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Abstract. We investigate the prevalence of Li-Yorke pairs for C2 and C3 multimodal
maps f with non-flat critical points. We show that every measurable scrambled set has
zero Lebesgue measure and that all strongly wandering sets have zero Lebesgue measure,
as does the set of pairs of asymptotic (but not asymptotically periodic) points.

If f is topologically mixing and has no Cantor attractor, then typical (w.r.t. two-
dimensional Lebesgue measure) pairs are Li-Yorke; if additionally f admits an absolutely
continuous invariant probability measure (acip), then typical pairs have a dense orbit for
f×f . These results make use of so-called nice neighborhoods of the critical set of general
multimodal maps, and hence uniformly expanding Markov induced maps, the existence
of either is proved in this paper as well.

For the setting where f has a Cantor attractor, we present a trichotomy explaining
when the set of Li-Yorke pairs and distal pairs have positive two-dimensional Lebesgue
measure.

1. Introduction

In interval dynamics there are many ways to deal with the notion of asymptotic complex-
ity (“chaos”). Probably it is pointless to try and decide which is the best of them, but in
applications there are two of them which are by far the most popular, see e.g. [D, MMN].
One is topological chaos, that is, the existence of an uncountable scrambled set in the
sense of the famous Li and Yorke paper [LY]. The other one is ergodic chaos, that is,
the existence of an invariant probability measure absolutely continuous with respect to
Lebesgue measure (acip). Neither of them is without drawbacks. (To keep this intro-
duction at the expository level, we have deferred most of definitions to the subsequent
sections.)

There are easy conditions implying the existence of Li-Yorke chaos and its stability under
small perturbations. One such condition is the existence of a periodic orbit of period not
a power of two [Bl]. Nevertheless, this chaos need not be “observable”: for instance, the
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orbits of almost all points (in the sense of Lebesgue measure) may be attracted by this
periodic orbit [Gu].

On the other hand, ergodic chaos ensures complicated dynamics for a set of points with
positive measure. For instance, if a smooth multimodal map (with non-flat critical points)
f has an acip, then, as a simple consequence of the zero measure of Cantor metric at-
tractors [SV] and Proposition 9 below, there is a positive measure set of points whose
orbit under f is dense in some interval. However, the converse is not true, even for the
family of logistic maps [Jo, Ly2], so acips can only exist under additional conditions (for
instance, hyperbolic repelling periodic points and |Dfn(f(c))| → ∞ for any critical point
c of the map f [BRSS]).

A map f is infinitely renormalizable if there is an infinite collection of nested cycles of
periodic intervals; the intersection of these cycles is a Cantor set, called a solenoidal
attractor (because the suspension over this attractor is a topological solenoid). The
Feigenbaum map, or more correctly Coullet-Tresser-Feigenbaum, (see e.g. [MS, pp. 151-
152]) is the best known example of this. A solenoidal attractor is Lyapunov stable and
as shown in [BrJ] (see Proposition 31 below), points in the basin of such an attractor are
approximately periodic:

Definition 1. A point x is approximately periodic if for every ε > 0 there is a periodic
point p such that lim supn→∞ |fn(x)− fn(p)| < ε.

Hence, up to small errors, almost all points eventually behave as periodic points.

Remark 2. An intrinsic characterization of adding machines (namely any system in
which every point is regularly recurrent) is presented in [BK]. In our setting, it applies
to the solenoidal attractor itself, whereas approximate periodicity gives information on a
neighborhood of the solenoidal attractor.

However, a multimodal (even polynomial) map may have a dense orbit while, simultane-
ously, almost all orbits are attracted by a Cantor set (a so-called wild attractor) [BKNS].
As we will explain below, in such a case it is still possible but not necessary that a.e.
point is approximately periodic.

We see that there is a variety of smooth multimodal maps featuring a certain degree of
“observable” dynamical complexity which is, however, not strong enough to be realized
by an acip. It is natural to return to the Li-Yorke notion of chaos and investigate to what
extent it can be used to measure this complexity. This is what we intend in the present
paper.

Definition 3. Let f : I = [0, 1] → I be a continuous map. A pair of points (x, y) is
called:

• distal if lim infn→∞ |fn(y)− fn(x)| > 0;

• asymptotic if limn→∞ |fn(y)− fn(x)| = 0;

• Li-Yorke if it is neither asymptotic nor distal, that is,

0 = lim inf
n→∞ |fn(y)− fn(x)| < lim sup

n→∞
|fn(y)− fn(x)|.
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We denote the set of distal, asymptotic and Li-Yorke pairs by Dis, Asymp and LY, re-
spectively. A pair that is not distal (hence asymptotic or Li-Yorke) is called proximal.
The set of Li-Yorke pairs with lim supn→∞ |fn(y)− fn(x)| ≥ ε is denoted as LYε.

Note that fn(x) 6= fn(y) for all n ≥ 0 whenever (x, y) is a Li-Yorke or distal pair.

Definition 4. Let f : I → I be a continuous map.

• A set S ⊂ X is called scrambled if any two distinct points in S form a Li-Yorke
pair.

• The map f is called chaotic (in the sense of Li-Yorke) if it has an uncountable
scrambled set.

The above definitions can be strengthened by assuming that there is a positive lower bound
of lim sup |fn(x)− fn(y)| independently of x, y:

• If there is ε > 0 such that for every x 6= y ∈ S, lim sup |fn(x) − fn(y)| ≥ ε
independent of x, y ∈ S, then S is called ε-scrambled.

• If there is ε > 0 such that for every x ∈ X and every neighborhood U 3 x, there
is y ∈ U such that (x, y) ∈ LYε, then f is Li-Yorke sensitive.

We emphasize that ε-scrambled is a stronger property than just scrambled. For exam-
ple, [BHS, Proposition 5] shows the possibility of having scrambled sets that are not
ε-scrambled for any ε > 0.

