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Abstract

We obtain expansions of ergodic integrals for Zd-covers of compact self-similar translation
flows, and as a consequence we obtain a form of weak rational ergodicity with optimal rates. As
examples, we consider the so-called self-similar (s, 1)-staircase flows (Z-extensions of self-similar
translations flows of genus-2 surfaces), and particular cases of the Ehrenfest wind-tree model.
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1 Introduction

Given a measure preserving flow (ϕt)t∈R on a measure space (X,µ), one is interested in describing the
almost everywhere behaviour of its orbits. If the flow is ergodic and if µ(X) < ∞, Birkhoff’s Ergodic

Theorem states that, for any integrable observableG : X → R, the time averages 1
T

∫ T
0
G◦ϕt dt converge

almost everywhere to 1
µ(X)

∫
X
Gdµ. On the other hand, if µ(X) = ∞, for any ergodic, conservative flow

(ϕt)t∈R, its time averages for integrable functions converge to 0 almost everywhere. The situation does
not improve even if we replace 1

T with any other normalizing family of functions a(T ), see Aaronson

[1, Theorem 2.4.2]: for any non-negative integrable function G, either lim infT→∞
1

a(T )

∫ T
0
G◦ϕt dt = 0

or lim supT→∞
1

a(T )

∫ T
0
G ◦ ϕt dt = ∞ almost everywhere.

However, one can still hope to describe the almost everywhere behaviour of the ergodic integrals
in some weaker sense. In particular, for an integrable function G : X → R, we seek an expression of
the form ∫ T

0

G ◦ ϕt(x) dt = a(T )

(∫
X

Gdµ

)
· ΦT (x)(1 + o(1)), (1)

where a(T ) describes the “correct (almost everywhere) size” of the ergodic averages (which, at least
for us, is o(T )) and ΦT (x) is an “oscillating” term which, although not convergent almost everywhere,
converges in some weaker sense (and, crucially, depends only on the point x, not on the function G).

In this paper, we consider a translation flow (ϕt)t∈R on a space XΓ which is a Zd-cover of a compact
translation surface X with projection p : XΓ → X. The Lebesgue measure m is infinite on XΓ and
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invariant w.r.t. both the flow ϕt and the deck-transformations associated to the cover. Our main
result is that, under certain assumptions described below, an expression as (1) holds for all continuous
functions G : XΓ → R with compact support, with a(T ) ∼ T (log T )−d/2 and where

√
log(ϕT ◦ p)

converges in distribution to a Gaussian random variable.
Results of this type have been proved by many authors in several settings, including [28] for Zd

covers of horocycle flows, and [6] for Z-covers of a translation torus. Furthermore, in [6], the authors
used this result to prove temporal limit theorems for circle rotations Rθ : S1 → S1 for observables
with

∫
S1 G dm = 0 and specific (namely, quadratically irrational) rotation angles θ. This amounts

to determining the asymptotics of
∑n−1
i=0 G ◦ Riθ(x) for a fixed x and increasing time intervals [0, n].

The crucial idea in their proofs is renormalization, allowing one to speed up a translation flow ϕt on
a Z-cover XΓ of a two-dimensional twice punctured torus X in the contracting direction of a linear
pseudo-Anosov lift1 ψΓ of XΓ according to

ψΓ ◦ ϕt = ϕλt ◦ ψΓ for every t ∈ R, (2)

where λ ∈ (0, 1) is the contraction factor of ψΓ. Therefore the asymptotics of ergodic integrals
∫ T
0
G ◦

ϕt dt for compactly supported observables G : XΓ → R can be estimated using the asymptotics of∫
F G ◦ ψk dm, where F is a fundamental domain and T ≈ λ−k.

The central result in [6] in our notation is∫ T

0

G ◦ ϕt(x) dt =
(∫

XΓ

G dm

)
(1 + o(1))T

σ
√
2K

exp

(
−1 + o(1)

2σ2

(
ξ ◦ ψKΓ (x)

)2
K

)
as T → ∞, (3)

where K ∼ log∗ T := ⌈− log T
log λ ⌉ and x is such that it has zero average drift under iteration of ψΓ, and

ξ : XΓ → Z is the projection on the Z-part of the cover.
In this paper, we extend these results to (i) include higher-order error terms of the asymptotics,

making the o(1) terms in (3) explicit, and (ii) allow more general translation surfaces than tori. For
instance, we cover a particular case of Ehrenfest’s wind-tree model. Our proofs continue to rely on
the renormalization formula (2), hence restricting the direction of the translation flow to quadratically
irrational slopes, but are on the whole simpler than those of [6], and pertain to Zd-covers as well.

Ergodicity of the flow seems to be a non-generic property; there are several results in the literature
showing that for Z- or Zd-extensions of many compact translation surfaces, the translation flow in a
generic direction is non-ergodic, and even has uncountably many ergodic components, cf. [33, 34, 8,
18, 19]. The landmark result of Fra̧cek and Ulcigrai [18] proves the existence of uncountably many
ergodic components for the square wind-tree model and Lebesgue a.e. direction.

In contrast, it was proved in [25] for wind-tree models with square obstacles, and more generally
for rational rectangles, that in a dense set of directions (of Hausdorff dimension more than half), the
billiard flow is ergodic.

Our result applies in particular to wind-tree models that have two finite-horizon directions, where
the corresponding cylinders have commensurable moduli. It was proved in [26] that this is the case for
most rational-length obstacles of the rectangular wind-tree model — and the result of [25] mentioned
before is a consequence of this property. We generalize ergodicity results to wind-trees of different
shapes and to Zd-covers for higher d, which has been little studied to our knowledge. In addition,
we provide finer ergodicity results in these cases by describing the asymptotic behavior of Birkhoff
integrals.

Phrased in dimension d = 1 (but see Theorem 3.3 for the precise formulation for d = 1 and d = 2),
our main result reads as follows:

1By this we mean the lift of a pseudo-Anosov automorphism; as XΓ is not compact, and may have singularities with
an infinite or ill-defined cone angle, XΓ may not carry proper pseudo-Anosov automorphisms.
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Theorem 1.1. Let G ∈ C1(XΓ) be compactly supported. Then, there exist real bounded functions gk,j
so that for all N ≥ 1 and m-a.e. x ∈ XΓ,∫ T

0

G ◦ ϕt(x) dt =
∫
XΓ

G dm

σ
√
2π

· e−
ξ(ψKΓ (x))

2

2σ2K
T√
K

×

1 +

N∑
k=1

1

Kk

2k∑
j=0

gk,j(x) ξ(ψ
K
Γ (x))2k−j + O

(
1

KN+1

)
as T → ∞ and K = log∗ T = ⌈− log T

log λ ⌉.

The term
ξ(ψKΓ (x))2

2σ2K is oscillating and does not converge almost everywhere, but after integration
over the space, it does lead to a form of weak rational ergodicity for C1 observables with optimal rates,
see Theorem 3.5. Weak rational ergodicity [2] means that there is a set F ⊂ XΓ of positive finite
measure (possibly but not necessarily a fundamental domain of the Zd-cover) such that

lim
T→∞

1

aT (F)

∫ T

0

µ(A ∩ ϕt(B)) dt = µ(A)µ(B)

for all measurable sets A,B ⊂ F , and aT (F) :=
∫ T
0
µ(F ∩ ϕt(F)) dt is called the return sequence.

The paper is organized as follows. In Section 2 we formalize the concept of Zd-cover over a trans-
lation surface and study the automorphisms that commute with deck-transformations. We discuss the
example of the (s, 1)-staircase at length, which is the direct generalization of the model used in [6]
(where s = 2). We give direct proofs of ergodicity of the pseudo-Anosov lift ψΓ and the translation
flow ϕt although this also follows from the results of Section 3. Section 2 finishes with a version of the
Ehrenfest wind-tree model, as well as an example of the classical Ehrfest wind-tree model with 1

2 × 1
2

squares as obstacles; which is our examples of a Z2-cover where the main theory applies. Section 3 gives
the core of the argument in an abstract setup, based on local limit laws of twisted transfer operators
Lu acting on appropriate anisotropic Banach spaces. Finally, in the Appendix we review the tensor
calculus we are using, and prove some technical lemma.

Acknowledgements: The authors would like to thank the Erwin Schrödinger Institute where this pa-
per was initiated during a “Research in Teams” project in 2023. We are also grateful to the anonymous
referee for the suggestions that helped us to seriously strengthen our paper.

2 Abelian covers and homogeneous automorphisms

A translation surface X is a connected topological surface with an atlas of charts ϕi : Ui → X \ Σ,
Ui ⊂ R2 open and connected, such that each ϕ−1

j ◦ ϕi is a translation from Ui ∩ ϕ−1
i ◦ ϕj(Uj) to its

image. Here Σ is a discrete set of conical singularities, i.e., their cone angles differ from 2π (but are
still finite) and potentially marked point, see Section 2.1. See [10] for an extensive monograph on
translation surfaces, from which we have just paraphrased Definition 1.1.6.

A standard example is a right-angled polygon with pairwise identified sided via translations, see Fig-
ure 1 (left).

A Zd-cover XΓ of a translation surface is a new (infinite) translation surface with a continuous
projection p : XΓ → X such that the quotient space XΓ/X ≃ Zd. Any region F such that copies by
deck-transformations {∆n}n∈Zd form a partition of XΓ is called a fundamental domain. We can depict
XΓ as an infinite polygon (the countable union of copies of X) in R2, but with sides identified in a
different way from X, see Figure 1; a collection Γ of d independent primitive loops determines how
these identifications are done, see Figure 1 (right).
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Figure 1: The (3, 1)-rectangle (left) and the (3, 1)-staircase. On the Σ consists of a single point with
cone angle 6π; it splits into countable many singularities on the staircase, all with cone angle 6π.

A pseudo-Anosov diffeomorphism ψ : X → X is a bijection of X that is a diffeomorphism on X \Σ,
and admits a continuous splitting of the tangent bundle T (X \Σ) into a stable foliation {Es(x)}x∈X\Σ
and an unstable foliation {Eu(x)}x∈X\Σ such that for all x ∈ X \ Σ:

• the angle ∠(Es(x), Eu(x)) ≥ α;

• Dψ(x)(Es(x)) = Es(ψ(x)) and ∥Dψn(x)v∥ ≤ Ce−cn∥v∥ for all v ∈ Es(x);

• Dψ−1(x)(Eu(x)) = Eu(ψ−1(x)) and ∥Dψ−n(x)v∥ ≤ Ce−cn∥v∥ for all v ∈ Eu(x).

Here the constants C, c, α > 0 are independent of x ∈ X \ Σ. The set Σ is discrete, and consists of
common endpoints of so-called prongs of the stable and unstable foliations. In our case, Σ coincides
with the set of conical singularities of the translation surface.

The lift ψΓ of a pseudo-Anosov diffeomorphism ψ is a bijection of the Zd-cover XΓ such that
ψ ◦ p = p ◦ ψΓ. It isn’t fully a pseudo-Anosov diffeomorphism in its own right, partially because the
singularities of XΓ can be more complicated than conical singularities, e.g., they could have infinite
cone angle, or no proper two-dimensional neighbourhood. However, ψΓ has enough hyperbolicity for
the purpose in this paper.

2.1 Homological properties of Zd-covers

Let X be a compact translation surface of genus g ≥ 1, and let Σ ⊂ X be the finite set of singularities
and marked points of X, whose cardinality we denote by κ ≥ 1. The relative homology H1(X,Σ,Z) is
a free abelian group of rank 2g + κ− 1. The intersection form

⟨·, ·⟩ : H1(X,Σ,Z)×H1(X \ Σ,Z) → Z

is non-degenerate. Let us consider a homomorphism ζ̃ : π1(X \ Σ) → Zd. Using the action of the

fundamental group π1 on the universal cover of X, denoted by X̃, one can associate to the kernel of ζ̃
a Zd-cover ker ζ̃ \ X̃. Notice that, as Zd is abelian, one can factor ζ̃ by a morphism

ζ : H1(X \ Σ,Z) → Zd.

The projection of ζ on each coordinate of Zd in the canonical basis defines linear forms on H1(X \Σ,Z).
As the intersection form is non-degenerate, there exists a collection of independent primitive loops
Γ = {γ1, . . . , γd} ⊂ H1(X,Σ,Z) such that

ζ(γ) = (⟨γ1, γ⟩ , . . . , ⟨γd, γ⟩) .
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Figure 2: The 0th step and its image under ψΓ with matrix
(
1 3
2 7

)
.

Conversely, such a collection defines a Zd-cover XΓ of X with projection p : XΓ → X. We denote its
group of deck transformation by Deck, which is isomorphic to Zd. Thus we can label each element of
Deck by ∆n with n ∈ Zd.

As the intersection form is non-degenerate, there exists smooth 1-forms ωi on X that vanish on Σ
such that for all γ ∈ H1(X \ Σ,Z), ∫

γ

ωi = ⟨γi, γ⟩ .

Notice that the ωis form a free family of vectors in H1(X,Σ,Z). We denote by H(Z) the Z-module of
H1(X,Σ,Z) generated by these vectors and H(R) the corresponding real sub-bundle of H1(X,Σ,R).
Then the quotient H(R)/H(Z) is isomorphic to the d-dimensional torus Td.

Let hol : H1(X,Σ,Z) → C denote the holonomy map. As observed in [24], it is a necessary condition
for the linear flow to be recurrent in almost every direction on the cover to have

hol(γi) = 0 for all i = 1, . . . , d.

This is commonly called a no drift condition and we assume it for the covers we consider. For Z-covers,
by [24, Proposition 10], the no drift condition as defined here is equivalent to the corresponding con-
dition in (H3), namely that

∫
X
F dm = 0.

Proposition 2.1. Let x0 ∈ XΓ be fixed. For any ω ∈ H(R) and for all x ∈ XΓ, the integral

ξω(x) =

∫ x0

x

ω ◦ p

does not depend on the path chosen and is hence a well-defined smooth function on XΓ.
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Proof. It suffices to show that for any loop γ in the cover XΓ, we have
∫
[γ]
p∗ω = 0. By definition of

the cover, p∗[γ] = [p ◦ γ] ∈ ker ζ, so that∫
[γ]

p∗ω =

∫
p∗[γ]

ω = 0,

which proves the claim.

Let F ⊂ XΓ be a fundamental domain for the cover, namely a compact connected subset of XΓ,
whose boundary ∂F has measure zero, such that the restriction of the projection p : XΓ → X to the
interior of F is injective and p(F) = X.

