces apply, thus we may
estimate their contribution by the strong stable norm using (20) (instead of [16, Lemma 3.3 (b)]).
As the length estimates give εα0/2, β0 < α0/2 is essential here (cf. [16, Formulas (4.10) and (4.11)],
noting that γ = 0 in our case).

To bound the contribution of the matched pieces we use, on the one hand, the strong unstable
norm (as in [16, Formula (4.14)]) and, on the other hand, the strong stable norm (as in [16, Formula
(4.17)]). Here again we rely on equation (20) which plays the role of [16, Lemma 3.3 (b)]. β0 < p0−q0

ensures that after division by εβ0 the proof of Lemma 4.4 can be completed. �

5 Perturbed transfer operators

A standard way of obtaining limit theorems for dynamical systems is via the perturbed transfer
operator method. In Section 7 we will use the spectral properties of the family of perturbed transfer
operators R̂ρ(t), t ∈ R with R̂ρ(t)h = R(eitκρh), h ∈ L1(m).

5.1 Continuity properties

By definition, R̂ρ(0) = Rρ. Take 0 ≤ ν < 1
2 −

1
2r0

as in Proposition 3.1. In this subsection we show
the following continuity estimate:

‖(R̂ρ(t)− R̂ρ(0))h‖B ≤ Cρ−ν |t|ν‖h‖B (29)

for some uniform constant C.
The argument goes parallel to Subsection 4.2, except that this time we need the estimates (i) for

ν > 0 and (ii) only for n = 1, we rely on (19) and (25) instead of Lemma 3.3.

Lemma 5.1 Assume (16). Then there exists a uniform constant C > 0 so that for all h ∈ B,

‖Rρ(eitκρ − 1)h)‖Bw ≤ Cρ−ν |t|ν‖h‖Bw .

Proof. The argument goes similarly to the argument in [16, Section 4.1] restricted to the case n = 1.
More precisely, for W ∈ Ws, h ∈ C1(M0), ψ ∈ Cp0(W ) with |ψ|W,α0,p0 ≤ 1,∫

W
Rρ(e

itκρ − 1)hψ dmW =
∑

i∈G1(W )

∫
Wi

(eitκρ − 1)h
JWiTρ
|DTρ|

ψ ◦ Tρ dmW .

Using the definition of the weak norm and the inequality |eix − 1| ≤ xν ,∫
W
Rρ(e

itκρ − 1)hψ dmW ≤ |t|ν
∑

i∈G1(W )

∫
Wi

‖h‖Bw |κρ(Wi)|ν

×
|JWiTρ|Cp0 (Wi)

|DTρ|
|ψ ◦ Tρ|Cp0 (Wi) cos(Wi) dmW .

From here on the proof goes the same as the argument in [16, Section 4.1] except for the use of
equation (19) instead of [16, Lemma 3.3 (b)]. �
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Lemma 5.2 There exists a uniform constant C > 0 so that for all h ∈ B and for all n ≥ 0,

‖Rρ(eitκρ − 1)h)‖s ≤ C|t|νρ−ν‖h‖s.

Proof. This time we are only concerned with n = 1, and do not need a contraction of the strong
stable norm. Hence, an argument analogous to the proof of Lemma 5.1 suffices, with the weak norm
replaced by the strong stable norm. Accordingly, we use (25) with ς = α0 instead of [16, Lemma 3.3
(b)]. �

Lemma 5.3 There exists a uniform constant C > 0 so that for all h ∈ B,

‖Rρ(eitκρ − 1)h)‖u ≤ C|t|ν
(
ρ−ν · ‖h‖u + ρ−ν · ‖h‖s)

)
.

Proof. As with the proof of Lemma 4.4, the argument goes similar to [16, Argument in Section 4.3],
restricted to the case n = 1. The matched and unmatched pieces can be again identified, this time
for T−1

ρ W`, ` = 1, 2. Then, as in the proof of Lemma 5.1, the factors |t|ν and |κρ|ν arise. Clearly
κρ is constant on each of the (matched or unmatched) pieces, and takes the same value on any two
pieces that are matched. Accordingly, the various contributions can be estimated in the same way as
in proof of Lemma 4.4, with the only difference that, by the presence of the factor |κρ|ν , throughout
the argument (19) is used instead of (20). �

Equation (29) follows from the definition of the norm in B together with Lemmas 5.1, 5.2 and 5.3.

5.2 Peripheral spectrum and spectral gap

Choose 1 > σ > max{Λ−β0 , θ
(1−α0)
1 ,Λ−q0}. By Lemmas 4.1, 4.2 and 4.4 and arguing as in [16,

Equation (2.14)], we obtain the traditional Lasota-Yorke inequality for some N ≥ 1, provided cu in
the definition of ‖ ‖B (below (28)) is chosen small enough in terms of N . That is,

‖RNρ h‖B ≤ σN‖h‖B + Cδ−α0
1 ‖h‖Bw . (30)

Combined with the properties collected in Subsection 4.1 (that is, the relative compactness of the
unit ball of B in Bw), equation (30) shows that the essential spectral radius of Rρ is bounded by σ
and that the spectral radius is 1.

Let Πρ be the eigenprojection (that is, the projection on the eigenspace of Rρ) corresponding to
the eigenvalue 1. In particular, Πρµ = µ is the invariant measure for Tρ. Since for every ρ, Tρ is
mixing, the peripheral spectrum of Rρ consists of just the simple eigenvalue at 1. Thus, for every
ρ > 0, the eigenprojection Πρ corresponding to the eigenvalue 1 of Rρ can be also characterized by

Πρh = lim
m→∞

Rmρ h, (31)

for all h ∈ B.
Let Qρ be complementary spectral projection. From here onwards, we exploit that for every

ρ > 0, there exist γρ ∈ (0, 1) and Cρ > 0 so that

‖Qmρ ‖B ≤ Cρ(1− γρ)m (32)

for every m ≥ 1. Altogether, Rmρ = Πρ +Qmρ , where Qρ satisfies (32).
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6 Asymptotics of the dominant eigenvalue

To establish limit theorems (such as Theorem 7.1 below) we study the asymptotics of Eµ(eitκm,ρ1) =
Eµ(R̂ρ(t)

m1), as t→ 0 and m→∞ via the properties of R̂ρ(t)h = Rρ(e
itκρh), h ∈ B.

We already know that for every ρ ∈ (1
3 ,

1
2), 1 is a simple eigenvalue of R̂ρ(0) = Rρ when viewed

as an operator from B to B. Due to (29), R̂ρ(t) is Cν (in t) from B to B. It follows that for t in a
neighbourhood of 0, R̂ρ(t) has a dominant eigenvalue λρ(t) (with λρ(0) = 1).

Let γρ be as in equation (32). The continuity properties together with (32) ensure that for any
δ ∈ (0, γρ) and t ∈ Bδ(0),

R̂ρ(t)
m = λρ(t)

mΠρ(t) +Qρ(t)
m, ‖Qρ(t)m‖B ≤ Cρ(1− γρ)m, (33)

for some Cρ > 0 and Πρ(t)
2 = Πρ(t), Πρ(t)Qρ(t) = Qρ(t)Πρ(t) = 0. Further, for all t ∈ Bδ(0),

Πρ(t) =

∫
|u−1|=δ

(u− R̂ρ(t))−1 du, (34)

for all t small enough. A standard consequence of (29) and (32) is that for every δ ∈ (0, γρ) and for
all u so that |u− 1| = δ,

‖(u− R̂ρ(t))−1 − (u− R̂ρ(0))−1‖B ≤ Cρ−ν |t|ν‖(u− R̂ρ(t))−1‖B‖(u− R̂ρ(0))−1‖B
≤ Cρ−νγ−2

ρ |t|ν . (35)

Hence, ‖Πρ(t)−Πρ(0)‖B ≤ Cρ−ν |t|νρ−νγ−2
ρ |t|ν .

The rest of this section is allocated to the study the asymptotics of λρ(t) as t→ 0.
The following property was used in [21, 6, 7] (see [7, assumption (H2)]) for the study of eigenvalues

of perturbed transfer operators in the Banach spaces introduced in [12]. Here we use it to obtain an
adequate analogue for the present set-up.

Lemma 6.1 Take s0 = 1−α0(r0+1)
2r0

as in (15). Let h ∈ B and v ∈ Cp0. For every corridor with
boundaries determined by Oξ and Oξ′, there exists a constant C > 0 independent of ρ and ξ so that∣∣∣∣∫ hv1{κρ=ξ′+Nξ} dm

∣∣∣∣ ≤ C‖h‖s|v|Cq0dρ(ξ) 3
2
−s0 |ξ|−1ρ−

1
2

+s0N−
5
2

+s0 .

Proof. Let {W`}`∈L be the foliation of the set {κρ = ξ′+ξN} into stable leaves. We can parametrise

these leaves by their endpoints (`, π2 ) in S0, then L is an interval of length c � dρ(ξ)
N2|ξ| according to

Lemma 2.3. The lengths of these stable leaves |W`| ≤ c′ for another constant c′ �
√

2dρ(ξ)
ρN , again by

Lemma 2.3. The measure dmW`
is Lebesgue on the C1 stable leaf W`, and it can be parametrised

as (w`(φ), φ) where w is C1 with − 1
2π

ρ+τmin
τmin

< w′(φ) < − 1
2π because of the direction of the stable

cones, see (13).
Let ν be a measure on L that produces the decomposition of Lebesgue measure m on {κρ =

ξ′ + ξN} along stable leaves. We have ν � mL (and dν/dmL is bounded above). Since we need to
partition stable leaves W` by the homogeneity strips Hk near S0 into pieces W`,k := W` ∩Hk, we get
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an extra sum over k ≥ k(c′) := b(c′)−1/r0c. Then

∣∣∣∣∫ hv1{κρ=Nξ+ξ′} dm

∣∣∣∣ =

∣∣∣∣∣∣
∫
L

∑
k≥k(c′)

∫
W`,k

h v dmW`
dν(`)

∣∣∣∣∣∣
�

∣∣∣∣∣∣
∫
L
|v|Cq0

∑
k≥k(c′)

∫
W`,k

h
v

|v|Cq0
dmW`

d`

∣∣∣∣∣∣
≤ |v|Cq0‖h‖s

∫
L

 ∑
k≥k(c′)

|W`,k|α0−1

∫
W`,k

cosφ
√

1 + |w′(φ)|2 dφ

 d`

� |v|Cq0‖h‖s
∫
L

∑
k≥k(c′)

|W`,k|α0k−r0−(r0+1)α0 d`

≤ |v|Cq0 ‖h‖s c k(c′)1−α0(r0+1)−r0

� |v|Cq0‖h‖s|ξ|−1dρ(ξ)
3
2
−s0ρ−

1
2

+s0N−
5
2

+s0 ,

for s0 = 1−α0(r0+1)
2r0

, as claimed. �

Using (35), Lemma A.2 and Lemma 6.1 we obtain the asymptotics of the eigenvalue in Proposi-
tion 6.3 below.

Lemma 6.2 For t ∈ R2, let Ā(t, ρ) =
∑
|ξ|≤1/(2ρ)

dρ(ξ)2〈t,ξ〉2
|ξ| . Then

lim
ρ→0

ρ

2
Ā(t, ρ) =

|t|2

π
= 〈Σt, t〉 for Σ =

(
1
π 0
0 1

π

)
as defined in (1).

Proof. The coordinate axes p = 0 and q = 0, and the two diagonals p = q and p = −q divide the
plane into eight sectors. Here we count counter-clockwise with the first sector Ψ1 directly above the
positive p-axis. Let γ = γ(t, ξ) be the angle between the vectors t and ξ. Let α = arctan q/p and θ
be the polar angles of ξ and t ∈ R2 respectively, so γ = θ − α. For the first sector Ψ1, taking into
account that for every ξ there are two ξ′, we have∑

(ξ,ξ′)∈Ψ1

dρ(ξ)
2〈t, ξ〉2

|ξ|
= 2|t|2

∑
(ξ,ξ′)∈Ψ1

dρ(ξ)
2(|ξ| cos γ)2

|ξ|

= 2|t|2
∑

(ξ,ξ′)∈Ψ1

dρ(ξ)
2(cos θ cosα|ξ|+ sin θ sinα|ξ|)2

|ξ|

= 2|t|2
∑

(ξ,ξ′)∈Ψ1

dρ(ξ)
2(p cos θ + q sin θ)2

|ξ|
.

The eighth sector Ψ8 directly below the positive p-axis gives the same result with −q instead of q,
and sectors Ψ4 and Ψ5 above and below the negative p-axis give the same results as sectors Ψ8 and
Ψ1. Therefore ∑

(ξ,ξ′)∈Ψ1∪Ψ4∪Ψ5∪Ψ8

dρ(ξ)
2

|ξ|
= 4|t|2

∑
(ξ,ξ′)∈Ψ1

dρ(ξ)
2

|ξ|
(p2 cos2 θ + q2 sin2 θ).
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The same result holds the remaining sectors with cos θ replaced by sin θ and vice versa. Putting the
results on all eight sectors together, we get by Lemma A.4∑

(ξ,ξ′)∈Ψ

dρ(ξ)
2〈t, ξ〉2

|ξ|
= |t|2

∑
(ξ,ξ′)∈Ψ

(|ξ|−1 − 2ρ)2

|ξ|
(p2 + q2)

= |t|2
∑

(ξ,ξ′)∈Ψ

|ξ|−1 − 4ρ+ 4ρ2|ξ|

= |t|2 2π

ζ(2)

1

2ρ
(1− 2

2
+

1

3
)(1 + o(1)) =

2|t|2

ρπ
(1 + o(1)).

