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Abstract

We obtain expansions of ergodic integrals for Zd-covers of compact self-similar translation
flows, and as a consequence we obtain a form of weak rational ergodicity with optimal rates. As
examples, we consider the so-called self-similar (s, 1)-staircase flows (Z-extensions of self-similar
translations flows of genus-2 surfaces), and a variation of the Ehrenfest wind-tree model.

Nous établissons des développements asymptotiques d’intégrales ergodiques pour des Zd-revêtements
de flots directionnels compacts auto-similaires: De cela découle un résultat d’ergodicité rationnelle
faible avec des taux optimaux. À titre d’exemple, nous considérons des flots sur des escaliers
auto-similaires de type (s, 1) (qui sont des Z-extensions de flots directionnels auto-similaires sur
des surfaces de genre 2) ainsi qu’une variante du modèle de vent dans les arbres des Ehrenfest.
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1 Introduction

Given a measure preserving flow (ϕt)t∈R on a measure space (X,µ), one is interested in describing the
almost everywhere behaviour of its orbits. If the flow is ergodic and if µ(X) < ∞, Birkhoff’s Ergodic

Theorem states that, for any integrable observableG : X → R, the time averages 1
T

∫ T
0
G◦ϕt dt converge

almost everywhere to 1
µ(X)

∫
X
Gdµ. On the other hand, if µ(X) = ∞, for any ergodic, conservative

flow (ϕt)t∈R and for all integrable functions, its time averages converge to 0 almost everywhere. The
situation does not improve even if we replace 1

T with any other normalizing family of functions a(T ),

see Aaronson [1, Theorem 2.4.2]: for any non-negative integrable function G, either lim infT→∞
∫ T
0
G◦

ϕt dt = 0 or lim supT→∞
∫ T
0
G ◦ ϕt dt = ∞ almost everywhere.

Nonetheless, one can still hope to describe the almost everywhere behaviour of the ergodic integrals
in some weaker sense. In particular, for an integrable function G : X → R, we seek an expression of
the form ∫ T

0

G ◦ ϕt(x) dt = a(T )

(∫
X

Gdµ

)
· ΦT (x)(1 + o(1)), (1)
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where a(T ) describes the “correct (almost everywhere) size” of the ergodic averages (which, at least for
us, is o(T )) and ΦT (x) is an “oscillating” term which, although does not converge almost everywhere,
converges in some weaker sense (and, crucially, depends only on the point x and not on the function
G).

In this paper, we consider a translation flow (ϕt)t∈R on a space XΓ which is a Zd-cover of a compact
translation surface X with the projection p : XΓ → X. Lebesgue measure m is infinite on XΓ and
invariant w.r.t. both the flow ϕt and the deck-transformations associated to the cover. Our main
result is that, under certain assumptions described below, an expression as (1) holds for all continuous
functions G : XΓ → R with compact support, with a(T ) ∼ T (log T )−d/2 and where

√
log(ΦT ◦ p)

converges in distribution to a Gaussian random variable.
Results of this type have been proved by many authors in several settings, including [24] for Zd

covers of horocycle flows, and [6] for Z-covers of a translation torus. Furthermore, in [6], the authors
used this result to prove temporal limit theorems for circle rotations Rθ : S1 → S1 for observables
with

∫
S1 G dm = 0 and specific (namely, quadratically irrational) rotation angles θ. This amounts

to determining the asymptotics of
∑n−1
i=0 G ◦ Riθ(x) for a fixed x and increasing time intervals [0, n].

The crucial idea in their proofs is renormalization, allowing one to speed up a translation flow ϕt
on a Z-cover XΓ of a two-dimensional twice punctured torus X by means of a linear pseudo-Anosov
automorphism ψΓ of XΓ according to

ψΓ ◦ ϕt = ϕλt ◦ ψΓ for every t ∈ R, (2)

where λ ∈ (−1, 1) is the contraction factor of ψΓ. Therefore the asymptotics of ergodic integrals∫ T
0
G ◦ ϕt dt for observables G : XΓ → R of compact support can be estimated using the asymptotics

of
∫
F G ◦ ψk dm, where F is a fundamental domain and T ≈ λ−k.
The central result in [6] in our notation is∫ T

0

G ◦ ϕt(x) dt =
(∫

XΓ

G dm

)
(1 + o(1))T

σ
√
2K

exp

(
−1 + o(1)

2σ2

(
ξ ◦ ψKΓ (x)

)2
K

)
as T → ∞, (3)

where K ∼ log∗ T := ⌈− log T
log λ ⌉ and x is such that it has zero average drift under iteration of ψΓ, and

ξ : XΓ → Z is the projection on the Z-part of the cover.
In this paper, we extend these results to (i) include higher order error terms of the asymptotics

making the o(1) terms in (3) explicit, and (ii) allow more general translation surfaces than tori. Our
proofs continue to rely on the renormalization formula (2), hence restricting the direction of the
translation flow to quadratically irrational slopes, but are on the whole simpler than those of [6], and
pertain to Zd-covers as well. In fact, ergodicity of the flow seems to be a non-generic property; there
are several results in the literature showing that for Z- or Zd-extensions of many compact translation
surfaces, the translation flow in a generic direction is non-ergodic, and even has uncountably many
ergodic components, cf. [29, 30, 9, 17, 18]. The computational difficulty increases with d, of course,
and there are few studied examples for d ≥ 2. We present a variation of the Ehrenfest wind-tree model
as an example of a Z2-cover where our results apply.

Phrased in dimension 1 (but see Theorem 2.8 for the precise formulation, also for d = 2), our main
result reads as

Theorem 1.1. Let G ∈ C1(XΓ) be compactly supported. Then, there exist real bounded functions gk,j
so that for all N ≥ 1 and m-a.e. x ∈ XΓ,∫ T

0

G ◦ ϕt(x) dt =
∫
XΓ

G dm

σ
√
2π

· e−
ξ(ψKΓ (x))

2

2σ2K
T√
K

×

1 +

N∑
k=1

1

Kk

2k∑
j=0

gk,j(x) ξ(ψ
K
Γ (x))2k−j + O

(
1

KN+1

)
as T → ∞ and K = log∗ T = ⌈− log T

log λ ⌉.
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The term
ξ(ψKΓ (x))2

2σ2K is oscillating and does not converge almost everywhere, but after integration
over the space, it does lead to a form of weak rational ergodicity for C1 observables with optimal rates,
see Theorem 2.11. Weak rational ergodicity [2] means that there is a set F ⊂ XΓ of positive finite
measure (possibly but not necessarily a fundamental domain of the Zd-cover) such that

lim
T→∞

1

aT (F)

∫ T

0

µ(A ∩ ϕt(B)) dt = µ(A)µ(B)

for all measurable sets A,B ⊂ F , and aT (F) :=
∫ T
0
µ(F ∩ ϕt(F)) dt is called the return sequence.

Further, as in [6] and [24], we obtain higher order rational ergodicity, see Theorem 2.14. The higher
order rational ergodicity is defined as in the statement of Theorem 2.14 below.

The paper is organized as follows. Section 2 gives the core of the argument in an abstract setup,
based on local limit laws of twisted transfer operators Lu acting on appropriate anisotropic Banach
spaces. In Section 3 we formalize the concept of Zd-cover over a translation surface and study the
automorphisms that commute with deck-transformations. We discuss the example of the (s, 1)-staircase
at length, which is the direct generalization of the model used in [6] (where s = 2). We give direct
proofs of ergodicity of the pseudo-Anosov automorphism ψΓ and the translation flow ϕt although this
also follows from the results of Section 2. Section 3 finishes with a version of the Ehrenfest wind-tree
model, which is our example of a Z2-cover where the main theory applies. Section 4 gives an alternative
approach to introducing a twisted transfer operator which is closer to the nature of Zd-covers of the
compact translation surface.

2 Ergodic integrals and (weak) rational ergodicity via Local
Limit Laws

We are interested in (weak) rational ergodicity (with optimal rates) of a translation flow ϕt defined on
a Zd-cover XΓ of the compact translation surface X that satisfies certain abstract assumptions. The
main results of this section, Theorems 2.8 and 2.11, are a generalization of [6, Theorems 3.2 and 4.3].
The setting we require is as follows:

(H1) Let X be a compact surface and let XΓ be a Zd-cover with projection p : XΓ → X that is
invariant under deck-transformations p ◦∆n = p. We assume that there exists a pseudo-Anosov
automorphism ψΓ : XΓ → XΓ on the Zd-cover XΓ that renormalizes the translation flow ϕt in
the stable direction, that is ψΓ ◦ ϕt = ϕλ t ◦ ψΓ for some λ ∈ (−1, 1).

(H2) The pseudo-Anosov automorphism ψΓ commutes with the deck transformations, i.e., ψΓ ◦∆n =
∆n ◦ ψΓ for all n ∈ Zd and ψ = p ◦ ψΓ ◦ p−1 : X → X is well-defined.

(H3) Upon the choice of a bounded fundamental domain F (i.e.,XΓ is the disjoint union
⊔

n∈Zd ∆n(F)),

we define ξ : XΓ → Zd to be the Zd component of x ∈ XΓ, via ξ(x) = n if x ∈ ∆n(F). We can
consider ψΓ as the lift of a pseudo-Anosov automorphism ψ : X → X defined via

ψΓ(x,n) = (ψ(x),n+ F (x)), x ∈ X,n ∈ Zd,

where F (x) = ξ ◦ ψΓ(x
′) − ξ(x′), defined independently of a choice of x′ ∈ p−1(x), is called the

Frobenius function. We assume that
∫
X
F dm = 0 (no drift condition) and that F : X → Zd is

not a coboundary, i.e., F ̸= g ◦ ψ − g for any g : X → Zd.

Lebesgue measurem is invariant, for both the finite and the infinite measure preserving automorphism,
ψ and ψΓ.

Remark 2.1. The requirement that ψ is a linear pseudo-Anosov automorphism can be easily relaxed:
much more general classes satisfy the spectral gap in the Banach spaces recalled in Section 2.3 below.
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Remark 2.2. In Sections 3.2 and 3.3, we give examples where these hypotheses apply for d = 1, 2,
respectively. That the Frobenius function has zero integral, but is not a coboundary is shown for the
staircase example in Theorem 3.9 and for our wind-tree example in ??.

We are interested in a simple expression of the ergodic integral
∫ T
0
G ◦ ϕt dt where G ∈ C1(XΓ)

is compactly supported. Hence G(·, r) := G · 1∆r(F) is non-zero for at most finitely many r ∈ Zd

(regardless the exact choice of the fundamental domain F), and we can write the ergodic integral as

the sum of finitely many integrals
∫ T
0
(G · 1∆r(F)) ◦ ϕt dt, accordingly.

We consider a Markov partition P for the automorphism ψ. Take a flow segment L connecting x and
ϕT (x) and take K ≥ 1 minimal such that LK := ψKΓ (L) is contained in a single element P ∈ P∨ψ−1

Γ P.
The minimality of K assures that the length of LK is bounded away from 0.

Choose N ∈ N arbitrary; it will be the same N as the order to which the error terms in Theorem 2.8
are taken. Let R = (N + 2) log∗ T , where as before log∗ T = ⌈− log T

log λ ⌉, and let PR =
∨R
j=0 ψ

j
ΓP; its

partition elements have stable length O(λR). We can chop off tiny segments from the ends of LK so
as to make the remainder stretch exactly across a whole number of elements in PR. By the choice
of R, the error we make here is O(T/KN+2) and hence can be absorbed in the final big O term in
Theorem 2.8.

Let ϕut be the flow on XΓ in the unstable direction of ψΓ. Then there exists1 T0 such that p(BK) =
X for BK :=

⋃
|t|≤T0

ϕut (LK). Next we can select a union AK of rectangles inside BK such that

p : AK → X is a bijection (in particular, m(AK) = 1), and at least one of these rectangles contains
the (one-dimensional) interior of LK in its interior. Now we choose our fundamental domain F such
that ∆ℓ(F) = AK for some ℓ ∈ Zd. Let A := ψ−K

Γ (AK); it contains the (one-dimensional) interior of
L and the width of A is ≤ 2T0λ

K = O(1/T ).
Let LΓ : L1(XΓ) → L1(XΓ) be the transfer operator associated with ψΓ defined via

∫
XΓ

LΓv w dm =∫
XΓ

v w ◦ ψΓ dm with v ∈ L1 and w ∈ L∞ and compute that

1

T

∫ T

0

G ◦ ϕt(x) dt =
∫
XΓ

G · 1A dm+O(λK)

=

∫
XΓ

G · 1AK ◦ ψK dm+O(λK) =

∫
XΓ

LKΓ G · 1AK dm+O(λK). (4)

The strategy is to relate the behaviour of LKΓ with an operator (or conditional) local limit theorem in
terms of the transfer operator L : L1(X) → L1(X) for the automorphism ψ (defined via

∫
X
Lv w dm =∫

X
v w ◦ ψ dm with v ∈ L1 and w ∈ L∞(X). Also we define the twisted transfer operator as

Lu(v) = L(eiuF v).

The operator local limit theorem we are after is in the sense of [3, Section 6].

Lemma 2.3. Let v ∈ L1(X) and v(·, r) ∈ L1(XΓ) be the lifted version supported on {ξ = r}, r ∈ Zd.
For all ℓ, r ∈ Zd and for all K ≥ 1,

LKΓ v(x, r)1{ξ=ℓ} = LKv(x)1{FK(x)=ℓ−r} =

∫
[−π,π]d

e−iu(ℓ−r)LKu v(x) du.

for ergodic sums FK :=
∑K−1
j=0 F ◦ ψjΓ.