Note that |ξω(x)− ξω(y)| ≤ 1 for any x, y ∈ F , and equality can hold only if x, y ∈ ∂F .
The orbit of F under deck transformations tessellates XΓ, namely, for all m,n ∈ Zd,

m[∆m(F) ∩∆n(F)] = δmn, and
⋃

n∈Zd

∆n(F) = XΓ.

For a given fundamental domain, one can associate a Zd-coordinate function from XΓ \
⋃

n∈Zd ∂F to

Zd, which associates to a point x ∈ XΓ the unique n ∈ Zd such that ∆−n(F) ∈ F .

The following proposition shows that the functions ξωi form a smooth version of Zd-coordinates.

Proposition 2.2. Let x0 ∈ XΓ and ω ∈ H(R), they induce a simply connected fundamental domain

F = {x : |ξωi(x)| ≤ 1 for 1 ≤ i ≤ d}

and for any x ∈ XΓ such that x is not in the orbit by the deck transformation of ∂F ,

x ∈ ∆n(F) if and only if ⌊ξωi(x)⌋ = ni for all i = 1 . . . , d.

An automorphism of XΓ is called homogeneous if it commutes with all deck transformations. For
such a homogeneous automorphism ψΓ, and a given Zd-coordinate ξ, we can associate its Frobenius
function

F (x) := ξ(ψΓ(x
′))− ξ(x′)

where x′ ∈ p−1(x) and ξ is a Zd-coordinate for the cover. This is well defined since for all n ∈ Zd,
ψΓ ◦∆n = ∆n ◦ψΓ and ξ ◦∆n = ξ+n and a change in Zd-coordinates changes the Frobenius function
by a ψ-coboundary.

We then can define the average drift of such an automorphism by

δ(ψΓ) :=

∫
X

F dm

where m is normalized Lebesgue measure on the surface. It is independent of the choice of Zd-
coordinates and if ϕΓ is another homogeneous automorphism, we have

δ(ψΓ ◦ ϕΓ) = δ(ψΓ) + δ(ϕΓ), (4)

see [6, Lemma 2.2] for details.
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2.2 Homogeneous pseudo-Anosov lifts

The next proposition determines when we can lift an automorphism on the base to an automorphism
on the Zd-cover.

Proposition 2.3. Let ψ : X → X be a linear automorphism which preserves Σ and ψ∗ its induced
map on H1(X \ Σ,Z). If ζ ◦ ψ∗ = ζ then ψ can be lifted to XΓ and its lift is homogeneous.

Proof. Recall that, by definition, automorphisms are induced on the universal cover by acting on the
set of paths up to homotopy. The condition of the proposition then implies that this induced map can
be factored through a quotient by ker ζ̃, leading to the creation of a lifted automorphism on the cover.

Since the cover inherits its flat structure from the pulled-back structure on X, the lift is also linear.
Moreover, not only does ψ∗ preserve the kernel of ζ, but it also preserves all homology classes

modulo the kernel of ζ. As every deck transformation is determined by the action of an element γ in
π1(X \ Σ) mod ker ζ̃, one simply has to notice that the condition implies ψ(γ) ≡ γ mod ker ζ̃.

In a translation surface, a closed orbit in a given direction is contained in a cylinder formed by a
union of closed orbits and whose boundary is a union of saddle connections in the surface. The length
of those orbits is called the width of the cylinder and the distance across the cylinder in the orthogonal
direction if called the height. The modulus of a cylinder if given by the ratio of width over height.

A direction of a translation surface is called periodic2 if it can be decomposed as a union of cylinders
in that direction and those cylinders have commensurable moduli (i.e., their pairwise ratios are ratio-
nal). Notice that the actual period length of cylinders may be different and even not commensurable.

One feature of commensurable cylinder is that they have a common parabolic matrix acting trivially
on them by a Dehn twist.

h

w

(
1 w

h
0 1

)
✄

Figure 3: Dehn twist on an horizontal cylinder

Proposition 2.4. Consider a periodic direction of a translation surfaces X and the associated decom-
position in a finite family of cylinders; let µ1, . . . , µn be their moduli and let η1, . . . , ηn be the homology
classes of their core curves. Let k1, . . . , kn ∈ Z such that k1 · µ1 = · · · = kn · µn.
There is a linear parabolic automorphism ψ on X, which acts on homology by the map defined for all
γ ∈ H1(X \ Σ, R) by

ψ(γ) = γ + k1 · ⟨η1, γ⟩ · η1 + · · ·+ kn · ⟨ηn, γ⟩ · ηn. (5)

Proof. Assume that the flow is in the horizontal direction. For a given cylinder let us denote by w,
h and µ = w/h its width, height and modulus. The action of the parabolic matrix

(
1 µ
0 1

)
defines an

automorphism on this cylinder which topologically acts as a Dehn twist, meaning that it adds the
homology class of the core curve of the cylinder each time a representing loop crosses the core curve
positively and subtracts when it crosses it negatively.

By assumption, the moduli µ1, . . . , µn of the cylinders decomposing the surface are commensurable.
Thus there exist integers k1, . . . , kn such that the parabolic matrix(

1 µ1

0 1

)k1
= . . . =

(
1 µn
0 1

)kn
2The name comes from periodicity of the Teichmüller flow in this direction.
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defines an automorphism on the whole surface.

In this work, we will be interested in products of Dehn twists in transverse directions in order to
produce lifted linear automorphisms which associated matrix is hyperbolic i.e. has trace larger than
2. Such automorphisms are extensively studied on compact translation surfaces and are called linear
pseudo-Anosov maps. They preserve two transverse foliations in their contracting and expanding
directions.

2.3 Staircases

Let us consider a partition PI of the interval I into subintervals I1, I2, . . . , In and a permutation
σ : {1, . . . , n} → {1, . . . , n}. Let us identify the vertical sides of the rectangle I × [0, 1] and, for all
1 ≤ i ≤ n, interval Ii at the top with interval Iσ(i) at the bottom of the rectangle.

This defines a genus g surface X with k marked points at the boundaries of the intervals in the
partition. The numbers g and k depend on the permutation σ, but always satisfy dimH1(X,Σ,Z) =
2g + k − 1 = n+ 1. For 1 ≤ i ≤ n, let ηi ∈ H1(X,Σ,Z) be a relative homology class corresponding to
the path along the interval Ii from left to right. We define the classes γi = ηi − ησ(i); they form a set

Γ and let XΓ be the corresponding Zd-cover.
An important example of compact translation surface cover in [6] and [18] is given by a rectangle

with horizontal and vertical side length s ∈ N and 1 respectively, and identifications (0, x) ∼ (s, x),
(x, 0) ∼ (x + s − 1, 1), (x, 1) ∼ (x + s − 1, 0), for x ∈ [0, 1] and (x, 0) ∼ (x, 1) for x ∈ [1, s − 1]. It
is a particular case of the above setting, with n = 3, |I1| = |I3| = 1, |I2| = s − 2, σ = (1 3) and
Γ = {γ3 − γ1}. The corresponding Z-cover is called the (s, 1)-staircase.

We formulate the next lemma for this set of examples, although this should be possible to adapt
this argument for general cases.

Lemma 2.5. Let XΓ be the Z-cover associated to the (s, 1)-staircase. There exists an homogeneous
linear pseudo-Anosov automorphism ψ on X with zero average drift.

Proof. By Proposition 2.4, the action (from the right on row vectors) of the matrices

Dh =

(
1 s
0 1

)
and Dv =

(
1 0
2 1

)
on the surface define parabolic automorphisms (in fact, Dehn twists) in the horizontal and vertical
directions. Indeed, we note that the surface X can be decomposed into the union of two vertical
cylinders (of widths 2 and 1 and heights 1 and s− 2 respectively), or of a single horizontal cylinder (of
width s and height 1). The homology class defining the cover can be represented by linear combination
of horizontal paths (here γ3 − γ1), so the first automorphism preserves them. If η is the homology
class corresponding to the vertical side, the second automorphism maps γk to γk + 2 · η, for k = 1 or
3. Therefore, it maps γ3 − γ1 to itself and both Dh and Dv preserve γ3 − γ1 and so any hyperbolic
composition of these two linear maps defines a linear pseudo-Anosov lift which preserves the cover
morphism.

Notice moreover that their is a linear involution σ with derivative −Id on X which commutes with
Dehn twists and such that σ∗Γ = −Γ. Hence, if we consider the Frobenius function corresponding
to one of these Dehn twists, it satisfies F ◦ σ = −F and has thus zero average. This implies, by
Equation (4), that the Frobenius function of a pseudo-Anosov automorphisms obtained as product of
such Dehn twists also has zero average.

No claim is made that these are all the possible pseudo-Anosov automorphisms with these properties
(up to homotopy); for example, there is an extra automorphism that turns the (s, 1)-staircase by π.

8



2.4 Wind-tree billiards

In a cover, and more generally in any infinite translation surface, a direction is said to have finite
horizon if there is no infinite line in that direction. One can generalize the Lemma 2.5 to Zd-covers
with finite horizon.

Lemma 2.6. If a Zd-cover XΓ has finite horizon and is periodic in two distinct directions then there
exists a pseudo-Anosov map ψ on X which preserves ζ.

Proof. Let us a consider a cylinder in XΓ, its core curve γ is a loop, thus the image of the curve
by the projection p must be in ker ζ. The projection of the cylinder to the base surface is again a
cylinder whose core curve homology is an integer multiple of the class [p∗γ]. By (5), the Dehn twist
acts trivially on H1(X \Σ,Z) quotiented by ker ζ. Hence the Dehn twist on this cylinder preserves ζ.

If the cylinders have commensurable moduli, with common multiple µ, this implies that there exists
a linear automorphism

(
1 µ
0 1

)
in the corresponding direction on X which can be lifted to XΓ. Thus if it

is finite horizon and periodic in two distinct directions, the product of the corresponding two matrices
is hyperbolic and the composition of the two Dehn twists produces the pseudo-Anosov automorphism
we were looking for.

2.4.1 The wind-tree model with plus-shaped obstacles

For illustration, we present a variation of the Ehrenfest wind-tree model as an example of a Z2-cover
with finite horizon in vertical and horizontal directions. Whereas such directions for rectangular wind-
tree is less straightforward to illustrate.

Figure 4: Left: Wind-tree model with plus-shapes wind-tree model (and finite horizon in horizontal and
vertical directions). A fundamental domain in dotted lines. Right: Four copies forming a fundamental
domain of the unfolded translation surface of the plus-shaped wind-tree model.

In the wind-tree model represented in Figure 4, the matrices

Dh =

(
1 12
0 1

)
and Dv =

(
1 0
6 1

)
act as Dehn twists that commute with deck transformations. These two maps generate a group of auto-
morphisms that contain infinitely many pseudo-Anosov which also commute with deck transformations.

The classical construction to study the flow of wind-tree models is to unfolded the billiard in the
torus into 4 copies. So that each time the flow is bouncing on a side it is translated to the symmetric
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surface with respect to this flow. The Z2-cover is thus defined by the homology classes γv in red (in
Figure 3) for the first coordinate and γh in blue for the second. These correspond to γ1 and γ2 in the
first section.

Notice that for symmetric obstacles, one has two automorphisms τh and τv of the surface which
exchange the two copies horizontally or vertically. Notice that these automorphisms commute with
the vertical and horizontal Dehn twists and

(τh)∗γh = γh, (τv)∗γv = γv, (τh)∗γv = −γv, (τv)∗γh = −γh.

Lemma 2.7. The Frobenius function for the Dehn twists on the plus-shaped wind-tree models have
zero average drift.

Proof. Consider the horizontal Dehn twistDh. It preserves the top two copies of the unfolded surface in
Figure 4 (right) and also the bottom two. But as the τv automorphism sends γh to −γh, the Frobenius
function for Dh satisfies F ◦ τh = −F . Thus its integral on the surface is zero. The argument for the
vertical Dehn twist Dv is the same; it preserves the left two copies of the unfolded surface and also
the right two.

2.4.2 The classical wind-tree model

In the classical Ehrenfest wind-tree model, the obstacles are a× b-rectangles centered and aligned with
the lattice Z2. Let us take a = b = 1

2 , see Figure 4. All lines in north-east and north-west direction
have finite horizon. We can take cylinders in those direction, which (when lifted to the unfolding) have
width 1

4

√
2 and length 3

√
2. Two of them cover the unfolded fundamental domain. When lifted to the

Z2-cover, they are still cylinders (i.e., they don’t break up into strips, see Figure 4, and therefore the
appropriate Dehn twists lift to the cover.

As can be seen from Figure 5, the unfolded fundamental domain has four singularities, with cone
angle 6π. A Dehn twist that shears by twelve units, maps these two cylinders back to themselves in a
way that that extends continuously over both cylinders. The affine parts of these Dehn twists, in the
north-east and north-west directions, are represented by the matrices(

1 + t
2 − t

2

t
2 1− t

2

)
and

(
1 + t

2
t
2

− t
2 1− t

2

)
, t = 12.

We now describe the action of the north-east and of the north-west Dehn twists Dne and Dnw on the
relative homology H1(X,Σ,Z) as follows: let us fix the basis γ1, . . . , γ13 as in Figure 5 (note that the
rank of H1(X,Σ,Z) is 2 ·5+4−1 = 13, where 5 is the genus of X and 4 is the number of singularities).
With respect to this basis, the cover is generated by the pair Γ = {−γ3 + γ7 + γ9 − γ13,−γ4 − γ6 +
γ10 + γ12}. We define

γne := γ1 + γ3 + γ4 + γ5 + γ6 + γ7 + γ8 + γ9 + γ10 + γ11 + γ12 + γ13, and

γnw := γ1 + 6γ2 − γ3 + γ4 + 5γ5 + γ6 − γ7 + γ8 − γ9 + γ10 − γ11 + γ12 − γ13.