Hence 〈Σt, t〉 = limρ→0
ρ
2 Ā(t, ρ) = |t|2

π , as required. �

For the result on the asymptotics of the eigenvalue in Proposition 6.3, we will also assume some
correlation decay type results. Namely, we assume that there exist ρ-dependent constants γ̂ρ ∈ (0, 1)
and Ĉρ > 0 so that for every j ≥ 1,∣∣∣∣∫

M0

(eitκρ − 1) (eitκρ − 1) ◦ T jρ dµ−
(∫
M0

(eitκρ − 1) dµ
)2
∣∣∣∣ ≤ Ĉρ|t|2(1− γ̂ρ)j . (36)

More generally, we assume that that there exist ρ-dependent constants γ̄ρ ∈ (0, 1) and C̄ρ > 0 so
that for every j ≥ 1 and every m ≥ 0∣∣∣ ∫

M0

(eitκρ − 1) ·Rρ(0)m(eitκρ − 1) (eitκρ − 1) ◦ T jρ dµ (37)

−
∫
M0

(eitκρ − 1)Rρ(0)m(eitκρ − 1) dµ

∫
M0

(eitκρ − 1) dµ

− C
(∫
M0

(eitκρ − 1) dµ
)∫
M0

(eitκρ − 1) (eitκρ − 1) ◦ T jρ dµ

+ C
(∫
M0

(eitκρ − 1) dµ
)3∣∣∣ ≤ C̄ρ|t|2(1− γ̄ρ)m+j ,

where C = 0 if m = 0 and C = 1 if m ≥ 1. As justified in Proposition C.1 in Appendix C via the
argument used in [11, Proof of Proposition 9.1], assumptions (36) and (37) are natural.

Proposition 6.3 Assume (32), (36) and (37), and let Ā(t, ρ) be as defined in Lemma 6.2. Let
ν ∈ (1

3 ,
1
2) and δ ∈ (0, 1

2 min{γρ, γ̂ρ}), ensuring that (33) holds. Then for any δ0 ≤ δ4/(3ν−1) and
t ∈ Bδ0(0),

1− λρ(t) = Ā(t, ρ)
log(1/|t|)

8πρ
+ E(t, ρ),

where |E(t, ρ)| ≤ C̄ρ γ̄−2
ρ |t|2 + C|t|2ρ−2 for C̄ρ and γ̄ρ as in (37) and some uniform constant C.

Remark 6.4 It is possible to shrink δ0 further to δ0 < e−max{C̄ργ̄−2
ρ ,ρ−2} leading to E(t, ρ) =

o(|t|2 log |1/t|). This would mean that in the proof of main results in Section 7 we would work
on this very small neighborhood and obtain the same range of n and ρ in the final statements. We
find it more convenient to work on the neighborhood Bδ0(0) as in the statement above.

Remark 6.5 Let qρ be the flight function taking values in R2 as opposed to the displacement function
κρ taking values in Z2. A similar statement holds for the the dominant eigenvalue of the perturbed
operator Rρ(e

itqρ). The proof is similar to the one below using that |qρ − κρ| ≤ 1.
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Proof of Proposition 6.3. In the notation of Banach spaces of distributions (see, for instance, [21])
for h ∈ Cq0 we write 〈h,1〉 = 〈1, h〉 =

∫
h1 dm and 〈m,h〉 =

∫
h dm, where 1 is both an element

of B and of (Cq0)′. Let vρ(t) =
Πρ(t)1
〈Πρ(t)1,1〉 and recall that vρ(0) = 1. Recall also that for every ρ,

λρ(t)vρ(t) = R̂ρ(t)vρ(t) for t small enough, and that λρ(0) = 1. Since 〈vρ(t),1〉 = 1,

1− λρ(t) = 1− 〈R̂ρ(t)vρ(t),1〉 = µ(1− eitκρ) + 〈(R̂ρ(t)− R̂ρ(0))(vρ(t)− 1),1〉
=: µ(1− eitκρ) + V (t, ρ).

With the meaning of inner product clarified, for ease of notation from here on we will write V (t, ρ) =∫
M(eitκρ−1)(vρ(t)−1) dm. We recall the terminology in Remark 2.2. For ξ = (p, q) with gcd(p, q) =

1, we let ξ′ = (p′, q′) be the point uniquely determined by ξ in the sense that p′/q′ is convergent
preceding p/q in the continued fraction expansion of p/q; in particular |ξ′| ≤ |ξ|. Recall that Ψ is
the set of all such pairs (ξ, ξ′) with |ξ| ≤ 1/(2ρ). With this specified, we write

µ(1− eitκρ) =
∑

(ξ,ξ′)∈Ψ

∞∑
N=1

(eit(ξ
′+Nξ) − 1)µ({κρ = ξ′ +Nξ}).

Using the fact that
∫
κρ dµ = 0, we compute that

µ(1− eitκρ) =
∑

(ξ,ξ′)∈Ψ

∞∑
N=1

(
eit(ξ

′+Nξ) − 1− it(ξ′ +Nξ)
)
µ({κρ = ξ′ +Nξ})

=
∑

(ξ,ξ′)∈Ψ

1/|t|∑
N=1

(
eit(ξ

′+Nξ) − 1− it(ξ′ +Nξ)
)
µ({κρ = ξ′ +Nξ})

+O

|t| ∑
(ξ,ξ′)∈Ψ

|ξ|
∑

N>1/|t|

Nµ({κρ = ξ′ +Nξ})


=

∑
(ξ,ξ′)∈Ψ

1/|t|∑
N=1

1

2
〈t, ξ′ +Nξ〉2µ({κρ = ξ′ +Nξ}) +O(|t|2) := I(t, ρ) +O(|t|2),

where the involved constants in the last big O are independent of ρ. Further, using Lemma A.4,

I(t, ρ) =
1

4πρ

∑
|ξ|≤1/(2ρ)

dρ(ξ)
2

|ξ|
〈t, ξ〉2

1/|t|∑
N=max{1,dρ(ξ)/(2ρ)}

1

N

+O

|t|2 ∑
(ξ,ξ′)∈Ψ

1

4π|ξ|ρ
∑

N<max{1,dρ(ξ)/(2ρ)}

4ρ2N |ξ|


=

1

4πρ

∑
|ξ|≤1/(2ρ)

dρ(ξ)
2

|ξ|
〈t, ξ〉2

1/|t|∑
N=max{1,dρ(ξ)/(2ρ)}

1

N
+O

(
|t|2ρ−1

)
=

log(1/|t|)
4πρ

∑
|ξ|≤1/(2ρ)

dρ(ξ)
2

|ξ|
〈t, ξ〉2 +O

(
|t|2ρ−1 log(1/ρ)

)
.

Hence, with Ā(t, ρ) as in Lemma 6.2,

µ(1− eitκρ) = Ā(t, ρ)
log(1/|t|)

4πρ
+O

(
|t|2ρ−1 log(1/ρ)

)
.
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Thus, 1−λρ(t) = Ā(t, ρ) log(1/|t|)
4πρ +E(t, ρ), where E(t, ρ) = O

(
|t|2ρ−1 log(1/ρ)

)
+V (t, ρ). It remains

to estimate V (t, ρ). Note that

vρ(t)− 1 =
µ((Πρ(t)−Πρ(0))1)

µ(Πρ(t)1)
Πρ(0)1 +

(Πρ(t)−Πρ(0))1

µρ(Πρ(t)1)
.

Hence,

V (t, ρ) =
µ((Πρ(t)−Πρ(0))1)

µ(Πρ(t)1)

∫
M0

(eitκρ − 1) dµ+

∫
M0

(eitκρ − 1)(Πρ(t)−Πρ(0))1 dm

µ(Πρ(t)1)

= I1(t, ρ) + I2(t, ρ).

Estimating I1(t, ρ). Since
∫
M0

κρ dµ = 0, we have

I1(t, ρ) =
µ((Πρ(t)−Πρ(0))1)

µ(Πρ(t)1)

∫
M0

(eitκρ − 1− itκρ) dµ.

Now, by (35) and Lemma 6.1,∫
M
|(Πρ(t)−Πρ(0))1| dµ =

∑
(ξ,ξ′)∈Ψ

∞∑
N=1

∫
M

1{κρ=ξ′+Nξ}|(Πρ(t)−Πρ(0))1|

≤
∑

(ξ,ξ′)∈Ψ

|ξ|−
5
2

+s0ρ−
1
2

+s0‖Πρ(t)−Πρ(0)‖s
∞∑
N=1

N−
5
2

≤ Cρ−νγ−2
ρ |t|ν (38)

for some uniform C. Using also that |eix − 1− ix| ≤ xy, for any y ∈ (0, 2],

|I1(t, ρ)| ≤ Cρ−νγ−2
ρ |t|ν |t|2−ν/2

∫
M0

|κρ|2−ν dµ ≤ Cρ−ν−1γ−2
ρ |t|ν/2+2,

where in the last inequality we have used Lemma A.5. Note that for |t| ∈ Bδ0(0) with δ0 ≤ γ4/(3ν−1)
ρ ,

as in the statement, |t|ν/2 < γ
2ν/(3ν−1)
ρ < γ2

ρ for all ν ∈ (1
3 ,

1
2). Thus, |I1(t, ρ)| ≤ Cρ−ν−1|t|2.

Estimating I2(t, ρ). Recall that (32) holds and that δ is chosen so that (34) holds. Using the
definition of Πρ(t) and noting that for every ρ, (u− R̂ρ(0))−11 = (1− u)−1,

(Πρ(t)−Πρ(0)1 =

∫
|u−1|=δ

(u− R̂ρ(t))−1(R̂ρ(t)− R̂ρ(0))(u− R̂ρ(0))−11 du

=

∫
|u−1|=δ

(1− u)−1(u− R̂ρ(t)−1(R̂ρ(t)− R̂ρ(0))1 du.

Thus,

I2(t, ρ) =

∫
M0

(eitκρ − 1)

∫
|u−1|=δ

(1− u)−1(u− R̂ρ(t))−1(R̂ρ(t)− R̂ρ(0))1 du dm

:= J1(t, ρ) + J2(t, ρ), (39)

for

J1(t, ρ) :=

∫
M0

(eitκρ − 1)

∫
|u−1|=δ

(1− u)−1(u− R̂ρ(0))−1(R̂ρ(t)− R̂ρ(0))1 du dm
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and

J2(t, ρ) :=

∫
M0

(eitκρ − 1)

∫
|u−1|=δ

(1− u)−1
(

(u− R̂ρ(t))−1 − (u− R̂ρ(0))−1
)

(R̂ρ(t)− R̂ρ(0))1 du dm

=

∫
M0

(eitκρ − 1)

∫
|u−1|=δ

(1− u)−1(u− R̂ρ(t))−1(R̂ρ(t)− R̂ρ(0))(u− R̂ρ(0))−1

× (R̂ρ(t)− R̂ρ(0))1 du dm =: K1(t, ρ) +K2(t, ρ),

where

K1(t, ρ) =

∫
M0

(eitκρ − 1)

∫
|u−1|=δ

(1− u)−1(u− R̂ρ(0))−1(R̂ρ(t)− R̂ρ(0))

× (u− R̂ρ(0))−1(R̂ρ(t)− R̂ρ(0))1 du dm (40)

and

K2(t, ρ) =

∫
M0

(eitκρ − 1)

∫
|u−1|=δ

(1− u)−1
(

(u− R̂ρ(t))−1 − (u− R̂ρ(0))−1
)

× (R̂ρ(t)− R̂ρ(0))(u− R̂ρ(0))−1(R̂ρ(t)− R̂ρ(0))1 du dm.

We first treat K2(t, ρ). Note that for u in the chosen contour, ‖(u−Rρ(t))−1‖B ≤ γ−1
ρ . Using (35),

for all such u,∥∥∥((u− R̂ρ(t))−1 − (u− R̂ρ(0))−1
)

(R̂ρ(t)− R̂ρ(0))(u− R̂ρ(0))−1(R̂ρ(t)− R̂ρ(0))
∥∥∥
B

≤ Cρ−2ν |t|3νγ−3
ρ .

This together with Lemma 6.1 gives that

|K2(t, ρ)| ≤
∑

(ξ,ξ′)∈Ψ

∞∑
N=1

∫
M0

∫
|u−1|=δ

|1− u|−11{κρ=ξ′+Nξ}|eitκρ − 1|

×
∣∣∣(u− R̂ρ(t))−1 − (u− R̂ρ(0))−1(R̂ρ(t)− R̂ρ(0)(u− R̂ρ(0))−1(R̂ρ(t)− R̂ρ(0))1

∣∣∣ du dm
≤ |t|3νρ−3νγ−3

ρ

∑
(ξ,ξ′)∈Ψ

|ξ|−
5
2

+s0ρ−
1
2

+s0

∞∑
N=1

|t|N−
3
2 ≤ Cρ−3νγ−3

ρ |t|3ν+1.