1This existence of such T0 relies on the minimality of translation flow in the unstable direction of ψ : X → X, and
T0 can be taken independent of K.
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Proof. Let v ∈ L1(X), w ∈ L∞(X) and v(·, r) = v ◦ p, w(·, ℓ) = w ◦ p be the versions supported on
{ξ = r} and {ξ = ℓ}, respectively. Compute that∫

XΓ

LKΓ v(x, r)1{ξ=ℓ}w(x, ℓ) dm(x) =

∫
XΓ

LKΓ (1{X×{r}}v) (1{X×{ℓ}}w) dm

=

∫
XΓ

(1{X×{r}}v(x, r)) (1{X×{ℓ}}w(x, ℓ)) ◦ ψKΓ (x) dm

=

∫
X

v w ◦ ψK 1{FK=ℓ−r} dm

=

∫
X

LK(v1{FK=ℓ−r})w(x) dm,

which gives the first equality in the statement. We can write the indicator function 1{FK=ℓ−r} =∫
[−π,π]d e

iu(FK−(ℓ−r)) du, so∫
X

LK(v(x)1{FK=ℓ−r})w(x) dm =

∫
X

∫
[−π,π]d

LK
(
veiu(FK−(ℓ−r))

)
(x) du w(x) dm

=

∫
[−π,π]d

∫
X

e−iu(ℓ−r)LKu v w dm du.

2.1 An (operator) local limit theorem (LLT) for FK along with some con-
sequences

Proposition 2.5 below is an asymptotic expansion operator LLT (in the sense of [3, Section 6]) for the
ergodic sums FK . This is entirely expected given the simple forms of the automorphism ψ and of the
Frobenius function F . The expansion in Proposition 2.5 is a key ingredient in the proof of our main
results Theorems 2.8 and 2.11. We recall that Theorem 2.8 is a precise version of Theorem 1.1, while
Theorem 2.8 gives optimal rates in a form of weak rational ergodicity for C1 functions.

We first recall some facts on the spectral properties of L and its twisted version Luf = L(eiuF f),
u ∈ Rd. Since ψ : X → X is an invertible map, we need adequate, anisotropic Banach spaces on
which the corresponding transfer operator L can act. There are several choices in the literature, see
the surveys [7, Section 2] and [10]. For the automorphism ψ it is convenient to work with a variant
of the spaces introduced in [11] (see also [14] and references therein for generalizations applicable to
billiards) applicable to a class of hyperbolic maps with singularities. The details on Banach spaces we
shall use are deferred to Section 2.3.

Proposition 2.4. (a) There exists anisotropic Banach spaces B,Bw so that C1(X) ⊂ B ⊂ Bw ⊂
C1(X)∗ where C1(X)∗ is the (topological) dual of C1(X). The transfer operator L acts contin-
uously on B and Bw. Moreover, L is quasicompact2 when viewed as operator from B to B. In
particular, 1 is an isolated, simple eigenvalue in the spectrum of L.

(b) The derivatives dk

duk
Luf are linear operators on B with operator norm of O(∥F∥k∞).

(c) There exists δ > 0 and a family of simple eigenvalues λu that is analytic in u for all |u| < δ.
Also, for all |u| < δ and n ≥ 1

Lnu = λnuΠu +Qnu,

where Πu is the family of spectral projections associated with λu with Π0v =
∫
X
v dm, Πu, Qu

are analytic when regarded as (family of) operators acting on B, ΠuQu = QuΠu and ∥Qnu∥B ≤ δn0
for some δ0 < 1.

2the precise terminology is recalled and specified in Section 2.3
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A classical argument (e.g., see the survey paper [10] and references therein) shows that an immediate
consequence of Proposition 2.4(c) is the Central Limit Theorem (CLT) for the ergodic sums FK :

FK√
K

=⇒ χ, (5)

where =⇒ stands for convergence in distribution and χ is a Gaussian random variable with mean 0
(here we use the no drift condition in (H3)) and symmetric, non-degenerate, d× d covariance matrix
Σ2 =

∑
j∈Z

∫
X
F ⊗ F ◦ ψj dm. The speed of mixing of ψ ensures that this sum converges. The

non-degeneracy of Σ2 is ensured because F is not a coboundary, see (H3).

Throughout this section we let Π
(j)
0 be the j-th derivative in u of Πu evaluated at u = 0. To

simplify notation, from here onward, given u ∈ Rd we write u2 := u ⊗ u for the tensor product and
similarly for the product uj , j ≥ 1. Also we use the notation ⊗j(Hju) =

∑d
k=1(Hju)

j
k for u ∈ Rd and

a d× d matrix Hj .

Proposition 2.5. Let v(·, r) = v ◦ p be a function supported and C1 on {ξ = r} for some r ∈ Zd.
Then

(a) If v is a real function then Π
(j)
0 v is real if j is even and Π

(j)
0 v is purely imaginary if j is odd.

(b) Let δ and δ0 be as in Proposition 2.4(c). Let Σ be the covariance matrix in (5). There exist real
d× d matrices Hj, j ≥ 3 so that for all ℓ, r ∈ Zd and for all K ≥ 1,

LKv(x, r)1{FK(x)=ℓ−r} + Ekv(x, r)

=
1(

2π
√
K
)d ∫

[−δ
√
K,δ

√
K]

d
e−

⟨Σu,Σu⟩
2 e

∑∞
j=3

ij

j!

⊗j(Hju)

Kj/2 e
iu ℓ−r√

K ×
∞∑
j=0

1

j!

uj

Kj/2
Π

(j)
0 v(x, r) du,

where Ek is an operator acting on B so that ∥Ekv∥B ≤ CδK0 ∥v∥C1 and so that
∣∣∫
X
Ekv dm

∣∣ ≤
C ′δK0 ∥v∥C1 for some C,C ′ > 0.

The proof of Proposition 2.5 is deferred to Section 2.5. We note that the asymptotic expansion in
the usual LLT follows immediately. That is, taking ℓ− r = M ∈ Zd, v ≡ 1 in Proposition 2.5(b) and
integrating over the space, we obtain that for all n ≥ 1,

m (FK(x) =M) =
1(

2π det(Σ)
√
K
)dΦ( M√

K

)
+

n∑
j=1

Cj
K(j+d)/2

+ o

(
Cn+1

K(n+d)/2

)
, as K → ∞, (6)

where Cj = Cj(M/
√
K) ∈ R and Φ is the density of the Gaussian χ from (5). Given Proposition 2.5(b),

the fact that the Cj are real follows as in the first displayed chain of equations in the proof of [28,
Theorem 3.2]. In fact, Cj can be computed precisely as there, and they are variants of products of

Φ(j)
(
M√
K

)
Π

(q)
0 1 for j, q < [n/2], where Φ(j) is the j-th derivative of Φ.

The expansion in (6) allows us to record a technical lemma that will play an important role in the
proof of Theorem 2.11 below.

Lemma 2.6. (i) Let q ≥ 0 be an integer and fq : Rd → Rd, fq(x) = xqg(x)e−⟨x,x⟩ for a bounded
function g : Rd → Rd. Then, there exist real constants Cd,q and dj,q, so that for any n ≥ 1,∫

XΓ

fq

(
ξ
(
ψKΓ
)

det(Σ)
√
2K

)
dm = Cd,q +

n∑
j=1

dj,q
Kj/2

+ o(K−n/2), as K → ∞.
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(ii) Let f : Rd → Rd, f(x) = e−⟨x,x⟩ and let χ be the d-dimensional Gaussian introduced in (5).
Then, there exist real constants dj, so that for any n ≥ 1,∫

XΓ

f

(
ξ
(
ψKΓ
)

det(Σ)
√
2K

)
dm = E(f0(χ)) +

n∑
j=1

dj
Kj/2

+ o(K−n/2), as K → ∞,

Proof. Item (i). Recall that FK(x) = ξ ◦ ψKΓ (x′)− ξ(x′) for x′ ∈ p−1(x). Therefore,∫
XΓ

fq

(
ξ
(
ψKΓ
)

det(Σ)
√
2K

)
dm =

∑
M∈Zd

∫
{FK=M}

fq

(
ξ
(
ψKΓ
)

det(Σ)
√
2K

)
dm

=
∑
M∈Zd

fq

(
M

det(Σ)
√
2K

)
m (FK(x) =M) .

This together with (6) gives∫
XΓ

fq

(
ξ
(
ψKΓ
)

det(Σ)
√
2K

)
dm =

1

Kd/2

∑
M∈Zd

H

(
M√
K

)
as K → ∞, (7)

for

H(x) =

 Φ(x)

(2π det(Σ))
d
+

n∑
j=1

Cj(x)

Kj/2
+ o

(
Cn+1(x)

Kn/2

) fq

(
x

det(Σ)
√
2

)
and Cj(x) ∈ R,

for x = M√
K
. Next, for each M ∈ Zd, define functions C̃j on the unit cube Q(M) centered at M in

such a way that
∫
Q(M)

C̃j(x)fq

(
x

det(Σ)
√
2K

)
dx = Cj

(
M√
K

)
fq

(
M

det(Σ)
√
2K

)
. Then

∑
M∈Zd

Cj

(
M√
K

)
fq

(
M

det(Σ)
√
2K

)
=

∫
Rd
C̃j(x)fq

(
x

det(Σ)
√
2K

)
dx

=
(√

K
)d ∫

Rd
C̃j(u

√
K)f

(
u

det(Σ)
√
2

)
du,

where we used the change of coordinates u = x/
√
K. A similar argument holds for the term

Φ(x)/(2π det(Σ))2. This shows that the sum scales as (
√
K)d, and since

∫
Rd C̃j(u

√
K)f

(
u

det(Σ)
√
2

)
du <

∞ due to the exponential factor in f , there are constants cd such that
∑
M∈Zd H

(
M√
K

)
= cd

(√
K
)d

.

We get Item (i) from this together with (7).
Item (ii) We just need to argue that the first term, that is Cd,0 in item (i), is exactly E(f0(χ)).

Apart from this constant the statement is as in item (i) for fq with q = 0 and g ≡ 1. One could
proceed via an exact calculation (using, for instance, the Euler-Maclaurin formula), but a quicker way
is to recall (6) and note that by the Portmanteau Theorem,∫

XΓ

f

(
ξ
(
ψKΓ
)

det(Σ)
√
2K

)
dm→ E(f0(χ)), as K → ∞.

We have an direct consequence of Proposition 2.5 that gives an easy proof of Theorem 2.8 below.
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Corollary 2.7. Let G(·, r) = G ◦ p (where p is as in (H1), that is p ◦∆n = p) be a function supported
and C1 on {ξ = 0}. Let δ, δ0 ∈ (0, 1) be as in Proposition 2.5. Let Σ be the covariance matrix in (5).
Then for all K ≥ 1,

LKG(x)1{FK(x)=ξ(ψKΓ (x))} + EkvG(x)

=
1(

2π
√
K
)d ∫

[−δ
√
K,δ

√
K]

d
e−

⟨Σu,Σu⟩
2 e

∑∞
j=3

cj
j!

(iu)j

Kj/2 e
iu
ξ(ψKΓ (x))

√
K ×

∞∑
j=0

1

j!

uj

Kj/2
Π

(j)
0 G(x) du,

where Ek is an operator acting on B so that ∥EkG∥B ≤ CδK0 ∥v∥C1 .

Proof. Let v so that v(x, r) = G(x) if r = 0 and v(x, r) = 0, else. Take ℓ = 0 and x′ ∈ p−1(x) so that
r = ξ(ψKΓ (x′)). To justify this choice, just recall that FK(x) = ξ ◦ ψKΓ (x′) − ξ(x′). The conclusion
follows by Proposition 2.5 (b).

2.2 Main results

Let Σ be the covariance matrix in (5). For d = 1, we write Σ = σ. For d = 2, we diagonalize
Σ = AJA−1 for J =

(
σ1 0
0 σ2

)
for a unitary matrix A, so A−1 = A∗ is the transpose of A.

Theorem 2.8. Let G ∈ C1(XΓ) be a compactly supported real function. Given the stable eigenvalue

λ ∈ (0, 1) of ψΓ, let K be minimal such that ψKΓ (
⋃T
t=0 ϕt(x)) is contained in a single element of

P ∨ ψ−1
Γ P. (This holds for K ≈ log∗ T := ⌈logλ−1 T ⌉.)

I. Suppose d = 1. Then there exist real bounded functions gk,j so that for all N ≥ 1,∫ T

0

G ◦ ϕt(x) dt =
∫
XΓ

G dm

σ
√
2π

· e−
ξ(ψKΓ (x))

2

2σ2K
T√
K

×

1 +

N∑
k=1

1

Kk

2k∑
j=0

gk,j(x)ξ(ψ
K
Γ (x))2k−j + O

(
1

KN+1

) as T → ∞.

II. Suppose d = 2. Then there exists a 2× 2 matrix B, with real functions as entries, so that∫ T

0

G ◦ ϕt(x) dt =
∫
XΓ

G dm

detΣ
e−

∥Σ−1ξ(ψKΓ (x))∥2

2K
T√
K

×
(
A

(
1

1

)
+

1

K
B

(
1

1

)
+O

(
1

K2

))
as T → ∞.