The action of the north-east Dehn-twist on H1(X,Σ,Z) is given by (see as in Figure 6){
γi 7→ γi + γne for i ∈ {1, 2, 4, 6, 8, 10, 12},
γj 7→ γj − γne for j ∈ {3, 5, 7, 9, 11, 13},
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γ2

γ2

γ3

γ4γ4

γ5

γ5

γ6

γ7

γ8γ8

γ9

γ9

γ10

γ11

γ11

γ12γ12

γ13

γ13

η1η2

η3η3

η7η5

η6η6

η7η5

η8

η4

η9

η9

η10

η10

η8

η4

η1 = γ2 + γ4 + γ5

η2 = γ2 + γ5 + γ12

η3 = γ2 + γ5 + γ8

η4 = γ7 − γ2 − γ5

η5 = γ2 + γ5 + γ10

η6 = γ1 + γ2 + γ5

η7 = γ2 + γ5 + γ6

η8 = γ3 − γ2 − γ5

η9 = γ13 − γ2 − γ5

η10 = γ11 − γ2 − γ5

Figure 5: A fundamental domain for the surface X. The four colored dots represents the four sin-
gularities in Σ, each of angle 6π. The elements γ1, . . . , γ13 ∈ H(X,Σ,Z) form a basis of the relative
homology: the homology class of any oriented path connecting two elements of Σ can be written as
a linear combination with integer coefficients of γ1, . . . , γ13 (for example, the path marked as η1 cor-
responds to the homology class γ2 + γ4 + γ5, since the concatenation of the paths γ2, γ4, γ5 and −η1
bounds a disk and hence is trivial in homology).

so that

Dne =



2 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 −1 1 −1 1 −1 1 −1 1 −1
1 1 −1 2 −1 1 −1 1 −1 1 −1 1 −1
1 1 −1 1 0 1 −1 1 −1 1 −1 1 −1
1 1 −1 1 −1 2 −1 1 −1 1 −1 1 −1
1 1 −1 1 −1 1 0 1 −1 1 −1 1 −1
1 1 −1 1 −1 1 −1 2 −1 1 −1 1 −1
1 1 −1 1 −1 1 −1 1 0 1 −1 1 −1
1 1 −1 1 −1 1 −1 1 −1 2 −1 1 −1
1 1 −1 1 −1 1 −1 1 −1 1 0 1 −1
1 1 −1 1 −1 1 −1 1 −1 1 −1 2 −1
1 1 −1 1 −1 1 −1 1 −1 1 −1 1 0


The north-west Dehn-twist acts on H1(X,Σ,Z) as{

γi 7→ γi + γnw for i ̸= 2,

γ2 7→ γ2 − γnw,
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Figure 6: Two copies of the fundamental domain for the surface X with a cylinder decomposition for
the north-east Dehn twist Dne (left) and for the north-west Dehn twist Dnw (right). The closed paths
in red and green on the left correspond to the same element γne ∈ H1(X,Σ,Z); similarly, the closed
paths in blue and orange on the right correspond to the same element γnw ∈ H1(X,Σ,Z).

so that

Dnw =



2 −1 1 1 1 1 1 1 1 1 1 1 1
6 −5 6 6 6 6 6 6 6 6 6 6 6
−1 1 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
1 −1 1 2 1 1 1 1 1 1 1 1 1
5 −5 5 5 6 5 5 5 5 5 5 5 5
1 −1 1 1 1 2 1 1 1 1 1 1 1
−1 1 −1 −1 −1 −1 0 1 −1 −1 −1 −1 −1
1 −1 1 1 1 1 1 2 1 1 1 1 1
−1 1 −1 −1 −1 −1 −1 −1 0 −1 −1 −1 −1
1 −1 1 1 1 1 1 1 1 2 1 1 1
−1 1 −1 −1 −1 −1 −1 −1 −1 −1 0 −1 −1
1 −1 1 1 1 1 1 1 1 1 1 2 1
−1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0


Lemma 2.8. The Frobenius functions for the Dehn twists Dne and Dnw have zero average drift.

Proof. The Dehn twist Dne preserves the two north-east cylinders in the unfolded surface in Figure 6
(left), and each of these cylinders cover half of the area of each quarter of the unfolded surface. The
horizontal and vertical automorphism exchanging these quarter act on the horizontal and vertical
component of the Frobenius function as:{

(F ◦ τh)h = −Fh
(F ◦ τh)v = Fv

and

{
(F ◦ τv)h = Fh

(F ◦ τv)v = −Fv
.

Thus its integral on the surface is zero. The argument for the north-west Dehn twist Dv is the same;
it preserves the two north-west cylinders in the unfolded surface in Figure 6 (right).

2.5 Ergodic properties

Although the main result of this paper gives rational ergodicity of ϕt (with rates), we can use the
more classical method of establishing the essential value 1 for a first return map of this flow. This in
particular will enable us to prove that the Frobenius function is not a coboundary.
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To simplify the exposition, rotating the coordinate axes, we can consider the vertical flow on a
surface endowed with a pseudo-Anosov automorphism contracting the vertical direction and expanding
the horizontal.

Let us choose a horizontal segment I in the surface X and Ĩ the union of lifts of I in XΓ. If
T : I → I and T̃ : Ĩ → Ĩ are the first return maps of the vertical linear flow respectively on I and Ĩ,
then there exists a map f : I → Zd such that we can express T̃ as a skew-product

T̃ (x,n) = (T (x),n+ f(x))

where Ĩ is identified with I × Z. Notice that T and T̃ are ergodic if and only if the linear flow
respectively on X and XΓ are ergodic.

The relevant object to study the orbits by T̃ is then the induced cocycle for f defined for k ∈ Z by

fk(x) = f(x) + · · ·+ f(T k−1x).

The ergodicity of these two maps can be linked with the following concept.

Definition 2.9. We call e ∈ Zd is an essential value of (the induced cocycle by) f if for every
measurable set K of positive measure, there exists k ∈ Z such that K ∩ T−k(K)∩ {x ∈ X : fk(x) = e}
has positive measure.

Note that 0 ∈ Zd is always an essential value. The set of all finite essential values associated to f is
denoted by Essf ; it forms a subgroup of Zd and it follows from [35] that the skew product T̃ is ergodic
if and only if Zd = Essf . Also, the map is recurrent if 0 can be obtained as essential value using
elements k ∈ Z \ {0} (the Lebesgue measure m is infinite on XΓ, so recurrence does not immediately
follow from the invariance of m.)

We represent the given translation surface as zippered rectangles, defining the linear flow as a
suspension flow of an interval exchange transformation (see for an introduction [36] or [37] from which
Figure 7 is taken).

Figure 7: From a suspension flow over an interval exchange transformation to a zippered rectangles
representation

This representation defines a fundamental domain which is a union of vertical rectangles and such
that the singularity of the surface are in their vertical sides. We choose ξ to be constant in the interior
of this domain. This domain has the nice feature that if there is an embedded rectangle in the surfaces
X with vertices x, y at the bottom and ϕt(x), ϕt(y) at the top then ξ(x)− ξ(y) = ξ (ϕt(x))− ξ (ϕt(y)).

Theorem 2.10. If XΓ is endowed with a lifted linear pseudo-Anosov automorphism ψΓ then the linear
flow in the stable and unstable directions of the corresponding matrix is ergodic.
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Proof. To any rectangle in this representation, on can associate a homology class by closing the curve
going from bottom to top with a piece of the interval I. These homology classes form a basis of
H1(X \ Σ,Z) which is dual for the intersection form to the basis of H1(X,Σ,Z) associated to the
polygonal representation. Let e ∈ Zd be the associated shift in ξ for the flow from bottom to top of
a rectangle; it is equal to the value of ζ on the homology class. Thus such values e generate Zd since
the homology class of rectangles form a basis of H1(X \Σ,Z) and ζ is surjective, see [36, Section 4.5].
We will now prove that e is an essential value.

It suffices to show that there exists δ > 0 such that for any arbitrary rectangle in X, there ex-
ists a δ proportion of points in this rectangle such that ϕT (x) is in the rectangle and ξ(ϕT (x))−ξ(x) = e.

When applying the pseudo-Anosov automorphism (or its inverse) dilating in the vertical direction
by λ−1, one gets an interval exchange on the contracted interval I ′ ⊂ I by a factor λ. The heights of
the rectangles are multiplied by λ and the flow visits several of the initial rectangle of the zippered
rectangle decomposition over I before returning to I ′. The rectangles over I ′ can then be decomposed
along their height by the rectangles they visit, this is usually called Rokhlin towers. This decomposi-
tion enables us to follow the intersection number defining ξ.

Assume that, after we apply the automorphism n0 times, the contracted interval I(n0) is contained
a single interval I0 of I. Let T0 be the height of the rectangle above I0. Assume x ∈ I(n0) is in the
image of the rectangle whose shift is e, if T1 = λ−n0Te is the return time of the rectangle above x in
I(n0). We have ξ(ϕT1+t(x))− ξ(ϕt(x)) = ξ(ϕT1

(x))− ξ(x) for all 0 ≤ t ≤ T0.
Consider R the image of the rectangle over I which associated shift is e after n + n0 iterations.

Then by the previous remark, if we consider the subrectangle R0 of R with the same base but with
height λ−nT0, all points x ∈ R0 satisfy ξ(ϕT1

(x))− ξ(x) = e. Then, for an arbitrary rectangle, if δ is
half of its measure, by unique ergodicity of the flow, if we take n large enough R0 intersects at least
a proportion δ of the rectangle, and for all these points, we have ξ(ϕT1

(x)) − ξ(x) = e. Thus e is an
essential value.

Corollary 2.11. The Frobenius function F is not a coboundary.

Proof. Assume by contradiction that F = g◦ψ−g for some measurable function g. As F is constant on
a finite partition into cylinder sets w.r.t. the Markov partition, F is Hölder continuous in the symbolic
metric. By Livshits regularity (see [27, Theorem 19.2.1], which is stated for manifolds, but works in
metric space too), g is also Hölder continuous in symbolic metric, and therefore bounded.

Assume by contradiction that F is a coboundary. Take R a rectangle of positive measure in XΓ.
For each x′ ∈ R and n ∈ Z

ξ(ψnΓx
′)− ξ(x′) =

n−1∑
j=0

F ◦ ψj(x) =
n−1∑
j=0

g ◦ ψj+1(x)− g ◦ ψj(x) = g ◦ ψn(x)− g(x) ≤ 2∥g∥∞.

The images of ψΓ contains larger and larger sections of the flow that remains in a compact set. Thus⋃
n∈N ψ

n
ΓR is a compact set of positive measure which is invariant by the flow. Hence the flow is not

ergodic.

3 Ergodic integrals and (weak) rational ergodicity via Local
Limit Laws

We are interested in (weak) rational ergodicity (with optimal rates) of a translation flow ϕt defined
on a Zd-cover XΓ, d ∈ {1, 2}, of the compact translation surface X that satisfies certain abstract
assumptions. Throughout the entire paper, we let d ∈ {1, 2}. The main results of this section,
Theorems 3.3 and 3.5, are a generalization of [6, Theorems 3.2 and 4.3]. The precise error rates for
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Zd-covers, d = 1, 2, are new. As far as we are aware, the treatment of Z2 covers is completely new.
The setting we require is as follows:

(H1) Let X be a compact, two dimensional, surface and let XΓ be a Zd-cover with projection p :
XΓ → X that is invariant under deck-transformations p ◦∆n = p. We assume that there exists
a linear pseudo-Anosov automorphism ψΓ : XΓ → XΓ on the Zd-cover XΓ that renormalizes the
translation flow ϕt in the stable direction, that is ψΓ ◦ ϕt = ϕλ t ◦ ψΓ for some λ ∈ (0, 1).3

(H2) The linear pseudo-Anosov automorphism ψΓ commutes with the deck transformations, i.e., ψΓ ◦
∆n = ∆n ◦ ψΓ for all n ∈ Zd and ψ = p ◦ ψΓ ◦ p−1 : X → X is well-defined.

(H3) Upon the choice of a bounded fundamental domain F (i.e.,XΓ is the disjoint union
⊔

n∈Zd ∆n(F)),

we define ξ : XΓ → Zd to be the Zd component of x ∈ XΓ, via ξ(x) = n if x ∈ ∆n(F). We
consider ψΓ as the lift of a pseudo-Anosov automorphism ψ : X → X defined via

ψΓ(x,n) = (ψ(x),n+ F (x)), x ∈ X,n ∈ Zd,

where F (x) = ξ ◦ ψΓ(x
′) − ξ(x′), defined independently of a choice of x′ ∈ p−1(x), is called the

Frobenius function. We assume that
∫
X
F dm = 0 (no drift condition) and that F : X → Zd is

not a coboundary, i.e., F ̸= g ◦ ψ − g for any g : X → Zd.

The Lebesgue measure m is invariant, for both the finite and the infinite measure preserving auto-
morphism, ψ and ψΓ.

Remark 3.1. The requirement that ψ is (a two dimensional) linear automorphism can be relaxed.
The reason this simplification is that it allows us to work with simpler anisotropic Banach spaces as
described in Section 3.5 below.

Remark 3.2. In Sections 2.3 and 2.4, we give examples where these hypotheses apply for d = 1, 2,
respectively. That the Frobenius function has zero integral, but is not a coboundary was shown in
Corollary 2.11.

As expected (and clarified in Subsection 3.3), the Central Limit Theorem (CLT) for the ergodic
sum FK , as K → ∞, holds. That is,

FK√
K

=⇒ χ, as K → ∞, (6)

where =⇒ stands for convergence in distribution and χ is a Gaussian random variable with mean
0 (here we use the no drift condition in (H3) and covariance matrix Σ2. Here Σ2 is a symmetric,
non-degenerate, d × d matrix Σ2 =

∑
j∈Z

∫
X
FT ⊗ F ◦ ψj dm (with FT the transpose of F ), and Σ

will be its unique symmetric positive-definite square root. For d = 1, the matrix Σ2 = σ2 is a scalar.
The speed of mixing of ψ ensures that the above sum converges. The non-degeneracy of Σ2 is ensured
because F is not a coboundary, see (H3).

We are interested in a simple expression of the ergodic integral
∫ T
0
GΓ ◦ ϕt dt where GΓ ∈ C1(XΓ)

is compactly supported. Hence G(·, r) := GΓ · 1∆r(F) is non-zero for at most finitely many r ∈ Zd

(regardless of the exact choice of the fundamental domain F), and we can write the ergodic integral

as the sum of finitely many integrals
∫ T
0
(GΓ · 1∆r(F)) ◦ ϕt dt, accordingly.

3.1 Main results

Let Σ2 be the covariance matrix in (6). For d = 1, we write Σ2 = σ2. Recall that λ ∈ (0, 1) is the
stable eigenvalue of ψΓ.

3If the stable eigenvalue is negative, we take ψ2
Γ instead.
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Theorem 3.3. Assume (H1)–(H3). Let GΓ ∈ C1(XΓ) be a compactly supported real function. Choose
K ∈ N so large that ψKΓ maps the flow-line between x′ ∈ p−1(x) and ϕT (x

′) into a single copy of the
fundamental domain (this amounts to K ≈ log∗ T := ⌈logλ−1 T ⌉).

I. Suppose d = 1. Then there exist real bounded functions gk,j so that for all N ≥ 1,∫ T

0

GΓ ◦ ϕt(x) dt =
∫
XΓ

GΓ dm

σ
√
2π

· e−
ξ(ψKΓ (x))

2

2σ2K
T√
K

×

1 +

N∑
k=1

1

Kk

2k∑
j=0

gk,j(x)ξ(ψ
K
Γ (x))2k−j + O

(
1

KN+1

) as T → ∞.