Our concrete aim is to investigate the Lebesgue measure of the above sets for C2 (or
sometimes C3) multimodal maps from the interval I into itself with non-flat critical
points (denoted by C2

nf(I) and C3
nf(I), respectively). The advantage of working in this

setting is that there are many tools at hand to deal with measure-theoretic properties.
Remarkably the most important of these tools is purely topological: maps from C2

nf(I)
have no wandering intervals, see [MS, Theorem A, p. 267].

As it happens, some of the results in the paper are based on a generalization of this
property which is of interest in itself.

Definition 5. A point x is asymptotically periodic, written x ∈ AsPer, if there is a
periodic point p such that limn→∞ |fn(x) − fn(p)| = 0. A measurable set W is strongly
wandering if fn(W ) ∩ fm(W ) = ∅ for all n > m ≥ 0 and W contains no asymptotically
periodic points. A wandering interval is just an interval which is strongly wandering.

The notion of strongly wandering set was introduced by Blokh and Lyubich in [BL] (in
a slightly different way). Under the assumption of negative Schwarzian derivative, the
non-existence of strongly wandering sets of positive measure was proved in the unimodal
case (and stated in the multimodal case without inflection points) in [BL]. Here we prove
it for maps from C2

nf(I), for which inflection points are now allowed.

Theorem A. Let f ∈ C2
nf(I). Then every strongly wandering set has zero Lebesgue

measure.

Concerning the size of Li-Yorke chaos, the first natural question is whether smooth mul-
timodal maps may have scrambled sets of positive Lebesgue measure. There is extensive
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literature on the subject. Examples of continuous maps possessing scrambled sets of
positive or even full measure are well known: [K, S2, Mi, BH]. In fact, if f is chaotic
(respectively, has a dense orbit), then it is topologically conjugate to a map having a
positive (respectively, full) measure scrambled set [JS, S3] (respectively, [SS]).

Of course, it is not possible that the whole interval is scrambled (in fact, a scrambled
set cannot be residual on any subinterval of I, see [G]), although there are maps with
scrambled forward invariant Cantor sets [HY]. However such maps cannot be multimodal
(see Proposition 26).

It is worth emphasizing that maps of type 2∞ in the Sharkovskiy ordering (that is, those
having periodic points of periods all powers of 2, but no other periods) can possess scram-
bled sets of positive measure, but not of full measure because any Li-Yorke chaotic map
of type 2∞ has a wandering interval. Indeed, if a map of type 2∞ has no wandering
intervals, then all points are approximately periodic [S3]. However the following result is
well known (see e.g. [BC, p. 144]):

Proposition 6. If f : I → I is continuous and x, y are approximately periodic points,
then (x, y) is either asymptotic or distal.

Hence a scrambled set can contain at most one approximately periodic point. Finally,
positive measure scrambled sets may also exist for C∞ maps (with flat critical points) or
C1 maps with non-flat critical points, but a C1 map cannot have a full measure scrambled
set [J1, J2, BJ2].

Nevertheless, it is a widely held view that these are rather pathological examples. For
instance, it is known that neither maps from C2

nf(I) with hyperbolic periodic points and
whose critical points satisfy the Misiurewicz condition, nor maps in C3

nf(I) with nega-
tive Schwarzian derivative and having no wild attractors, may possess scrambled sets of
positive measure [BJ1, BrJ]. Our next result confirms these expectations:

Theorem B. If f ∈ C3
nf(I), then it has no measurable scrambled sets of positive Lebesgue

measure.

It seems rather paradoxical that scrambled sets have zero measure even in the case when
there is an acip, but this is not really so. The key point is measurability. For instance,
one can easily derive from [S1] that the full logistic map f(x) = 4x(1 − x) possesses
a non-measurable scrambled set with full exterior Lebesgue measure. Since the sets
Dis,Asymp,LY,LYε,AsPer are all Borel, hence measurable sets [J3, BrJ], the moral is
that we should measure these sets rather than scrambled sets. The idea of passing to the
square I × I to study topological or measure-theoretic properties of Li-Yorke chaos is due
to Lasota and was first used by Piórek [P].

To begin with, we prove that there almost no “non-trivial” asymptotic pairs.

Theorem C. If f ∈ C2
nf(I), then Asymp \(AsPer×AsPer) has zero (two-dimensional)

Lebesgue measure.

We can consider Theorem C as a weak form of sensitivity to initial conditions in the
absence of periodic attractors. It is really quite weak: it applies in particular to the
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infinitely renormalizable case where almost all points are attracted by a solenoidal set,
so there is no sensitivity to initial conditions in the standard Guckenheimer sense [Gu].
What Theorem C emphasizes is that there are no “privileged” routes (that is, with positive
measure) to measure-theoretic attractors.

The Li-Yorke property describes how chaotically pairs of points behave with respect to
each other, and is hence a property of the Cartesian product (I2, f2), for I2 = I × I and
f2(x, y) := (f × f)(x, y) = (f(x), f(y)). If (x, y) is Li-Yorke, then orb((x, y)) accumulates
on, but does not converge to, the diagonal of I2. Hence LY is a weaker property than
(x, y) having a dense orbit in I2. We want to find conditions ensuring that LY has positive
(or full) mass w.r.t. two-dimensional Lebesgue measure λ2. Recall the a map g is called
topologically mixing if for every pair of non-empty open sets A,B there is N ∈ N such
that fn(A)∩B 6= ∅ for all n ≥ N . According to Proposition 9, the orbit of Lebesgue a.e.
point is either attracted by a periodic point or a solenoidal set, or eventually falls into an
interval K such that f r(K) = K for some r and the restriction g = f r|K is topologically
mixing. As we explained earlier, approximately periodic points cannot be used to produce
Li-Yorke pairs. On the other hand, all sets from Definition 3 are the same for f as for
any of its iterates f r (except that the ε in LYε may change, but not its positivity). Thus
we can restrict ourselves to the case where the map f itself is topologically mixing.