Hence, |K2(t, ρ)| ≤ Cρ−1γ−3
ρ |t|2 t3ν−1 = Cρ−1γ−3

ρ |t|2 γ4
ρ for all |t| ∈ Bδ0 with δ0 < γ

4/(3ν−1)
ρ . It

follows that |K2(t, ρ)| ≤ Cρ−1|t|2.

Estimating J1(t, ρ) in (39) and K1(t, ρ) in (40). These terms are in, some sense, independent
of the Banach space B (see the explanation below) and can be analysed either via the correlation
function (36) or its generalization (37). The rest of the proof is allocated to this type of analysis.

We start with J1(t, ρ) defined in (39), which is easier using (36). Recall that R̂ρ(0) = Rρ and
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∫
|u−1|=δ(1− u)−2 du = 0 due to Cauchy’s theorem. This gives

J1(t, ρ) =

∫
M0

(eitκρ − 1)

∫
|u−1|=δ

(1− u)−1
∞∑
j=0

u−j−1RjρRρ(e
itκρ − 1)1 du dm

−
(∫
M0

(eitκρ − 1) dµ

)2 ∫
|u−1|=δ

(1− u)−1
∞∑
j=0

u−j−1 du

=

∫
|u−1|=δ

(1− u)−1
∞∑
j=0

u−j−1

∫
M0

(eitκρ − 1)RjρRρ(e
itκρ − 1)1 dmdu

−
(∫
M0

(eitκρ − 1) dµ

)2 ∫
|u−1|=δ

(1− u)−1
∞∑
j=0

u−j−1 du.

Swapping the order of the integrals is allowed due to (36). The quantity(∫
M0

(eitκρ − 1)Rj+1
ρ (eitκρ − 1) dµ−

∫
M0

(eitκρ − 1) dµ
)2

decays exponentially fast. Hence, we can write

J1(t, ρ) =

∫
|u−1|=δ

(1− u)−1
∞∑
j=0

u−j−1

×
(∫
M0

(eitκρ − 1) (eitκρ − 1) ◦ T j+1
ρ dµ−

(∫
M0

(eitκρ − 1) dµ

)2 )
du.

Using Lemma A.5 to control the dependence on ρ,
(∫
M0

(eitκρ − 1) dµ
)2
≤ C|t|2ρ−2. Next, recall

that (32) holds and that δ < 1
2 min{γρ, γ̂ρ}. Note that for |u − 1| = δ, we have |u|−(j+1) �

(1− γ̂ρ/2)−(j+1). This together with (36) gives

|J1(t, ρ)| ≤ Cρ |t|2
∫
|u−1|=δ

|1− u|−1
∞∑
j=0

|u|−j−1 (1− γ̂ρ)j+1

� Ĉρ |t|2
∞∑
j=1

(
1− γ̂ρ

1− γ̂ρ/2

)j+1

≤ 2Ĉρ |t|2 γ̂−1
ρ .

An argument similar to the one above used in estimating J1(t, ρ) with (37) instead of (36) allows
us to deal with K1(t, ρ) defined in (40). Compute that

K1(t, ρ) =

∫
M0

(eitκρ − 1)

∫
|u−1|=δ

(1− u)−1
∑
m≥1

u−m
∑
j≥1

u−jR̂ρ(0)j(eitκρ − 1)

× R̂ρ(0)m(eitκρ − 1) du dm.
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Let

E(t, ρ) =

∫
M0

(eitκρ − 1) dµ

∫
|u−1|=δ

(1− u)−1

×
∑
j≥1

u−j
∑
m≥1

u−m
∫
M0

(eitκρ − 1)Rρ(0)m(eitκρ − 1) dµ du

−
∫
|u−1|=δ

(1− u)−1
∑
j≥1

u−j
∑
m≥1

u−m
∫
M0

(eitκρ − 1) dµ

×
∫
M0

(eitκρ − 1) (eitκρ − 1) ◦ T jρ dµ du

−
(∫
M0

(eitκρ − 1) dµ
)3
∫
|u−1|=δ

(1− u)−1
∑
j≥1

u−j
∑
m≥1

u−m du

= (E1(t, ρ)− E2(t, ρ))

∫
M0

(eitκρ − 1) dµ− E3(t, ρ).

Using (37), we obtain∣∣∣K1(t, ρ)− E(t, ρ)
∣∣∣ ≤ C̄ρ|t|2 ∑

m≥1

|u|−m
∑
j≥1

|u|−j(1− γ̄ρ)m+j ≤ 4C̄ρ|t|2γ̄−2
ρ ,

where in the last inequality we proceeded as in estimating J1 above.
Finally, we need to argue that E is bounded by |t|2. First,

E1(t, ρ) =

∫
|u−1|=δ

(1− u)−1
∑
j≥1

u−j
∑
m≥1

u−m
∫
M0

(eitκρ − 1)Rρ(0)m(eitκρ − 1) dµ du

=

∫
|u−1|=δ

(1− u)−2
∑
m≥1

u−m
∫
M0

(eitκρ − 1) (eitκρ − 1) ◦ Tmρ dµ du

=

∫
|u−1|=δ

(1− u)−2
∑
m≥1

u−m

×

(∫
M0

(eitκρ − 1) (eitκρ − 1) ◦ Tmρ dµ du−
(∫
M0

(eitκρ − 1) dµ

)2

dµ

)

+

(∫
M0

(eitκρ − 1) dµ

)2 ∫
|u−1|=δ

(1− u)−2
∑
m≥1

u−m du = E1
1(t, ρ) + E2

1(t, ρ).

Using (36), we have that |E1
1(t, ρ)| ≤ 2Ĉρ |t|2 γ̂−1

ρ .

Also, E2(t, ρ) =
∫
|u−1|=δ(1 − u)−2

∑
j≥1 u

−j ∫
M0

(eitκρ − 1) (eitκρ − 1) ◦ T jρ dµ and again by (36)

and Cauchy’s theorem, |E2(t, ρ)| ≤ 4Ĉρ |t|2 γ̂−2
ρ . Finally, E3(t, ρ) = 0. Altogether, |K1(t, ρ)| ≤

8C̄ρ |t|2 γ̄−2
ρ . �

7 Limit theorems and mixing as ρ→ 0

The first result below is the non-standard Gaussian limit law, known to hold when the horizon is
infinite. It is a precise version of Theorem A stated in Subsection 1.3.
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Our main contribution lies in characterizing the limit paths allowed as ρ→ 0; this is done up to
the unknown γρ, Cρ in (32) and C̄ρ, γ̄ρ as in (37).

Throughout this section, the notation is the same in Subsection 1.1. In particular, bn,ρ =√
n log(n/ρ2)√

4π ρ
, and the variance matrix Σ are defined as in (1), in agreement with Lemma 6.2. We

recall that =⇒ stands for convergence in distribution with respect to the invariant measure µ.

Theorem 7.1 Let γρ, Cρ be as in (32), let γ̄ρ, C̄ρ be as in (37) and let C be as in Proposition 6.3.
Set M(ρ) = max{Cργ−2

ρ , ρ2C̄ργ̄
−2
ρ } + C. Let ρ → 0 and simultaneously n → ∞ in such a way

that M(ρ) = o(log n). Then
κn,ρ
bn,ρ

=⇒ N (0,Σ).

Remark 7.2 A similar statement holds for the flight function qρ. The only change in the proof is
the use of Remark 6.5 instead of Proposition 6.3.

Proof. Throughout we let δ < 1
2 min{γρ, γ̂ρ}, so that we can use Proposition 6.3 with δ0 = δ4/(3ν−1).

By (33), for t ∈ Bδ0(0),

Eµ(eitκn,ρ1) = Eµ(R̂ρ(t)
n1) = λρ(t)

n

∫
M0

Πρ(t)1 dµ+

∫
M0

Qρ(t)
n1 dµ

= λρ(t)
n

∫
M0

Πρ(t)1 dµ+O(Cρ (1− γρ)n).

Note that the assumption M(ρ) = o(log n) ensures that, for ρ small enough, t
bn,ρ
∈ Bδ0(0) for all

t ∈ R2. Hence, as n→∞ and given the range of n, equivalently as ρ→ 0,∣∣∣∣Eµ(exp

(
it
κn,ρ
bn,ρ

))
− λρ

(
t

bn,ρ

)n ∫
M0

Πρ

(
t

bn,ρ

)
1 dµ

∣∣∣∣→ 0,

for all t ∈ R2.
Also, it follows from (35) that ‖Πρ

(
t

bn,ρ

)
− Πρ(0)‖B → 0, as n → ∞ and given the range of n,

equivalently as ρ → 0. Thus, a standard argument based on the dominated convergence theorem
shows that as n→∞, equivalently as ρ→ 0,∣∣∣∣Eµ(exp

(
it
κn,ρ
bn,ρ

))
− λρ

(
t

bn,ρ

)n∣∣∣∣→ 0.

It remains to understand λρ

(
t

bn,ρ

)n
as ρ→ 0. Since δ0 = δ4/(3ν−1), we can apply Proposition 6.3 to

obtain

n

(
1− λρ

(
t

bn,ρ

))
=

n

8πρ
Ā

(
t

bn,ρ
, ρ

)
log(bn,ρ/|t|) + nO

((
C̄ργ̄

−2
ρ + Cρ−2

)( |t|
bn,ρ

)2
)
.

By assumption, M(ρ) = o(log n). Hence, as ρ→ 0,

n
(
C̄ργ̄

−2
ρ + Cρ−2

)( |t|
bn,ρ

)2

=
(
C̄ργ̄

−2
ρ + Cρ−2

) 4π|t|2ρ2

log(n/ρ2)
= O

(
M(ρ)

log n

)
· |t|2 = o(1) · |t|2 → 0.

Now, given that Ā is as in Lemma 6.2,

n

4πρ
Ā

(
t

bn,ρ
, ρ

)
=

1

log(n/ρ2)

1

ρ
ρ2Ā (t, ρ) =

ρĀ(t, ρ)

log(n/ρ2)
.
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Also, using Lemma 6.2 and recalling the range of n,

lim
ρ→0

n

4πρ
Ā

(
t

bn,ρ
, ρ

)
log

(
bn,ρ
|t|

)
= lim

ρ→0

ρĀ (t, ρ)

log(n/ρ2)
log

(
bn,ρ
|t|

)
= lim

ρ→0

ρ

2

Ā(t, ρ)

log
(√

n
ρ

) log

(√
n

ρ

√
log(n/ρ2)√

4π|t|

)
= 〈Σt, t〉,

where in the last equality we have used Lemma 6.2 and the uniform convergence theorem for slowly
varying functions. Putting the above together,

lim
ρ→0

λρ

(
t

bn,ρ

)n
= lim

ρ→0
exp

(
−n
(

1− λρ
(

t

bn,ρ

)))
= exp

(
−1

2
〈Σt, t〉

)
, (41)

for any t ∈ R2. This completes the proof of Theorem 7.1 by Levy’s continuity theorem. �

The next result gives a local limit theorem as ρ → 0, again up to the unknown γρ, Cρ and γ̄ρ,
C̄ρ. This is possible due to the present proof based on spectral methods which produces the fine
control of the eigenvalue in Proposition 6.3. The present proof of local limit theorem for the infinite
horizon is new even for ρ fixed. We recall that the only proof of such a local limit is given in [30]
via the abstract results in [4] for Young towers. Our proof relies on Proposition 6.3, which is new
in the set-up of the Banach spaces considered here and it relies heavily on Appendix C and on
Proposition 3.1 (which provides useful continuity estimates).

In the notation of Theorem 7.1 we let ΦΣ be the density of a Gaussian random variable distributed
according to N (0,Σ) and recall from Section 4.1 that Cp0 ⊂ B.

Theorem 7.3 Assume the assumptions and notation of Theorem 7.1; in particular M(ρ) is defined
in the same way. Let v ∈ Cp0(M) and w ∈ La(M), for a > 1.

Let ρ→ 0 and simultaneously n→∞ in such a way that M(ρ) = o(log n). Then∣∣∣∣∫
M
v1{κn,ρ=N}w ◦ Tnρ dµ−

Eµ(v)Eµ(w)

(bn,ρ)2
ΦΣ

(
N

bn,ρ

)∣∣∣∣→ 0.

uniformly in N ∈ Z2.

Remark 7.4 A similar statement holds for the flight function qρ. By a similar argument, using
Remark 6.5 instead of Proposition 6.3, we obtain (bn,ρ)

2µ({qn,ρ ∈ V }) → ΦΣ(0)LebR2(V ), for any
compact neighborhood V ∈ R2 with LebR2(∂V ) = 0. A uniform LLT for qρ can be obtained by, for
instance, a straightforward adaptation of the argument used in [27, Proof of Theorem 2.7].