II. Suppose d = 2. Then there exist real bounded functions g1 : X → R2, g2 : X → GL(R, 2) and a
real constant g′2, so that as T → ∞,∫ T

0

GΓ ◦ ϕt(x) dt =
∫
XΓ

GΓ dm

2π
√
detΣ2

e
− 1

2 ⟨Σ
−1 ξ(ψ

K
Γ (x))
√
K

,Σ−1 ξ(ψ
K
Γ (x))
√
K

⟩ T

K

×
(
1 +

⟨g1(x), ξ(ψKΓ (x′)⟩
K

+
⟨ξ(ψKΓ (x), g2(x)ξ(ψ

K
Γ (x)⟩+ g′2

K2
+O

(
1

K3

))
.

Remark 3.4. The functions gk,j in the case d = 1, and g1, g2 in the case d = 2 are described precisely
inside the proof. For d = 2, we can also go higher in the expansion, but since the calculations are
tedious, we omit this.

The assumption that G is real valued (compactly supported) can be relaxed to G (compactly sup-
ported) taking values in C or even Cd. We would still need to separate the (real or imaginary) com-
ponents, and for Cd, the vector valued functions gk,j need to be adjusted, which is a tedious exercise,
even for d = 1.

Using Theorem 3.3 we obtain expansion in weak rational ergodicity for ‘good’ functions.

Theorem 3.5. Assume the setup of Theorem 3.3, and let F ⊂ XΓ be a fundamental doain. Let
χ ≃ N (0,Σ2) be a d = 1, 2-dimensional Gaussian random variable.

(i) Suppose d = 1. Then, there exist real constants dk,j so that for all N ≥ 1,

∫
F

∫ T

0

GΓ ◦ ϕt(x) dt dm =

∫
XΓ

GΓ dm

σ
√
2π

T√
K

E(e−
χ2

2 ) +

N∑
k=1

2k∑
j=0

dk,j
√
K

2k+j
+ O

(
1

KN+1

) .

(ii) Suppose d = 2. Then, there are real constants d1, d2 so that∫
F

∫ T

0

GΓ ◦ ϕt(x) dt dm =

∫
XΓ

GΓ dm
√
detΣ2

T

K

(
E(e−

χ2

2 ) +
d1
K

+
d2
K2

+O

(
1

K3

))
.

Remark 3.6. Weak rational ergodicity without rates follows immediately since convergence for all
L1(XΓ)-functions is an immediate consequence of Theorem 3.3 and the ratio ergodic theorem, see [1].

3.2 Strategy of the proof

Following the approach in [20], in particular [20, Eq. (2.4) and (2.6)], (see also [9, Eq. (4)] for the
same expression), we first exploit the commutation relation (2), which is part of our assumption (H1).
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For any vΓ ∈ C0(XΓ), for every x ∈ XΓ, for all T > 0 and all integers K ≥ 0, we compute that∫ T

0

vΓ ◦ ϕt(x) dt =
∫ T

0

vΓ ◦ ψ−K
Γ ◦ ψKΓ ◦ ϕt(x) dt =

1

λk

∫ T

0

vΓ ◦ ψ−K
Γ ◦ ϕλKr ◦ ψKΓ (x)λK dr

=
1

λK

∫ λKT

0

vΓ ◦ ψ−K
Γ ◦ ϕr ◦ ψKΓ (x) dr.

Let LΓ : L1(XΓ) → L1(XΓ) be the transfer operator associated with ψΓ defined via
∫
XΓ

LΓvΓ wΓ dm =∫
XΓ

vΓ wΓ ◦ψΓ dm with vΓ ∈ L1(XΓ) and wΓ ∈ L∞(XΓ). Since the map ψΓ is invertible and preserves

m, we also have LΓvΓ = vΓ ◦ ψ−1
Γ . Thus,∫ T

0

vΓ ◦ ϕt(x) dt =
1

λK

∫ λkT

0

LKΓ vΓ ◦ ϕr ◦ ψKΓ (x) dr. (7)

The strategy is to relate the behaviour of LKΓ with an operator (or conditional) local limit theorem in
terms of the transfer operator L : L1(X) → L1(X) for the automorphism ψ (defined via

∫
X
Lv w dm =∫

X
v w ◦ ψ dm with v ∈ L1(X) and w ∈ L∞(X). Also we define the twisted transfer operator as

Luv = L(eiuF v),

where uF indicates the scalar product if u and F are vectors. The operator local limit theorem we are
after is in the sense of [3, Section 6].

The first lemma below makes the relation between LKΓ vΓ, for compactly supported functions vΓ,
and LKu v precise. Recall (from (H1)) that p : XΓ → X.

Lemma 3.7. Let v ∈ L1(X) and let vΓ(·) = v(·, r) = v ◦ p ∈ L1(XΓ) be the lifted version supported
on {ξ = r}, r ∈ Zd. For all ℓ, r ∈ Zd, for all K ≥ 1 and for all x ∈ X,

LKΓ v(x, r)1{ξ=ℓ} = LKv(x)1{FK(x)=ℓ−r} =

∫
[−π,π]d

e−iu(ℓ−r)LKu v(x) du.

for ergodic sums FK :=
∑K−1
j=0 F ◦ ψjΓ.

Proof. Let v ∈ L1(X), w ∈ L∞(X) and v(·, r) = v ◦ p, w(·, ℓ) = w ◦ p be the versions supported on
{ξ = r} and {ξ = ℓ}, respectively. Compute that∫

XΓ

LKΓ v(x, r)1{ξ=ℓ}w(x, ℓ) dm(x) =

∫
XΓ

LKΓ (1{X×{r}}v) (1{X×{ℓ}}w) dm

=

∫
XΓ

(1{X×{r}}v(x, r)) (1{X×{ℓ}}w(x, ℓ)) ◦ ψKΓ (x) dm

=

∫
X

v w ◦ ψK 1{FK=ℓ−r} dm

=

∫
X

LK(v1{FK=ℓ−r})w(x) dm,

which gives the first equality in the statement. We can write the indicator function 1{FK=ℓ−r} =∫
[−π,π]d e

iu(FK−(ℓ−r)) du, so∫
X

LK(v(x)1{FK=ℓ−r})w(x) dm =

∫
X

∫
[−π,π]d

LK
(
veiu(FK−(ℓ−r))

)
(x) du w(x) dm

=

∫
[−π,π]d

∫
X

e−iu(ℓ−r)LKu v w dm du.
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Given Lemma 3.7, our task comes down to obtain a precise expansion of LKv(x)1{FK(x)=ℓ−r} in
powers ofK and combined it with (7). As explained in subsection 3.3 below, ℓ−r in LKv(x)1{FK(x)=ℓ−r}
will be replaced by ξ

(
ψKΓ (x′)

)
, which in the end, will give the form of Theorem 3.3.

3.3 An (operator) local limit theorem (LLT) for FK

Proposition 3.11 below is an asymptotic expansion operator LLT (in the sense of [3, Section 6]) for the
ergodic sums FK . The expansion in Proposition 3.11 is a key ingredient in the proof of our main results
Theorems 3.3 and 3.5. We recall that Theorem 3.3 is a version of Theorem 1.1, including a precise
statement for d = 2, while Theorem 3.5 gives optimal rates in a form of weak rational ergodicity for
C1 functions.

We first recall some facts on the spectral properties of L and its twisted version Luf = L(eiuF f),
u ∈ Rd. Since ψ : X → X is an invertible map, we need adequate, anisotropic Banach spaces on which
the corresponding transfer operator L can act. The details on Banach spaces we shall use are deferred
to Section 3.5. The first proposition summarizes all that we need to use in terms of Banach spaces
(regardless the particular of these spaces) to prove the main results.

Proposition 3.8. (a) There exist anisotropic Banach spaces B,Bw so that C1(X) ⊂ B ⊂ Bw ⊂
C1(X)∗ where C1(X)∗ is the (topological) dual of C1(X). The transfer operator L acts contin-
uously on B and Bw. Moreover, L is quasicompact4 when viewed as operator from B to B. In
particular, 1 is an isolated, simple eigenvalue in the spectrum of L.

(b) The derivatives dk

duk
Luf are linear operators on B with operator norm of O(∥F∥k∞).

(c) There exist δ > 0 and a family of simple eigenvalues λu that is analytic in u for all |u| < δ. Also,
for all |u| < δ and n ≥ 1,

Lnu = λnuΠu +Qnu,

where Πu is the family of spectral projections associated with λu with Π0v =
∫
X
v dm, Πu, Qu

are analytic when regarded as (family of) operators acting on B, ΠuQu = QuΠu and ∥Qnu∥B ≤ δn0
for some δ0 < 1.

(d) There exists δ1 ∈ (0, 1) so that ∥Lnu∥B ≤ δn1 for all n ≥ 1.

The proof of Proposition 3.8 is provided in Section 3.5 (the headers of the subsections indicate
which item of the proposition is proved). Proposition 3.8 is known in various settings similar to the
one here (see, for instance, the survey paper [11] and references therein).

We recall that throughout, d ∈ {1, 2}. Throughout this section we let Π
(j)
0 , λ

(j)
0 denote the j-th

derivative in u of Πu, λu evaluated at u = 0. From here onward, given u ∈ Rd we write u⊗j := u⊗·⊗u
for the j-fold tensor product of u with itself. We define the ∗-product u ∗ v on column vectors u ∈ Cd

and v ∈ Cd
′
, where we assume that d′ is a multiple of d, or vice versa. The meaning of these type of

products is clarified in Appendix A.

Remark 3.9. If d = d′ then u ∗ v = uv =
∑d
i=1 uivi is the usual scalar product.

By Proposition 3.8(c), for |u| < δ and for any v ∈ B,

Lnuv = λnuΠuv +Qnuv =

( ∞∑
m=0

λ
(m)
0 ∗ u⊗m

)
×

 ∞∑
j=0

Π
(j)
0 v ∗ u⊗m

+Qnuv. (8)

Remark 3.10. Throughout we restrict to v taking real values. In this case we note that when d = 1

Π
(j)
0 v, λ

(j)
0 are scalars, and when d = 2, are column vectors with 2j entries. A similar statement holds

for λ
(j)
0 , j ≥ 0. This is in the sense of the terminology clarified in Appendix A. Clearly, when j = 0,

Π
(0)
0 v = Π0v =

∫
X
v dm, λ

(0)
0 = λ0 = 1 are scalars.

4the precise terminology is recalled and specified in Section 3.5

18



Recall u ∈ Rd, d ∈ {1, 2}. A classical (not necessarily short) argument which dates back to [31, 23]
(see also [3, 22], shows that provided that λu is twice differentiable at 0 (so, much weaker than
analyticity of λ ensured by Proposition 3.8(c)), then

λu − 1 =
1

2
Σ2 ∗ u⊗2(1 + o(1)), λu = e−

1
2Σ

2∗u⊗2

(1 + o(1)) (9)

where ⟨·, ·⟩ is the usual scalar product and where Σ is the unique positive definite symmetric square
root of the non-degenerate d× d covariance matrix introduced in (6).

An immediate consequence of (9) and (8) is that E
(
eiuFK

)
= e−

1
2Σ

2∗u⊗2(1+o(1)), as u → 0. A
classical argument based on the Levy continuity theorem (see, for instance, the survey [22]) shows that
CLT stated in (6) holds.

In the setup of the current section, a refined version of the CLT (6) holds, namely a Local Limit
Theorem (LLT). This means that for M ∈ Zd,

m (FK(x) =M) =
1(

2π
√
K
)dΦ( M√

K

)
(1 + o(1)), as K → ∞, (10)

where Φ is the density of the Gaussian random variable χ in (6).
In the sequel we shall exploit, and prove, a stronger version of (10), namely an operator LLT

with precise expansion, as in Proposition 3.11 below. This type of expansion for LLT is, essentially,
contained inside [32, Proof of Theorem 3.2], where different Banach spaces are used.

Before the statement, recall Remark 3.10 on the meaning of Π
(j)
0 v and λ

(j)
0 . With the conventions

on tensors, see Appendix A and specifically (24), we have Au := 1
2Σ

2 ∗u⊗2 = 1
2 ⟨Σu,Σu⟩. Recalling (9),

and using the analyticity of λu, we can write

λnu = e−
n
2 ⟨Σu,Σu⟩

(
1 +

∞∑
m=1

1

m!

(
λn

An

)(m)

0

∗ u⊗m
)
, (11)

where
(
λn

An

)(m)

0
is the m-th derivative of

λnu
Anu

evaluated at 0, which is a column vector with dm entries,

d = 1, 2.
Recall that F takes values in Zd, d = 1, 2.

Proposition 3.11. Let v ∈ C1(X). Then

(a) If v is a real function then Π
(j)
0 v is a column vector with dj entries which are if j is even and

purely imaginary entries if j is odd.

Moreover,
(
λ
A

)(m)

0
is a column vector with dm real entries if m is even and

(
λ
A

)(m)

0
is is a column

vector with dm purely imaginary entries if m is odd.

(b) Let δ, δ0 and δ1 be as in Proposition 3.8(c). Set δ2 = max{δ0, δ1}. Let Σ2 be the covariance
matrix in (6). Then for all x ∈ X and for all ℓ, r ∈ Zd,

LKv(x)1{FK(x)=ℓ−r} + EKv(x)

=
1(

2π
√
K
)d ∫

[−δ
√
K,δ

√
K]

d
e
−iu ℓ−r√

K e−
⟨Σu,Σu⟩

2

(
1 +

∞∑
m=1

1

m!

(
λK

AK

)(m)

0

∗ u⊗m

Km/2

)

×

∫
X

v dm+

∞∑
j=1

1

j!
Π

(j)
0 v(x) ∗ u⊗j

Kj/2

 du,

where EK is an operator acting on B so that ∥EKv∥B ≤ CδK2 ∥v∥C1 and so that
∣∣∫
X
EKv dm

∣∣ ≤
C ′δK2 ∥v∥C1 for some C,C ′ > 0.
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The proof of Proposition 3.11(a) is deferred to Section 3.8. Here we provide the argument for
Proposition 3.11(b).

Proof of Proposition 3.11(b). Recall d = 1, 2. By Lemma 3.7 (second equality there) and Proposi-
tion 3.8(c) and (d),

LKv(x)1{FK(x)=ℓ−r} =

∫
[−π,π]d

e−iu(ℓ−r)LKu v(x) du

=

∫
[−δ,δ]d

e−iu(ℓ−r)(λKu Πu +QKu )v(x) du+O(δK1 )

=

∫
[−δ,δ]d

e−iu(ℓ−r)λKu Πuv(x) du+O(δK2 ). (12)

By equation (11), λKu = e−
K
2 ⟨Σu,Σu⟩

(
1 +

∑∞
j=1

1
j!