Remark 2.9. For d = 2, we can also go higher in the expansion, but since the calculations are tedious,
we omit this. The assumption that G ∈ C1(XΓ) can be relaxed to G being C1 on partition elements of∨R
j=0 ψ

j
ΓP for some finite R.

To prove Theorem 2.8, we need the following integrals (which are computed in Section 2.5):

Lemma 2.10. A. Assume d = 1. Given σ, L ∈ R and j ∈ {0, 1, 2, . . . }, write

Ij(σ, L) =

∫
R
e−

σ2

2 u
2

eiLuuj du.

Then

I0(σ, L) =

√
2π

σ
e−

L2

2σ2 and Ij(σ, L) =
1

σ2
(iLIj−1 + (j − 1)Ij−2).
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B. Assume d = 2. Given a 2× 2 covariance matrix Σ, L ∈ R2 and j ∈ {0, 1, 2, . . . }, write

I⃗j(Σ, L) =

∫
R2

e−
1
2 ⟨Σu,Σu⟩ei⟨L,u⟩uj du

for the vector uj =
(uj1
uj2

)
. Then

I⃗0(Σ, L) =
2π

σ1σ2
e−

1
2 ⟨Σ

−1L,Σ−1L⟩
(
A11 +A12

A21 +A22

)
,

where Σ = AJA−1, J =
(
σ1 0
0 σ2

)
, is the diagonalization of Σ with unitary matrix A. Also

I⃗1(Σ, L) =
2πi

σ1σ2
e−

1
2 ⟨Σ

−1L,Σ−1L⟩

(
1
σ1
(A∗L)1

1
σ2
(A∗L)2

)
and

I⃗2(Σ, L) =
2π

σ1σ2
e−

1
2 ⟨Σ

−1L,Σ−1L⟩

 b1,0
σ2
1

(
1− (A∗L)21

σ2
1

)
− b1,1

(A∗L)1(A
∗L)2

σ2
1σ

2
2

+
b1,2
σ2
2

(
1− (A∗L)22

σ2
2

)
b2,0
σ2
1

(
1− (A∗L)21

σ2
1

)
− b2,1

(A∗L)1(A
∗L)2

σ2
1σ

2
2

+
b2,2
σ2
2

(
1− (A∗L)22

σ2
2

)
for real coefficients bp,q made explicit in the proof.

Proof of Theorem 2.8. Let G(·, 0) = G ◦ p be supported on {ξ = 0}. Take K ≥ 1 minimal such that
the ψKΓ -image of the segment [x, ϕT (x)] is contained in at most two adjacent elements P ∈ P ∨ψ−1

Γ P.
We will argue as if only one P is needed; the other case can be easily derived by cutting the segment
into two pieces. We have K ≈ log∗ T as in the statement of the theorem.

Take ℓ = 0 and r = ξ ◦ ψKΓ (x, 0). By (4) and Lemma 2.3 and the fact that AK = {ξ = ℓ},

1

T

∫ T

0

G ◦ ϕt(x) dt =
∫
X

LKG(x)1{FK=ξ◦ψK} dm+ O(1/T ).

This together with Corollary 2.7 yields∫ T

0

G ◦ ϕt(x) dt+O(1) +O(δK0 ) =
T

2π
√
K

∫
X

G(x) dm (8)

×
∫ δ

√
K

−δ
√
K

e− ⟨Σu,Σu⟩
2 e

∑∞
j=3

cj
j!

(iu)j

Kj/2 e
iu
ξ(ψKΓ (x))

√
K ·

∞∑
j=0

ij

j!

⊗j(Hju)

Kj/2
Π

(j)
0

 du.

It remains to analyze the last integral in (8). First, note that for N ≥ 1,

e
∑∞
j=3

ij

j!

⊗j(Hju)

Kj/2 = 1 +

N∑
j=1

ij

(j + 2)!

⊗j+2(Hj+2u)

Kj/2+1
+O

(
|u|N+3

KN/2+1

)
. (9)

Next, by Proposition 2.5 (a), for any N ≥ 1

∞∑
j=0

1

j!

uj

Kj/2
Π

(j)
0 G(x) =

∫
XΓ

G dm+

N∑
j=1

dj,G(x)

j!

uj

Kj/2
+O

(
|u|N+1

K(N+1)/2

)
,

where dj,G is a bounded function that, by Proposition 2.5, is real for even j and purely imaginary for
odd j. Thus,

∞∑
j=0

1

j!

uj

Kj/2
Π

(j)
0 G(x) =

∫
XΓ

G dm

1 +

N∑
j=1

d′j,G(x)

j!

uj

Kj/2

+O

(
|u|N+1

K(N+1)/2

)
,
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where d′j,G is a bounded function which is real if j is even and purely imaginary if j is odd. Together
with (9), this gives

e
∑∞
j=3

ij

j!

⊗j(Hju)

Kj/2 ×
∞∑
j=0

1

j!

uj

Kj/2
Π

(j)
0 G(x) =

∫
XΓ

G dm

1 +

N∑
j=1

ej,G(x)u
j

Kj/2

+O

(
|u|N+1

K(N+1)/2

)
,

where ej,G is a bounded function which is real if j is even and purely imaginary if j is odd. This is
because when two series of functions with even real parts and odd imaginary parts are multiplied, the
product also has an even real part and an odd imaginary part. Plugging this in (8), we obtain∫ T

0

G ◦ ϕt(x) dt =
∫
X
G dmT

2π
√
K

∫ δ
√
K

−δ
√
K

e
iu
ξ(ψKΓ (x))

√
K e−

σ2u2

2

1 +

N∑
j=1

ej,G(x)u
j

Kj/2

 du

+O

 T√
K

∫ δ√K
−δ

√
K
|u|N+1e−

σ2u2

2 du

K(N+1)/2

 . (10)

We are left with computing the integrals in (10). Set Ij :=
∫∞
−∞ eiLt−

⟨Σu,Σu⟩
2 uj dt, with L = L(x) :=

ξ(ψKΓ (x))√
K

. From Lemma 2.10, we obtain I0 =
√
2π
σ e−

L2

2Σ2 and Ij =
1
σ2 (iLIj−1 + (j − 1)Ij−2) for j ≥ 1.

Item I., d = 1. Recall that in this case we write Σ = σ. For j = 1, 2, 3, 4,

I1 = iL

√
2π

σ3
e−

L2

2σ2 , I2 =

√
2π

σ3
e−

L2

2σ2

(
1− L2

σ2

)
.

I3 = iL

√
2π

σ5
e−

L2

2σ2

(
3− L2

σ2

)
, I4 =

√
2π

σ5
e−

L2

2σ2

(
3− 6

L2

σ2
+
L4

σ4

)
, . . .

Observe that Ij is real if j is even and purely imaginary if j is odd. There for real coefficients cp,j such

that the Ij ’s, written as power series in L =
ξ(ψKΓ (x))√

K
become

Ij = (iL)j mod 2

⌊j/2⌋∑
p=0

cp,jL
2pe−

L2

2σ2 = ij mod 2 ·
⌊j/2⌋∑
p=0

fp,j
(ξ(ψKΓ (x))2p+(j mod 2)

K2p+(j mod 2))/2
e−

L2

2σ2 , (11)

Going back to (10), the integrals
∫ δ√K
−δ

√
K
e
iu
ξ(ψKΓ (x))

√
K e−

σ2u2

2 uj du can be approximated by Ij : the

change from ±δ
√
K to ±∞ gives an error that is negligible compared to other error estimates. The

rest of the argument comes down to combining the series 1 +
∑N
j=1

ej,G(x)

Kj/2 uj from (10) with (11).
Recall that the bounded functions ej,G are real if j is even and purely imaginary if j is odd, and this
combines with ij mod 2 to a real coefficient. Taking fk,j = ij mod 2ej,Gc(2k−j−(j mod 2))/2,j , we get

I0 +

N∑
j=1

ij mod 2ej,G(x)

Kj/2
Ij =

N∑
j=0

⌊j/2⌋∑
p=0

fp,ji
j mod 2ej,G(x)

(ξ(ψKΓ (x))2p+(j mod 2)

K(2p+j+(j mod 2))/2
e−

L2

2σ2

=

N∑
k=0

 2k∑
j=0

fk,jξ(ψ
K
Γ (x))2k−j

 e−
1

2σ2

ξ(ψKΓ (x))
2

K

(
1

K

)k
+O

((
1

K

)N+1
)
,

where we introduced a new summation index 2k = 2p + j + (j mod 2) and switched the order of the
sums. The terms in the inner brackets can all be computed explicitly. We just give the first two as
illustration:

I0 +
e1,G(x)

K1/2
I1 + · · · =

(√
2π

σ
+

√
2π

σ3

e2,G(x) + ie1,G(x)ξ(ψ
K
Γ (x))

K
+O

(
1

K2

))
e−

L2

2σ2 .
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Putting everything together gives∫ T

0

G ◦ ϕt(x) dt =
∫
X
G dm

σ
√
2π

e−
ξ(ψKΓ (x))

2

2σ2K
T√
K

+

∫
X
G dm

σ3
√
2π

(
e2,G(x) + ie1,G(x)ξ(ψ

K
Γ (x))

)
e−

ξ(ψKΓ (x))
2

2σ2K
T

(
√
K)3

+

∫
X
G dm

2π

N∑
k=2

 2k∑
j=0

fk,j(x)ξ(ψ
K
Γ (x))2k−j

 e−
ξ(ψKΓ (x))

2

2σ2K
T

(
√
K)2k+1

+ O

(
T

(
√
K)2N+3

)
,

for real bounded functions fk,j . Item I. follows with gk,j = fk,j
∫
X
G dm.

Item II., d = 2. Using the 2-dimensional integrals in Lemma 2.10, the same proof can be used to

give an expansion for
∫ T
0
G ◦ ϕt(x) dt when ξ takes value in Z2. The result up to the “linear” term is

∫ T

0

G ◦ ϕt(x) dt =
∫
X
G dm

det(Σ)
e
− ⟨Σ−1ξ(ψKΓ (x)),Σ−1ξ(ψKΓ (x))⟩

2σ21K ×(A11 +A12

A21 +A22

)
T√
K

+

e2,G( b1,0σ2
1
+

b1,2
σ2
2
) +

ie1,G
σ1

ξ1
(
ψKΓ (x)

)
e2,G(

b2,0
σ2
1
+

b2,2
σ2
2
) +

ie1,G
σ2

ξ2
(
ψKΓ (x)

)
 T

(
√
K)3

+O

(
T

(
√
K)5

)

for the unitary matrix A and coefficients bp,q as in Lemma 2.10. The conclusion follows with

A

(
1
1

)
=

(
A11 +A12

A21 +A22

)
and B

(
1
1

)
=

e2,G( b1,0σ2
1
+

b1,2
σ2
2
) +

ie1,G
σ1

ξ1
(
ψKΓ (x)

)
e2,G(

b2,0
σ2
1
+

b2,2
σ2
2
) +

ie1,G
σ2

ξ2
(
ψKΓ (x)

)
 .

Using Theorem 2.8 and Lemma 2.6 we obtain expansion in weak rational ergodicity for ‘good’
functions.

Theorem 2.11. Assume the setup of Theorem 2.8.

(i) Suppose d = 1. Then, there exist real constants dk,j so that for all N ≥ 1,∫
XΓ

∫ T

0

G ◦ ϕt(x) dt dm =

∫
XΓ

G dm

σ
√
2π

T√
K

E(e−
χ2

2 ) +

N∑
k=1

2k∑
j=0

dk,j T
√
K

2k+1+j
+ O

(
T

√
K

2N+3

)
.

(ii) Suppose d = 2. Then, there exists a 2× 2 matrix B0 with real entries so that∫
XΓ

∫ T

0

G ◦ ϕt(x) dt dm =

∫
XΓ

G dm

detΣ

T√
K
A

(
1

[1mm]1

)
E(e−

χ2

2 ) +
T

√
K

3B0

(
1

[1mm]1

)
+O

(
T

K2

)
.

Remark 2.12. Weak rational ergodicity without rates follows immediately since convergence for all
L1(XΓ)-functions is an immediate consequence of Theorem 2.8 and the ratio ergodic theorem, see [1].
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Proof. We prove Item (i). item (ii) follows similarly.
By Theorem 2.8,∫

XΓ

∫ T

0

G ◦ ϕt(x) dt dm =

∫
XΓ

G dm

σ
√
2π

·
∫
XΓ

e−
ξ(ψKΓ (x))

2

2σ2K
T√
K

dm

+

∫
XΓ

G dm

2π

N∑
k=1

T

(
√
K)2k+1

 2k∑
j=0

∫
XΓ

gk,j(x)ξ(ψ
K
Γ (x))2k−j e−

ξ(ψKΓ (x))
2

2σ2K dm

 (12)

+ O

(
T

(
√
K)2N+3

)
.

Since gk,j are bounded functions, Lemma 2.6(ii) with f(x) = e−
x2

2 ensures that∫
XΓ

gk,j(x)ξ(ψ
K
Γ (x))2k−j e−

ξ(ψKΓ (x))
2

2σ2K dm = E(f0(χ)) +
n∑
j=1

dj
Kj/2

+ o(K−n/2),

for some real constants dj . To deal with the sum in (12), we apply Lemma 2.6(i) with f2k−j(x) =

gk,j(x)x
2k−je−

x2

2 . This ensures that the sum
∑2k
j=0 of integrals in (12) convergence to

∑2k
j=0 dk,j for

real constants dk,j .