It is known that for every ρ > 0, κρ is aperiodic, i.e., there exists no non-trivial solution to the
equation eitκρg ◦ Tρ = g. The aperiodicity of κρ has been used in [30] to provide LLT for fixed ρ.
Given Proposition 6.3 and the aperiodicity of κρ, the proof of Theorem 7.3 is classic, see [1] and for
a variation of it that provides the uniformity in N , see, for instance, [28, First part of Proof of The-
orem 2]. The proof below recalls the main elements needed to obtain the range of n in the statement.

Proof of Theorem 7.3. Let δ0 = δ4/(3ν−1) be so that (34), (32) and Proposition 6.3 hold for
all |t| ∈ Bδ0(0). Since κρ is aperiodic, a known argument (see [Lemma 4.3 and Theorem 4.1][1])
shows that ‖R̂ρ(t)n‖B ≤ Cρ(1 − γρ)n, for all |t| ≥ δ0. It follows that |Eµ(R̂ρ(t)

n1)| ≤ ‖R̂ρ(t)n‖B ≤
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Cρ (1− γρ)n for every |t| ∈ (δ0, π). Thus, using that v ∈ Cp0 ⊂ B,∫
M
v1{κn,ρ=N}w ◦ Tnρ dµ =

1

4π2

∫
[−π,π]2

e−itN
∫
M
R̂ρ(t)

nv w dµ dt

=
1

4π2

∫
[−δ0,δ0]2

e−itN
∫
M
R̂ρ(t)

nv w dµ dt+O (Cρ (1− γρ)n)

=
1

4π2

∫
[−δ0,δ0]2

e−itNλρ (t)n
∫
M

Πρ(t)v w dµ dt+O
(
Cρ (1− γρ)n + Ĉρ (1− γ̂ρ)n

)
=

1

4π2
I(ρ, t) +O (Cρ (1− γρ)n) . (42)

Recall that w ∈ La, a > 1 and set b = a/(a− 1). Using the Hölder inequality,

I(ρ, t) =

∫
[−δ,δ]2

e−itNλρ (t)n dt

∫
M
v dµ

∫
M
w dµ

+

∫
[−δ,δ]2

e−itNλρ (t)n
∫
M

(Πρ(t)−Πρ(0))v w dµ dt

=

∫
[−δ,δ]2

e−itNλρ (t)n dt

∫
M
v dµ

∫
M
w dµ

+O

(
‖w‖La(µ)

∫
[−δ,δ]2

|λρ (t)n|
(∫
M
|(Πρ(t)−Πρ(0))v|b dµ

)1/b

dt

)
.

Recall v ∈ B. Using (35), (29) and Lemma 6.1 and proceeding as in equation (38),(∫
M
|(Πρ(t)−Πρ(0))v|b dµ

)1/b
≤ Cρ−νγ−2

ρ |t|ν ≤ Cρ−2|t|ε,

for some uniform C and some ε > 0. In the last inequality we have used that |t| < δ0. Thus,

I(ρ, t) =

∫
[−δ0,δ0]2

e−itNλρ (t)n dt

∫
M
v dµ

∫
M
w dµ+O

(
‖w‖La(µ)ρ

−2

∫
[−δ0,δ0]2

|t|ε |λρ (t)n| dt

)
.

With a change of variables,

I(ρ, t) =
1

(bn,ρ)2

∫
[−δ0bn,ρ,δ0bn,ρ]2

e
−iu N

bn,ρ λρ

(
u

bn,ρ

)n
du

∫
M
v dµ

∫
M
w dµ

+O

(
‖w‖La(µ)

ρ−2

(bn,ρ)3

∫
[−δ0bn,ρ,δ0bn,ρ]2

|u|ε
∣∣∣∣λρ( u

bn,ρ

)n∣∣∣∣ du
)
. (43)

Given the range of n in the statement, we use (41) to obtain

lim
ρ→0

∣∣∣∣∣4π2

∫
[−δ0bn,ρ,δ0bn,ρ]2

e
−iu N

bn,ρ λρ

(
u

bn,ρ

)n
du− ΦΣ

(
N

bn,ρ

)∣∣∣∣∣ = 0.

To deal with the big O term in (43), we use that by (41) there exists a uniform constant C so that

ρ−2

(bn,ρ)3

∫
[−δ0bn,ρ,δ0bn,ρ]2

|u|ε
∣∣∣∣λρ( u

bn,ρ

)n∣∣∣∣ du ≤ ρ−2

(bn,ρ)2+ε

∫
[−δ0bn,ρ,δ0bn,ρ]2

|u|εe−C|u|2 du.
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Since M(ρ) = o(log n), we have n� exp
(
Cρ−2

)
. Thus, ρ−2

(bn,ρ)2+ε � logn
(bn,ρ)2+ε = o

(
1

(bn,ρ)2

)
as ρ→ 0.

Putting these together and using (43),

lim
ρ→0

∣∣∣∣4π2 I(ρ, t)− ΦΣ

(
N

bn,ρ

) ∫
M
v dµ

∫
M
w dµ

∣∣∣∣ = 0.

This together with (42) gives that as ρ→ 0,∣∣∣∣∫
M
v1{κn,ρ=N}w ◦ Tnρ dµ−

1

(bn,ρ)2
ΦΣ

(
N

bn,ρ

) ∫
M
v dµ

∫
M
w dµ

∣∣∣∣
= O

(
(bn,ρ)

2 Cρ (1− γρ)n
)

= o(1),

where in the last equation we used that M(ρ) = o(log n). This concludes the proof. �

It is known that the local limit theorem for κρ and the billiard map Tρ (with ρ fixed) implies
mixing for the planar Lorentz map T̂ρ (again ρ fixed), see [28]. In fact, sharp error rates in local
limit theorems and mixing are also known, see [28] for the finite horizon case and [29] for the infinite
horizon case.

We recall from Section 1 that the Lorentz map T̂ρ defined on M̂ =M×Z2 is given by T̂ρ(θ, φ, `) =
(Tρ(θ, φ), `+κρ(θ, φ)) for (θ, φ) ∈M, ` ∈ Z2. Let µ̂ = µ×LebZ2 , where LebZ2 is the counting measure
on Z2. An immediate consequence of Theorem 7.3 is

Corollary 7.5 Assume the assumptions and notation of Theorem 7.3. Let ρ→ 0 and simultaneously
n→∞ in such a way that M(ρ) = o(log n). Then

lim
ρ→0

∣∣∣∣(bn,ρ)2

∫
M̂
v w ◦ T̂ρ dµ̂−

∫
M̂
v dµ̂

∫
M̂
w dµ̂

∣∣∣∣ = 0.

Remark 7.6 The class of functions in Corollary 7.5 is rather restrictive as the functions v, w are
supported on the cell M. Given the work [28] (see also [29, Section 6]), it is very plausible that the
present mixing result can be generalized to a suitable class of dynamically Hölder functions supported
on the whole of M̂. Since the involved argument is rather delicate and not a main concern of the
present work, we omit this.

A Estimates on corridors

A.1 Estimating P(κρ = ξ′ +Nξ)

Given a corridor associated to ξ, there a neighborhood U0 of x0 = x0(ξ) in ∂O0 × [−π
2 ,

π
2 ] of initial

conditions x such that the next collision occurs at a scatterer on the opposite side of the corridor.
For this situation, [30] use the coordinates (α, z), where α is the angle the trajectory of some x ∈ ∂O0

makes with the tangent line at x0, and the intersection point is y = x0 + zξ, see Figure 5.

Lemma A.1 In coordinates (z, α) the volume form in a neighborhood of x0 = x0(ξ) is

|ξ|
4πρ

sinαdα dz =
1

4π
cosφdθ dφ.

Proof. The part sinαdα dz can be understood because the Liouville measure of the billiard flow
projects to a form cosϕdϕdr for any transversal section parametrised by arc-length r and with ϕ
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O0 Oξ O2ξ

Oκρ

α
φ

θ

x0

x

zξ︷ ︸︸ ︷

Figure 5: A corridor and coordinates (α, θ).

the angle of the trajectory to the normal vector at the collision point. When this section is the line
y = x0 + xξ, we have α = π

2 − ϕ, so cosϕ = sinα. But to get the correct normalizing constant, we
give a more extensive argument. From Figure 5 we have

π

2
= θ + α+ φ, tanα =

ρ(1− cos θ)

z|ξ| − ρ sin θ
. (44)

After making α and z subject of these equations, we see that the change of coordinates involved is

(α, z) = F (θ, φ) =

(
π

2
− θ − φ, ρ

|ξ|

(
1− cos θ

tan(π2 − θ − φ)
+ sin θ

))
.

The Jacobian determinant is

|det(dF )| =
∣∣∣∣det

(
−1 −1
∂F2
∂θ

∂F2
∂φ

)∣∣∣∣ =

∣∣∣∣∂F2

∂θ
− ∂F2

∂φ

∣∣∣∣ =
ρ

|ξ|

(
cos θ

tan(π2 − θ − φ)
+ cos θ

)
.

Thus, using (44) and some trigonometric formulas,

|ξ|
4πρ

sinαdα dz =
|ξ| sinα

4πρ

ρ

|ξ|

(
sin θ

tan(π2 − θ − φ)
+ cos θ

)
dθ dφ

=
1

4π
(cosα sin θ + sinα cos θ) dθ dφ

=
1

4π
sin(α+ θ) dθ dφ =

1

4π
cos(φ) dθ dφ,

as claimed. �

The following is [30, Proposition 6] in more detail:

Lemma A.2 Suppose that the scatterers have radius ρ > 0 and the width of the corridor given by ξ
is dρ(ξ). Then

µ({x ∈ ∂O0 × [−π
2
,
π

2
] : κρ(x) = N |ξ|+ ξ′}) =

1

4πN |ξ|ρ
min{4ρ2, dρ(ξ)

2N−2}(1 +O(N−1)),

where ξ′ as in Remark 2.2 is the integer vector on the boundary of the corridor opposite to the
ξ-boundary.

Proof. We take the region in (z, α)-coordinates where κρ = Nξ + ξ′. In the z-direction this is an
interval [z0, z1], where for z = z0, there is only one line connecting O0 and Oκρ , namely the common
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O0
Oξ ONξ
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Figure 6: [z0, z1] given by two tangent lines for 2ρ > dρ(ξ)

N
(blue) or 2ρ < dρ(ξ)

N
(red).

tangent line of O0 and Oκρ−ξ. For z = z1 there is also is only one line, namely the common tangent
line of Oξ and Oκρ , see Figure 6. These two lines are obtained from each other by translation over
one unit ξ, so z1ξ − z0ξ = |ξ|. However, if ρ is small compared to N , these two tangent lines are the
common tangent lines at the upper sides of O0 and Oκρ and at the lower sides of O0 and Oκρ . In
this case

|z1ξ − z0ξ| =
2ρ

sinα
=

2ρ(N |ξ|+ |ξ′|)
dρ(ξ) + 2ρ

+O
(

ρ

dρ(ξ) + 2ρ

)
. (45)

This also shows that the transition between the two cases is when 2ρ =
dρ(ξ)
N .

For each z ∈ [z0, z1], the range of possible values of α is again bounded by the α’s obtained at
the tangent lines to Oκρ−ξ and Oκρ . Therefore, see Figure 7,

α ∈ [α0(z), α1(z)] :=

[
arctan

(
dρ(ξ)

N |ξ|+ |ξ′| − z

)
, arctan

(
dρ(ξ)

N |ξ| − |ξ|+ |ξ′| − z

)]
.

Since |ξ′| ≤ |ξ| (see Remark 2.2) and z ≤ |ξ| as well, each α in this interval satisfies α =
dρ(ξ)
N |ξ| (1 +

O(N−1)) and

α1(z)− α0(z) =
dρ(ξ)

N2|ξ|
(1 +O(N−1)). (46)

Integrating the density given in Lemma A.1 for the case 2ρ ≥ dρ(ξ)
N (so |z1 − z0| = |ξ|) and using

|z1 − z0| = |ξ| and the approximation cosα0 − cosα1 ∼ 1
2(α1 + α0)(α1 − α0) gives:∫ z1

z0

∫ α1(z)

α0(z)

|ξ|
4πρ

sinαdα dz =
|ξ|

4πρ

∫ z1

z0

cos(α0(z))− cos(α1(z)) dz

=
|ξ|

4πρ

dρ(ξ)

N |ξ|
dρ(ξ)

N2|ξ|
(1 +O(N−1))

=
1

4πNρ

dρ(ξ)
2

|ξ|N2

(
1 +O(N−1)

)
.

Now for the case 2ρ <
dρ(ξ)
N , see Figure 7 with small version of Oκρ , we have

α ∈ [α0(z), α1(z)] :=

[
arctan

(
dρ(ξ)

N |ξ|+Q− z − 2ρ sinα

)
, arctan

(
dρ(ξ) + 2ρ cosα1(z)

N |ξ|+Q− z − 2ρ sinα

)]
,

so still α =
dρ(ξ)
N |ξ| +O(N−2) and α1(z)− α0(z) = 2ρ

N |ξ|(1 +O(N−1).
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Figure 7: The parameter interval [α0(z), α1(z)] given by angles between two tangent lines.