Now, if f is topologically mixing, then either almost all points have a dense orbit, or the
orbits of almost all points are attracted by finitely many pairwise disjoint wild Cantor
attractors. It turns out that in the first case λ2-a.e. pair (x, y) is Li-Yorke.

Theorem D. Let f ∈ C3
nf(I) be a topologically mixing map having no Cantor attractors.

Then the Cartesian product (I2, λ2, f2) is ergodic and for every x ∈ I there is a full
measure set Cx ⊂ I such that

lim inf
n→∞ |fn(y)− fn(x)| = 0, lim sup

n→∞
|fn(y)− fn(x)| ≥ diam(I)/2,

for every y ∈ Cx. In particular, LYdiam(I)/2 has full measure and f is Li-Yorke sensitive.

Weaker versions of this result under additional Misiurewicz or negative Schwarzian con-
ditions were proved earlier [BJ1, BrJ]. Ergodicity of (I2, λ2, f2) is parallel to Lebesgue
measure λ being weak mixing, although in its standard definition, weak mixing applies to
invariant measures only, see Subsection 2.4. If f admits an acip, then we can say more:
λ2-a.e. pair (x, y) has a dense orbit in I2, see Corollary 28. However, it seems possible
that there are cases where f admits no acip, λ2-a.e. pair (x, y) is Li-Yorke, but has no
dense orbit in I2.

It remains to consider the case where f ∈ C2
nf(I) is a topologically mixing map having

a wild attractor A. Let the basin Bas(A) be the set of points whose orbit is attracted
by A. We already know (Theorem C) that Asymp has zero measure. Also, if some
x ∈ Bas(A) is approximately periodic, then by Proposition 31, A is conjugate to an
adding machine, so all points in Bas(A) are approximately periodic. Finally, recall that
every pair of approximately periodic points is either asymptotic or distal. Our result in
this area classifies which behaviors can (and indeed do) occur:

Theorem E. Let f ∈ C2
nf(I) be a topologically mixing map with a wild attractor A. Then

one of the following alternatives must occur:
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(a) Lebesgue a.e. pair of points in Bas(A) is distal and every point in Bas(A) is ap-
proximately periodic;

(b) Lebesgue a.e. pair of points in Bas(A) is distal and no point in Bas(A) is approx-
imately periodic;

(c) Lebesgue a.e. pair of points in Bas(A) is Li-Yorke;
(d) Both Dis and LY have positive Lebesgue measure in Bas(A)× Bas(A).

There are examples of polynomial unimodal maps of all above types (a)-(d) so that ad-
ditionally, in cases (b)-(d), Bas(A) contains ε-scrambled sets for a fixed ε > 0 and f is
Li-Yorke sensitive on Bas(A).

2. Preliminaries

2.1. Interval maps. A continuous map f : I → I (for I = [0, 1]) is called multimodal if
[0, 1] can be decomposed into finitely many subintervals on which f is (strictly) monotone.
A point c is critical if f ′(c) = 0; the set of critical points is denoted by Crit. Critical points
can be turning points (if f assumes a local extremum at c) or inflection points, and hence
there can be more critical points than maximal intervals of monotonicity. A differentiable
map having exactly one critical (turning) point is called unimodal. Near a turning point
c, there is a largest interval [a, b] such that f(a) = f(b) and f is monotone on each of the
intervals [a, c] and [c, b]. Then there is a continuous involution τc : [a, b] → [a, b] such that
f(τc(x)) = f(x) and τc(x) 6= x for every x 6= c.

We say that f ∈ Ck
nf(I) if f : I → I has a finite critical set Crit, is of class Ck and

each critical point is non-flat, i.e., for each c ∈ Crit, there exist a Ck diffeomorphism
ϕc with ϕc(c) = 0 and an `c ∈ (1,∞), called the critical order of c, such that f(x) =
±|ϕc(x)|`c + f(c) for x close to c. It follows that if n is the smallest integer ≥ `c, then
Dmf(c) = 0 for 1 ≤ m < n, but Dnf(c) 6= 0. Conversely, if f is Ck+1 near c and
Dnf(c) 6= 0 for some 2 ≤ n ≤ k, then c is non-flat.

We can always enlarge the domain of f (without adding new critical points) and rescale
such that

f(∂I) ⊂ ∂I and Crit∩∂I = ∅. (1)

Observe that this operation does not change the zero or positive measure quality of the
sets from Definition 3. Hence, except when f is topologically mixing, we will always
assume that (1) holds. Also, we will assume without loss of generality that

Crit does not contain any periodic point, (2)

because if c is a periodic critical point, then we can modify slightly f near the orbit of c
so that the resulting map has a periodic orbit containing no critical points and attracting
the same points as previously attracted by the orbit of c.

In a metric space, topological mixing (see definition on page 5) implies that every iterate
fn has a dense orbit. This excludes the case that there is a proper compact subinterval
J of I such that f r(J) ⊂ J for some r ≥ 1 (i.e., f is non-renormalizable). The map f is
topologically exact (also called locally eventually onto) if for every non-degenerate interval
J ⊂ I, there is n such that fn(J) = I. For multimodal interval maps, topologically
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mixing, the existence of a dense orbit for fn for each iterate n ∈ N, and topologically
exactness are all equivalent, see e.g. [BC, pp. 157–158].