(
λK

AK

)(j)
0

∗ u⊗j
)
. We already know that Πuv =∫

X
v dm+

∑∞
j=1 Π

(j)
0 v∗u⊗j . Putting these two expressions together and using a change of coordinates

u→ u

2π
√
K
d in (12) gives the conclusion.

To clarify that integral in Proposition 3.11(b) leads to a real scalar (when v takes real values), we
rewrite it in a more transparent way and record this as a lemma.

Lemma 3.12. Assume the setup of Proposition 3.11. Let Φ is the density of the Gaussian random

variable χ in (6). Let d = 1, 2 and set Ij(Σ, L) =
∫

Rd e
−iuLe−

⟨Σu,Σu⟩
2 u⊗j du for j ≥ 1 and L ∈ Rd.

Then for any n ≥ 1,

LKv(x)1{FK(x)=ℓ−r} =

∫
X
v dm(

2π
√
K
)dΦ( M√

K

)
+

N∑
j=1

1

j!

Cj(v)

K(j+d)/2
+ EK,Nv(x, r)

for real bounded functions C1(v) = I1

(
Σ, ℓ−r√

K

)
∗Π(j)

0 v(x) + I1

(
Σ, ℓ−r√

K

)
∗
(
λ
A

)(j)
0

,

Cj(v) =Ij

(
Σ,
ℓ− r√
K

)
∗Π(j)

0 v(x) + Ij

(
Σ,
ℓ− r√
K

)
∗
(
λ

A

)(j)

0

+ Ij

(
Σ,
ℓ− r√
K

)
∗

 ∑
r1+r2=j

1

r1!r2!
Π

(r1)
0 v(x)⊗

(
λ

A

)(r2)

0

 for 2 ≤ j ≤ N,

and EK,N is an operator acting on B so that ∥EK,Nv∥B = o
(
K−(N+d)/2

)
∥v∥C1 and

∣∣∫
X
EK,Nv dm

∣∣ =
o
(
K−(N+d)/2

)
.

Proof. Truncating each sum inside the integral in Proposition 3.11(b) at N ≥ 1 and using the infor-
mation on the operator EK,N , we obtain

LKv(x)1{FK(x)=ℓ−r} =
1(

2π
√
K
)d ∫

[−δ
√
K,δ

√
K]

d
e
−iu ℓ−r√

K e−
⟨Σu,Σu⟩

2

(
1 +

N∑
m=1

1

m!

(
λK

AK

)(m)

0

∗ u⊗m

Km/2

)

×

∫
X

v dm+

N∑
j=1

1

j!
Π

(j)
0 v(x) ∗ u⊗j

Kj/2

 du+ EK,Nv(x),

where EK,N is an operator as in the statement of the corollary.
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The density of the Gaussian can be written as Φ(L) = 1
(2π)d

∫
Rd e

−iuLe−
⟨Σu,Σu⟩

2 du, L vector in Rd,
due to the Fourier inversion formula (i.e., the inverse Fourier transform of the characteristic function).
Note that

Φ(j)(L) = (−i)j
∫

Rd
e−iuLe−

⟨Σu,Σu⟩
2 u⊗j du.

So, ijΦ(j)(L) = Ij(Σ, L).
Applying the formula for Φ(j) inside the integral above with L = ℓ−r√

K
∈ Rd, d = 1, 2, we obtain

LKv(x)1{FK(x)=ℓ−r} =

∫
X
v dm(

2π
√
K
)dΦ(ℓ− r√

K

)
+

∫
X
v dm(

2π
√
K
)d N∑

m=1

1

m!

im

Km/2
Φ(m)

(
ℓ− r√
K

)
∗
(
λK

AK

)(m)

0

+
1(

2π
√
K
)d N∑

j=1

1

j!

ij

Kj/2
Φ(m)

(
ℓ− r√
K

)
∗Π(j)

0 v(x)

+
1(

2π
√
K
)d N∑

m=1

N∑
j=1

1

m!j!

im+j

K(m+j)/2
Φ(m+j)

(
ℓ− r√
K

)
∗

(
Π

(j)
0 v(x)⊗

(
λK

AK

)(m)

0

)
+ EK,Nv(x).

Note that

N∑
m=1

N∑
j=1

1

m!j!

im+j

K(m+j)/2
Φ(m+j)

(
ℓ− r√
K

)
∗Π(j)

0 v(x)⊗
(
λK

AK

)(m)

0

=

2N∑
j=2

1

j!

ij

K(j)/2
Φ(j)

(
ℓ− r√
K

)
∗

 ∑
r1+r2=j

1

r1!r2!
Π

(r1)
0 v(x)⊗

(
λK

AK

)(r2)

0


=

N∑
j=2

1

j!

ij

K(j)/2
Φ(j)

(
ℓ− r√
K

)
∗

 ∑
r1+r2=j

1

r1!r2!
Π

(r1)
0 v(x)⊗

(
λK

AK

)(r2)

0

+O

(
1

K(N+1)/2

)
.

Recall that ijΦ(j)
((

ℓ−r√
K

))
= Ij

(
Σ, ℓ−r√

K

)
. Writing the above three sums in a single sum gives the

expression of Cj(v), as in the statement of the lemma (after multiplication with (2π
√
K)−d).

It remains to justify that Cj(v) are real bounded functions.
Cj(v) are real or complex functions. Recall d = 1, 2. Recall from Remark 3.9 that when

the dimension of (tensor) vectors are the same, the operation ∗ gives a scalar. By Lemma B with
L = ℓ−r√

K
∈ Rd, d = 1, 2 (in Appendix B), the integrals Ij are column vectors with dj entries. We

already know from Remark 3.10 that Π
(j)
0 and

(
λK

AK

)(j)
0

are column vectors with dj entries. So the

operation ∗ between Ij and Π
(j)
0 , and

(
λK

AK

)(j)
0

gives a bounded real or complex function. The same

applies to Ij

(
ℓ−r√
K

)
∗
(
Π

(r1)
0 v(x)⊗

(
λK

AK

)(r2)
0

)
, since r1 + r2 = j.

Cj(v) are real bounded functions. By Proposition 3.11(a), Π
(j)
0 is a column vector with dj real

entries if j is even and with purely imaginary if j is odd. The same applies to
(
λK

AK

)(j)
0

. Finally, by

Lemma B.1 in Appendix B, Ij have real entries if j is even and purely imaginary entries if j is odd. The
boundedness of these functions follows from the analyticity of Πt and λt, ensured by Proposition 3.8
(b), (c).

The asymptotic expansion in the usual LLT follows immediately. That is, taking ℓ− r =M ∈ Zd,
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v ≡ 1 in Lemma 3.12, and integrating over the space, we obtain that for all N ≥ 1,

m (FK(x) =M) =
1(

2π
√
K
)dΦ( M√

K

)
+

N∑
j=1

Cj
K(j+d)/2

+ o

(
CN+1

K(N+d)/2

)
, as K → ∞, (13)

where Cj are real constants.
The expansion in (13) allows us to record a technical lemma that will play an important role in

the proof of Theorem 3.5 below. Before the statement we recall that FK(x) = ξ ◦ ψKΓ (x′) − ξ(x′) for
x′ ∈ p−1(x).

Lemma 3.13. (i) Let q ≥ 0 be an integer and fq : X × Rd → R, fq(x,w) = e−
1
2 ⟨w,w⟩g(x) ∗w⊗q for

a bounded function g : X → Rd
q

. Then there exist real constants Cd,q and dj,q, so that for any
N ≥ 1,∫

XΓ

fq

(
p(x′),

ξ
(
ψKΓ (x′)

)
√
K

)
dm = Cd,q +

N∑
j=1

dj,q
Kj/2

+ o(K−N/2), as K → ∞.

(ii) Let f : Rd → R, f(w) = e−
1
2 ⟨w,w⟩ and let χ be the d-dimensional Gaussian introduced in (6).

Then, there exist real constants dj, so that for any N ≥ 1,∫
XΓ

f

(
ξ
(
ψKΓ (x′)

)
√
K

)
dm = E(f(χ)) +

N∑
j=1

dj
Kj/2

+ o(K−N/2), as K → ∞,

Proof. Item (i). Since FK(x) = ξ ◦ ψKΓ (x′)− ξ(x′) for x′ ∈ p−1(x),∫
XΓ

fq

(
p(x′),

ξ
(
ψKΓ (x′)

)
√
K

)
dm =

∑
M∈Zd

∫
{FK◦p=M}

fq

(
p(x′),

ξ
(
ψKΓ (x′)

)
√
K

)
dm

=
∑
M∈Zd

aMe
− 1

2K ⟨M,M⟩ m (FK =M) ,

where aM is chosen by the intermediate value theorem for integrals. Due to the boundedness of g and
exponential factor, aM = O(Mq), and hence finite for each M , even though m({x′ ∈ XΓ : FK ◦ p =
M}) = ∞.

This together with (13) gives∫
XΓ

fq

(
p(x′),

ξ
(
ψKΓ (x′)

)
√
K

)
dm =

1

Kd/2

∑
M∈Zd

aMe
− 1

2K ⟨M,M⟩ H

(
M√
K

)
as K → ∞, (14)

for

H

(
M√
K

)
= (2π)−dΦ

(
M√
K

)
+

n∑
j=1

Cj
Kj/2

+ o

(
Cn+1

Kn/2

)
, for Cj ∈ R.

Next, for each M ∈ Zd, define functions aM : Q(M) → R on the unit cube Q(M) centered at

M ∈ Z2 in such a way that
∫
Q(M)

aM (w)e−
1

2K ⟨w,w⟩ H
(

w√
K

)
dw = aMe

− 1
2K ⟨M,M⟩ H

(
M√
K

)
, and set

a =
∑
M∈Zd ãM · 1Q(M). Then∑

M∈Zd

aMe
− 1

2K ⟨M,M⟩ H

(
M√
K

)
=

∫
Rd
a(w)e−

1
2K ⟨w,w⟩H

(
w√
K

)
dw

= Kd/2

∫
Rd
a(v

√
K)e−

1
2 ⟨v,v⟩H(v) dv,
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where we used the change of coordinates v = w/
√
K. Since

∫
Rd a(w

√
K)e−

1
2 ⟨v,v⟩H(v) dv < ∞ due to

the exponential factor, the sum scales as Kd/2. Insert this estimate into (14) to find constants Cq,d
and dj,d ∈ R such that item (i) holds.

Item (ii) We just need to argue that the first term, that is Cd,0 in item (i), is exactly E(f0(χ)).
Apart from this constant the statement is as in item (i) for fq with q = 0 and g ≡ 1. One could
proceed via an exact calculation (using, for instance, the Euler-Maclaurin formula), but a quicker way
is to recall (13) and note that by the Portmanteau Theorem,∫

XΓ

f

(
ξ
(
ψKΓ (x′)

)
√
K

)
dm → E(f(χ)), as K → ∞.

We record an immediate consequence of Lemma 3.12 that will be instrumental in the proof of
Theorem 3.3. Recall that FK(x) = ξ ◦ ψKΓ (x′)− ξ(x′) ∈ Zd, d = 1, 2, for x′ ∈ p−1(x).

Corollary 3.14. Set Ij(Σ, L) =
∫

Rd e
−iuLe−

⟨Σu,Σu⟩
2 u⊗j du for j ≥ 0 and L ∈ Rd.

Let G ∈ C1(X). Let x′ ∈ p−1(x). Then

LKG(x)1{FK(x)=ξ(ψKΓ (x′))} =

∫
X
G dm(

2π
√
K
)d I0(ξ(ψKΓ (x′))√

K

)
+

N∑
j=1

1

j!

Cj(G, ξ(ψ
K
Γ (x′))

K(j+d)/2
+ EK,NG(x),

for real bounded functions C1(v) = I1

(
Σ, ℓ−r√

K

)
∗Π(j)

0 G+ I1

(
Σ, ℓ−r√

K

)
∗
(
λ
A

)(j)
0

,

Cj(v) =Ij

(
Σ,
ℓ− r√
K

)
∗Π(j)

0 G+ Ij

(
Σ,
ℓ− r√
K

)
∗
(
λK

AK

)(j)

0

+ Ij

(
Σ,
ℓ− r√
K

)
∗

 ∑
r1+r2=j

1

r1!r2!
Π

(r1)
0 v(x, r)⊗

(
λK

AK

)(r2)

0

 for 2 ≤ j ≤ N,

and EK,N is an operator acting on B so that ∥EK,NG∥B = o
(
K−(N+d)/2∥G∥C1

)
and

∣∣∫
X
EK,NGdm

∣∣ =
o
(
K−(N+d)/2

)
.

Proof. We want to apply Lemma 3.12 with v = G and suitable choice of ℓ, r ∈ Zd.
Take ℓ = 0 and x′ ∈ p−1(x) so that r = −ξ(ψKΓ (x′)). To justify this choice, just recall that

FK(x) = ξ ◦ ψKΓ (x′) − ξ(x′). The conclusion follows from Lemma 3.12 with G instead of v and
ℓ− r = ξ(ψKΓ (x′)).

3.4 Proof of the main results

Before proceeding to the proof of Theorem 3.3 we record one more technical lemma. Recall the notation
of equation (7).

Lemma 3.15. Consider the operator EK,N defined in Corollary 3.14. Then∣∣∣∣∣ 1

λK

∫ λKT

0

EK,NG ◦ ϕr(xK) dr

∣∣∣∣∣ = o

(
T

K(N+d)/2
∥G∥C1

)
.

We can now proceed to
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Proof of Theorem 3.3. Let us assume without loss of generality that GΓ is supported on {ξ = 0}.
To emphasize that, we write GΓ(x) = G(x, 0), so G(·, 0) = G ◦ p for a unique G ∈ C1(X) and∫
X
G dm =

∫
XΓ

GΓ dm. By equation (7) and Lemma 3.7 (first equality there with ℓ = 0 and

r = −ξ(ψKΓ (x′))),∫ T

0

G ◦ ϕt(x) dt =
1

λK

∫ λkT

0

LKΓ (G(x, 0)) ◦ ϕr ◦ ψKΓ (x′) dr

=
1

λK

∫ λkT

0

(
LKG(x)1{FK(x)=ξ(ψKΓ (x′))}

)
◦ ϕr ◦ ψKΓ (x′) dr. (15)

By Corollary 3.14,

LKG(x)1{FK(x)=ξ(ψKΓ (x′))} =

∫
X
G dm(

2π
√
K
)d I0(ξ(ψKΓ (x′))√

K

)
+

N∑
j=1

1

j!