Integrating as before gives, using (45) and the fact that dρ(ξ) + 2ρ = |ξ|−1 from Lemma 2.1:∫ z1

z0

∫ α1(z)

α0(z)

|ξ|
4πρ

sinαdα dz =
|ξ|

4πρ

∫ z1

z0

cos(α0(z))− cos(α1(z)) dz

=
|ξ|

4πρ

2ρN

dρ(ξ) + 2ρ

dρ(ξ)

N |ξ|
2ρ

N |ξ|
(1 +O(N−1))

=
4ρ2

4π|ξ|Nρ
(
1 +O(N−1)

)
as required. �

A.2 Corridors sums

Let ϕ be Euler’s totient function, i.e., the number of integers 1 ≤ q ≤ p coprime with p. The
following lemma is classical number theory, but we couldn’t locate a proof of the full statement.

Lemma A.3 For every a > −2, we have

N∑
n=1

naϕ(n) =
Na+2

a+ 2

1

ζ(2)
(1 + o(1)),

where ζ is the Riemann ζ-function, so ζ(2) = π2

6 .

Proof. Let µ be the Möbius function. A standard equality is ϕ(n) =
∑

d|n µ(d)nd . Therefore

N∑
n=1

naϕ(n) =

N∑
n=1

∑
d|n

naµ(d)
n

d
=

N∑
n=1

∑
d|n

daµ(d)
(n
d

)a+1

=
N∑
d=1

N
d∑

m=1

daµ(d)ma+1 =
N∑
d=1

daµ(d)
1

a+ 2

(
N

d

)a+2

(1 + o(1))

=
Na+2

a+ 2

N∑
d=1

µ(d)

d2
(1 + o(1)) =

Na+2

a+ 2

1

ζ(2)
(1 + o(1)),

where we used the Dirichlet series identity
∑∞

d=1
µ(d)
ds = 1

ζ(s) for s = 2.
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As an aside, there are asymptotic formulas for s > 2

∑
p≥1

ϕ(p)

ps
=
ζ(s− 1)

ζ(s)
and

N∑
p=1

ϕ(p)

p
=

N

ζ(2)
+O((logN)

2
3 (log logN)

4
3 ), (47)

see [19, Theorem 288]. �

In the course of this paper we denote, for a fixed value of ρ, the set of corridors that are “visible”
from the origin by Ψ. As described in Lemma 2.1, these can be characterized by pairs (ξ, ξ′) ∈ Z2×Z2

where ξ = (p, q), gcd(p, q) = 1 and |ξ| ≤ (2ρ)−1, while ξ′ may denote either the first or the second
convergent preceding ξ in the continued fraction expansion of p/q, see Remark 2.2. Sums of the type
in the following lemma are used throughout the paper.

Lemma A.4 We have

∑
(ξ,ξ′)∈Ψ

|ξ|a


∼ 2

a+2
2π
ζ(2)(2ρ)−(a+2) if a > −2;

� | log ρ| if a = −2;

≤ − 4π
a+2 if a < −2.

Proof. Using the two coordinate axes and their bisectrices, we divide the plane into eight sectors
and for each sector, we sum the scatterers in S. Circular sections of radius R have asymptotically π

4
as many points as triangular sectors with base R. Also, every corridor direction in this sector comes
with two corridors (ξ, ξ′) and (ξ, ξ′′). By Lemma A.3, their sum is, for a > −2,∑

(ξ,ξ′)∈Ψ

|ξ|a ∼ 16π

4

∑
0≤q≤p≤(2ρ)−1

|ξ|a = 4π
∑

1≤p≤(2ρ)−1

φ(p)pa ∼ 4π

2 + a

1

ζ(2)
(2ρ)−(2+a).

If a = −2, then a similar computation gives � | log ρ|, and for a < −2, the series is summable:
4π
∑

1≤p≤(2ρ)−1 φ(p)pa ≤ 4π
∫∞

1 xa dx = − 4π
2+a . �

Lemma A.5 For p ∈ [1, 2), the p-norm of the displacement function satisfies

‖κρ‖Lp � (p(2− p))−1/p ρ−1.

Proof. Take p ∈ [1, 2). We estimate over all ξ-corridors similarly as in Lemma A.4:∫
|κρ|p dµ � 2

∑
|ξ|≤(2ρ)−1

∑
N≥1

|ξ|pNp 1

4π|ξ|Nρ
min{4ρ2, dρ(ξ)

2N−2}

≤ 1

2πρ

∑
|ξ|≤(2ρ)−1

|ξ|p−1

bdρ(ξ)/(2ρ)c∑
N=1

4ρ2Np−1 +
∞∑

N=bdρ(ξ)/(2ρ)c

dρ(ξ)
2Np−3


≤ 1

2πρ

(
1

p
(2ρ)2−p +

1

2− p
(2ρ)2−p

) ∑
|ξ|≤(2ρ)−1

|ξ|−1

∼ 2

ζ(2)

(
1

p
+

1

2− p

)
(2ρ)−p.

Taking the p-th root gives the result. �
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Lemma A.6 Let W ∈ Ws be a stable leaf, and let ΨW stand for all lattice points ξ = (p, q) ∈ Ψ
that can be reached from O0 with coordinates in W . Then for every a ∈ (1

2 , 1),∑
(ξ,ξ′)∈ΨW

|ξ|−a � ρa−2|W |+ ρa−1 log(1/ρ) + ρa−1|W |−1.

Proof. There is an arc W̃ ∈ S1 of length |W̃ | � |W | such that every lattice point that can be
reached from O0 with coordinates in W has its polar angle in W̃ . Due to the symmetries in the Z2,
it suffices to study W̃ ⊂ [0, π/2], so the lattice point ξ = (p, q) in this sector satisfy 0 ≤ q ≤ p and
tan(W̃ ) ⊂ [0, 1]. In fact, we will start by assuming that tan(W̃ ) ∈ [ 1

10 ,
9
10 ].

Because p2 + q2 ≥ 2pq for all (p, q) = ξ, we have
∑

(ξ,ξ′)∈ΨW
|ξ|−a � 2−a/2

∑
(ξ,ξ′)∈Ψ

1
(pq)a/2

1W̃ ( qp).

We will apply an estimate from [32, Theorem 2.2], which, in our terminology, reduces to∑
(ξ,ξ′)∈Ψ

1

(pq)a/2
ψ

(
p

q

)
= Ca ρ

a−2

∫
ψ(x) dx+O(ρ1−a log(1/ρ))

+ O

∑
` 6=0

cψ(`)
∑

d≤(2ρ)−1

d|`

d1−a
∑

k≤(2ρd)−1

µ(k)

ka

 , (48)

where Ca is a constant depending only on a, and cψ(`) is the `-th Fourier coefficient of x 7→ ψ(x)x−a.
If ψ = 1W̃ , then these Fourier coefficients are not summable, so we first smoothen 1W̃ to a

function ψ with supp(ψ) concentric to W̃ and | supp(ψ)| = |W̃ | = 3|W |. On W̃ itself, ψ ≡ 1 and on

the two interval components ψ is a translated copy of the function fW : [− |W |2 , |W |2 ]→ R defined by

fW (x) =
1

2
− 1

2π
sin

2πx

|W |
+

x

|W |
.

Then
∫
ψ dx = 2|W | and integrating by parts twice gives an estimate of the Fourier coefficients of

x 7→ ψ(x)x−a.

|cψ(`)| �
∣∣∣∣∫ (ψ(x)x−a)′′

(2π`)2
e2πi`x dx

∣∣∣∣� 1

|W |`2

because supp(ψ) is bounded away from {0, 1} (so x−a doesn’t blow up) and (ψ(x)x−a)′′ = 0 outside
supp(ψ).

The Dirichlet series of the Möbius function can be estimated as
∣∣∣∑b1/(2ρd)c

k=1 µ(k)k−a
∣∣∣ ≤ (2ρd)1−a.

We use this and the fact that ` ∈ N has O(`1/2) divisors to estimate the last big O-term in (48).

∑
`∈N
|cψ(`)|

∑
d≤(2ρ)−1

d|`

d1−a
∑

k≤(2ρd)−1

µ(k)

ka
� (2ρ)a−1

|W |
∑
`∈N
|cψ(`)|

∑
d≤(2ρ)−1

d|`

1

� (2ρ)1−a

|W |
∑
`6=0

|`|−
3
2 ≤ (2ρ)a−1

|W |
.

Hence (48) becomes∑
(ξ,ξ′)∈Ψ

1

(pq)a/2
1W̃ (

q

p
) ≤

∑
(ξ,ξ′)∈Ψ

1

(pq)a/2
ψ(
q

p
)� ρa−2|W |+ ρa−1 log(1/ρ) + ρa−1|W |−1,
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as required.
It remains to consider the cases that tan(W̃ ) 6⊂ [ 1

10 ,
9
10 ]. Suppose instead that tan(W̃ ) ⊂ (0, 1

10 ]
(we ignore ξ = (0, 1) and ξ = (1, 0)). In this case, we give an injection between the lattice points
in the W̃ -sector with coprime coordinates to the set of lattice points (with coprime coordinates and
comparable norm) in a sector of comparable width, but near polar angle 1

2 . Indeed, set Qcp = {q/p :
0 6= p, q ∈ Z, gcd(p, q) = 1}∪ {0} and Zcp := {(p, q) ∈ Z2 : gcd(p, q) = 1}, and define the Calkin-Wilf
map f : Qcp → Qcp as well as g : Zcp → Zcp by

f : x 7→ 1

1− x− 2bxc
, g : (p, q) 7→ (p− q + 2pbq/pc , p).

The f -orbit of 0 enumerates all non-negative lowest-term rationals, see [8], and g is the same map
expressed on the collection of lattice points. Since f2((0, 1

10 ]) ⊂ (1
2 ,

10
21 ] and |g(ξ)| ≤ 4|ξ|, the second

iterate g2 provides the required injection. In case tan(W̃ ) ⊂ [ 9
10 , 1) we use g3. �

B Distortion properties

Throughout, a uniform constant is a constant that is independent of ρ.
Let us recall some terminology and notations from [10, Chapter 4]. Unstable curves generate

dispersing wavefronts, which are evolved by the free flight, and then leave traces of unstable curves
on the scatterer at the next collision. For wavefronts it is convenient to use the Jacobi coordinates
(dξ, dω), and an important quantity5 Ω = dω

dξ , the curvature of the wavefront. Ω− and Ω+ denote
its value immediately before and after a particular collision, respectively.

On the scatterer, the traditional coordinates are (r, φ) yet, we prefer to use the ρ-independent
(θ, φ) and take advantage of

d

dθ
= (2πρ)

d

dr
.

First we relate Ω− to the slope of the unstable curve: 1
2π

dφ
dθ = ρΩ− cosφ+ 1. Differentiating with

respect to θ gives
1

2π

d2φ

dθ2
=
dΩ−

dθ
ρ cosφ− ρΩ− sinφ

dφ

dθ
. (49)

Lemma B.1 There exists a uniform constant C > 0 such that for any C2 smooth unstable curve
W there exists nW such that for n ≥ nW on all components of TnρW we have∣∣∣∣d2φ

dθ2

∣∣∣∣ ≤ Cρ. (50)

Thus we may restrict to the class of regular unstable curves for which (50) holds. Also, this
shows that as ρ→ 0, the unstable curves limit in a C2 sense to straight lines of slope 2π.

Proof. The properties of the free flight are not effected by shrinking the scatterers or using the
θ-coordinate. Thus

0 ≤ Ω− ≤ (τmin)−1

and, by (49), it is enough to show ∣∣∣∣dΩ−

dθ

∣∣∣∣ ≤ C
5Usually called B in billiard literature such as [10], but we write Ω to avoid confusion with Banach spaces B.
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to prove the lemma. Now dΩ−

dθ = (2πρ)dΩ−

dr , and the evolution of dΩ−

dr is discussed in [10, section
4.6]. Following the notation there, introduce

E1 =
dΩ

dξ
; F1 =

E1

Ω3

and use superscripts − and + to denote pre- and post-collision values of these quantities, respectively.
[10, Formula (4.37)] states

−F+
1 =

(
Ω−

Ω+

)3

F−1 +H1,

where

H1 =
6ρ−2 sinφ+ 6ρ−1Ω− cosφ sinφ

(2ρ−1 + Ω− cosφ)3

and by the analysis of [10, page 81]:

• F1 remains constant between collisions

• there exists a uniform constant Θ < 1 such that Ω−

Ω+ ≤ Θ,

• there exists a uniform constant C1 > 0 such that |H1| ≤ C1. This remains valid for shrinking
ρ as the denominator scales with ρ−3 while the numerator scales with ρ−2.

Hence it follows that |F1(n+ 1)| ≤ Θ3|F1(n)|+ C, where F1(n) is the value of F1 between the n-th
and the (n + 1)st collision. This implies that there exists C2 > 0 and nW (depending on the curve
W ) such that for any n ≥ nW we have |F1(n)| ≤ C2.