2.2. Attractors of interval maps. The orbit {fn(x)}∞n=0 of a point x is denoted by
orb(x). More generally, the orbit of a set A is orb(A) :=

⋃∞
n=0 f

n(A). The ω-limit set
ω(x) :=

⋂
n∈NCl

⋃
m≥n f

n(x) of x is the set of limit points of the orbit of x. If A is a
subset of I, then we call Bas(A) = {x ∈ I : ω(x) ⊂ A} the basin (of attraction) of A.
A periodic orbit O is called attracting if its basin contains an open set. The union of
the components of Bas(O) intersecting O is called the immediate basin of O. If Bas(O)
contains a neighborhood of O, then O is called a two-sided attracting periodic orbit;
otherwise it is called a one-sided attracting periodic orbit. If p is a periodic point of
period r and |Df r(p)| is less than, equal to, or greater than 1, then the orbit of p is
called hyperbolic attracting, parabolic, or hyperbolic repelling respectively. Of course, only
hyperbolic attracting and parabolic orbits can be attracting. If f ∈ C2

nf(I), then it is well
known that all periodic orbits of sufficiently high period are hyperbolic repelling [MMS].
Furthermore, maps in C2

nf(I) have no wandering intervals. One of the consequences of
this is the following useful result. Below dist(A,B) denotes the distance between the sets
A and B (by convention dist(A, ∅) = ∞).

Proposition 7 (The non-Contraction Principle). Let f : I → I be a multimodal map
without wandering intervals. Then for every ε > 0 there is δ > 0 such that if J is an
interval such that |J | < δ and dist(J, p) > ε for each attracting periodic point p, then
every component of every preimage f−n(J) of J has length less than ε.

Proof. This follows easily from the Contraction Principle as stated in [MS, p. 305]. The
principle is a bit of a misnomer, so we added non- in our version. ¤

Definition 8. We call a closed invariant set A a (measure-theoretic) attractor if its
basin has positive Lebesgue measure, and there is no proper subset A′ ⊂ A with the same
properties.

Note that A need not be an attractor in any topological sense: the basin Bas(A) need
not contain a neighborhood of A, nor be of second Baire category.

In order to understand the nature of measure-theoretic attractors of maps from C2
nf(I),

certain types of interval cycles are of particular interest. We say that a compact interval
K is periodic (of period r) if K, . . . , f r−1(K) have disjoint interiors and f r(K) ⊂ K. We
call the union

⋃r−1
i=0 f

i(K) a cycle of intervals and denote it by cyc(K). If K0 ⊃ K1 ⊃ · · ·
is a nested sequence of periodic intervals of periods r0 < r1 < · · · , then S =

⋂∞
i=0 cyc(Ki)

is called a solenoidal set and all points from S are called solenoidal points. If ri+1 = 2ri

for every i sufficiently large, then we say that both S and its points are of Feigenbaum
type. If i0 is such that cyc(Ki0) ∩ Crit = S ∩ Crit and all periodic points in cyc(Ki0) are
hyperbolic repelling, then we say that cyc(Ki0) is solenoidal. Thus all solenoidal sets are
of Cantor type and all cycles cyc(Ki) are solenoidal if i is sufficiently large.

A compact invariant set A is Lyapunov stable if for every neighborhood U of A, there
exists a neighborhood V of A such that fn(V ) ⊂ U for every n. We have the following
classification of measure-theoretic attractors, see [M, Ke, BL, Ly1, MS, SV].
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Proposition 9. If f ∈ C2
nf(I), then f has countably many attractors A, which are of the

following types:

(1) A is an attracting periodic orbit;
(2) A is a cycle of intervals on which Lebesgue a.e. orbit is dense;.
(3) A is a solenoidal set (the infinitely renormalizable case). Then A is Lyapunov

stable and the basin Bas(A) is of second Baire category.
(4) A is a minimal Cantor set, but not of the above type. In particular, A is not

Lyapunov stable, and Bas(A) is of first Baire category.

For Lebesgue a.e. x ∈ I, either x has a finite orbit (that is, x is eventually periodic) or
ω(x) is one of the attractors above, and the number of attractors of type (2)-(4) together
is no more than the number of critical points (because each of them must contain at least
one critical point).

More can be said: there can be countably many disjoint cycles, but all but finitely many
of them must be disjoint from the basins of periodic attractors. If a cycle is solenoidal,
then almost all its orbits are attracted by the solenoidal set contained in the cycle. If a
cycle cyc(K) contains a dense orbit, then one of the following two holds:

• The whole cycle is an attractor and almost all its points are dense in cyc(K). If
K has period r this can still mean that K consists of two intervals J and J ′ with
a common boundary point such that f r(J) = J ′ and f r(J ′) = J . In this case f 2r

is topologically mixing on J . Otherwise f r is topologically mixing on K.
• The cycle contains finitely many attractors of type (4) attracting the orbits of

almost all points in the cycle (hence almost no point has a dense orbit in the
cycle).

An attractor of type (3) or (4) is called a solenoidal and a wild attractor respectively.
Proposition 9 implies that the orbit of λ-a.e. x /∈ AsPer accumulates on Crit, so every
solenoidal set is in fact a solenoidal attractor. It is well known that attractors of type (1)
and (3) are uniquely ergodic, and it follows from [BSS, Theorem 4] that this is also true
for attractors of type (4). The existence of wild attractors has been proved for unimodal
maps only if the combinatorial properties of the map are very specific, and the critical
order `c is sufficiently large (`c À 2). The prototype is the unimodal Fibonacci map
[BKNS], but there are other Fibonacci-like combinatorics that allow wild attractors, see
[Br3]. For multimodal maps, there are combinatorial types that allow wild attractors also
if all critical orders are `c = 2 [vS].

2.3. Distortion results. In what follows we denote by |A| or λ(A) the Lebesgue measure
of a measurable set A ⊂ I (also, λ2 will denote the two-dimensional Lebesgue measure).
The density of a set X in J is |X ∩ J |/|J |. A point x is a (Lebesgue) density point of X
if limε→0 |X ∩ (x− ε, x+ ε)|/2ε = 1.

Many of the arguments in this paper rely on measuring images under fn of neighborhoods
U of density points of certain sets. If fn|U is diffeomorphic then the Koebe Principle (see
Proposition 13) is used to estimate how densities change, but in general, U can visit several
critical points in its first n iterates. In this case, we need more advanced techniques and
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results (relying on work in [BM1, MS, SV]), which we summarize below in Theorems 20
and 21.