Ij

(
Σ,

ξ(ψKΓ (x′)√
K

)
K(j+d)/2

∗ ej,G(x)

+ o
(
K−(N+d)/2

)
, (16)

where ej,G =

(
Π

(j)
0 G+

(
λK

AK

)(j)
0

)
and

ej,G =

Π
(j)
0 G+

(
λK

AK

)(j)

0

+
∑

r1+r2=j

1

r1!r2!
Π

(r1)
0 G⊗

(
λK

AK

)(r2)

0

 , j ≥ 2.

are column vectors with dj entries which are real if j is even and purely imaginary entries if j is odd.
Each such entry is bounded, due to Proposition 3.8 (b), (c). As in the proof of Lemma 3.12, the
operation ∗ between Ij and ej,G produces a bounded function.

We are left with describing the integrals Ij

(
Σ,

ξ(ψKΓ (x′)√
K

)
and in the end combining with (15).

Recall d = 1, 2 and write Ij(Σ, L) =
∫

Rd e
iuL− ⟨Σu,Σu⟩

2 uj du, with L = L(x′) :=
ξ(ψKΓ (x′))√

K
.

Item I., d = 1. Recall that when d = 1, we write Σ = σ.
Describing the integrals Ij and obtaining a close expression of LKG(x)1{FK(x)=ξ(ψKΓ (x′))}.

From Lemma B.1 in Appendix B, we obtain I0(σ, L) =
√
2π
σ e−

L2

2σ2 and Ij(σ, L) =
1
σ2 (iLIj−1(σ, L)+

(j − 1)Ij−2(σ, L) for j ≥ 1. By Lemma B.1, Ij(σ, L) is real if j is even and purely imaginary if j is
odd. Thus, for real coefficients cp,j we can write

Ij

(
σ,
ξ(ψKΓ (x′)√

K

)
= ij mod 2 ·

⌊j/2⌋∑
p=0

cp,j
(ξ(ψKΓ (x))2p+(j mod 2)

K(2p+(j mod 2))/2
e−

ξ(ψKΓ (x′))
2

2σ2K . (17)

Recall from (16) that the bounded functions ej,G are real if j is even and purely imaginary if j is
odd. This combines with ij mod 2 to get a real coefficient. Let fk,j = ij mod 2ej,Gc(2k−j−(j mod 2))/2,j .
Combining (16) and (17),

I0 +

N∑
j=1

ij mod 2ej,G(x)

Kj/2
Ij =

N∑
j=0

⌊j/2⌋∑
p=0

cp,ji
j mod 2ej,G(x)

(ξ(ψKΓ (x))2p+(j mod 2)

K(2p+j+(j mod 2))/2
e−

ξ

(
ψ2σ2K
Γ (x′)

)2

K

=

N∑
k=0

 2k∑
j=0

fk,j(x)ξ(ψ
K
Γ (x))2k−j

 e−
ξ(ψKΓ (x′))

2

2σ2K

(
1

K

)k
+O

((
1

K

)N+1
)
,
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where we introduced a new summation index 2k = 2p + j + (j mod 2) and switched the order of the
sums. The terms in the inner brackets can all be computed explicitly. We just give the first two as
illustration:

I0 +
e1,G(x)

K1/2
I1 + · · · =

(√
2π

σ
+

√
2π

σ3

e2,G(x) + ie1,G(x)ξ(ψ
K
Γ (x))

K
+O

(
1

K2

))
e−

ξ(ψKΓ (x))
2

2σ2K .

Putting all the above together gives, for any x ∈ X and x′ ∈ p−1(x),

LKG(x)1{FK(x)=ξ(ψKΓ (x′))} =

∫
X
G dm

σ
√
2π

e−
ξ(ψKΓ (x′))

2

2σ2K
1√
K

+
1

σ3
√
2π

(
e2,G(x) + ie1,G(x)ξ(ψ

K
Γ (x))

)
e−

ξ(ψKΓ (x′))
2

2σ2K
1

(
√
K)3

+
1

2π

N∑
k=2

 2k∑
j=0

fk,j(x)ξ(ψ
K
Γ (x′))2k−j

 e−
ξ(ψKΓ (x′))

2

2σ2K
1

(
√
K)2k+1

+ O

(
1

(
√
K)2N+3

)
,

for real bounded functions fk,j .
Concluding the argument in the case d = 1, combining with (15). We use the above

displayed equation for expression of LKG(x)1{FK(x)=ξ(ψKΓ (x′))} inside (15) to get

∫ T

0

GΓ ◦ ϕt(x) dt =
∫
XΓ

GΓ dm

σ
√
2π

1√
K

1

λK

∫ λKT

0

e−
ξ(ψKΓ (x′))

2

2σ2K ◦ ϕr ◦ ψKΓ (x′) dr.

+
1

2π

N∑
k=1

1

(
√
K)2k+1

 2k∑
j=0

1

λK

∫ λKT

0

fk,j(x)ξ(ψ
K
Γ (x′))2k−je−

ξ(ψKΓ (x′))
2

2σ2K ◦ ϕr ◦ ψKΓ (x′) dr


+

1

λK

∫ λKT

0

EK,NG ◦ ϕr ◦ ψKΓ (x′) dr,

where ∥EK,N∥ = O
(

1
(
√
K)2N+3

)
and x′ ∈ p−1(x).

Let xK = ψKΓ (x). Recall that one main assumption of the theorem we prove here is that we choose
K ∈ N so large that ψKΓ maps the flow-line between x′ and ϕT (x

′) into a single copy of the fundamental
domain. Thus, ξ

(
ψKΓ (ϕr(xK)))

)
= ξ

(
ψKΓ (x′)

)
is constant for all 0 ≤ r ≤ λKT . Thus,

1

λK

∫ λKT

0

e−
ξ(ψKΓ (x′))

2

2σ2K · ϕr ◦ ψKΓ (x) dr = e−
ξ(ψKΓ (x′))

2

2σ2K ·

(
1

λK

∫ λKT

0

1 dr

)
= e−

ξ(ψKΓ (x′))
2

2σ2K · T

By a similar argument,

1

λK

∫ λKT

0

fk,j(x)ξ(ψ
K
Γ (x′))2k−je−

ξ(ψKΓ (x′))
2

2σ2K ◦ ϕr ◦ ψKΓ (x′) dr

= ξ(ψKΓ (x′))2k−je−
ξ(ψKΓ (x′))

2

2σ2K
1

λK

∫ λKT

0

fk,j(ϕr(xK) dr.

Since the functions fkj are bounded, f∗k,j(x) :=
1
λK

∫ λKT
0

fk,j(ϕr(xK) dr are bounded as well.

25



Thus, ∫ T

0

GΓ ◦ ϕt(x) dt =
∫
XΓ

G dm

σ
√
2π

e−
ξ(ψKΓ (x′))

2

2σ2K
T√
K

+
1

2π

N∑
k=2

 2k∑
j=0

f∗k,j(x)ξ(ψ
K
Γ (x′))2k−j

 e−
ξ(ψKΓ (x′))

2

2σ2K
T

(
√
K)2k+1

+
1

λK

∫ λKT

0

EK,NG ◦ ϕr(xK) dr.

By Lemma 3.15,
∣∣∣ 1
λK

∫ λKT
0

EK,NG ◦ ϕr(xK) dr
∣∣∣ = O

(
T

(
√
K)2N+3

∥G∥C1

)
. Item I. follows with gk,j =

fk,jσ∫
√

2πX
G dm

.

Item II, d = 2. Similarly to the case d = 1, we first want a precise expression of LKG(x)1{FK(x)=ξ(ψKΓ (x′))}.

In this case, both Ij(Σ, L) and ej,G in (16) are column vectors with 2j entries. We already know
that the product gives a bounded function.

We diagonalize Σ = AJA−1 for J =
(
σ1 0
0 σ2

)
for a unitary matrix A, so A−1 = A∗ is the transpose

of A. Note that
√
detΣ2 = σ1σ2.

Lemma B.1 B computes the integrals I0, I1, I2 precisely. In particular, I0(Σ, L) =
2π
σ1σ2

e−
1
2 ⟨Σ

−1L,Σ−1L⟩,

so when inserted in (16) with L = ξ(ψKΓ (x′))/
√
K and after the integration 1

λK

∫ λKT
0

to pick up an
extra factor T , we obtain as constant term∫

XΓ
GΓ dm

2π
√
detΣ2

· e−
1
2 ⟨Σ

−1 ξ(ψ
K
Γ (x′))
√
K

,Σ−1 ξ(ψ
K
Γ (x′))
√
K

⟩ T

K
.

Also,

I1(Σ, L) =
2πi

σ1σ2
e−

1
2 ⟨Σ

−1L,Σ−1L⟩A

(
1
σ2
1
(A∗L)1

1
σ2
2
(A∗L)2

)
,

and ∗-multiplication with the purely imaginary vector e1,G produces a scalar linear form which we can

denote as ⟨g1(x), ·⟩. Then applying integration 1
λK

∫ λKT
0

to (16) gives as linear term∫
XΓ

GΓ dm

2π
√
detΣ2

· e−
1
2 ⟨Σ

−1 ξ(ψ
K
Γ (x′))
√
K

,Σ−1 ξ(ψ
K
Γ (x′))
√
K

⟩ T

K

⟨g1(x), ξ(ψKΓ (x′))⟩
K

.

For the quadratic term, we have I2(Σ, L) = 2π
σ1σ2

e−
1
2 ⟨Σ

−1L,Σ−1L⟩(Q(L ⊗ L) + Q′), ∗-multiplication
with the real vector e2,G produces a scalar quadratic form which we can denote as ⟨·, g′2(x)·⟩+ g′2(x).

Replacing L by ξ(ψKΓ (x′))/
√
K and then applying integration 1

λK

∫ λKT
0

to (16) gives as quadratic term∫
XΓ

GΓ dm

2π
√
detΣ2

· e−
1
2 ⟨Σ

−1 ξ(ψ
K
Γ (x′))
√
K

,Σ−1 ξ(ψ
K
Γ (x′))
√
K

⟩ T

K

⟨ξ(ψKΓ (x′)), g2(x)ξ(ψ
K
Γ (x′))⟩+ g′2

K2
,

as required.

Using Theorem 3.3 and Lemma 3.13, we complete

Proof of Theorem 3.5. We prove Item (i). Item (ii) follows similarly.
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By Theorem 3.3, the following holds for bounded functions gk,j .∫
F

∫ T

0

G ◦ ϕt(x) dt dm =

∫
XΓ

G dm

σ
√
2π

T√
K

·
∫
XΓ

e−
ξ(ψKΓ (x′))

2

2σ2K dm

+

N∑
k=1

T

(
√
K)2k+1

 2k∑
j=0

∫
XΓ

gk,j(x)ξ(ψ
K
Γ (x′))2k−j e−

ξ(ψKΓ (x))
2

2σ2K dm

+ O

(
T

(
√
K)2N+3

)
. (18)

We want to apply Lemma 3.13 with fq(x,w) = e−
w2

2 wqgk,j,q(x), with q ∈ {0, . . . , 2k − j}, w
replaced by

ξ(ψKΓ (x′))
σ
√
K

and gk,j,0 = 1 and gk,j,q = gk,j for q ̸= 0.

By Lemma 3.13 (ii) (so, the case q = 0),∫
F
e−

ξ(ψKΓ (x′))
2

2σ2K dm = E(f0(χ)) +
n∑
j=1

dj
Kj/2

+ o(K−n/2),

for real constants dj .

To deal with the sum in (18), we apply Lemma 3.13(i) with fq(x,w) = e−
w2

2 wqgk,j,q(x), with

q ∈ {0, . . . , 2k − j} described in the last to previous paragraph. This ensures that the sum
∑2k
j=0 of

the integrals in (18) convergence to
∑2k
j=0 dk,j for real constants dk,j .

3.5 Banach spaces and Proof of Proposition 3.8

There are several choices in the literature for the Banach spaces we can use, see the surveys [7, Section
2] and [11]. For the automorphism ψ it is convenient to work with a variant of the spaces introduced
in [12] (see also [15] and references therein for generalizations applicable to billiards) applicable to
a class of hyperbolic maps with singularities. A possible alternative choice would be the anisotropic
Banach spaces considered in [17], which are a great tool for studying the Ruelle spectrum for general
pseudo Anosov maps. In the current setup we are only interested in the spectral gap of the transfer
operator of the above mentioned simple automorphism (along properties of the twist). This is why
we use the spaces in [11], which among others, allows us to use some facts already established for this
class of automorphisms.

We find it convenient to work with a slight modification of the Banach spaces considered in [11] for
the purpose of obtaining limit theorem via spectral methods for a general class of baker maps5. For a
similar (simplified) variation of the spaces in [12] of the Banach spaces in [11] we refer to [29], which
focused on some two-dimensional, non-uniformly hyperbolic versions of Pomeau-Manneville maps.

The automorphism ψ resembles a baker map except for the existence of singular (and potentially and
marked) points, see Section 2.1. For a baker map the singularities are given by the set of discontinuity
points. In the setup of ψ, we say that a point s ∈ X is singular if the cone angle at s is not 2π. The
difference in the type of singularities introduces a difference in the class of admissible leaves. In all
other aspects the variant of the Banach spaces in [11] remain the same in the set of ψ. We summarize
below the ingredients of these Banach spaces, using the notation of [11], as to emphasize that the case
of the automorphism ψ (regarding the spectral gap for L) is one of the easiest possible examples that
the spaces introduced in [12] can treat.

We remark that Proposition 3.8, of which proof we sketch below, is not new with us, and that our
only tasks is collect the statements scattered throughout [11] and similar papers mentioned below.

3.5.1 Definitions of Banach spaces

Although, the presence of a (natural) Markov partition is not a crucial element in the construction
in [11] for baker type maps, it does simplify the writing. The presence of this type of Markov structure

5The baker map itself is defined as b(x, y) = (2x mod 1, 1
2
(y + ⌊2x⌋)) on the unit square.
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considerably simplifies the description of admissible leaves. In particular, it allows us to define admis-
sible leaves as full unstable segments. For the same reason, that of simplicity, we will take advantage
of the Markov partition P.

We define the set Ws of admissible leaves as the set of stable segments W that exactly stretch
across an element P ∈ P such that its (one dimensional) interior is contained in the interior of P .
Note that, for any such W ∈ Ws, the stable segment ψ−1W can be decomposed into a finite union of
elements of Ws.

Any W ∈ Ws has an affine parametrization {χW (r) : r ∈ [0, l]}, where l is the length of W . Then,
for any measurable function h :W → C, we write∫

W

hdm =

∫ l

0

h ◦ χW (r) dr.