Now |E−1 | = |F
−
1 | · (Ω−)3 ≤ C3 for some uniform C3 > 0, and finally [10, Formula (4.24)] states

dΩ−

dr
= E−1 cosφ− (Ω−)2 sinφ,

which thus implies that
∣∣∣dΩ−

dr

∣∣∣ ≤ C4 for some uniform constant C4 > 0. This bound completes the

proof of the lemma. �

It follows that regular unstable curves can be parametrised by the coordinate θ, and for any
smooth function f : W → R, df

dθ �
df
dx , where x is (Euclidean) arc-length along the curve – dx2 =

dθ2 + dφ2 (not to be confused with the arc-length r along the scatterer).
Let us also recall that an unstable curve is homogeneous if it is regular and contained in one of

the homogeneity strips Hk = {(θ, φ) : π2 − k
−r0 < φ < π

2 − (k + 1)−r0}. For such curves, analogous
to [10, Formula (5.13)], we have

|W | ≤ C cos
r0+1
r0 φ (51)

for some uniform constant C > 0, where φ corresponds to any point of W . (This follows as the slope
of the curve is uniformly bounded away from 0 and ∞.)

Distortion bounds are stated as follows. Let W be a homogeneous unstable curve, and assume
that for some N ≥ 1, Wn = T−nρ W is a homogeneous unstable curve for n = 0, 1, . . . , N . For x ∈W ,
let xn = T−nρ x ∈Wn. Let JWT

−n
ρ (x) and JWnT

−1
ρ (xn) denote the respective Jacobians.

Lemma B.2 Consider W and N as above and y, z ∈W arbitrary. There exists a uniform constant
Cd > 0 such that

| log JWT
−N
ρ (y)− log JWT

−N
ρ (z)| ≤ Cd|W |

1
r0+1 .
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Proof. The lemma relies on the inequality∣∣∣∣ ddxn log JWnT
−1
ρ (xn)

∣∣∣∣ ≤ C

cosφn
(52)

for some uniform C > 0, cf. [10, Formula (5.8)].
Using this formula the argument in the proof of [10, Lemma 5.27] can be repeated literally:

| log JWT
−N
ρ (y)− log JWT

−N
ρ (z)| ≤

N−1∑
n=0

| log JWnT
−1
ρ (yn)− log JWnT

−1
ρ (zn)|

≤
N−1∑
n=0

|Wn|max

∣∣∣∣ ddxn log JWnT
−1
ρ (xn)

∣∣∣∣ (53)

≤ C
N−1∑
n=0

|Wn|
cosφn

≤ C
N−1∑
n=0

|Wn|
1

r0+1 ≤ C|W |
1

r0+1 ,

where we have used the chain rule, (52), and (51) and the uniform hyperbolicity.
It remains to prove (52). Here we essentially follow [10, pp. 106–107]. We have

log JWnT
−1
ρ (xn) = log cosφn +

1

2
log

(
4π2ρ2 +

(
dφn
dθn

)2
)
− 1

2
log

(
4π2ρ2 +

(
dφn+1

dθn+1

)2
)

− log
(
2ρ−1τn+1 + cosφn+1(1 + τn+1Ω−n+1)

)
.

We consider the derivatives of these terms separately. As noted above, differentiation with respect
to θn and xn can be interchanged. By Lemma B.1, the derivative of the second term w.r.t. θn is
uniformly bounded. The same applies to the derivative of the third term with respect to θn+1, while

dxn+1

dxn
= JWnT

−1
ρ (xn)

is uniformly bounded from above. The first term gives the main contribution: as cosφn is not
bounded away from 0, the derivative of its logarithm is∣∣∣∣d(log cosφn)

dxn

∣∣∣∣ ≤ C ∣∣∣∣d(log cosφn)

dθn

∣∣∣∣ ≤ C

cosφn
.

The fourth term is the logarithm of the quantity

2ρ−1τn+1 + cosφn+1(1 + τn+1Ω−n+1)

which is bounded from below, but not from above. It is thus (more than) enough to show that, when
taking the derivative, all contributions to the numerator are uniformly bounded. This holds immedi-
ately by the previous discussion for all the terms except 2

ρ
dτn+1

dxn
which requires further investigation.

Note that
τn+1 = dist(P (xn), P (xn+1))

where P (xn) and P (xn+1) are points on the billiard table (and thus on R2) associated to the points
xn ∈ Wn and xn+1 ∈ Wn+1 on the two scatterers, respectively. In an appropriate reference frame
P (xn) = (ρ cos θn, ρ sin θn) hence the θn-derivatives of both coordinates are� ρ, and the same holds
for the θn+1-derivatives of the coordinates of P (xn+1). Thus∣∣∣∣dτn+1

dxn

∣∣∣∣ ≤ Cρ,
which is sufficient for our purposes. �
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C Decay of correlation for κρ.

The main result of this section is the justification of (37), that is

Proposition C.1 There exist Ĉρ > 0 and ϑ̂ρ < 1 such that

• for any j ≥ 1 we have∣∣∣ ∫
M0

(eitκρ − 1) (eitκρ − 1) ◦ T jρ dµ−
∫
M0

(eitκρ − 1) dµ

∫
M0

(eitκρ − 1) dµ
∣∣∣

≤ Ĉρ|t|2ϑ̂jρ, (54)

• furthermore, there exist C̄ρ > 0 and ϑ̄ρ < 1 such that for any j, ` ≥ 1 we have∣∣∣ ∫
M0

(eitκρ − 1)R`ρ(e
itκρ − 1) (eitκρ − 1) ◦ T jρ dµ

−
∫
M0

(eitκρ − 1)R`ρ(e
itκρ − 1) dµ

∫
M0

(eitκρ − 1) dµ

−
(∫
M0

(eitκρ − 1) dµ
)∫
M0

(eitκρ − 1) (eitκρ − 1) ◦ T jρ dµ

+
(∫
M0

(eitκρ − 1) dµ
)3∣∣∣ ≤ C̄ρ|t|2ϑ̄`+jρ . (55)

The ρ-dependence of this exponential rate gives the main source of unknown dependence on ρ
in the main results of our paper. During the proof we will point out the exact sources of unknown
dependence of C̄ρ > 0 and ϑ̄ρ < 1 on ρ.

Let us make some comments on the relations of the two estimates of Proposition C.1. We will
first prove (54) with some Ĉρ > 0 ϑ̂ρ < 1 that we can explicitly relate to the correlation decay rates
of the map Tρ on Hölder functions, as expressed in (66) below. Then we extend our argument to

obtain (55) for some C̄ρ > Ĉρ and ϑ̄ρ ∈ (ϑ̂ρ, 1). Obtaining relations similar to (66) for the constants
C̄ρ and ϑ̄ρ seems quite difficult and we do not push this point.

The proof of Proposition C.1 consists in: a) reconsider [11, Proposition 9.1]; b) only for (55),
work with a version of Rρ with spectral gap in a Banach space embedded in some Lp space with
p > 1. Item a) is needed in order to obtain the bound |t|2 and the decay of correlation in j. Item
b) is needed to obtain the joint decay in j and `. Item b) is possible because for every ρ > 0, there
exists a Young tower ∆ρ and a tower map T∆ρ associated with the billiard map Tρ; this is ensured
by the construction in [9, 33]. We emphasize that we will not exploit any fine dependence on ρ of
T∆ρ (the mere existence is enough), which is why this part of our arguments can be worked on the
Young tower ∆ρ.

C.1 Standard pair argument

In this section we reconsider [11, Proposition 9.1]. Let us introduce truncation levels H, Ĥ > 0 to
be fixed later and

κ′ρ = κ̂ρ · 1|κρ|≤H κ′′ρ = κρ − κ′ρ;
κ′′′ρ = κρ · 1|κρ|≤Ĥ κ′′′′ρ = κρ − κ′′′ρ .

As |κρ| � |ξ|m on Dξ,m, the truncation κ′ρ restricts κρ to the cells Dξ,m with m ≤ H|ξ|−1.
The result we will use in the proof of Proposition C.1 below is
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Lemma C.2 For any c0 > 2 we have

(i)’
∫
|κ′ρ| · |κ′′′′ρ | ◦ T

j
ρ dµ ≤ CH2Ĥ−1ρ−3,

(ii)’
∫
|κ′′ρ| · |κρ| ◦ T

j
ρ dµ ≤ C| log ρ| ·

(
H
− 1

2
+ 1

2r0 logH ρ−3−ν +H2−c0ρ−2−c0
)

.

Furthermore, for any q ∈
(

1, 8
7 −

6
7(7r0−1)

)
and c ∈ ( q+1

2−q ,
1−1/r0
2q−2 − 1),

(i)
∫
|κ′ρ|q · |κ′′′′ρ |q ◦ T

j
ρ dµ ≤ CHq+1Ĥq−2ρ−3,

(ii)
∫
|κ′′ρ|q · |κρ|q ◦ T

j
ρ dµ ≤ C

(
H
− 3

2
+q+c(q−1)+ 1

2r0 ρc(q−1)−q−2−ν +Hc(q−2)+q+1ρ−1−q−c(2−q)
)

.

Remark C.3 Let q(r0) = 8
7 −

6
7(7r0−1) , the upper bound on q for r0 fixed. Furthermore, let c1(q) =

q+1
2−q and c2(q) = 1−1/r0

2q−2 −1, the lower and upper bounds on c for q fixed. Note that c1(q) is increasing
in q, while c2(q) is decreasing in q, and c1(q(r0)) = c2(q(r0)). Also c1(1) = 2 and c2(1) =∞, which
is in accordance with the conditions on c0. Note also that:

• The condition c < c2(q) =
1− 1

r0
2q−2 − 1 is equivalent to q + c(q − 1) < 3

2 −
1

2r0
. This ensures that

the power of H in the first term of (ii) is negative.

• Since c > c1(q) = q+1
2−q , the power of H in the second term of (ii) is negative.

• Choosing Ĥ = Hc, the power of H in (i) is also negative, again for c > c1(q) = q+1
2−q .

Standard pairs and families. Let us recall some terminology related to standard pairs, see also
[11, page 29]. A standard pair ` = (W,hW ) is a regular unstable curve W that supports a dynamically
log-Hölder continuous probability density hW . As such, it can be regarded as a probability measure
on the phase space M, which will be denoted by `, too.

A standard family is a collection of standard pairs G = {`a}, a ∈ A equipped with a probability
factor measure λG on A. This induces a probability measure PG on M.

For a standard pair ` = (W,hW ) any x ∈ W splits W into two subcurves, let rW (x) denote
the length of the shorter, and let Z` = supε>0 ε

−1`(rW ≤ ε). By Hölder continuity of log hW , ` is
equivalent to the normalized Lebesgue measure on W and thus Z` � |W |−1. This generalizes for the

Z-function of a standard family ZG �
∫ λG(a)
|Wa| dmW .

The Tρ-image of a standard pair is a countable collection of standard pairs. Hence, the image
of a standard family is a standard family. Given a standard family G, for n ≥ 1, Gn denotes the
Tnρ -image of G. It follows from the growth lemma (Proposition 3.1) that there exists ϑ < 1 and
C1, C2 > 0 such that

ZGn ≤ C1ϑ
nZG + C2δ

−1
0

where δ0 � ρν (see (16) and Remark 3.2, part (i)). As consequence, for any standard pair and n ≥ 1

ZGn ≤ C max(ZG1 , ρ
−ν). (56)

Cells. For ξ ∈ Z2 such that the corridor is opened up, and for m ∈ Z let Dξ,m ⊂ M denote
the set of points for which κρ = mξ + ξ′. The geometric properties of Dξ,m and its image TρDξ,m

will play an important role in the argument. TρDξ,m is depicted in Figure 2. A similar description
applies to Dξ,m; it is delimited by a long singularity curve, decreasing in the (θ, ϕ) coordinates,
which is connected to the boundary of M by two shorter decreasing singularity curves, of length
� (|ξ|ρm)−1/2, running at a distance � (|ξ|m)−2 from each other. Further properties:

• µ(Dξ,m) = µ(TρDξ,m) � ρ−1|ξ|−3m−3 (due to the factor cosφ in the measure);

• an unstable curve may intersect Dξ,m in a subcurve of length ≤ C(|ξ|m)−2;
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• TρDξ,m intersects homogeneity strips of index k ≥ C(ρ|ξ|m)
1

2r0

If ` = (W,hW ) is a standard pair, then it can intersect Dξ,m in a subcurve of length ≤ C(|ξ|m)−2,
thus the intersection has probability bounded above by C(|ξ|m)−2|W |−1 � Z`(|ξ|m)−2. It follows
that for a standard family G we have

PG(Dξ,m) ≤ C(|ξ|m)−2ZG . (57)

Our argument below follows the proof of [11, Proposition 9.1] taking into account that the cor-
ridor structure depends on ρ.

Proof of Lemma C.2. For item (i), using µ(T−jρ Dξ̂,m̂) � ρ−1m̂−3|ξ̂|−3 as well as Lemma A.4
several times, we get

∫
|κ′ρ|q · |κ′′′′ρ ◦ T jρ |q dµ ≤ C

∑
ξ

∑
ξ̂

|ξ|q|ξ̂|q
H
|ξ|∑
m=1

∞∑
m̂= Ĥ

|ξ̂|

mqm̂qµ(Dξ,m ∩ T−nρ Dξ̂,m̂)

≤ Cρ−1
∑
ξ

∑
ξ̂

|ξ|q|ξ̂|q
H
|ξ|∑
m=1

mq
∞∑

m̂= Ĥ

|ξ̂|

m̂q−3|ξ̂|−3

≤ Cρ−1
∑
ξ

Hq+1|ξ|−1
∑
ξ̂

Ĥq−2|ξ̂|−1 ≤ CHq+1Ĥq−2ρ−3.