To obtain higher order rational ergodicity from Theorem 2.8, we need the almost sure behaviour

of
ξ(ψKΓ (x))√

K
. The following almost sure invariance principle (ASIP) follows immediately from [21,

Proposition 2.6] using the Banach spaces in Section 2.3 (and it has been recorded in, for instance, [10]).
The precise exponent is due to the fact that the Frobenius function F is bounded.

Lemma 2.13. There exist i.i.d. Gaussian random variables Xj defined on the probability space (X,m)
(or any other copy of it) with mean zero and covariance matrix Σ so that almost surely as n→ ∞,

n−1/2

Fn −
n∑
j=1

Xj

 = O
(
n−(1/4−ε)

)
,

for any ε > 0. The i.i.d. Gaussian sum is a Brownian motion at integers.

Using Theorem 2.8 and Lemma 2.13 (the precise error term is irrelevant) we can easily obtain
higher order rational ergodicity (in the sense of [16, 4]).

Theorem 2.14. Assume the setup of Theorem 2.8 with G ∈ L1(XΓ). Set a(T ) =

∫
XΓ

G dm

σ
√
2π

T√
K
. Then

we have higher order rational ergodicity, i.e.,

lim
N→∞

1

log logN

∫ N

3

1

T log T

(
1

a(T )

∫ T

0

G ◦ ϕt(x) dt

)
= 1 for m-a.e.x.

Proof. By Remark 2.12, the convergence (that is, just the first term) in Theorem 2.8 holds for all
G ∈ L1(XΓ). Using Lemma 2.13 we approximate almost surely the first term in Theorem 2.8. That

is, we can replace (almost surely), e−
ξ(ψKΓ (x))2

2σ2K with e−
(∑Kj=1 Xj)

2

2Σ2K (1 + o(1)). Hence,

1

T log T

(
1

a(T )

∫ T

0

G ◦ ϕt(x) dt

)
= e

− (
∑K
j=1 Xj)

2

2 det(Σ)2K (1 + o(1)), almost surely. (13)
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By the almost sure Central Limit Theorem for i.i.d. random variables (see [8] and references therein),
the following holds almost surely, for all a:

lim
N→∞

1

logN

N∑
k=1

1

k
1{

(∑kj=1
Xj)

2

2k det(Σ)2
<a

} = Φ(a).

where Φ is the distribution of the standard Gaussian. A version of this statement holds with Lipschitz
functions instead of indicator functions, see [27, Theorem 2.4] (with dk = 1, there). That is, given a
Lipschitz function f ,

1

logN

N∑
k=1

1

k
f


(∑k

j=1Xj

)2
2k det(Σ)2

→
∫
f dΦ.

Taking f(x) = e−⟨x,x⟩,

lim
N→∞

1

logN

N∑
k=1

1

k
e
− (∑kj=1 Xj)

2

2k det(Σ)2 =

∫
e−⟨x,x⟩ dΦ. (14)

The conclusion from (14) together with (13) taking k = log∗ T and recalling the definition of a(T ).

Remark 2.15. Alternatively, in the previous proof one could try to use the argument in [24, Proof of
Lemma 2].

2.3 Banach spaces

We find it convenient to work with a slight modification of the Banach spaces considered in [10] for the
purpose of obtaining limit theorem via spectral methods for a general class of baker maps3. For a very
similar (simplified) variation of the spaces in [11] of the Banach spaces in [10] we refer to [25], which
focused on some two dimensional, non-uniformly hyperbolic versions of Pomeau-Manneville maps.

The automorphism ψ resembles a baker map except for the type of singularities. For a baker map
the singularities are given by the set of discontinuity points. In the setup of ψ, we say that a point
s ∈ X is singular if the cone angle at s is not 2π. The difference in the type of singularities introduces a
difference in the class of admissible leaves. In all other aspects the variant of the Banach spaces in [10]
remain the same in the set of ψ. We summarize below the ingredients of these Banach spaces, using
the notation from [10], as to emphasize that the case of the automorphism ψ (regarding the spectral
gap for L) is one of the easiest possible examples that the spaces introduced in [11] can treat.

2.3.1 Definitions of Banach spaces

Although, the presence of a (natural) Markov partition is not a crucial element of the construction
in [10] for baker type maps, it does simplify the writing. The presence of this type of Markov structure
considerably simplifies the description of admissible leaves. In particular, it allows us to define admis-
sible leaves as full unstable segments. For the same reason, that of simplicity, we will take advantage
of the Markov partition P and more precisely of PR :=

∨R
j=0 ψ

jP.
We define the set Ws of admissible leaves as the set of stable segments W that exactly stretch

across an element P ∈ PR such that its (one dimensional) interior is contained in the interior of P .
Note that, for any such W ∈ Ws, the stable segment ψ−1W can be decomposed into a finite union of
elements of Ws.

3The baker map itself is defined as b(x, y) = (2x mod 1, 1
2
(y + ⌊2x⌋)) on the unit square.
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Any W ∈ Ws has an affine parametrization {χW (r) : r ∈ [0, l]}, where l is the length of W . Then,
for any measurable function h :W → C, we write∫

W

hdm =

∫ l

0

h ◦ χW (r) dr.

It is usual to construct P based on stable and unstable manifold of integers lattice points. The slopes
of these manifold belong to Q[λ] and λ−1 is a Pisot number, so by the Garsia separation principle [19],
there is a constant C > 0, independent of R, such that the stable length of all the elements of PR is
between |λ|R/C and C|λ|R. Therefore we use |λ|−R to normalize the integrals over leaves W ∈ Ws.

Let α ∈ [0, 1]. For any W ∈ Ws, we let Cα(W,C) denote the Banach space of complex-valued
functions W with Hölder exponent α, equipped with the norm

|h|Cα(W,C) = sup
z∈W

|h(z)|+ sup
z,w∈W

|h(z)− h(w)|
|z − w|α

.

Such a set is a collection of local unstable manifolds that do not containing a singularity point. From
here onward all required definitions are as in [10, Section 2.2].

We say that φ ∈ Cα(X,C) if it is Cα(W,C) for all W ∈ Ws. Given h ∈ C1(X,C), define the weak
norm by

∥h∥Bw := sup
W∈Σ

sup
|ϕ|C1(W,C)≤1

λ−R
∫
W

hϕ dm.

Given α ∈ [0, 1), define the strong stable norm by

∥h∥s := sup
W∈Σ

sup
|ϕ|Cα(W,C)≤1

λ−R
∫
W

hϕ dm.

For any two aligned4 admissible leaves W1,W2 ∈ Ws in the same atom of PR, let d(W1,W2) denote
the distance in the unstable direction between W1 and W2. In other words, if Wi = {χi(r) : r ∈ [0, l]},
then d(W1,W2) is the length of the segment in the unstable direction connecting χ1(r) to χ2(r).

With the same notation as above, for two functions φi ∈ C1(Wi,C), with i = 1, 2, we also define

d0(φ1, φ2) = sup
r∈[0,l]

|φ1 ◦ χr(x1)− φ2 ◦ χr(x2)|.

Next define the strong unstable norm by

∥h∥u := sup
W1,W2∈Σ

sup
|φi|C1≤1, d0(φ1,φ2)=0

|λ|−R

d(W1,W2)1−α

∣∣∣∣∫
W1

hφ1 dm−
∫
W2

hφ2 dm

∣∣∣∣ .
Finally, the strong norm is defined by ∥φ∥B = ∥φ∥s + ∥φ∥u. These norms are exactly those of [10,
Section 2.3] but normalized with λ−R because our use of the finer partition PR.

Define the weak space Bw to be the completion of C1(X) in the weak norm and define B to be the
completion of C1(X) in the strong norm.

By [10, Lemma 2.4] (see also [25, Lemma 7.2]),

Lemma 2.16. We have the following sequence of continuous, injective embeddings: C1(X) ⊂ B ⊂
Bw ⊂ (C1(X))∗. Moreover, the unit ball of B is relatively compact in Bw.

4i.e., the one is obtained from the other by a translation in the unstable direction.
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2.3.2 Well-definedness of L on B and boundedness of L on B and Bw
Recall that ψ is piecewise affine (so ψ is C1(W ), for any W ∈ Ws) and note that for any α ∈ [0, 1],
for any W ∈ Ws and for any φ ∈ Cα(W,C), φ ◦ ψ ∈ Cα(X,C). Moreover, for any n ≥ 1, ψ−n(W )
consists of a union of leaves in Ws and the transfer operator L of ψ is defined as

Lh(φ) = h(φ ◦ ψ), for all h ∈ Cα(Ws) and φ ∈ (Cα(Ws))∗. (15)

Recall that Lebesgue measure m is invariant for ψ. We identify h with the measure dµ = h dm. Then
h ∈ C1(Ws) ⊂ (C1(Ws))∗ and Lh is associated with the measure having density

Lh(x) = h ◦ ψ−1(x)

Jψ(ψ−1(x))
= h ◦ ψ−1(x), (16)

where Jψ is the Jacobian of ψ with respect to m, which is equal to 1 (since the contraction and
expansion are the same).

In general, it is not true that for systems with discontinuities, L(C1(X)) ⊂ C1(X) and hence it is
not obvious that L is well defined on B: see, for instance, [10, Footnote 13]. However, in the current
setup of ψ, similar to the first line of the proof of [10, Lemma 4.1], Lh ∈ C1(Ws) (since for anyW ∈ Σ,
ψ−1W is an exact union of leaves in Ws). Hence, L(C1(X)) ⊂ C1(X) and L is well defined on B.

Also, by [10, Lemma 4.1], L acts continuously on B and Bw and the proof of [10, Theorem 2.5]
(for baker type maps) goes word for word the same in the setup of ψ. This yields

Lemma 2.17. [10, Theorem 2.5] The operator L is quasi-compact as an operator on B. That is,
its spectral radius is 1 and its essential spectral radius is strictly less than 1. Moreover, 1 is a simple
eigenvalue, and all other eigenvalues have modulus strictly less than 1.

The computations on the relevant Lasota-Yorke inequalities are almost the same as in [10, Propo-
sition 4.2], the fact that we use a finer partition PR has no effect on these inequalities and hence
the bound on the essential spectral radius is independent of R. We use here that due to the uniform
expansion factor λ−1, the preimage ψ−n(W ) is a union of admissible leaves of total length equal to
|λ|−n|W |.

So far, we have summarized all the required ingredients for the proof of Proposition 2.4(a).

2.3.3 Analyticity of the twisted transfer operator Luf = L(eiuF f), f ∈ B. Proof of Propo-
sition 2.4(b)

The Frobenius function F : X → Z, x 7→ ξ◦ψΓ(x
′)−ξ(x′) for x′ ∈ p−1(x), is not globally C1, hence the

simple argument of [10, Lemma 4.8] cannot go through. However, F is constant on each element of the
partition PR ∨ψ−1PR (hence C∞ on each element of PR ∨ψ−1PR). As a consequence, the argument
for the analyticity of the twisted transfer operator is a much more simplified version of the argument
used in the proof of [15, Lemma 3.9] (essentially a consequence of the arguments used in [12, 13, 14]).

Lemma 2.18. Let u ∈ Rd, f ∈ B and m ≥ 1. Then dk

duk
Luf is a linear operator on B with operator

norm of O(∥F∥k∞).

Proof. Using (16), compute that

dk

duk
Luf = ikL(F keiuF f) = ik(F keiuF ) ◦ ψ−1Lf.

Since F is locally constant and since each element of PR ∨ ψ−1PR contains no singularities in its
interior, a simplified version5 of the argument used in [13, Lemma 3.7] (see also [15, Lemma 3.3])

5The (serious) simplification comes from the simple form of admissible leaves and the fact that the Jacobian is
constant.
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shows that for any f ∈ B, f F ∈ B and that for some C > 0,

∥f F∥B ≤ C∥f∥B sup
Pi∈PR

∥F∥Cα(Pi). (17)

Thus, ∥∥∥∥ dkdukLuf
∥∥∥∥
B
≤ C sup

Pi∈PR
∥(F keiuF ) ◦ ψ−1∥Cα(Pi)∥f∥B ≤ C∥F∥k∞∥f∥B.

2.4 Spectrum of Lu and leading eigenvalue and proof of Proposition 2.4(c)

We already know (see Lemma 2.17) that 1 is a simple isolated eigenvalue of L0. Since u → Lu is
analytic (see Lemma 2.18), there exists δ > 0 and a simple family of simple eigenvalues λu, analytic
in u ∈ (0, δ) with λ0 = 1. Also, standard perturbation theory ensures that for all u ∈ (0, δ),

Lnu = λnuΠu +Qnu, (18)

where Πu is the spectral projection onto the one-dimensional eigenspace associated to λu with Π0f =∫
X
f dm and where ∥Qnu∥ ≤ θn for some θ ∈ (0, 1), and QuΠu = ΠuQu, (see, for instance, [22, Section

2]). By Lemma 2.18 and standard perturbation theory, Πu, Qu are also analytic in u ∈ (0, δ).
To obtain limit theorems, one still needs to understand the expansion of λu in u. Again, due to the

fact that F is globally bounded and also locally constant, the following expansion follows by standard
arguments exploiting (17) among others. We recall this briefly.