It is usual to construct P based on stable and unstable manifold of integers lattice points.
Let α ∈ [0, 1]. For any W ∈ Ws, we let Cα(W,C) denote the Banach space of complex-valued

functions W with Hölder exponent α, equipped with the norm

|h|Cα(W,C) = sup
z∈W

|h(z)|+ sup
z,w∈W

|h(z)− h(w)|
|z − w|α

.

Such a set is a collection of local unstable manifolds that do not contain a singularity point. From
here onward all required definitions are as in [11, Section 2.2].

We say that φ ∈ Cα(X,C) if it is Cα(W,C) for all W ∈ Ws. Given h ∈ C1(X,C), define the weak
norm by

∥h∥Bw := sup
W∈Σ

sup
|ϕ|C1(W,C)≤1

∫
W

hϕ dm.

Given α ∈ [0, 1), define the strong stable norm by

∥h∥s := sup
W∈Σ

sup
|ϕ|Cα(W,C)≤1

∫
W

hϕ dm.

For any two aligned6 admissible leaves W1,W2 ∈ Ws in the same atom of P, let d(W1,W2) denote the
distance in the unstable direction between W1 and W2. In other words, if Wi = {χi(r) : r ∈ [0, l]},
then d(W1,W2) is the length of the segment in the unstable direction connecting χ1(r) to χ2(r).

With the same notation as above, for two functions φi ∈ C1(Wi,C), with i = 1, 2, we also define

d0(φ1, φ2) = sup
r∈[0,l]

|φ1 ◦ χr(x1)− φ2 ◦ χr(x2)|.

Next define the strong unstable norm by

∥h∥u := sup
W1,W2∈Σ

sup
|φi|C1≤1, d0(φ1,φ2)=0

1

d(W1,W2)1−α

∣∣∣∣∫
W1

hφ1 dm−
∫
W2

hφ2 dm

∣∣∣∣ .
Finally, the strong norm is defined by ∥φ∥B = ∥φ∥s + ∥φ∥u. These norms are exactly those of [11,
Section 2.3].

Define the weak space Bw to be the completion of C1(X) in the weak norm and define B to be the
completion of C1(X) in the strong norm.

Lemma 3.16. [11, Lemma 2.4] (see also [29, Lemma 7.2]) We have the following sequence of con-
tinuous, injective embeddings: C1(X) ⊂ B ⊂ Bw ⊂ (C1(X))∗. Moreover, the unit ball of B is relatively
compact in Bw.

6i.e., the one is obtained from the other by a translation in the unstable direction.
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3.5.2 Well-definedness and boundedness of L on B and Bw. Proof of Proposition 3.8(a)

Recall that ψ is piecewise affine (so ψ is C1(W ), for any W ∈ Ws) and note that for any α ∈ [0, 1],
for any W ∈ Ws and for any φ ∈ Cα(W,C), φ ◦ ψ ∈ Cα(X,C). Moreover, for any n ≥ 1, ψ−n(W )
consists of a union of leaves in Ws and the transfer operator L of ψ is defined as

Lh(φ) = h(φ ◦ ψ), for all h ∈ Cα(Ws) and φ ∈ (Cα(Ws))∗. (19)

Recall that Lebesgue measure m is invariant for ψ. We identify h with the measure dµ = h dm. Then
h ∈ C1(Ws) ⊂ (C1(Ws))∗ and Lh is associated with the measure having density

Lh(x) = h ◦ ψ−1(x)

Jψ(ψ−1(x))
= h ◦ ψ−1(x), (20)

where Jψ is the Jacobian of ψ with respect to m, which is equal to 1 (since the contraction and
expansion are the same).

In general, it is not true that for systems with discontinuities, L(C1(X)) ⊂ C1(X) and hence it is
not obvious that L is well defined on B: see, for instance, [11, Footnote 13]. However, in the current
setup of ψ, similar to the first line of the proof of [11, Lemma 4.1], Lh ∈ C1(Ws) (since for anyW ∈ Σ,
ψ−1W is an exact union of leaves in Ws). Hence, L(C1(X)) ⊂ C1(X) and L is well defined on B.

Also, by [11, Lemma 4.1], L acts continuously on B and Bw and the proof of [11, Theorem 2.5]
(for baker type maps) goes word for word the same in the setup of ψ. This yields

Lemma 3.17. [11, Theorem 2.5] The operator L is quasi-compact as an operator on B. That is,
its spectral radius is 1 and its essential spectral radius is strictly less than 1. Moreover, 1 is a simple
eigenvalue, and all other eigenvalues have modulus strictly less than 1.

Lemmas 3.16 and 3.17 is exactly the content of Proposition 3.8(a).

3.5.3 Analyticity of the twisted transfer operator Luf = L(eiuF f), f ∈ B.
Proof of Proposition 3.8(b)

The Frobenius function F : X → Z, x 7→ ξ◦ψΓ(x
′)−ξ(x′) for x′ ∈ p−1(x), is not globally C1, hence the

simple argument of [11, Lemma 4.8] cannot go through. However, F is constant on each element of the
partition PR ∨ψ−1PR (hence C∞ on each element of PR ∨ψ−1PR). As a consequence, the argument
for the analyticity of the twisted transfer operator is a much simplified version of the argument used
in the proof of [16, Lemma 3.9] (essentially a consequence of the arguments used in [13, 14, 15]).

Lemma 3.18. Let u ∈ Rd, f ∈ B and m ≥ 1. Then dk

duk
Luf is a linear operator on B with operator

norm of O(∥F∥k∞).

Proof. Using (20), compute that

dk

duk
Luf = ikL(F keiuF f) = ik(F keiuF ) ◦ ψ−1Lf.

Since F is locally constant and since each element of P ∨ψ−1P contains no singularities in its interior,
a simplified version7 of the argument used in [14, Lemma 3.7] (see also [16, Lemma 3.3]) shows that
for any f ∈ B, f F ∈ B and that for some C > 0,

∥f F∥B ≤ C∥f∥B sup
Pi∈PR

∥F∥Cα(Pi). (21)

Thus, ∥∥∥∥ dkdukLuf
∥∥∥∥
B
≤ C sup

Pi∈PR
∥(F keiuF ) ◦ ψ−1∥Cα(Pi)∥f∥B ≤ C∥F∥k∞∥f∥B.

7The (serious) simplification comes from the simple form of admissible leaves and the fact that the Jacobian is
constant.
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3.6 Spectrum of Lu and leading eigenvalue. Proof of Proposition 3.8(c)

We already know (see Lemma 3.17) that 1 is a simple isolated eigenvalue of L0. Since u → Lu is
analytic (see Lemma 3.18), there exists δ > 0 and a simple family of simple eigenvalues λu, analytic
in u ∈ (0, δ) with λ0 = 1. Standard perturbation theory (see [30] and, for instance, [22, Section 2]))
ensures that for all u ∈ (0, δ),

Lnu = λnuΠu +Qnu, (22)

where Πu is the spectral projection onto the one-dimensional eigenspace associated to λu with Π0f =∫
X
f dm and where ∥Qnu∥ ≤ θn for some θ ∈ (0, 1), and QuΠu = ΠuQu. By Lemma 3.18 and standard

perturbation theory (see [30]), all the eigen-elements are again analytic. That is, Πu, Qu are also
analytic in u ∈ (0, δ).

3.7 Spectrum of Lu for u ∈ (δ, π]. Proof of Proposition 3.8(d)

The following lemma gives the required control.

Lemma 3.19. [16, Lemma C.1] Let u ∈ (−π, π], h ∈ B and η ∈ C be such that Luh = ηh in B and
|η| ≥ 1. Then either h ≡ 0 or u ∈ 2πZ and h is m-a.s. constant.

The proof of Lemma 3.19 goes word for word as [16, Proof of Lemma C.1], except for differences in
notations. The differences in the definitions of the norms used in Subsection 3.5 are irrelevant for this
argument. Lemma 3.19 ensures that there exists δ1 ∈ (0, 1) so that ∥Lnu∥B ≤ δn1 for all |u| > δ and all
n ≥ 1.

3.8 Proof of Proposition 3.11(a)

We first record a technical lemma that will be instrumental in the proof of item (a) of Proposition 3.11.
For integers m,n ≥ 0 and r1, . . . , rn ∈ N, define the operator

G(m,n, r1, . . . , rn) = (y − 1)−m(y − L0)
−1L0(F

⊗r1)⊗ · · · ⊗ (y − L0)
−1L0(F

⊗rn)⊗ (y − L0)
−1. (23)

As F takes values in Zd, the tensor products F⊗rj are vectors with drj components.

Lemma 3.20. For all m,n ≥ 0, r1, . . . , rn ∈ N and real-valued v ∈ B, the contour integral∫
|y−1|=δ

G(m,n, r1, . . . , rn)v dy is purely imaginary.

Proof. We will use induction on m,n, starting with n = 0. If m = n = 0, then∫
|y−1|=δ

G(0, 0)v dy =

∫
|y−1|=δ

(y − L0)
−1v dy = 2πiΠ0v is purely imaginary.
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Now if the statement holds for n = 0 and all 0 ≤ m′ < m, then∫
|y−1|=δ

G(m, 0)v dy =

∫
|y−1|=δ

(y − 1)−m(y − L0)
−1v dy

=

∫
|y−1|=δ

(y − 1)−m(y − L0)
−1(v −

∫
X

v dm) dy

+

∫
|y−1|=δ

(y − 1)−m(y − L0)
−1

∫
X

v dm dy

=

∫
|y−1|=δ

(y − 1)−m
[
(y − L0)

−1 − (1− L0)
−1
]
(v −

∫
X

v dm) dy

+

∫
|y−1|=δ

(y − 1)−m(1− L0)
−1(v −

∫
X

v dµ) dy

+

∫
vX dµ

∫
|y−1|=δ

(y − 1)−(m+1) dy.

The third integral vanishes otherwise becausem > 0. For the second integral, write v1 = (1−L0)
−1(v−∫

X
v dµ), so v1 ∈ B is real with

∫
X
v1 dm = 0. Hence the integral is purely imaginary for the same

reason as the second integral. For the first integral we use the resolvent identity:∫
|y−1|=δ

(y − 1)−m
[
(y − L0)

−1 − (1− L0)
−1
](

v −
∫
X

v dm

)
dy

= −
∫
|y−1|=δ

(y − 1)1−m(y − L0)
−1(1− L0)

−1(v −
∫
X

v dm) dy

= λ

∫
|y−1|=δ

(y − 1)1−m(y − L0)
−1v1 dy = −

∫
|y−1|=δ

G(m− 1, 0)v1 dy.

This is purely imaginary by the induction hypothesis and since m ≥ 1.
Now we continue with the induction step over n; in this case G(m,n, r1, . . . , rn) contains n + 1

factors (y−L0)
−1, and therefore it has a pole at 1 of order ≤ n+ 1. Our induction hypothesis is that∫

|y−1|=δ G(m
′, n′, r1, . . . , rn′)v dy is purely imaginary for every real-valued v ∈ B when 0 ≤ n′ < n and

m′ ≥ 0 or when n′ = n and n ≤ m′ < m. Then∫
|y−1|=δ

G(m,n, r1, . . . , rn)v dy =

∫
|y−1|=δ

G(m,n, r1, . . . , rn)(v −
∫
X

v dm) dy

+

∫
|y−1|=δ

G(m,n− 1, r1, . . . , rn−1)L0(F
⊗rn)⊗ (y − L)−1

∫
X

v dm dy.

The second integral is equal to
∫
X
v dm ·

∫
|y−1|=δ G(m + 1, n − 1, r1, . . . , rn−1)L0(F

⊗rn) dy and thus

purely imaginary by the induction hypothesis. We rewrite the first integral to∫
|y−1|=δ

G(m,n− 1, r1, . . . , rn−1)L0(F
⊗rn)⊗

[
(y − L0)

−1 − (1− L0)
−1
]
(v −

∫
X

v dm) dy

+

∫
|y−1|=δ

G(m,n− 1, r1, . . . , rn−1)L0(F
⊗rn)⊗ (1− L0)

−1(v −
∫
X

v dm) dy.

With v2 = L0(F
⊗rn)(1−L)−1(v−

∫
X
v dm), the second term becomes

∫
|y−1|=δ G(m,n−1, r1, . . . , rn−1)v2 dy,

which is purely imaginary by induction. The resolvent identity applied to the first term gives

−
∫
|y−1|=δ

G(m− 1, n− 1, r1, . . . , rn−1)L0(F
⊗rn)⊗ (y − L0)

−1(v −
∫
X

v dm) dy

= −
∫
|y−1|=δ

G(m− 1, n, r1, . . . , rn)(v −
∫
X

v dm) dy.
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This is purely imaginary by the induction hypothesis. If, however, m = n, then the integrand contains
a factor (y− 1)n+1, which removes the pole (of order ≤ n+ 1) of the remaining part of the integrand,
and hence Cauchy’s Theorem gives again that the integral vanishes. This completes the induction and
the entire proof.

We can now complete

Proof of Proposition 3.11(a). Recall that Πu = 1
2πi

∫
|y−1|=δ(y −Lu)−1 dy is the eigenprojection w.r.t.

the leading eigenvalue. Clearly Π0v is real for a real v ∈ B. Taking the j-th derivative w.r.t. u and
then evaluating at u = 0, gives 2πij+1 times the contour integral of a linear combination of terms of
the form (23). These integrals are all purely imaginary by Lemma 3.20, so the j-th derivative produces

alternatingly real and purely imaginary outcomes. So, Π
(j)
0 v has only real entries if j is even and

purely imaginary entries if j is odd.

It remains to look at the j-th derivatives
(
λ
A

)(j)
0

of λu
Au

evaluated at 0. We recall that λu is the

eigenvalue and Au = e−⟨Σu,Σu⟩.
Let vu = Πu1∫

Πu1 dm
be the normalized eigenvector associated with λu, i.e.,

∫
X
vu dm = 1. Since Πu

is analytic, so is vu. Π
(j)
0 1 has only real entries if j is even and purely imaginary entries if j is odd,

the same applies to v
(j)
0 v has only real entries if j is even and purely imaginary entries if j is odd.

A simple calculation starting from
∫
X
Luvu dm = λu

∫
X
vu dm = λu shows that we can write

1− λu =

∫
X

(1− eiuF ) dm+

∫
X

(1− eiuF )(vu − v0) dm

= −
∞∑
j=1

iju⊗j

j!
∗ E(F⊗j) +

∫
X

 ∞∑
j=1

iju⊗j

j!
F⊗j

 ∗

 ∞∑
j=1

iju⊗j

j!
v
(j)
0

 dm.