We will take Ĥ = Hc for c > 0 to be determined. To get a negative power of H, we need q < 2 and
c > q+1

2−q .
For the proof of (ii), we need to estimate∫

|κ′′ρ|q · |κρ ◦ T jρ |q dµ ≤ C
∑
ξ

∑
ξ̂

|ξ|q|ξ̂|q
∞∑

m= H
|ξ|

mq
∞∑
m̂=1

m̂qµ(Dξ,m ∩ T−jρ Dξ̂,m̂). (58)

For different ranges of the indices, we will use two different estimates to bound µ(Dξ,m∩T−jρ Dξ̂,m̂).
On the one hand, as before, we have

µ(Dξ,m ∩ T−nρ Dξ̂,m̂) ≤ µ(Dξ̂,m̂) ≤ Cρ−1|ξ̂|−3m̂−3. (59)

For the other estimate, foliate Dξ,m with unstable curves |W | of length � (|ξ|m)−2. The image

of any such curve stretches along TρDξ,m, crossing homogeneity strips with indices k ≥ C(ρ|ξ|m)
1

2r0 .
The piece of TρW in the k-th homogeneity strip will be denoted by TρWk, it has length � k−r0−1,
and its preimage has length

|Wk| � k−r0−1 ρ

|ξ|mkr0
=

ρ

|ξ|mk2r0+1

as the expansion factor of Tρ on Wk is � ρ−1|ξ|mkr0 . Equipped with the conditional measure induced
by µ, W is a standard pair ` = (W,hW ), and its image is a standard family Tρ` associated to the
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curves TρWk. To obtain the Z function, we use that the weight of |TρWk| within this family is |Wk|
|W | ,

thus

ZTρ` �
∑

k≥C(ρ|ξ|m)
1

2r0

|Wk|
|W |
|TρWk|−1 �

∑
k≥C(ρ|ξ|m)

1
2r0

ρ|ξ|2m2

|ξ|mk2r0+1
kr0+1

� ρm|ξ|
∑

k≥C(ρ|ξ|m)
1

2r0

k−r0 � (ρm|ξ|)
1
2

+ 1
2r0 .

This analysis applies to all the curves in the foliation. Accordingly, µ conditioned on Dξ,m can be
regarded as a standard family G, and the Z-function of its Tρ-image satisfies

ZG1 � C(ρm|ξ|)
1
2

+ 1
2r0 .

For further iterates, it follows form (56) that

ZGn ≤ Cρ−ν(m|ξ|)
1
2

+ 1
2r0 .

Now we apply (57) to get

µ(Dξ,m ∩ T−nρ Dξ̂,m̂) = µ(Dξ,m)PGn(Dξ̂,m̂) ≤ Cµ(Dξ,m)ZGn |ξ̂|−2m̂−2

≤ C|ξ̂|−2m̂−2|ξ|−
5
2

+ 1
2r0m

− 5
2

+ 1
2r0 ρ−1−ν . (60)

We split (58) into two parts. If m̂ ≤ mc (for some c > 0 to be determined), we use (60) and get

∑
ξ

∑
ξ̂

|ξ|q|ξ̂|q
∞∑

m= H
|ξ|

mq
mc∑
m̂=1

m̂qµ(Dξ,m ∩ T−nρ Dξ̂,m̂)

≤ Cρ−1−ν
∑
ξ

∑
ξ̂

|ξ|−
5
2

+q+ 1
2r0 |ξ̂|q−2

∞∑
m= H

|ξ|

m
− 5

2
+q+ 1

2r0mc(q−1)

≤ Cρ−1−νH
− 3

2
+q+c(q−1)+ 1

2r0

∑
ξ

|ξ|−1−c(q−1)

∑
ξ̂

|ξ̂|q−2


≤ CH−

3
2

+q+c(q−1)+ 1
2r0 ρc(q−1)−q−2−ν ,

where we have used that because q + c(q − 1) < 3
2 −

1
2r0

, the contribution of m is summable (this

condition is equivalent to c < c2(q) =
1− 1

r0
2q−2 , cf. Remark C.3). Note that if q = 1 then this contribution

is independent of c; however, there is an additional factor of | log ρ| · logH.
If m > mc we use (59) and get

∑
ξ

∑
ξ̂

|ξ|q|ξ̂|q
∞∑

m= H
|ξ|

mq
∞∑

m̂=mc

m̂qµ(Dξ,m ∩ T−nρ Dξ̂,m̂)

≤ Cρ−1
∑
ξ

∑
ξ̂

|ξ|q|ξ̂|q−3
∞∑

m= H
|ξ|

mq
∞∑

m̂=mc

m̂q−3 ≤ Cρ−1
∑
ξ

∑
ξ̂

|ξ|q|ξ̂|q−3
∞∑

m= H
|ξ|

mc(q−2)+q

≤ CHc(q−2)+q+1ρ−1

∑
ξ

|ξ|c(2−q)−1

∑
ξ̂

|ξ̂|q−3

 ≤ CHc(q−2)+q+1ρ−1−q−c(2−q),
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and in case q = 1 we still have an additional | log ρ| factor. The condition of summability c(q−2)+q <
−1 is satisfied because c > q+1

2−q . Summarizing, we need

1 ≤ q < 2, q + c(q − 1) <
3

2
− 1

2r0
,

q + 1

2− q
< c.

First we may fix q such that

3

2
− 1

2r0
> q +

q + 1

2− q
(q − 1) =

2q − 1

2− q
⇔ q < 2− 6

7− 1/r0

and then we can fix c slightly larger than q+1
2−q , such that the conditions are still met. The range of

allowed q depends on r0, it can never exceed 8
7 ; for the traditional r0 = 2 the upper bound is 14

13 ,
while for r0 = 5 the upper bound is 19

17 . �

C.2 Exploiting the existence of a Young tower for Tρ

Let (∆̄ρ, T∆̄ρ
, µ∆̄ρ

) be the corresponding one-sided Young tower (i.e., with stable leaves quotiented

out) and let R∆̄ρ
be the transfer operator of T∆̄ρ

. Let κ̂ρ be the version of κρ on ∆̄ρ. Since κρ is
constant on stable leaves, we have for any j, ` ≥ 0,∫

M0

(eitκρ − 1)R`ρ(e
itκρ − 1) (eitκρ − 1) ◦ T jρ dµ

=

∫
∆̄ρ

(eitκ̂ρ − 1)R`∆̄ρ
(eitκ̂ρ − 1) (eitκ̂ρ − 1) ◦ T j

∆̄ρ
dµ∆̄ρ

. (61)

Let r be the roof function of the tower (∆̄ρ, µ∆̄ρ
). We recall that if d := gcd(r) > 1, then for

every ρ > 0, R∆̄ρ
(when viewed as an operator acting on the Young Banach space B∆̄ρ

⊂ Lp(µ∆̄ρ
))

has a spectral gap (see [9, 33]). As clarified in Remarks C.4 and C.5, the decomposition of R∆̄ρ
we

shall need in the proof below holds when d > 1.

Proof of Proposition C.1. We first prove the statement for the case when ` = 0 and point out
the required modifications when ` ≥ 1.

Case ` = 0. Given (61), in this case we need to show that∣∣∣∣∣
∫

∆̄ρ

(eitκ̂ρ − 1) (eitκ̂ρ − 1) ◦ T j
∆̄ρ
µ∆̄ρ
−
(∫

∆̄ρ

(eitκ̂ρ − 1)µ∆̄ρ

)2
∣∣∣∣∣ ≤ Ĉρ|t|2ϑ̂jρ, (62)

for some ρ-dependent constants ϑ̂ρ < 1 and Ĉρ > 0.
Throughout this proof, we let κ′ρ, κ

′′
ρ, κ
′′′
ρ , κ

′′′′
ρ also denote their corresponding versions on the

tower ∆ρ and the context in which they appear will make it clear which version we are referring to.
Write∫

∆̄ρ

(eitκ̂ρ − 1) (eitκ̂ρ − 1) ◦ T j
∆̄ρ
dµ∆̄ρ

=

∫
∆̄ρ

(eiκ̂ρt − eiκ′ρt) · (eiκ̂ρt − 1) ◦ T j
∆̄ρ
dµ∆̄ρ

+

∫
∆̄ρ

(eiκ
′
ρt − 1) · (eiκ̂ρt − eiκ′′′ρ t) ◦ T j

∆̄ρ
dµ∆̄ρ

+

∫
∆̄ρ

(eiκ
′
ρt − 1) · (eiκ′′′ρ t − 1) ◦ T j

∆̄ρ
dµ∆̄ρ

=

∫
∆̄ρ

eiκ
′
ρt · (eiκ′′ρ t − 1) · (eiκ̂ρt − 1) ◦ T j

∆̄ρ
dµ∆̄ρ

+

∫
∆̄ρ

(eiκ
′
ρt − 1) · eiκ′′′ρ t ◦ T j

∆̄ρ
· (eiκ′′′′ρ t − 1) ◦ T j

∆̄ρ
dµ∆̄ρ

+

∫
∆̄ρ

(eiκ
′
ρt − 1) · (eiκ′′′ρ t − 1) ◦ T j

∆̄ρ
dµ∆̄ρ

= I1(t, ρ) + I2(t, ρ) + I3(t, ρ).
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For I3(t, ρ) we use the exponential decay of correlation (see Remark C.4 below for the case that
the roof function r of the tower has gcd(r) > 1). This gives the only source of unknown dependence
on ρ in the case m = 0. More precisely, for every ρ > 0, there exists θ̂ρ < 1 and Cρ > 0 so that∣∣∣∣∣I3(t, ρ)−

∫
∆̄ρ

(eiκ
′
ρt − 1) dµ∆̄ρ

∫
∆̄ρ

(eiκ
′′′
ρ t − 1) dµ∆̄ρ

∣∣∣∣∣ ≤ Cρ θ̂
j
ρ ‖eitκ

′
ρt − 1‖B∆ρ

‖eitκ′′′ρ t − 1‖B∆ρ

≤ Cρ θ̂
j
ρH Ĥ |t|2. (63)

Thus, ∣∣∣∣∣I3(t, ρ)−
(∫

∆̄ρ

(eitκ̂ρ − 1)µ∆̄ρ

)2
∣∣∣∣∣ ≤ Cρ θ̂jρH Ĥ |t|2

+
∣∣∣ ∫

∆̄ρ

(eiκ
′
ρt − 1) dµ∆̄ρ

∫
∆̄ρ

(eiκ
′′′
ρ t − 1) dµ∆̄ρ

−
∫

∆̄ρ

(eiκ̂ρt − 1) dµ∆̄ρ

∫
∆̄ρ

(eiκ̂ρt − 1) dµ∆̄ρ

∣∣∣
= Cρ θ̂

j
ρH Ĥ |t|2 + |J(t, ρ)|.

By definition,

|J(t, ρ)| =
∣∣∣ ∫
M0

(eiκ
′
ρt − 1) dµ

∫
M0

(eiκ
′′′
ρ t − 1) dµ−

∫
M0

(eiκ̂ρt − 1) dµ

∫
M0

(eiκ̂ρt − 1) dµ
∣∣∣

and we note that J(t, ρ) is bounded by the sum of∫
M0

|eiκ′ρt · (eitκ′′ρ − 1)| dµ
∫
M0

|eitκ′′′ρ t − 1| dµ ≤ |t|2
∫
|κρ|1{κρ>H} dµ

∫
M0

|κ′′′ρ | dµ

and a similar term with Ĥ instead of H. Using the Hölder inequality (with exponents 2
1+δ and 2

1−δ ),
the tail behaviour of κρ and Lemma A.5, we obtain that∫

M0

|κρ|1{|κρ|>H} dµ ≤ ‖κρ‖L2/(1+δ) µ(|κρ| > H)(1−δ)/2 � ρ−1H−(1−δ).