Let vu = Πu1∫
Πu1 dm

be the normalized eigenvector associated with λu, i.e.,
∫
X
vu dm = 1. Since Lu

is analytic, so is vu and we write v
(j)
0 for the j-th derivative evaluated at u = 0. A simple calculation

starting from
∫
X
Luvu dm = λu

∫
X
vu dm = λu shows that we can write

1− λu =

∫
X

(1− eiuF ) dm+

∫
X

(1− eiuF )(vu − v0) dm

= −
∞∑
j=1

(iu)j

j!
E(F j) +

∫
X

 ∞∑
j=1

(iu)j

j!
F j

 ∞∑
j=1

(iu)j

j!
v
(j)
0

 dm. (19)

This together with (17) and a standard argument (see, for instance, [14, Proof of Theorem 2.6 (b)]
who work with the same Banach spaces, and more generally the survey [22]), gives

1− λu = 1− 1

2
⟨Σu,Σu⟩(1 + o(1)), (20)

where Σ2 =
∑
j∈Z

∫
X
F ⊗ F ◦ ψj dm.

Equations (27) and (20), together with standard arguments (via the so-called Aaronson-Denker-
Nagaev-Guivarch’s method: see [3, 22]) ensure CLT for Fn, that is equation (5).

For the proof of the local limit theorem Proposition 2.5, we need to control the spectrum of Lu for
u ∈ (δ, π]. The following lemma gives the required control.

Lemma 2.19. [15, Lemma C.1] Let u ∈ (−π, π], h ∈ B and η ∈ C be such that Luh = ηh in B and
|η| ≥ 1. Then either h ≡ 0 or u ∈ 2πZ and h is m-a.s. constant.

The proof of Lemma 2.19 goes word for word as [15, Proof of Lemma C.1], except for differences
in notations. The differences in the definitions of the norms used in Subsection 2.3 are irrelevant for
this argument. Lemma 2.19 ensures that there exists δ0 ∈ (0, 1) so that

∥Lnu∥B ≤ δn0 for all |u| ≥ δ and n ≥ 1. (21)
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2.5 Remaining proofs of Section 2

We first record a technical lemma that will be instrumental in the proof of item (a) of Proposition 2.5.
For m ∈ Z, n ≥ 0 and r1, . . . , rn ∈ N, define

G(m,n, r1, . . . , rn) = (y − 1)−m(y − L0)
−1L0(F

r1) · · · (y − L0)
−1L0(F

rn)(y − L0)
−1. (22)

As F takes values in Zd, note that the algebraic powers F rj need to be interpreted coordinate-wise.

Lemma 2.20. For all m,n ≥ 0, r1, . . . , rn ∈ N and real-valued v ∈ B, the contour integral∫
|y−1|=δ

G(m,n, r1, . . . , rn)v dy is purely imaginary.

Proof. We will use induction on m,n, starting with n = 0. If m = n = 0, then∫
|y−1|=δ

G(0, 0)v dy =

∫
|y−1|=δ

(y − L0)
−1v dy = 2πiΠ0v is purely imaginary.

Now if the statement holds for n = 0 and all 0 ≤ m′ ≤ m, then∫
|y−1|=δ

G(m, 0)v dy =

∫
|y−1|=δ

(y − 1)−m(y − L0)
−1v dy

=

∫
|y−1|=δ

(y − 1)−m(y − L0)
−1(v −

∫
v dm) dy

+

∫
|y−1|=δ

(y − 1)−m(y − L0)
−1

∫
v dmdy

=

∫
|y−1|=δ

(y − 1)−m
[
(y − L0)

−1 − (1− L0)
−1
]
(v −

∫
v dm) dy

+

∫
|y−1|=δ

(y − 1)−m(1− L0)
−1(v −

∫
v dµ) dy

+

∫
v dµ

∫
|y−1|=δ

(y − 1)−(m+1) dy.

The third integral equals 2πi
∫
v dµ if m = 0 and vanishes otherwise. For the second integral we call

v1 = (1−L0)
−1(v−

∫
v dµ); then v1 ∈ B is real with

∫
v1 dm = 0. Hence the integral is purely imaginary

for the same reason as the second integral. For the first integral we use the resolvent identity:∫
|y−1|=δ

(y − 1)−m
[
(y − L0)

−1 − (1− L0)
−1
]
(v −

∫
v dm) dy

= −
∫
|y−1|=δ

(y − 1)1−m(y − L0)
−1(1− L0)

−1(v −
∫
v dm) dy

=

∫
|y−1|=δ

(y − 1)1−m(y − L0)
−1h1 dy = −

∫
|y−1|=δ

G(m− 1, 0)h1 dy.

This is purely imaginary by the induction hypothesis, except when m = 0. When m = 0 the factor
y − 1 removes the simple pole of G(m − 1, 0) = (y − L0)

−1, and the integral vanishes by Cauchy’s
Theorem.

Now we continue with the induction step over n; in this case G(m,n, r1, . . . , rn) contains n + 1
factors (y − L0)

−1, and therefore it has a a pole at 1 of order ≤ n + 1. Our induction hypothesis is
that

∫
|y−1|=δ G(m

′, n′, r1, . . . , rn′)v dy is purely imaginary for every real-valued v ∈ B when 0 ≤ n′ < n
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and m′ ≥ −n or when n′ = n and −n ≤ m′ < m. Then∫
|y−1|=δ

G(m,n, r1, . . . , rn)v dy =

∫
|y−1|=δ

G(m,n, r1, . . . , rn)(v −
∫
v dm) dy

+

∫
|y−1|=δ

G(m,n− 1, r1, . . . , rn−1)L0(F
rn)(y − L)−1

∫
v dmdy.

The second integral is equal to
∫
v dm

∫
|y−1|=δ G(m+1, n−1, r1, . . . , rn−1)L0(F

rn) dy and thus purely

imaginary by the induction hypothesis. We rewrite the first integral to∫
|y−1|=δ

G(m,n− 1, r1, . . . , rn−1)L0(F
rn)
[
(y − L0)

−1 − (1− L0)
−1
]
(v −

∫
v dm) dy

+

∫
|y−1|=δ

G(m,n− 1, r1, . . . , rn−1)L0(F
rn)(1− L0)

−1(v −
∫
v dm) dy.

Writing h2 = L0(F
rn)(1−L)−1(v−

∫
v dm), we get the second

∫
|y−1|=δ G(m,n− 1, r1, . . . , rn−1)h2 dy,

which is purely imaginary by induction. The resolvent identity applied to the first term gives

−
∫
|y−1|=δ

G(m− 1, n− 1, r1, . . . , rn−1)L0(F
rn)(y − L0)

−1(v −
∫
v dm) dy

= −
∫
|y−1|=δ

G(m− 1, n, r1, . . . , rn)(v −
∫
v dm) dy.

This is purely imaginary by the induction hypothesis. If, however, m = −n, then the integrand
contains a factor (y − 1)n+1, which removes the pole (of order ≤ n + 1) of the remaining part of the
integrand, and hence Cauchy’s Theorem gives again that the integral vanishes. This completes the
induction and the entire proof.

We can now complete

Proof of Proposition 2.5. Item (a) Recall that Πu = 1
2πi

∫
|y−1|=δ(y −Lu)−1 dy is the eigenprojection

w.r.t. the leading eigenvalue. Clearly Π0v is real for a real v ∈ B. Taking the k-th derivative w.r.t.
u and then evaluated at u = 0, gives 2πij+1 times the contour integral of a linear combination of
terms of the form (22). These integrals are all purely imaginary by Lemma 2.20, so the k-th derivative
produces alternatingly real and purely imaginary outcomes.

Item (b) From Lemma 2.3 we have

LKv(x, r)1{FK(x)=ℓ−r} =

∫
[−π,π]d

e−iu(ℓ−r)LKu v(x, r) du

=

∫
[−π,π]d

e−iu(ℓ−r)(λKu Πu +QKu )v(x, r) du. (23)

The proof is standard, but we recall the main ingredients for completeness.

First, it follows from (a) that v
(j)
0 is purely imaginary for odd j and real for even j. Thus,∫

X

(∑∞
j=1

(iu)j

j! F j
)(∑∞

j=1
(iu)j

j! v
(j)
0

)
dm has the same property. Using this information in (19), we

see that the eigenvalue

λKu = e−
1
2 ⟨Σu,Σu⟩e

∑∞
j=3

ij

j! ⊗
j(Hju). (24)

for real matrices Hj . By (21), we have ∥LKu ∥B ≤ δK0 for |u| ≥ δ, so that part of the integral can be
captured in an operator Ek satisfying ∥Ekv∥B ≤ ∥v∥C1(X).

After a change of coordinates u 7→ u/2π
√
K in (23), the relevant integral reduces to one over

1
2π

√
K)d

∫
[−δ

√
K,δ

√
K]d

. This together with (24), (27) and the analyticity of Πu gives the statement for

v ∈ B. The statement for v ∈ C1 follows from Lemma 2.16.
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Proofs of Lemma 2.10. Item A., d=1. The integrals Ij = Ij(σ, L) can be computed via integration
by parts, namely for j ≥ 1 we have (taking into account that integrals over odd real or imaginary parts
of the integrand vanish):

Ij =

∫ ∞

−∞
ue−

σ2

2 u
2

eiLuuj−1 du

=

∫ ∞

−∞

1

σ2
e−

σ2

2 u
2

eiLu
(
iLuj−1 + (j − 1)uj−2

)
du =

1

σ2
(iLIj−1 + (j − 1)Ij−2).

For j = 1 we get I1 = iL
σ2 I0 and I0 is computed via a change of coordinates:

I0 =

∫ ∞

−∞
eiLu−

σ2

2 u
2

du =

∫ ∞

−∞
e
−( σu√

2
− iuL√

2σ
)2
e−

L2

2σ2 du

= e−
L2

2σ2

√
2

σ

∫ ∞

−∞
e−u

2

du =

√
2π

σ
e−

L2

2σ2 .

Item B., d = 2. Using diagonalization and the change of coordinates u = Av (so ⟨Σu,Σu⟩ =
σ2
1v

2
1 + σ2

2v
2
2 and ⟨L, u⟩ = ⟨A∗L, v⟩), we get

I⃗0(Σ, L) =

∫ ∞

−∞
e−

1
2σ

2
1v

2
1ei(A

∗L)1v1 dv1

∫ ∞

−∞
e−

1
2σ

2
1v

2
2ei(A

∗L)2v2 dv2 ·A
(
1

1

)
= I0(σ1, (A

∗L)1) · I0(σ2, (A∗L)2) ·A
(
1

1

)
=

2π

σ1σ2
e
− 1

2

(
1

σ21
(A∗L)21+

1

σ22
(A∗L)22

)(
A11 +A12

A21 +A22

)
.

Using the same change of coordinates, we get

I⃗1(Σ, L) =

∫ ∞

−∞

∫ ∞

−∞
e−

1
2σ

2
1v

2
1ei(A

∗L)1v1e−
1
2σ

2
1v

2
2ei(A

∗L)1v2 ·A ·A∗
(
v1
v2

)
dv2 dv1

=

(
I1(σ1, (A

∗L)1) · I0(σ2, (A∗L)2)

I0(σ1, (A
∗L)1) · I1(σ2, (A∗L)2)

)

=
2πi

σ1σ2
e
− 1

2

(
1

σ21
(A∗L)21+

1

σ22
(A∗L)22

)(
1
σ1
(A∗L)1

1
σ2
(A∗L)2

)
.

For I⃗j(Σ, L), j ≥ 3, the same methods works, but the computations are getting increasingly lengthy.
To explain a bit about j = 2, the change of coordinates now leads to the factor

A

(
(A∗v)21
(A∗v)22

)
=

(
b1,0v

2
1 + b1,1v1v2 + b1,2v

2
2

b2,0v
2
1 + b2,1v1v2 + b2,2v

2
2

)
,

for b1,0 = A3
11 + A3

12, b1,1 = 2(A2
11A21 + A2

12A22), b1,2 = A12A
2
21 + A11A

2
22, b2,0 = A21A

2
11 + A22A

2
12,

b2,1 = 2(A2
21A11+A

2
22A12), and b2,2 = A3

21+A
3
22. After this decomposition, we can factor the integrals

and express them as combinations of Ij(σ1, (A
∗L)1) and Ij(σ2(A

∗L)2):

I⃗2(Σ, L) =


b1,0I2(σ1, (A

∗L)1)I0(σ2, (A
∗L)2) + b1,1I1(σ1, (A

∗L)1)I1(σ2, (A
∗L)2)

+ b1,2I0(σ1, (A
∗L)1)I2(σ2, (A

∗L)2)

b2,0I2(σ1, (A
∗L)1)I0(σ2, (A

∗L)2) + b2,1I1(σ1, (A
∗L)1)I1(σ2, (A

∗L)2)
+ b2,2I0(σ1, (A

∗L)1)I2(σ2, (A
∗L)2)

 .