Using that v
(m)
0 has only real entries if m is even and purely imaginary entries if m is odd, we can

see that the same applies to every term of product of sums
(∑∞

j=1
iju⊗j

j! F⊗j
)
∗
(∑∞

j=1
iju⊗j

j! v
(j)
0

)
.

Clearly, every j term in the sum
∑∞
j=1

iju⊗j

j! E(F⊗j) has real entries if j is even or purely imaginary

entries if j is odd. Thus, (λ)
(j)
0 has real entries if j is even or purely imaginary entries if j is odd.

Finally, dividing λu by Au = e−
1
2 ⟨Σu,Σu⟩ makes no difference since Au is real.

3.9 Proof of Lemma 3.15

Note that ∣∣∣∣∣ 1

λK

∫ λKT

0

EK,NG ◦ ϕr(xK) dr

∣∣∣∣∣ =
∣∣∣∣ 1

λK

∫
W̃

EK,NG

∣∣∣∣ ,
where W̃ is the segment connecting xK and ϕλKT (xK).

Recalling the definition of weak norm ∥h∥Bw in subsection 3.5.1, we see that∣∣∣∣ 1

λK

∫
W̃

EK,NG ◦ ϕr(xK) dr

∣∣∣∣ ≤ |W̃ |
λK

∥EK,NG∥Bw .

Recalling C1 ⊂ B ⊂ Bw, ∥EK,NG∥Bw ≤ ∥EK,N∥B∥G∥C1 , and Lemma 3.15 follows.
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A On tensor products ⊗ and ∗
We briefly review tensor products ⊗ and “scalar” product ∗. If A is an c × d matrix, and A′ an
c′ × d′-matrix, then A⊗A′ is an cc′ × dd′-matrix defined as

A⊗A′ =

a11 . . . a1d
...

. . .
...

ac1 . . . acd

⊗

a
′
11 . . . a′1d′
...

. . .
...

a′c′1 . . . a′c′d′



=



a11

a
′
11 . . . a′1d′
...

. . .
...

a′c′1 . . . a′c′d′

 . . . a1d

a
′
11 . . . a′1d′
...

. . .
...

a′c′1 . . . a′c′d′


...

. . .
...

ac1

a
′
11 . . . a′1d′
...

. . .
...

a′c′1 . . . a′c′d′

 . . . acd

a
′
11 . . . a′1d′
...

. . .
...

a′c′1 . . . a′c′d′




.

Note that this tensor product is not commutative: A⊗A′ is only isomorphic but in general not equal
to A′ ⊗A.

Throughout, our vectors u ∈ Cd will be considered as column vectors, also if they appear as the
arguments of (scaler) functions f : Cd → C. Now the j-fold tensor u⊗j product of u with itself is
defined inductively:

u⊗0 = 1 ∈ C, u⊗1 = u =

u1...
ud

 , u⊗2 = u⊗ u =



u1u1
u1u2
...

u1ud
...
...

udu1
udu2
...

udud



and u⊗j = u⊗ u⊗j−1.

Thus u⊗j is a column vector with dj entries.
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It goes similarly with derivatives of scalar functions f : Cd → C:

f (0) = f, f ′ = f (1) = ∇f =


∂f
∂u1

...
∂f
∂ud

 , f (2) =



∂2f
∂u1∂u1
∂2f

∂u1∂u2

...
∂2f

∂u1∂ud
...
...
∂2f

∂ud∂u1

∂2f
∂ud∂u2

...
∂2f

∂ud∂ud



and f (j) =


∂
∂u1
∂
∂u2

...
1
∂ud

⊗ f (j−1).

Next we define the ∗-product u∗v on matrices of the same size as A∗A′ =
∑
i,j aija

′
ij , if u, u

′ ∈ Cd

are column vectors, then u ∗ u =
∑d
i=1 uiu

′
i is the usual scalar product. We can extend this to c× d-

matrix A and c′ × d′-matrix A′ provided cd = c′d′ and c′ is a multiple of c (or vice versa). For this,
we divide A into d/d′ c× d′-matrices and stack them up to a single c′ × d′-matrix an then ∗-multiply
with A′. For example

(
a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26

)
∗


a′11 a′12
a′21 a′22
a′31 a′32
a′41 a′42
a′51 a′52
a′61 a′62

 =


a11 a12
a21 a22
a13 a14
a23 a24
a15 a16
a26 a26

 ∗


a′11 a′12
a′21 a′22
a′31 a′32
a′41 a′42
a′51 a′52
a′61 a′62


= a11a

′
11 + a12a

′
12 + a21a

′
21 + a22a

′
22 + a13a

′
31 + a14a

′
32

+ a23a
′
41 + a24a

′
42 + a15a

′
16 + a51a

′
52 + a25a

′
26 + a61a

′
62.

For example, for a symmetric matrix Σ =
(
σ11 σ12

σ21 σ22

)
and vector u =

(
u1

u2

)
, we get

Σ2 ∗ u⊗2 =

(
σ2
11 + σ2

12 2σ2
12

2σ2
12 σ2

12 + σ2
22

)
∗

 u21
u1u2

u1u2 u
2
2


= (σ2

11 + σ2
12)u

2
1 + (σ11σ12 + 2σ2

12 + σ12σ22)u1u2 + (σ2
12 + σ2

22)u
2
2

=

(
σ11u1 + σ21u2
σ12u1 + σ22u2

)
∗
(
σ11u1 + σ21u2
σ12u1 + σ22u2

)
= ⟨Σu,Σu⟩, (24)

as used in Section 3
We can extend ∗ even further to column vectors u ∈ Cd and v ∈ Cd

′
, where we assume that d′ is

a multiple of d. To compute u ∗ v, divide v into d′/d blocks of height d, multiply the k-th entry of u
with the k-th block, and add up these blocks. For example,

(
u1
u2

)
∗


v1
v2
v3
v4
v5
v6

 = u1 ·

v1v2
v3

+ u2 ·

v4v5
v6

 =

u1v1 + u2v4
u1v2 + u2v5
u1v3 + u2v6

 ,
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and if d is a multiple of d′, we divide u into d/d′ block, etc. Thus ∗ acts commutatively on column

vectors. Also, if d = d′, then u ∗ v =
∑d
i=1 uivi is the usual scalar product. In this specific case d = d′,

Leibniz rule works: ∇(u ∗ v) = ∇u ∗ v + u ∗ ∇v, but in general, the dimensions don’t match.
However, we have the Taylor formula for a C∞ scalar function f : Cd → C and column vector

u ∈ Cd:

f(u) =

∞∑
j=0

1

j!
f (j)(0) ∗ u⊗j = 1 · f(0) · 1 + 1 ·


∂f(0)
∂u1
∂f(0)
∂u2

...
∂f(0)
∂ud

 ∗


u1
u2
...
ud

+
1

2
·



∂2f(0)
∂u1∂u1
∂2f(0)
∂u1∂u2

...
∂2f(0)
∂u1∂ud

...

...
∂2f(0)
∂ud∂u1

∂2f(0)
∂ud∂u2

...
∂2f(0)
∂ud∂ud



∗



u1u1
u1u2
...

u1ud
...
...

udu1
udu2
...

udud



+ . . .

B Integrals used in the proof of mains results

In the proof of Theorem 3.3, we need the following lemma.

Lemma B.1. A. Assume d = 1. Given σ, L ∈ R and j ∈ {0, 1, 2, . . . }, write

Ij(σ, L) =

∫
R
e−

σ2

2 u
2

eiLuuj du.

Then

I0(σ, L) =

√
2π

σ
e−

L2

2σ2 , I1 =
i
√
2πL

σ3
e−

L2

2σ2 , and Ij(σ, L) =
1

σ2
(iLIj−1 + (j − 1)Ij−2).

B. Assume d = 2. Given a 2× 2 covariance matrix Σ2, L ∈ R2 and j ∈ {0, 1, 2, . . . }, write

Ij(Σ, L) =

∫
R2

e−
1
2 ⟨Σu,Σu⟩ei⟨L,u⟩u⊗j du,

where u⊗j is the j-fold tensor product of the vector u =
(
u1

u2

)
with itself. Then I⃗j is an alternatingly

real and purely imaginary vector with 2j components. Specifically:

I0(Σ, L) =
2π

σ1σ2
e−

1
2 ⟨Σ

−1L,Σ−1L⟩ and I1(Σ, L) =
2πi

σ1σ2
e−

1
2 ⟨Σ

−1L,Σ−1L⟩A

(
1
σ2
1
(A∗L)1

1
σ2
2
(A∗L)2

)

where Σ = AJA−1, J =
(
σ1 0
0 σ2

)
, is the diagonalization of Σ with unitary matrix A. Also

I2(Σ, L) =
2π

σ1σ2
e−

1
2 ⟨Σ

−1L,Σ−1L⟩(Q(L⊗ L) +Q′)

with the quadratic form Q and vector Q′ ∈ Rd
2

made explicit in the proof.
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Proofs of Lemma B.1. Item A., d=1. The integrals Ij = Ij(σ, L) can be computed via integration
by parts, namely for j ≥ 1 we have (taking into account that integrals over odd real or imaginary parts
of the integrand vanish):

Ij = Ij(σ, L) =

∫ ∞

−∞
ue−

σ2

2 u
2

eiLuuj−1 du

=

∫ ∞

−∞

1

σ2
e−

σ2

2 u
2

eiLu
(
iLuj−1 + (j − 1)uj−2

)
du =

1

σ2
(iLIj−1 + (j − 1)Ij−2).

This recursion show that Ij is alternatingly real and purely imaginary. We compute I0 via a change
of coordinates:

I0 =

∫ ∞

−∞
eiLu−

σ2

2 u
2

du =

∫ ∞

−∞
e
−( σu√

2
− iL√

2σ
)2
e−

L2

2σ2 du

= e−
L2

2σ2

√
2

σ

∫ ∞

−∞
e−u

2

du =

√
2π

σ
e−

L2

2σ2 . (25)

Then the recursion gives

I1 =
iL

σ2
I0 =

i
√
2πL

σ3
e−

L2

2σ2 , I2 =
1

σ2
(iLI1 + I0) =

σ2 − L2

σ5

√
2πe−

L2

2σ2 ,

I3 = iL

√
2π

σ5
e−

L2

2σ2

(
3− L2

σ2

)
, I4 =

√
2π

σ5
e−

L2

2σ2

(
3− 6

L2

σ2
+
L4

σ4

)
,

and so on.
Item B., d = 2. Using diagonalization and the unitary change of coordinates u = Av (so

⟨Σu,Σu⟩ = ⟨AJA−1u,AJA−1u⟩ = ⟨JA−1u, JA−1u⟩ = σ2
1v

2
1 + σ2

2v
2
2 and ⟨L, u⟩ = ⟨A∗L, v⟩), we get

I0(Σ, L) =

∫ ∞

−∞
e−

1
2σ

2
1v

2
1ei(A

∗L)1v1 dv1

∫ ∞

−∞
e−

1
2σ

2
1v

2
2ei(A

∗L)2v2 dv2

= I0(σ1, (A
∗L)1) · I0(σ2, (A∗L)2) =

2π

σ1σ2
e
− 1

2

(
1

σ21
(A∗L)21+

1

σ22
(A∗L)22

)
.

Since 1
σ2
1
(A∗L)21 +

1
σ2
2
(A∗L)22) = ⟨J−1A−1L, J−1A−1L⟩ = ⟨A−1Σ−1LA−1Σ−1L⟩ = ⟨Σ−1L,Σ−1L⟩, the

result follows.
Using the same change of coordinates, we get

I1(Σ, L) =

∫ ∞

−∞

∫ ∞

−∞
e−

1
2σ

2
1v

2
1ei(A

∗L)1v1e−
1
2σ

2
1v

2
2ei(A

∗L)1v2 ·A
(
v1
v2

)
dv2 dv1

= A

(
I1(σ1, (A

∗L)1) · I0(σ2, (A∗L)2)

I0(σ1, (A
∗L)1) · I1(σ2, (A∗L)2)

)

=
2πi

σ1σ2
e
− 1

2

(
1

σ21
(A∗L)21+

1

σ22
(A∗L)22

)
A

(
1
σ2
1
(A∗L)1

1
σ2
2
(A∗L)2

)
=

2πi

σ1σ2
e−

1
2 ⟨Σ

−1L,Σ−1L⟩A

(
1
σ2
1
(A∗L)1

1
σ2
2
(A∗L)2

)
.

For Ij(Σ, L), j ≥ 2, the same methods works, but the computations are getting increasingly lengthy.
To explain a bit about j = 2, the change of coordinates now leads to the factor

(Av)⊗ (Av) =


(A11)

2v21 + 2A11A12v1v2 + (A12)
2v22

A11A21v
2
1 + (A11A22 +A12A21)v1v2 +A12A22v

2
2

A21A11v
2
1 + (A21A12 +A22A11)v1v2 +A22A12v

2
2

(A21)
2v21 + 2A21A22v1v2 + (A22)

2v22
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Multiplying this with e−
1
2σ

2
1v

2
1ei(A

∗L)1e−
1
2σ

2
1v

2
2ei(A

∗L)1v2 and integrating over R2 means replacing v21 by

I2(σ1, (A
∗L)1)I0(σ2, (A

∗L)2) =
σ2
1−(A∗L)21
σ5
1σ2

, etc. This way we get

I2(Σ, L) =
2π

σ1σ2
e−

1
2 ⟨Σ

−1L,Σ−1L⟩(Q(L⊗ L) +Q′)

for

Q(L⊗ L) +Q′ =



(A11)
2 σ

2
1−(A∗L)21

σ4
1

− 2A11A12
(A∗L)1
σ2
1

(A∗L)2
σ2
2

+ (A12)
2 σ

2
2−(A∗L)22

σ4
2

A11A21
σ2
1−(A∗L)21

σ4
1

− (A11A22 +A12A21)
(A∗L)1
σ2
1

(A∗L)2
σ2
2

+A12A22
σ2
2−(A∗L)22

σ4
2

A21A11
σ2
1−(A∗L)21

σ4
1

− (A21A12 +A22A11)
(A∗L)1
σ2
1

(A∗L)2
σ2
2

+A22A12
σ2
2−(A∗L)22

σ4
2

(A21)
2 σ

2
1−(A∗L)21

σ5
1

− 2A21A22
(A∗L)1
σ2
1

(A∗L)2
σ2
2

+ (A22)
2 σ

2
2−(A∗L)22

σ4
1


.

In general, the terms in Ij(Σ, L) are all scalars of the form cIaIb, where c ∈ R and a+ b = j, so these
are alternatingly real and purely imaginary in j.
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