Also
∫
M0
|κ′′′ρ |dµ ≤ ‖κρ‖L1(µ) � ρ−1. Hence,

|J(t, ρ)| � |t|2ρ−2
(
H−(1−δ) + Ĥ−(1−δ)

)
. (64)

Finally, note that

|I1(t, ρ) + I2(t, ρ)| ≤ |t|2
∫

∆̄ρ

|κ′′ρ| · |κρ| ◦ T
j
∆̄ρ
dµ∆̄ρ

+ |t|2
∫

∆̄ρ

|κ′ρ| · |κ′′′′ρ | ◦ T
j
∆̄ρ
dµ∆̄ρ

= |t|2
(∫
M0

|κ′′ρ| · |κρ| ◦ T
j
∆̄ρ
dµ+

∫
M0

|κ′ρ| · |κ′′′′ρ | ◦ T
j
∆̄ρ
dµ

)
. (65)

For this ` = 0 case, if we fix any r0 ≥ 2 (taking into account that Ĥ = Hc0), then we may bound
the coefficients of |t|2 in |J(t, ρ)| from (64), |I1(t, ρ)| and |I2(t, ρ)| from (65), respectively by

ρ−2H−(1−δ); H−
1
5 ρ−4 +H2−c0ρ−

11
5
−c0 , H2−c0ρ−3,

where in the bound for |I1(t, ρ)| the exponents of H and ρ have been slightly decreased to bound the

logarithmic factors. Fixing c0 = 11
5 and δ = 4

5 , all these are dominated by H−
1
5 ρ−

22
5 . On the other
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hand the coefficient of |t|2 in |I3(t, ρ)| is Cρ θ̂jρHc0+1 = Cρ θ̂
j
ρH

16
5 . Thus letting H =

(
C−1
ρ θ̂−jρ ρ−

22
5

) 5
17

we conclude that all terms are dominated by

ρ−
352
85 C

1
17
ρ (θ̂

1
17
ρ )j ; thus we let Ĉρ = ρ−

352
85 C

1
17
ρ , ϑ̂ρ = θ̂

1
17
ρ . (66)

Case ` ≥ 1. The main differences in this case come down to dealing with integrals containing
unbounded terms κ′′ρ and κ′′′′ρ in such a way that can gain exponential decay in ` and then proceed
as in the case ` = 0 treated above. To do this, we exploit that B∆̄ρ

⊂ Lp(µ∆̄ρ
).

Using (61), we need to estimate

J(t, ρ) :=

∫
∆̄ρ

(eitκ̂ρ − 1)R`∆̄ρ
(eitκρ − 1) (eitκ̂ρ − 1) ◦ T j

∆̄ρ
dµ∆̄ρ

−
∫

∆̄ρ

(eitκ̂ρ − 1)R`∆̄ρ
(eitκ̂ρ − 1) dµ∆̄ρ

∫
∆̄ρ

(eitκ̂ρ − 1) dµ∆̄ρ

−
∫

∆̄ρ

(eitκ̂ρ − 1) dµ∆̄ρ

∫
∆̄ρ

(eitκ̂ρ − 1) (eitκ̂ρ − 1) ◦ T jρ dµ∆̄ρ
+
(∫

∆̄ρ

(eitκ̂ρ − 1) dµ∆̄ρ

)3
.

By Remark C.4, for every ρ > 0 and for every ` ≥ 1,

R`∆̄ρ
(eitκ̂ρ − 1)−

∫
∆̄ρ

(eitκρ − 1) dµ∆̄ρ
= Q`∆̄ρ

(eitκρ − 1), ‖Q`∆̄ρ
(eitκ̂ρ − 1)‖B∆̄ρ

≤ Cρ θ̂`ρ, (67)

for some ρ-dependent Cρ and θ̂ρ < 1. This is the first source of unknown dependence on ρ. Since
B∆̄ρ

⊂ Lp(µ∆̄ρ
),

‖Q`∆̄ρ
(eitκ̂ρ − 1)‖Lp(µ∆̄ρ

) ≤ C0
ρ θ̂

`
ρ, (68)

for some ρ-dependent C0
ρ . This is the second source of unknown dependence on ρ.

With these specified, we can write

J(t, ρ) =

∫
∆̄ρ

(eitκ̂ρ − 1)Q`∆̄ρ
(eitκ̂ρ − 1) (eitκ̂ρ − 1) ◦ T j

∆̄ρ
dµ∆̄ρ

−
∫

∆̄ρ

(eitκ̂ρ − 1)Q`∆̄ρ
(eitκ̂ρ − 1) dµ∆̄ρ

∫
∆̄ρ

(eitκ̂ρ − 1) dµ∆̄ρ
= E(t, ρ)−G(t, ρ).

Rearranging as in the case ` = 0,

E(t, ρ) =

∫
∆̄ρ

(eiκ̂ρt − eiκ̂′ρt)Q`∆̄ρ
(eitκρ − 1) (eiκ̂ρt − 1) ◦ T j

∆̄ρ
dµ∆̄ρ

+

∫
∆̄ρ

(eiκ
′
ρt − 1)Q`∆̄ρ

(eitκ̂ρ − 1) (eiκ̂ρt − eiκ′′′ρ t) ◦ T j
∆̄ρ
dµ∆̄ρ

+

∫
∆̄ρ

(eiκ
′
ρt − 1)Q`∆̄ρ

(eitκ̂ρ − 1) (eiκ
′′′
ρ t − 1) ◦ T j

∆̄ρ
dµ∆̄ρ

=

∫
∆̄ρ

eiκ
′
ρtQ`∆̄ρ

(eitκ̂ρ − 1) (eiκ
′′
ρ t − 1) · (eiκ̂ρt − 1) ◦ T j

∆̄ρ
dµ∆̄ρ

+

∫
∆̄ρ

(eiκ
′
ρt − 1)Q`∆̄ρ

(eitκ̂ρ − 1) eiκ
′′′
ρ t ◦ T j

∆̄ρ
· (eiκ′′′′ρ t − 1) ◦ T j

∆̄ρ
dµ∆̄ρ

+

∫
∆̄ρ

(eiκ
′
ρt − 1)Q`∆̄ρ

(eitκ̂ρ − 1) (eiκ
′′′
ρ t − 1) ◦ T j

∆̄ρ
dµ∆̄ρ

= E1(t, ρ) + E2(t, ρ) + E3(t, ρ).
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Let q ∈ (1, 8
7 −

6
7r0−1) so that Lemma C.2 holds. By the Hölder inequality with 1

p + 1
q = 1 and (68),

|E1(t, ρ) + E2(t, ρ)| ≤ ‖Q`∆̄ρ
(eitκ̂ρ − 1)‖Lp(µ∆̄ρ

) |t|2‖ |κ′′ρ| · |κ̂ρ| ◦ T
j
∆̄ρ
‖Lq(µ∆̄ρ

)

+ ‖Q`∆̄ρ
(eitκ̂ρ − 1)‖Lp(µ∆̄ρ

) |t|2‖ |κ′ρ| · |κ′′′′ρ | ◦ T
j
∆̄ρ
‖Lq(µ∆̄ρ

)

≤ C0
ρ θ̂

`
ρ |t|2

(
‖|κ′′ρ| · |κ̂ρ| ◦ T

j
∆̄ρ
‖Lq(µ∆̄ρ

) + ‖|κ′ρ| · |κ′′′′ρ | ◦ T
j
∆̄ρ
‖Lq(µ∆̄ρ

)

)
.

Similar to estimating (65), using Lemma C.2 and Remark C.3 and without trying for optimal bounds,
we can pick q close to 1 and c0 <

5
2 such that c0(q − 2) + q + 1 = −1

5 . For these values,

|E1(t, ρ) + E2(t, ρ)| ≤ C C0
ρ θ̂

`
ρ |t|2H

− 1
5q ρ

−5
q . (69)

Next, let

L1(t, ρ) =

∫
∆̄ρ

(eiκ
′
ρt − 1)Q`∆̄ρ

(eitκ̂ρ − 1) (eiκ
′′′
ρ t − 1) ◦ T j

∆̄ρ
dµ∆̄ρ

−
∫

∆̄ρ

(eitκ
′
ρ − 1)Q`∆̄ρ

(eitκ̂ρ − 1) dµ∆̄ρ

∫
∆̄ρ

(eitκ
′′′
ρ − 1) dµ∆̄ρ

and note that

E3(t, ρ)−G(t, ρ) = L1(t, ρ)−
∫

∆̄ρ

(eitκ̂ρ − eitκ′ρ)Q`∆̄ρ
(eitκ̂ρ − 1) dµ∆̄ρ

∫
∆̄ρ

(eitκ̂ρ − 1) dµ∆̄ρ

−
∫

∆̄ρ

(eitκ̂ρ − 1)Q`∆̄ρ
(eitκ̂ρ − 1) dµ∆̄ρ

∫
∆̄ρ

(eitκ̂ρ − eitκ′′′ρ ) dµ∆̄ρ

= L1(t, ρ)− L2(t, ρ)− L3(t, ρ).

By the exponential decay of correlations as in (63) as well as (68):

|L1(t, ρ)| ≤ Cρ θ̂jρH Ĥ |t|2‖Q`∆̄ρ
(eitκ̂ρ − 1)‖Lp(µ∆̄ρ

) ≤ CρC0
ρ θ̂

`
ρ |t|2H1+c0 ,

where as before c0 <
5
2 . Finally, by the equation before (64), we have

|L2(t, ρ)| ≤ |t2| ρ−1H−(1−δ)‖Q`∆̄ρ
(eitκ̂ρ − 1)‖Lp(µ∆̄ρ

) ≤ Cρ C0
ρ θ̂

`
ρ|t2| ρ−1H−(1−δ).

A similar argument applies to L3(t, ρ).
The conclusion follows with a similar choice of H as in the case ` = 0 treated above. �

Remark C.4 Let r be the roof function of the one-sided tower map (∆̄ρ, µ∆̄ρ
). If d := gcd(r) > 1,

then T∆̄ is not mixing on the Banach space B∆̄ρ
. However, the underlying billiard map Tρ is mixing

and thus, ∫
M
Rnρφ · ψ dµ→ 0 as n→∞, (70)

for φ, ψ ∈ B with
∫
M φdµ = 0. If gcd(r) = d > 1, then the eigenvalues on the unit circle are the

d-th roots of unity. Hence,

R∆̄ρ
= Π∆̄ρ

+Q∆̄ρ
:=
∑
λd=1

λΠλ +Q∆̄, Π∆̄ρ
Q∆̄ρ

= Q∆̄ρ
Π∆̄ρ

= 0,
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where Πλ denotes the projection on the (generalised) eigenspace B∆̄ρ,λ of eigenvalue λ, and Q∆̄ρ
is

the complementary projection. The Banach space B∆̄ρ
on ∆̄ρ can be written as the direct sum

B∆̄ρ
= BΠ ⊕ BQ for BΠ := ⊕λd=1B∆̄ρ,λ = ker(Q∆̄ρ

) and BQ = ker(Π∆̄ρ
), (71)

As the kernels of projections, BΠ and BQ are closed R∆̄ρ
-invariant subspaces of B∆̄ρ

, and hence
Banach spaces themselves. Also, as clarified below, for every ρ > 0, the restriction R∆̄ρ

to BQ has

spectral radius less than 1. That is, for every ρ > 0, there exists θ̂ρ < 1 so that

‖Rnρφ‖B∆̄ρ
� θ̂nρ ‖φ‖B∆̄ρ

. (72)

Consider the lifted version of φ: φ∆̄ρ
(x) =

∫
`(x) φ◦π dµ∆ρ,`(x) where `(x) is the stable leaf through

x ∈ ∆̄ and µ∆ρ,`(x) the measure on this leaf emerging from the disintegration of the measure µ∆ρ of
the two-sided tower. The transfer operator R∆̄ρ

on the one-sided tower satisfies∫
M
Rnφ · ψ dµ =

∫
∆̄
Rn∆̄ρ

φ∆̄ρ
· ψ∆̄ρ

dµ∆̄ρ
. (73)

If Π∆̄ρ
φ∆̄ρ
6= 0, then there exists ψ∆̄ρ

∈ B∆̄ρ
such that

∫
MRn

∆̄ρ
φ∆̄ρ
· ψ∆ρ dµ∆ρ 6→ 0. (In fact, taking

ψ∆̄ρ
= Π∆̄ρ

φ∆̄ρ
, we get

∫
MRdn

∆̄ρ
φ∆̄ρ
· ψ∆̄ρ

dµ∆̄ρ
→
∫
MΠ∆̄ρ

φ∆̄ρ
Π∆̄ρ

φ∆̄ρ
dµ∆̄ρ

6= 0.) This contradicts

(70) and/or (73). Hence φ∆̄ρ
∈ BQ and ‖Rn

∆̄ρ
φ∆̄ρ
‖BQ ≤ ‖R∆̄ρ

|BQ ‖n ‖φ∆̄ρ
‖BQ � θ̂nρ ‖φ∆̄ρ

‖BQ.

Property (72) follows.

Remark C.5 We note that mixing of the underlying map Tρ is not required for an useful version
of (67) to hold. Indeed the property of Q∆̄ρ

in (67) holds independent of mixing and for this we
just need to work with (72), which holds for d > 1. The downside of using (72) directly is that in
assumption (37) we would have to extract

∑
λd=1 λΠλ(eitκρ − 1) instead of

∫
M(eitκρ − 1) dµ. We

found it more convenient to work with the ’clean’ assumption (37).
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[18] S. Gouëzel. Central limit theorems and stable laws for intermittent maps. Prob. Th. and Rel.
Fields 1 (2004) 82–122.

[19] G. Hardy, E. Wright. An Introduction to the theory of numbers, (Fifth ed.), Oxford: Oxford
University Press (1979).

[20] G. Keller, C. Liverani. Stability of the spectrum for transfer operators. Annali della Scuola
Normale Superiore di Pisa, Classe di Scienze 19 (1999) 141–152.

[21] C. Liverani, D. Terhesiu. Mixing for some non-uniformly hyperbolic systems. Annales Henri
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