Filling in the 1-dimensional integrals I0(σ, L) =
√
2π
σ e−

L2

2σ2 , I1(σ, L) =
√
2πiL
σ3 e−

L2

2σ2 and I2(σ, L) =
√
2π
σ3 (1− L2

σ2 )e
− L2

2σ2 , and using the fact that 1
2σ2

1
(A∗L)21+

1
2σ2

2
(A∗L)22) can be rewritten as ⟨Σ−1L,Σ−1L⟩,

gives the result.
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3 Abelian covers and homogeneous automorphisms

Let X be a compact translation surface of genus g ≥ 1, and let Σ ⊂ X be the finite set of singularities
and marked points of X, whose cardinality we denote by κ ≥ 1. The relative homology H1(X,Σ,Z) is
a free abelian group of rank 2g + κ− 1. The intersection form

⟨·, ·⟩ : H1(X,Σ,Z)×H1(X \ Σ,Z) → Z

is non-degenerate. Let us consider a homomorphism ζ̃ : π1(X \ Σ) → Zd. Using the action of the

fundamental group π1 on the universal cover of X, denoted by X̃, one can associate to the kernel of ζ̃
a Zd-cover ker ζ̃ \ X̃. Notice that, as Zd is abelian, one can factor ζ̃ by a morphism

ζ : H1(X \ Σ,Z) → Zd.

The projection of ζ on each coordinate of Zd in the canonical basis defines linear forms on H1(X \Σ,Z).
As the intersection form is non-degenerate, there exists a collection of independent primitive loops
Γ = {γ1, . . . , γd} ⊂ H1(X,Σ,Z) such that

ζ(γ) = (⟨γ1, γ⟩ , . . . , ⟨γd, γ⟩) .

Conversely, such a collection defines a Zd-cover XΓ of X with projection p : XΓ → X. We denote its
group of deck transformation by Deck, which is isomorphic to Zd. Thus we can label each element of
Deck by ∆n with n ∈ Zd.

As the intersection form is non-degenerate, there exists smooth 1-forms ωi on X that vanish on Σ
such that for all γ ∈ H1(X \ Σ,Z), ∫

γ

ωi = ⟨γi, γ⟩ .

Notice that the ωis form a free family of vectors in H1(X,Σ,Z). We denote by H(Z) the Z-module of
H1(X,Σ,Z) generated by these vectors and H(R) the corresponding real sub-bundle of H1(X,Σ,R).
Then the quotient H(R)/H(Z) is isomorphic to the d-dimensional torus Td.

Let hol : H1(X,Σ,Z) → C denote the holonomy map. As observed in [23], it is a necessary condition
for the linear flow to be recurrent in almost every direction on the cover to have

hol(γi) = 0 for all i = 1, . . . , d.

This is commonly called a no drift condition and we assume it for the covers we consider. For Z-covers,
by [23, Proposition 10], the no drift condition as defined here is equivalent to the corresponding con-
dition in (H3), namely that

∫
X
F dm = 0.

Proposition 3.1. Let x0 ∈ XΓ be fixed. For any ω ∈ H(R) and for all x ∈ XΓ, the integral

ξω(x) =

∫ x0

x

ω ◦ p

does not depend on the path chosen and is hence a well-defined smooth function on XΓ.

Proof. It suffices to show that for any loop γ in the cover XΓ, we have
∫
[γ]
p∗ω = 0. By definition of

the cover, p∗[γ] = [p ◦ γ] ∈ ker ζ, so that∫
[γ]

p∗ω =

∫
p∗[γ]

ω = 0,

which proves the claim.
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Let F ⊂ XΓ be a fundamental domain for the cover, namely a compact connected subset of XΓ,
whose boundary ∂F has measure zero, such that the restriction of the projection p : XΓ → X to the
interior of F is injective and p(F) = X.

Note that |ξω(x)− ξω(y)| ≤ 1 for any x, y ∈ F , and equality can hold only if x, y ∈ ∂F .
The orbit of F under deck transformations tessellates XΓ, namely, for all m,n ∈ Zd,

m[∆m(F) ∩∆n(F)] = δmn, and
⋃

n∈Zd

∆n(F) = XΓ.

For a given fundamental domain, one can associate a Zd-coordinate function from XΓ minus the points
in the orbit of by the deck transformation of ∂F to Zd. Which associate to a point x ∈ XΓ the unique
n ∈ Zd such that ∆−n(F) ∈ F .

The following proposition shows that the functions ξωi form a smooth version of Zd-coodinates.

Proposition 3.2. Let x0 ∈ XΓ and ω ∈ H(R), they induce a simply connected fundamental domain

F = {x | |ξωi(x)| ≤ 1 for 1 ≤ i ≤ d}

and for any x ∈ XΓ such that x is not in the orbit by the deck transformation of ∂F ,

x ∈ ∆n(F) if and only if ⌊ξωi(x)⌋ = ni for all i = 1 . . . , d.

An automorphism of XΓ is called homogeneous if it commutes with all deck transformations. For
such a homogeneous automorphism ψΓ, and a given Zd-coordinate ξ, we can associate its Frobenius
function

F (x) := ξ(ψΓ(x
′))− ξ(x′)

where x′ ∈ p−1(x) and ξ is a Zd-coordinate for the cover. This is well defined since for all n ∈ Zd,
ψΓ ◦∆n = ∆n ◦ψΓ and ξ ◦∆n = ξ+n and a change in Zd-coordinates changes the Frobenius function
by a ψ-coboundary.

We then can define the average drift of such an automorphism by

δ(ψΓ) :=

∫
X

F dm

where m is normalized Lebesgue measure on the surface. It is independent of the choice of Zd-
coordinate and if ϕΓ is another homogeneous automorphism, we have

δ(ψΓ ◦ ϕΓ) = δ(ψΓ) + δ(ϕΓ) (25)

(see Lemma 2.2 in [6] for details).

3.1 Lifted homogeneous pseudo-Anosov automorphisms

The next proposition determines when we can lift an automorphism on the base to an automorphism
on the Zd-cover.

Proposition 3.3. Let ψ : X → X be a linear automorphism which preserves Σ and ψ∗ its induced
map on H1(X \ Σ,Z). If ζ ◦ ψ∗ = ζ then ψ can be lifted to XΓ and its lift is homogeneous.

Proof. Recall that, by definition, automorphisms are induced on the universal cover by acting on the
set of paths up to homotopy. The condition of the proposition then implies that this induced map can
be factored through a quotient by ker ζ̃, leading to the creation of a lifted automorphism on the cover.

Since the cover inherits its flat structure from the pulled-back structure on X, the lift is also linear.
Moreover, not only does ψ∗ preserve the kernel of ζ, but it also preserves all homology classes

modulo the kernel of ζ. As every deck transformation is determined by the action of an element γ in
π1(X \ Σ) mod ker ζ̃, one simply has to notice that the condition implies ψ(γ) ≡ γ mod ker ζ̃.
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In a translation surface, a closed orbit in a given direction is contained in a cylinder formed by a
union of closed orbits and whose boundary is a union of saddle connections in the surface. The length
of those orbits is called the width of the cylinder and the distance across the cylinder in the orthogonal
direction if called the height. The modulus of a cylinder if given by the ratio of width over height.

A direction of a translation surface is called periodic6 if it can be decomposed as a union of cylinders
in that direction and those cylinders have commensurable moduli (i.e., their pairwise ratios are ratio-
nal). Notice that the actual period length of cylinders may be different and even not commensurable.

One feature of commensurable cylinder is that they have a common parabolic matrix acting trivially
on them by a Dehn twist.

h

w

(
1 w

h
0 1

)

✄

Figure 1: Dehn twist on an horizontal cylinder

Proposition 3.4. Consider a periodic direction of a translation surfaces X and the associated decom-
position in a finite family of cylinders; let µ1, . . . , µn be their moduli and let η1, . . . , ηn be the homology
classes of their core curves. Let k1, . . . , kn ∈ Z such that k1 · µ1 = · · · = kn · µn.
There is a linear parabolic automorphism ψ on X, which acts on homology by the map defined for all
γ ∈ H1(X \ Σ, R) by

ψ(γ) = γ + k1 · ⟨η1, γ⟩ · η1 + · · ·+ kn · ⟨ηn, γ⟩ · ηn. (26)

Proof. Assume that the flow is in the horizontal direction. For a given cylinder let us denote by w,
h and µ = w/h its width, height and modulus. The action of the parabolic matrix

(
0 µ
0 1

)
defines an

automorphism on this cylinder which topologically acts as a Dehn twist, meaning that it adds the
homology class of the core curve of the cylinder each time a representing loop crosses the core curve
positively and subtracts when it crosses it negatively.

By assumption, the moduli µ1, . . . , µn of the cylinders decomposing the surface are commensurable.
Thus there exist integers k1, . . . , kn such that the parabolic matrix(

1 µ1

0 1

)k1
= . . . =

(
1 µn
0 1

)kn
defines an automorphism on the whole surface.

In this work, we will be interested in products of Dehn twists in transverse directions in order
to produce lifted linear automorphisms which associated matrix is hyperbolic i.e. has trace larger
than 2. Such automorphisms are extensively studied on compact translation surfaces and are called
linear pseudo-Anosov maps. They preserve two transverse foliations in their contracting and dilating
directions which are the key objects for our renormalization argument.

3.2 Staircases

Let us consider of partition PI of the interval I into subintervals I1, I2, . . . , In and a permutation
σ : {1, . . . , n} → {1, . . . , n}. Let us identify in the rectangle I × [0, 1] the vertical sides and each of
intervals Ii on top to the Iσ(i) at bottom of the rectangle.

6The name comes from periodicity of the Teichmüller flow in this direction.
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This defines a surface X which is topologically a genus g surface with k marked points at the
boundaries of the intervals in the partition. The numbers g and k depend on the permutation σ, but
always satisfies 2g − 1 + k = n + 1 and dimH1(X,Σ,Z) = 2g + k − 1. Let ηk ∈ H1(X,Σ,Z) be a
relative homology class corresponding to the path along the interval Ik from left to right. We define
the classes γk = ηk − ησ(k) which form a set Γ and we let XΓ be the corresponding Zd-cover.

The main example of a compact translation surface X in [6] is a rectangle with side lengths s ∈ N
and 1, and identifications (0, x) ∼ (s, x), (x, 0) ∼ (x+ s− 1, 1), (x, 1) ∼ (x+ s− 1, 0), for x ∈ [0, 1] and
(x, 0) ∼ (x, 1) for x ∈ [1, s − 1], so |Ik| = 1 for al k, σ = (1s) and Γ = {γ4 − γ2}. The corresponding
Z-covers are called staircases.

We formulate the next lemma for the (s, 1)-staircase, although the adaptations for the more general
case are easy to make.

Lemma 3.5. Let XΓ be the Z-cover associated to the (s, 1)-staircase. There exists an homogeneous
linear pseudo-Anosov automorphism ψ on X with zero average drift.

Proof. By Proposition 3.4, the action (from the right on row vectors) of the matrices

Dh =

(
1 s
0 1

)
and Dv =

(
1 0
2 1

)
on the surface define parabolic automorphisms (in fact, Dehn twists) in the horizontal and vertical
directions. Indeed, we note that the surface X can be decomposed into the union of two vertical
cylinders (of widths 2 and 1 and heights 1 and s − 2 respectively), or of a single horizontal cylinder
(of width s and height 1). The homology class defining the cover can be represented by linear com-
bination of horizontal paths (here γ4 − γ2), so the first automorphism preserves them. The second
automorphism maps γk to γk + 2|γk| · γ1, where |γk| is the length of γk. Therefore, it maps γ4 − γ2 to
(γ4 + 2γ1)− (γ2 + 2γ1) = γ4 − γ2. Therefore, both Dh and Dv preserve γ4 − γ2 and so any hyperbolic
composition of these two linear maps defines a linear pseudo-Anosov automorphism which preserves
the cover morphism.

Notice moreover that their is a linear involution σ with derivative −Id on X which commutes with
Dehn twists and such that σ∗Γ = −Γ. Hence, if we consider the Frobenius fonction corresponding
to one of these Dehn twist, it satisfies F ◦ σ = −F and has thus zero average. Which implies by
Equation (25) that the Frobenius function of pseudo-Anosov obtained as product of these Dehn twists
are also zero average.

No claim is made that these are all the possible pseudo-Anosov automorphisms with these properties
(up to homotopy); for example, we don’t consider orientation reversing automorphisms.

3.3 Wind-tree billiards

In a cover, and more generally in any infinite translation surface, a direction is said to have finite
horizon if there is no infinite line in that direction. One can generalize the Lemma 3.5 to Zd-covers
with finite horizon.

Lemma 3.6. If a Zd-cover XΓ has finite horizon and is periodic in two distinct directions then there
exists a pseudo-Anosov map ψ on X which preserves ζ.

Proof. Let us a consider a cylinder in XΓ, its core curve γ is a loop, thus the image of the curve by
the projection p must be in ker ζ. The projection of the cylinder to the base surface is again a cylinder
whose core curve homology is an integer multiple of the class [p∗γ]. By (26), the Dehn twist acts
trivially on H1(X \ Σ,Z) quotiented by ker ζ. Hence the Dehn twist on this cylinder preserves ζ.

If the cylinders have commensurable moduli, with common multiple µ, this implies that there exists
a linear automorphism

(
1 µ
0 1

)
in the corresponding direction on X which can be lifted to XΓ. Thus if it
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is finite horizon and periodic in two distinct directions, the product of the corresponding two matrices
is hyperbolic and the composition of the two Dehn twists produces the pseudo-Anosov automorphism
we were looking for.

Figure 2: Left: Wind-tree model with plus-shapes wind-tree model (and finite horizon in horizontal and
vertical directions). A fundamental domain in dotted lines. Right: Four copies forming a fundamental
domain of the folded out translation surface of the plus-shaped wind-tree model.