We call a sequence (Gi)
l
i=0 of intervals a chain if Gi is a maximal interval such that

f(Gi) ⊂ Gi+1, i = 0, . . . , l − 1. If (Hi)
l
i=0 and (Gi)

l
i=0 are chains and Hi ⊂ Gi for every i,

then we will write (Hi)
l
i=0 ⊂ (Gi)

l
i=0. If x ∈ G0 (or J is a subinterval of G0), then we call

(Gi)
l
i=0, or sometimes just the interval G0, the pullback (chain) of Gl along x, . . . , f l(x)

(or along J, . . . , f l(J)). The order of a chain is the number of intervals Gi, 0 ≤ i < l,
intersecting Crit.

Remark 10. Under the hypothesis f ∈ C2
nf(I), if Gl is a small interval not too close to any

attracting periodic orbit, then all intervals Gi, i < l, are also very small by Proposition 7.
(Notice that the closure of the set of attracting periodic points only contains periodic points
because the periods of attracting orbits are bounded and recall that Crit only contain non-
periodic points, see assumption (2).)

Given intervals J ⊂ K, we say that J is ξ-well inside K if the components L and R of
K \ J satisfy |L|, |R| ≥ ξ|J |. If in addition ξ|L| ≤ |R| and ξ|R| ≤ |L|, then we say that J
is ξ-well centered in K.

A differentiable map without critical points f : J → R has distortion bounded by κ > 0 if

sup
x,y∈J

|f ′(x)|
|f ′(y)| ≤ κ.

We emphasize that if the density of a subset X of J is very close to 1, say > 1− ε, then
the density of f(X) in f(J) is > 1− κε, so it is very close to 1 as well.

An open subset V of R is called nice if orb(∂V ) ∩ V = ∅. The first entry map to a
nice set V is the map φV : D(V ) → V defined on the domain D(V ) = ∪n≥1f

−n(V )
by φV (x) = f rV (x), where rV = min{k > 0 : fk(x) ∈ V } is the first entry time. The
maximal intervals J on which the first entry time rV is constant are called entry domains.
By convention we assume that J does not intersect V : if J is a subset of a component of
V with first entry time rV (J) ≡ r, then we prefer to call J a return domain with return
time r. The main reason why nice sets are “nice” is that the return and entry domains
are all disjoint. Furthermore, all components in the backward orbit of a nice set are nice,
and two such intervals are either nested or disjoint.

Lemma 11. Let f ∈ C2
nf(I). Then for every ξ > 0 there exists ξ′ = ξ′(ξ, f) > 0 such that

if T is a component of the preimage of an interval V and U is an interval ξ-well inside
V (respectively, ξ-well centered in V ), then the preimage J of U in T is ξ′-well inside T
(respectively, ξ′-well centered in T ).

Proof. This follows easily from [BM1, Lemmas 3.2 and 3.3]. ¤

The Schwarzian derivative of a C3 map f is defined for every x /∈ Crit by

Sf(x) =
f ′′′(x)
f ′(x)

− 3

2

(
f ′′(x)
f ′(x)

)2

.
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A C1 version reads: f has negative Schwarzian derivative if 1/
√
|f ′| is convex on every

interval where it is defined. If f has negative Schwarzian derivative, then we can frequently
estimate distortion using the Koebe Principle, see [MS, Section IV.1] or [BM1, “Koebe
lemma”]:

Proposition 12 (Koebe Principle for negative Schwarzian derivative maps). If f : G→
f(G) is a diffeomorphism with negative Schwarzian derivative, H ⊂ G and f(H) is ξ-well
inside f(G), then H is ξ3/(2(3ξ + 2)2)-well inside G and f |G has distortion bounded by
((1 + ξ)/ξ)2.

However, in this paper we will use also use a C2-version of these classical results.

Proposition 13 (C2 Koebe Principle). Given f ∈ C2
nf(I), there is a function Q :

(0,∞) → (0,∞) with limε→0Q(ε) = 0 such that the following holds. Suppose that H ⊂ G
are intervals such that f l|G is a diffeomorphism and f l(H) is ξ-well-inside f l(G) for some
ξ > 0. Then there exists ξ′ = ξ′(ξ, f) > 0 (with ξ′ →∞ as ξ →∞), and

κ = exp

(
Q(max

0≤i<l
|f i(G)|) ·

l−1∑

i=0

|f i(H)|
)
·
(

1 + ξ

ξ

)2

(3)

such that the distortion of f l|H is bounded by κ and H is ξ′-well inside G.

Proof. See [SV, Proposition 2]. ¤

We have an obvious bound
∑l−1

i=0 |f i(H)| ≤ 1 when the f i(H), 0 ≤ i < l, are pairwise
disjoint. This is what we will use in the following corollary, which uses Lemma 11 and
Proposition 13 as well.

Corollary 14. Let f ∈ C2
nf(I). Then for any ξ > 0 and k ≥ 0, there are ξ′ = ξ′(ξ, k, f) >

0, σ = σ(ξ, k, f) > 0 such that the following statement holds: Let (Hi)
l
i=0 ⊂ (Gi)

l
i=0 be

chains such that (Gi) has order at most k, Gl is a small interval close enough to Crit, and
the intervals Hi are pairwise disjoint. If Hl is ξ-well inside Gl, then H0 is ξ′-well inside
G0. If in addition k = 0, then there is κ = κ(ξ, f) > 0 such that f l|H0 has distortion
bounded by κ.

Proof. By saying that “Gl is a small interval close enough to Crit” we mean that there is
ε0 = ε0(f) such that |Gl| < ε0 and dist(Gl, c) < ε0 for some non-periodic critical point c,
where ε0 is chosen so that, if ε1 satisfies Q(ε) < 1 for every ε ≤ ε1 in Proposition 13, then
|Gi| < ε1 for every i < l (see Remark 10).