In the wind-tree model represented in Figure 2, the matrices

Dh =

(
1 12
0 1

)
and Dv =

(
1 0
6 1

)
act as Dehn twists that commute with deck transformations. These two maps generate a group of auto-
morphisms that contain infinitely many pseudo-Anosov which also commute with deck transformations.

The classical construction to study the flow of wind-tree models is to fold-out the billard in the torus
into 4 copies. So that each time the flow is bouncing on a side it is translated to the symmetric surface
with respect to this flow. The Z2-cover is thus defined by the homology classes γv in red (in Figure 1)
for the first coordinate and γh in blue for the second. These correspond to γ1 and γ2 in the first section.

Notice that for symmetric obstacles, one has two automorphisms τh and τv of the surface which
exchange the two copies horizontally or vertically. Notice that these automorphisms commute with
the vertical and horizontal Dehn twists and

(τh)∗γh = γh, (τv)∗γv = γv, (τh)∗γv = −γv, (τv)∗γh = −γh.

Lemma 3.7. Frobenius function for Dehn twists on symmetric wind-tree models have zero average
drift.

Proof. Consider the horizontal Dehn twist Dh. It preserves the top two copies of the folded out surface
and the bottom two. But as the τv automorphism sends γh to −γh, the Frobenius fonction for Dh

satisfies F ◦ τh = −F . Thus its integral is zero on the surface.

3.4 Ergodic properties

Although the main result of this paper gives rational ergodicity of ϕt (with rates), we can use the
more classical method of establishing the essential value 1 for a first return map of this flow. This in
particular will enable us to prove that the Frobenius function is not a coboundary.
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To simplify the exposition, rotationg the coordinate axes, we can consider the vertical flow on a
surface endowed with a pseudo-Anosov automorphism contracting the vertical direction and dilating
the horizontal.

Let us choose a horizontal segment I in the surface X and Ĩ the union of lifts of I in XΓ. If
T : I → I and T̃ : Ĩ → Ĩ are the first return maps of the vertical linear flow respectively on I and Ĩ,
then there exists a map f : I → Zd such that we can express T̃ as a skew-product

T̃ (x,n) = (T (x),n+ f(x))

where Ĩ is identified with I × Z. Notice that T and T̃ are ergodic if and only if the linear flow
respectively on X and XΓ are ergodic.

The relevant object to study the orbits by T̃ is then the induced cocycle for f defined for k ∈ Z by

fk(x) = f(x) + · · ·+ f(T k−1x).

The ergodicity of these two maps can be linked with the following concept.

Definition 3.8. We call e ∈ Zd is an essential value of (the induced cocycle by) f if for every positive
measure set K ∈ B there exists k ∈ Z such that K ∩ T−k(K) ∩ {x ∈ X : fk(x) = e} has positive
measure.

Note that 0 ∈ Zd is always an essential value. The set of all finite essential values associated to
f is denoted by Essf ; it forms a subgroup of Zd and it follows from [31] that the skew product T̃ is
ergodic if and only if Z = Essf . Also, the map is recurrent if 0 can be obtained as essential value using
elements k ∈ Z\{0} (Lebesgue measure m is infinite on XΓ, so recurrence does not immediately follow
from the invariance of m.)

We represent the given translation surface as zippered rectangles, defining the linear flow as a
suspension flow of an interval exchange transformation (see for an introduction [33] from which Figure 3
is taken).

Figure 3: From a suspension flow over an interval exchange transformation to a zippered rectangles
representation

This representation defines a fundamental domain which is a union of vertical rectangles and such
that the singularity of the surface are in their vertical sides. We choose ξ to be constant in the interior
of this domain. This domain has the nice feature that if there is an embedded rectangle in the surfaces
X with vertices x, y at the bottom and ϕt(x), ϕt(y) at the top then ξ(x)− ξ(y) = ξ (ϕt(x))− ξ (ϕt(y)).
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Theorem 3.9. If XΓ is endowed with a lifted linear pseudo-Anosov automorphism ψΓ then the linear
flow in the stable and unstable directions of the corresponding matrix is ergodic.

Proof. To any rectangle in this representation, on can associate a homology class by closing the curve
going from bottom to top with a piece of the interval I. These homology classes form a basis of
H1(X \ Σ,Z) which is dual for the intersection form to the basis of H1(X,Σ,Z) associated to the
polygonal representation. Let e ∈ Zd be the associated shift in ξ for the flow from bottom to top of
a rectangle; it is equal to the value of ζ on the homology class. Thus such values e generate Zd since
the homology class of rectangles form a basis of H1(X \Σ,Z) and ζ is surjective, see [32, Section 4.5].
We will now prove that e is an essential value.

It suffices to show that there exists δ > 0 such that for any arbitrary rectangle in X, there exists
a δ proportion of points in this rectangle such that ϕT (x) is in the rectangle and ξ(ϕT (x))− ξ(x) = e.

Consider an embedded rectangle R of height T in the surface such that its base is horizontal and
for all points x0 in the base, ξ

(
ϕT (x0)

)
− ξ(x0) = e. Up to narrowing the base of R, one can assume

that for all 0 ≤ t ≤ T the flow starting at any point in R does not meet a singularity. In other words,
it is contained in another embedded rectangle of height 2T .

For all points x ∈ R there exists 0 ≤ t ≤ T such that x = ϕt(x0) for some x0 in the base of R, and
thus ξ

(
ϕT (x)

)
− ξ(x) = ξ

(
ϕT+t(x0)

)
− ξ (ϕt(x0)) = e.

The automorphism sends embedded rectangles to embedded rectangles and dilate the vertical
directions by a factor λ−1 > 1. If we take δ to be half the area of R, by unique ergodicity of the
flow, for any arbitrary rectangle in X a proportion δ of points intersect the images ψnR for n is large
enough. For all these points, we have ξ(ϕλ

nT (x))− ξ(x) = e.

Corollary 3.10. The Frobenius function F is not a coboundary.

Proof. Assume by contradiction that F is a coboundary. Take R a rectangle of positive measure in XΓ

such that ξ(x) = 0, for all x ∈ R. Then ∥ξ(ψnΓx)∥ ≤ ∥F∥∞ for all n ∈ N. The images of ψΓ contains
larger and larger sections of the flow that remains in a compact set. Thus

⋃
n∈N ψ

n
ΓR is a compact set

of positive measure which is invariant by the flow . Hence the flow is not ergodic.

4 An alternative approach to twisted transfer operators

In this section, we describe an alternative approach to introducing a twisted transfer operator instead
of exploiting Lemma 2.3. The core ideas are indeed the same, but the language is closer to the one
used in the beginning of Section 3 and provides a more geometric description of some of the objects
considered in Section 2 (e.g., the covariance matrix Σ, see Lemma 4.9 below).

4.1 Hilbert spaces with twists

We define an analogue of the Fourier transform for function on a Zd-cover. For any α ∈ Td, let us
define the set

L2(XΓ, α) :=

{
f : XΓ → C : f ◦∆n = e−2πiα·nf for all n ∈ Zd, and

∫
X

|f |2 dm <∞
}

equipped with the inner product
∫
X
f · g dm, which turns L2(X,α) into a Hilbert space. Notice that

the inner product is well-defined: if f, g : XΓ → C satisfy f ◦∆n = e−2πiα·nf and g ◦∆n = e−2πiα·ng,
then f · g is Deck-invariant and hence a well-defined function on X (alternatively, one could take the
integral over a fundamental domain F and observe that the definition does not depend on the choice
of F). For any ℓ ≥ 0, we also let

Cℓ(XΓ, α) := L2(XΓ, α) ∩ Cℓ(XΓ).
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Let Cℓc(XΓ) denote the space of Cℓ-functions on XΓ with compact support. For every fixed α ∈ Td

and f ∈ Cℓc(XΓ), we define

πα(f)(x) =
∑
n∈Zd

e2πiα·n · f ◦∆n(x).

For every fixed x ∈ XΓ, the sum in the right hand side above is finite since deck transformations act
properly discontinuously on XΓ.

Lemma 4.1. For every integer ℓ ≥ 0, πα : Cℓc(XΓ) → Cℓ(X,α). Moreover, for every f ∈ Cℓc(XΓ) and
for any x ∈ XΓ, we have

f(x) =

∫
Td
πα(f)(x) dα.

Proof. Let α ∈ Td and f ∈ Cℓc(XΓ). It is clear that πα(f) is a Cℓ-function since locally the sum is
finite. There exists a constant C > 0 such that f ◦∆n(x) = 0 for all x ∈ F and ∥n∥ ≥ C (the choice
of the specific norm ∥ · ∥ on Zd is irrelevant). By the Cauchy-Schwartz inequality, for all x ∈ F ,

|πα(f)(x)|2 =

∣∣∣∣∣∣
∑
n∈Zd

e2πiα·n · f ◦∆n(x)
∥n∥d+1

∥n∥d+1

∣∣∣∣∣∣
2

≤

∑
n∈Zd

1

∥n∥2d+2

∑
n∈Zd

|f |2 ◦∆n(x) · ∥n∥2d+2


≤ C2d+2

∑
n∈Zd

1

∥n∥2d+2

∑
n∈Zd

|f |2 ◦∆n(x)

 .

Note that the first series in the last term above converges. Therefore, up to increasing the constant
C, since the orbit of F under deck transformations tessellates XΓ, we deduce∫

F
|πα(f)|2 dm ≤ C

∑
n∈Zd

∫
F
|f |2 ◦∆n dm = C

∫
XΓ

|f |2 dm,

which is finite by assumption. Moreover

πα(f) ◦∆m =
∑
n∈Zd

e2πiα·n · f ◦∆n ◦∆m

=
∑
n∈Zd

e2πiα·(n+m) · e−2πiα·m · f ◦∆m+n = e−2πiα·m · πα(f),

which proves that πα(f) ∈ Cℓ(X,α). Finally, since
∫

Td e
2πiα·n dα = δ0(n), we obtain∫

Td
πα(f)(x) dα =

∑
n∈Zd

f ◦∆n(x)

∫
Td
e2πiα·n dα = f(x).

Remark 4.2. It is possible to show that L2(XΓ) is unitarily equivalent to the direct integral∫ ⊕

Td
L2(XΓ, α) dα

of the Hilbert spaces L2(X,α). We omit the proof of this fact since we are not going to use it.
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By Proposition 3.1, for every ω ∈ H(R), the function ξω(x) =
∫ x0

x
ω ◦ p is well defined on XΓ. Let

us define
Eω(x) = e2πiξω(x).

Lemma 4.3. For every f ∈ Cℓc(XΓ) and ω ∈ H(R), we have

πα(f) = π0(f · E−ω) · Eω,

where α is the element of Td identified to the class ω +H(R) in H(R)/H(Z).

This shows that we can write

Eω(x) = e2πiα·ξ(x) for ξ = (ξω1 , . . . , ξωd).

Proof. Note that ∆∗
np

∗ω = p∗ω; therefore

Eω(∆n(x)) = e
2πi

∫ x0
∆n(x)

p∗ω
= e

2πi
∫ x0
∆n(x0)

p∗ω · e2πi
∫ ∆n(x0)

∆n(x)
p∗ω

= e−2πiα·n · e2πi
∫ x0
x

∆∗
np

∗ω = e−2πiα·n · e2πiξω(x) = e−2πiα·n · Eω(x).

Thus E−ω ◦∆n = e2πiα·n · E−ω. We can now compute

π0(f · E−ω)(x) =
∑
n∈Zd

(f · E−ω) ◦∆n(x) =
∑
n∈Zd

f ◦∆n(x) · e2πiα·n · E−ω(x) = πα(f) · E−ω(x).

Lemma 4.4. Let ω ∈ H, and let α ∈ Td be identified to the class ω + H(Z). For any η ∈ Td, the
linear map f 7→ f ·Eω is a unitary equivalence between L2(X, η) and L2(XΓ, η+α). Moreover, it is a
linear isomorphism between Cℓ(XΓ, η) and Cℓ(XΓ, η + α) for every ℓ ≥ 0.

Proof. Since Eω · E−ω = 1, the map is invertible. It is also clear that

⟨f · Eω, g · Eω⟩ =
∫
F
f · Eω · g · Eω dm =

∫
F
f · g dm,

which shows that it is a unitary operator between the L2 spaces, moreover the map f 7→ f · Eω is
clearly continuous between C0(M,η) and C0(M,η + α).

Let us now prove the second claim for ℓ = 1; the general case ℓ ≥ 2 is left to the reader. Let V be
a smooth vector field of unit norm and fix x ∈ XΓ. Then,

|V (f · Eω)(x)| = |V (f · e2πiξω )(x)| = |V f(x)|+ |f(x)| · 2π|V ξω(x)|
≤ ∥V f∥∞ + ∥f∥∞ · 2π|ωx(V )| ≤ ∥f∥C1 · (1 + ∥ω∥∞).

This shows that ∥f · Eω∥C1 ≤ (1 + ∥ω∥∞)∥f∥C1 and therefore completes the proof.

4.2 Twisted transfer operators

We now introduce the action of the linear pseudo-Anosov ψ on X. We recall that the linear flow
(ϕt)t∈R and the lift ψΓ of ψ satisfy the commutation relation (2), i.e., ψΓ ◦ ϕt = ϕλt ◦ ψΓ for every
t ∈ R, since the flow (ϕt)t∈R is in the stable direction of ψ.