The case k = 0 is just Proposition 13. Let us give the proof for k = 1; the idea is the same
for k > 1. Let Gt be the interval from the chain containing the critical point. Now we
construct three subchains, (Hi)

t
i=0 ⊂ (Gi)

t
i=0, (Hi)

t+1
i=t ⊂ (Gi)

t+1
i=t and (Hi)

l
i=t+1 ⊂ (Gi)

l
i=t+1.

Applying Proposition 13 to the third chain, we find ξ1 = ξ1(ξ, f) and κ1 = κ1(ξ, f)
such that Ht+1 is ξ1-well inside Gt+1. Applying Lemma 11 to the middle chain, we find
ξ2 = ξ2(ξ1, f) such that Ht is ξ2-well inside Gt. Finally, applying again Proposition 13 to
the first chain, we find ξ = ξ(ξ2, f) such that H0 is ξ-well inside G0. ¤

The Koebe property refers to distortion control in the presence of Koebe space. Slightly
weaker is the Macroscopic Koebe property, which refers to the preservation of Koebe space
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under pullback. Hence the fact that H is ξ′-well inside G in Proposition 13 is basically a
Macroscopic Koebe statement.

In order to use the above results, we need conditions guaranteeing the existence of Koebe
space at the end of chains. The following propositions are particularly useful in this
regard.

Proposition 15. Let f ∈ C2
nf(I). Then for every ξ > 0 there exists ξ′ = ξ′(ξ, f) > 0

such that if V and U are nice intervals, U is ξ-well inside V , x ∈ V and fk(x) ∈ U (with
k ≥ 1 not necessarily minimal), then the pullback of U along x, . . . , fk(x) is ξ′-well inside
the return domain to V containing x.

In particular, if U is a return domain to V which is ξ-well inside V , then all return
domains to U are ξ′-well inside U .

Proof. This is Theorem C(1) from [SV] (see also the remark below Theorem C(1) and the
erratum to that paper). The second statement follows easily from the first one, by fixing
an arbitrary return domain K to U and x ∈ K, and choosing k as the return time of K.
The interval K is then the pullback of U along x, . . . , fk(x) and U is the return domain
to V containing x. ¤
Proposition 16. Let f ∈ C2

nf(I) and let x be a recurrent point of f which is neither
periodic nor of Feigenbaum type. Then there are ξ0 = ξ0(f) > 0 and an arbitrarily small
nice neighborhood J of x such that the return domain to J containing x is ξ0-well inside
J . Assume in addition that x is not solenoidal, and that I0 is a nice neighborhood of x
so small that it contains no periodic neighborhood of x. Let (Im)∞m=0 be the sequence of
nice intervals such that Im the return domain to Im−1 containing x. In this case, there
are infinitely many m such that Im+1 is ξ0-well inside Im.

Proof. This is a mixture of Theorems A(1) and A’(2) from [SV]. ¤

2.4. Notions from ergodic theory. Let X be a topological space with Borel σ-algebra
B and let f : X → X be a Borel measurable map. Recall that a probability measure µ
on B is called invariant (respectively, non-singular) if µ(f−1(A)) = µ(A) (respectively,
µ(A) = 0 if and only if µ(f−1(A)) = 0) for any A ∈ B. In what follows we assume that µ
is non-singular but not necessarily invariant.

Definition 17. Let (X,µ, f) be defined as above. Write X2 := X × X, µ2 := µ × µ,
f2 := f × f and let B2 be the Borel σ-algebra in X ×X. We call the system (X,µ, f)

• conservative if for every set A ∈ B with µ(A) > 0, there is n ≥ 0 such that
µ(A ∩ fn(A)) > 0;

• ergodic if f−1(A) = A ∈ B implies µ(A) = 0 or 1. If f is ergodic and conservative,
then µ-a.e. orbit is dense in supp(µ), see Lemma 19 below.

• exact if f−n(fn(A)) = A ∈ B for every n ≥ 0 implies µ(A) = 0 or 1;
• mixing if µ is invariant and

lim
n→∞µ(A ∩ f−n(B)) = µ(A)µ(B)

for all sets A,B ∈ B;
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• weak mixing if µ is invariant, but 1 is the only eigenvalue corresponding to a
measurable eigenfunction of the operator P : L1(µ) → L1(µ) defined by Pψ =
ψ ◦ f−1. An equivalent definition of weak mixing is that the Cartesian product
system (X2, µ2, f2) is ergodic.

• For non-invariant measures, we can still speak of mildly mixing: A non-singular
probability measure is mildly mixing if for every set A ∈ B of positive measure

lim inf
n→∞ µ(A ∩ f−n(A)) > 0.

Mild mixing implies that (X2, µ2, f2) is ergodic. (If f is invertible, then mild
mixing is equivalent to (X2, µ2, f2) being ergodic. In this case f also preserves a
probability measure equivalent to µ, but neither of these stronger statements holds
in general if f is non-invertible. See [HS] for more results.)

Lemma 18. If (X,µ, f) is exact, then (X2, µ2, f2) is ergodic.

Proof. Assume by contradiction that (X2, µ2, f2) is not ergodic, so there is U ∈ B2 such
that f−1

2 (U) = U and 0 < µ2(U) < 1. Then there is a ∈ X such that 0 < µ(Ua) < 1 for
Ua = {y ∈ X : (a, y) ∈ U}. Let Va = X \ Ua. Then fn(Ua) ∩ fn(Va) = ∅ for all n ≥ 0, so
(f−n ◦ fn)(Ua) = Ua for all n, contradicting that µ is exact. ¤

Lemma 19. If X is separable and (X,µ, f) is ergodic and conservative, then µ-a.e. x has
a dense orbit in supp(µ).