Let us define the ergodic averages Ax,T (f) of f ∈ C0(XΓ) as

Ax,T (f) =
1

T

∫ T

0

f ◦ ϕt(x) dt.

From (2), we deduce the following result.
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Lemma 4.5. For every f ∈ C0(XΓ), for almost every x ∈ XΓ, for all T > 0 and all integers k ≥ 0,
we have

Ax,T (f) = AψkΓ(x),λkT (f ◦ ψ−k
Γ ).

Proof. The commutation relation (2) yields

1

T

∫ T

0

f ◦ ϕt(x) dt =
1

T

∫ T

0

f ◦ ψ−k
Γ ◦ ψkΓ ◦ ϕt(x) dt =

1

λkT

∫ T

0

f ◦ ψ−k
Γ ◦ ϕλkr ◦ ψkΓ(x)λk dr

=
1

λkT

∫ λkT

0

f ◦ ψ−k
Γ ◦ ϕr ◦ ψkΓ(x) dr.

From Proposition 3.3, we can define the operator

L : C1(X,α) → C1(X,α) as L(f) = f ◦ ψ−1,

which is a linear isomorphism. We define the dual operator

L∗ : C1(XΓ, α)
∗ → C1(XΓ, α)

∗ as [L∗(Φ)](f) = Φ(L−1f) for any f ∈ C1(XΓ, α).

Note that, for any α ∈ Td, we have an embedding C1(XΓ, α) → C1(XΓ, α)
∗ given by f 7→ Φf where

Φf (h) :=
∫
F h · f̄ dm is the inner product in L2(X,α). It is easy to check that LΦ∗

f = ΦLf .

By Lemma 4.4, the spaces C1(XΓ, α) are all isomorphic to C1(XΓ, 0) ≃ C1(X). In particular, let ω
represent the class α in H(R), the dual map Iω : C1(XΓ, α)

∗ → C1(X)∗ defined by

[Iω(Φ)](f) = Φ(f · Eω)

for any f ∈ C1(X), is an isomorphism.

We define L̂α such that the following diagram commutes.

C1(XΓ, α)
∗ C1(XΓ, α)

∗

C1(X)∗ C1(X)∗

L∗

Iω Iω

L̂α

In other words, L̂α = Iω ◦ L∗ ◦ I−ω.

Lemma 4.6. For any Φ ∈ C1(X)∗, we have L̂α(Φ) = L(e2πiFω · Φ), where

Fω(x) := ξω ◦ ψΓ(x)− ξω(x) =

∫ x

ψΓ(x)

ω ◦ p.

The function Fω is Deck-invariant.

Proof. Let Φ ∈ C1(X)∗ and fix a test function a ∈ C1(X). Let Fω be defined as in the statement of
the lemma. Straightforward computations give us

[(Iω ◦ L∗ ◦ I−ω)(Φ)](a) = [(L ◦ I−ω)(Φ)](a · Eω) = [Iω(Φ)](a ◦ ψΓ · e2πiξω◦ψ)

= Φ
(
a ◦ ψΓ · e2πi(ξω◦ψΓ−ξω)

)
= [e2πi(ξω◦ψΓ−ξω) · Φ](a ◦ ψ) = [L(e2πiFω · Φ)](a).

Finally, as in the proof of Lemma 4.3, for any ∆n ∈ Deck, we have

Fω ◦∆n(x) =

∫ ∆n(x)

ψ(∆n(x))

p∗ω =

∫ D(x)

∆n(ψ(x))

p∗ω =

∫ x

ψ(x)

p∗ω = Fω(x),

which proves the invariance of Fω by deck transformations.
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Recall that Ax,T (f) is the ergodic average at x up to time T of a continuous function f on XΓ.

Lemma 4.7. Let x ∈ XΓ and T > 0 be fixed. For every α ∈ Td, we have Ax,T ∈ C1(XΓ, α)
∗ and, for

every f ∈ C1
c (XΓ), we have

Ax,T (f) =

∫
Td
Ax,T (fα) dα for fα := πα(f).

Proof. Fix f ∈ C1
c (XΓ). Then, there exists a constant C(f) such that

∑
n∈Zd |f | ◦∆n(x) ≤ C(f) for

all x ∈ XΓ. This implies that ∥fα∥∞ ≤ C(f) as well. By Lemma 4.1, for any fixed r ∈ R,

f ◦ ϕt(x) =
∫

Td
fα ◦ ϕt(x) dα,

and, by the Fubini-Tonelli Theorem,

Ax,T (f) =
1

T

∫ T

0

∫
Td
fα ◦ ϕt(x) dα dt =

∫
Td

1

T

∫ T

0

fα ◦ ϕt(x) dtdα.

By Lemma 4.5 and Lemma 4.7, for any k ≥ 0 and f ∈ C1
c (XΓ) we have

Ax,T (f) =

∫
Td
Aψk(x),λkT (Lkfα) dα,

where fα ∈ C1(XΓ, α). By definition of L̂α and by Lemma 4.3, we obtain

Ax,T (f) =

∫
Td
Aψk(x),λkT

(
Lkfα

)
dα =

∫
Td
Aψk(x),λkT

[
Lk (π0(f · E−ω) · Eω)

]
dα

=

∫
Td
Aψk(x),λkT

[
L̂kα (π0(f · E−ω)) · Eω

]
dα.

Let ξ(x) ∈ Zd be such that x ∈ ∆ξ(x)(F), as in Proposition 3.2, namely

ξ(x) = (⌊ξω1
(x)⌋, . . . , ⌊ξωd(x)⌋).

Since the flow ϕt commutes with the deck-transformations, we have that Ax,T (f) = A∆−1
n x,T (f ◦∆n)

for every ∆n ∈ Deck. From this, it follows that

Aψk(x),λkT [L̂kα(π0(f · E−ω)) · Eω] = A∆−1

ξ◦ψk(x)
◦ψk(x),λkT [L̂

k
α(π0(f · E−ω)) · Eω ◦∆ξ◦ψk(x)],

where we used the fact that the function L̂kα(π0(f · E−ω)) is Deck-invariant by definition. The point
∆−1
ξ◦ψk(x) ◦ ψ

k(x) is in F and, as in the proof of Lemma 4.3, we also have

Eω ◦∆ξ◦ψk(x) = e−2πiαξ◦ψk(x)Eω.

With a little abuse of notation, we will write Eα for Eω, where α ∈ Td = H(R)/H(Z) is the class
ω +H(Z). We have proved the following result.

Proposition 4.8. Let f ∈ C1
c (XΓ), x ∈ F , and T ≥ 1. Let k ≥ 0 so that the vector ξ ◦ψk(ϕt(x)) ∈ Zd

is constant for all |t| ≤ λkT . Then, there exists a point y = y(x, k) ∈ F such that

Ax,T (f) =

∫
Td
e−2πiαξ◦ψk(x)Ay,λkT [L̂kα(gα) · Eα] dα,

where
gα = π0(f · E−α) ∈ C1(X).
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4.3 Banach spaces and twisted ergodic averages

We now consider the action of L̂α on the Banach spaces C1(X) ⊂ Bw ⊂ B ⊂ C1(X)∗ as defined in

Section 2.3. We recall the spectral properties of L̂α, described in that section, that we will need. As
before, we are working under the assumption that Fω has zero integral and is not a coboundary.

1. The family of operators α 7→ L̂α is analytic in α.

2. There exists δ > 0 such that, for all α ∈ B(0, δ) ⊂ Td, there is a family of simple eigenvalues λα,
with λ0 = 1, which are analytic in α, and a decomposition

L̂nα = λnαΠα +Qnα, (27)

where

(a) Πα is the spectral projection onto the one-dimensional eigenspace associated to λα and
Π0f =

∫
X
f dm,

(b) ∥Qnα∥ ≤ δn0 for some δ0 ∈ (0, 1),

(c) QαΠα = ΠαQα = 0,

(d) both Πα and Qα are analytic in B(0, δ).

3. The only solutions to the eigenvalue equation L̂αh = ηh, for h ∈ B and η ∈ B with |η| ≥ 1, are
α = 0 and h constant.

Let SnFω(x) = Fω(x) + Fω ◦ ψ(x) + · · · + Fω ◦ ψn−1(x) =
∫ x
ψn(x)

p∗ω denote the Birkhoff sums of

Fω. The first and second derivatives of λα at α = 0 can be computed explicitly.

Lemma 4.9. For any ω, η ∈ H(R), the first and second derivatives of λω at 0 are given by

Dωλ0 = 2πi

∫
X

Fω dm = 0, and

DηDωλ0 = −4π2 lim
n→∞

∫
X

1

n
SnFω · SnFη dm.

In particular, 0 is a stationary point and (η, ω) 7→ DηDωλ0 is negative definite.

By Proposition 4.8 we are lead to consider the averages

Aαx,T (f) =
1

T

∫ T

0

(f · Eα) ◦ ϕr(x) dr.

As discussed in Section 2, we can restrict to the case where x ∈ F = X and T > 0 are such that the
segment t 7→ ϕt(x), for t ∈ [0, T ], stretches along an element of the Markov partition.

Lemma 4.10. Let x ∈ F and T > 0 be as above. Then, the linear functional Aαx,T defined on

C1(X) extends to a linear continuous operator on Bw, whose norm is bounded by some constant C > 0
independent of T and x.

Proof. From the definition of the weak norm, for every f ∈ C1(X), we have

|Aαx,T (f)| ≤ C ∥f∥Bw ,

where C = 1 + 2π|α| is a bound on the Lipschitz norms of Eα.
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Assume that α 7→ gα is an analytic family of C1 functions. Let η ∈ H(R), with ∥η∥ = 1, and let us
compute the directional derivative: from Lemma 4.10 we get

|DηA
α
x,T (gα)| = |Aαx,T (Dηgα + 2πiξη gα)| ≤ C∥(Dηgα + 2πiξη gα)∥Bw ,

therefore, up to increasing the constant C, we get

|DηA
α
x,T (gα)| ≤ Cmax{∥Dηgα∥Bw , ∥gα∥Bw}.

By induction, we obtain the following result.

Lemma 4.11. Let α 7→ gα be an analytic family on an open neighbourhood U of 0 ∈ Td. Then, for
every T ≥ 1 and x ∈ X as above, the function α 7→ Aαx,T (gα) is smooth and, for any η1, . . . , ηn ∈ H(R)
with ∥ηi∥ = 1, we can bound

|Dη1 . . . DηnA
α
x,T,R(gα)| ≤ C · max

0≤j≤n
∥Dηj . . . Dηngα∥Bw ,

for some constant C > 0 independent of T and x.

We conclude with the following consequence of the results we proved so far.

Proposition 4.12. Let f ∈ C1
c (XΓ), x ∈ F , and T ≥ 1. Let k ≥ 0 so that the vector ξ◦ψk(ϕr(x)) ∈ Zd

is constant for all |r| ≤ λkT . Then, there exist δ > 0, a neighbourhood U ⊂ Td of 0 and a smooth
function F = Ff,x,T : U → C such that∣∣∣∣Ax,T (f)− ∫

U

e−2πiαξ◦ψk(x)+k log λαF (α) dα

∣∣∣∣ ≤ C(f)δk,

for some constant C(f) depending on f only. Moreover, the function F , defined in (28) below, satisfies

F (0) =

∫
XΓ

f dm, and ∥F∥CN (U) ≤ C(f)N ∥f∥CN (XΓ).

If f is real-valued, then the derivatives F (j)(0) of F at 0 are real if j is even and are purely imaginary
if j is odd.

Proof. By Proposition 4.8, we have

Ax,T (f) =

∫
Td
e−2πiαξ◦ψk(x)Ay,λkT [L̂kα(gα) · Eα] dα,

for some point y ∈ F , where
gα = π0(f · E−α) ∈ C1(X).

Again, as discussed in Section 2, we can restrict to the case where y and λkT are such that the segment
t 7→ ϕt(x) stretches along an element of the Markov partition PR and, hence, by Lemma 4.10, Ay,λkT
is a continuous linear functional on B. Using (27) and the related properties, we deduce that∣∣∣∣Ax,T (f)− ∫

U

e−2πiαξ◦ψk(x)Aαy,λkT,R[λ
k
αΠα(gα)] dα

∣∣∣∣ ≤ C(f)δk,

for some δ ∈ (0, 1) and U ⊂ B(0, δ). We then define

F (α) = Ff,x,T (α) = Aαy,λkT [Πα(gα)]. (28)

Then,

F (0) = A0
y,λkT [Π0(g0)] =

1

λkT

∫ λkT

0

(∫
X

g0 dm

)
◦ ϕr(y) dr =

∫
X

g0 dm

=

∫
X

π0(f · E0) dm =

∫
X

π0(f) dm =

∫
XΓ

f dm.
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The claim on the smoothness of F and on its derivatives follows by Lemma 4.11. In order to compute

its derivatives, we notice that E
(j)
0 is real if j is even and purely imaginary if j is odd, and the same

holds for g
(j)
0 , if f is real-valued. The claim on its derivatives at 0 follows then from Proposition 2.5.

We have now shown that the averages Ax,T (f) can be reduced to an integral of the form∫
U

e−2πiαξ◦ψk(x)+k log λαF (α) dα,

for a smooth function F over a neighbourhood U ⊂ Td of 0. This type of integral can be estimated
effectively in the same way as we did in Section 2.
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