Proof. Let {Un}n∈N ⊂ B ∩ supp(µ) be a countable basis for the relative topology of
supp(µ), i.e., Un = supp(µ) ∩ U ′n where U ′n are those elements of a countable basis of
X that intersect supp(µ). Since supp(µ) is by definition the smallest closed set of full
measure, µ(Un) > 0 for every n.

Set Yn := {x ∈ X : fk(x) ∈ Un infinitely often}. Then f−1(Yn) = Yn, so µ(Yn) = 0 or 1
for each n. If µ(Yn) = 1 for each n, then Y :=

⋂
n Yn has full measure, and every x ∈ Y

has a dense orbit in supp(µ).

So assume that n is such that µ(Yn) = 0. For Z = Un \ Yn, we can write Z =
⋃

k≥0 Zk

where Zk = {x ∈ Un : k = max{i ≥ 0 : f i(x) ∈ Un}}. Since µ(Z) = µ(Un) > 0, there is k
such that µ(Zk) > 0, and hence µ(fk(Zk)) > 0. But then fk(Zk) ⊂ Un is a set of positive
measure that never visits Un again, and this contradicts that µ is conservative. ¤

The following diagram summarizes the implications between these various notions of mix-
ing. The notions on the bottom line can be defined for non-invariant measures µ, but any
implication to the top line requires that µ is f -invariant and in particular conservative.

3. Inducing to critical neighborhoods and strongly wandering sets

In this section, we prove that strongly wandering sets have zero measure as a consequence
of Theorem 20 below. Theorem 20 is a refinement of Theorem 1 of [CL] (where the slightly
stronger hypothesis f ∈ C3

nf(I) is used), which in turns improves Theorem D of [SV].
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µ invariant:
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Theorem 20. Let f ∈ C2
nf(I). Then there are positive constants ξ = ξ(f), κ = κ(f),

δ = δ(f) and, for every ε > 0 and c ∈ Crit, open intervals c ∈ Uc ⊂ Vc, with |Vc| < ε,
such that the following conditions hold:

(i) The set U =
⋃

c∈Crit Uc is nice and Uc is ξ-well inside Vc for every c ∈ Crit.
(ii) If J is an entry domain of the first entry map φ to U , say φ|J = f j|J and φ(J) =

Uc, then there is K ⊃ J such that f j|K is a diffeomorphism and f j(K) = Vc.
Moreover, φ|J has distortion bounded by κ.

(iii) If c ∈ Crit, then there are an open interval Wc ⊂ Uc and kc ∈ N such that
|Wc| > δ|Uc|, fkc|Wc is a diffeomorphism with distortion bounded by κ, and

– either Wc ⊂ fkc(Wc) ⊂ Uc (if c is of Feigenbaum type);
– or kc = 1 and ∂Wc ∩D(U) = ∅ (if c is not of Feigenbaum type).

The existence of the sets Uc ⊂ Vc from Theorem 20 suggests the construction of an induced
Markov map F : U → U with all branches mapping monotonically onto a component of
U . The first, very detailed, constructions of such induced maps go back to Jakobson [Ja],
but the abstract statement for unimodal maps having no periodic or Cantor attractors
comes from Martens’ PhD. thesis [Ma]. During the writing of this paper, we learnt about
a multimodal C3 version by Cai and Li [CL], see Proposition 45. Their construction
precludes the existence of parabolic points, hence we improve it slightly by showing the
version below, where Crit′ denotes the set of critical points interior to metric attractors
of type (2) in Proposition 9.

Let E :=
⋃

n≥0 f
−n(A) where A is the union of all attractors of type (2) in Proposition 9,

that is, the union of cycles of intervals in which λ-a.e. orbit is dense.

Theorem 21. Let f ∈ C3
nf(I) and let Uc, Vc, c ∈ Crit′, be defined as in Theorem 20 for

ε sufficiently small and let U ′ =
⋃

c∈Crit′ Uc. Then for Lebesgue a.e. x ∈ E we can find
kx ∈ N and intervals Gx ⊃ Hx 3 x (with either Hx = Hy or Hx ∩ Hy = ∅) such that
fkx : Gx → Vc is diffeomorphic for some c ∈ Crit′ and fkx(Hx) = Uc.

Let F : U ′ → U ′ be defined by F |Hx = fkx : Hx → Uc for the appropriate c ∈ Crit′. Then
all iterates of F is well defined λ-a.e and its branches have uniformly bounded distortion,
i.e., there is κ = κ(f) > 0 such that for every n ∈ N and every interval H on which
F n|H : H ⊂ U → Uc is a diffeomorphism, the distortion of F n|H is bounded by κ.

We postpone the somewhat technical proofs of Theorems 20 and 21 to the appendix.
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Proof of Theorem A. Let f ∈ C2
nf(I) and assume that W is a strongly wandering set

of positive measure. Let x be a density point of W . It is not restrictive to assume that
x belongs to the interior of a cycle cyc(K) which either contains a dense orbit or is of
solenoidal type. We can also assume that orb(x) accumulates on Crit.

Let τ > 0 be such that (x − τ, x + τ) ⊂ cyc(K). We can assume that the density of
W in any subinterval of (x − τ, x + τ) containing x is larger than 1 − ε0, with ε0 > 0
so small that if d = # Crit, then 1 − δ−dκ2d+1ε0 > 1/2, where δ = δ(f) and κ = κ(f)
are the numbers from Theorem 20. Finally we fix ε > 0 such that if U is defined as in
Theorem 20, then all components of U and entry domains to U have length less than τ
(by the non-Contraction Principle).

Let J1 be either the entry domain to U containing x, say φ|J1 = f j1|J1 , f
j1(J1) = Uc1 , or the

component Uc1 of U containing x (then we take j1 = 0). Since J1 ⊂ (x−τ, x+τ) ⊂ cyc(K)
and cyc(K) is invariant, the density of W in J1 is > 1− ε0 and Uc1 ⊂ cyc(K).

Let Wc1 be the interval from Theorem 20, part (iii). Since |Wc1| > δ|Uc1| and the density
of f j1(W ) in Uc1 is > 1−κε0, the density of f j1(W ) in Wc1 is > 1−δ−1κε0 and the density
of f j1+k1(W ) in fk1(Wc1) is > 1 − δ−1κ2ε0, where k1 = kc1 is as in Theorem 20(iii). If
c1 is a Feigenbaum critical point, then Wc1 ⊂ fkc1 (Wc1) ⊂ Uc1 , so the density of f j1(W )
in fkc1 (Wc1) is also > 1− δ−1κε0. Therefore the densities of both f j1(W ) and f j1+k1(W )
in fkc1 (Wc1) are > 1/2, hence f j1(W ) ∩ f j1+k1(W ) 6= ∅, contradicting that W is strongly
wandering.

Now we deal with the non-Feigenbaum case. Here k1 = 1, f |Wc1
is a diffeomorphism

and ∂Wc1 ∩ D(U) = ∅. On the other hand, Uc1 ⊂ cyc(K), so f(Wc1) ⊂ cyc(K) as
well. Moreover, the choice of cyc(K) guarantees that the orbits of almost all its points
accumulate on Crit. Hence f(Wc1) is the pairwise disjoint union (up to a measure zero
set) of entry domains to U and components of U . Since the density of f j1+1(W ) in f(Wc1)
is > 1 − δ−1κ2ε0, it is also > 1 − δ−1κ2ε0 in one of these entry domains or components,
call it J2.

Now we repeat the argument. Say that φ|J2 = f j2|J2 , f
j2(J2) = Uc2 , or J2 is a component

Uc2 of U (when we take j2 = 0). Then f j1+j2+1(W ) has density > 1 − δ−2κ3ε0 in Uc2 . If
c2 is a critical point of Feigenbaum type, then we get a contradiction as before. If not,
then we find an entry domain to U or a component of U , call it J3, such that f j1+j2+2(W )
has density > 1− δ−2κ4ε0 in J3. Proceeding in this way, we find intervals J1, J2, . . . , Jd+1,
each of them either an entry domain to U or a component of U , say f ji(Ji) = Uci

, such
that the density of f ti(W ) in Uci

is > 1− δ−(i−1)κ2i−1ε0 for every i = 1, 2, . . . , d+ 1, with
ti = j1 + · · ·+ ji + i− 1. Find i < i′ such that ci = ci′ . Then the densities of f ti(W ) and
f ti′ (W ) in Uci

are > 1/2, and we have the required contradiction. ¤

4. lim sup fullness of Lebesgue measure

The following definition was first used in Barnes [Ba].

Definition 22. The system (X,µ, f) is called lim sup full if lim supn→∞ µ(fn(A)) = 1
for any A ∈ B with µ(A) > 0.
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Theorem 23. Let f ∈ C3
nf(I) be a topologically mixing map having no Cantor attractors.

Then f is lim sup full with respect to Lebesgue measure.

Proof. It suffices to show that if f ∈ C3
nf(I) (and satisfying (1)) has an invariant interval

I ′ such that f |I′ is topologically mixing and has no Cantor attractors, then we have
lim supn λ(fn(A)) = λ(I ′) for any measurable set A ⊂ I ′ of positive measure.

Fix a critical point c interior to I ′ and let ε > 0 be small enough so that Theorem 21 holds
and the corresponding interval Uc lies in I ′. Let x be a density point of A. Since f has
no Cantor attractors in I ′, there is no loss of generality in assuming ω(x) = I ′ and (after
replacing if necessary A by some of its iterates) x ∈ Uc. Since all iterates of the induced
map F from Theorem 21 are well defined for λ-a.e. point in Uc, we can assume that this
is the case for x. This implies that there are intervals x ∈ Hn ⊂ Uc with

⋂
nHn = {x}

and integers kn such that fkn|Hn : Hn → Uc′ are diffeomorphisms with uniform distortion
bound for some c′ ∈ Crit′. Hence λ(fkn(A ∩ Hn)) → λ(Uc′) as n → ∞. Observe that
Uc′ ⊂ I ′, so there is j such that I ′ = f j(Uc′) (because f |I′ is topologically mixing). Then
also λ(fkn+j(A ∩Hn)) → λ(I ′), as required. ¤
Proposition 24. Let f ∈ C3

nf(I) be topologically mixing. Then the following statements
are equivalent:

(i) f has an acip µ;
(ii) lim infn λ(fn(A)) > 0 for every measurable set A of positive Lebesgue measure;
(iii) lim infn λ(fn(A)) = 1 for every measurable set A of positive Lebesgue measure.

In this case µ is equivalent to λ (that is, µ(A) if and only if λ(A) = 0) and λ2 is ergodic
and conservative.

Remark 25. Under C3 assumptions, no transitive Cantor set can have positive measure,
[SV, Theorem E(1), cf. also Remark 1], so in particular a Cantor attractor has Lebesgue
measure 0, and cannot support an acip. We expect this to be true in the C2 setting as
well, but we have no proof.

Proof. The implication (iii)⇒(ii) is trivial.

We prove (ii)⇒(i). According to [St], the existence of an acip for f is equivalent to the
existence of δ > 0 and 0 < α < 1 such that λ(A) < δ implies λ(f−n(A)) < α for every n
and A. Hence, if f does not admit an acip, then there are sets {Ak} and integers (nk)k≥1

with nk → ∞, λ(Ak) → 0 and λ(f−nk(Ak)) ≥ 1 − 2−k−1. Take A =
⋂

k f
−nk(Ak), then

λ(A) ≥ 1
2

and lim infn λ(fn(A)) = 0, contrary to condition (ii).

For the implication (i)⇒(iii), assume that f admits an acip µ. Since (wild) Cantor
attractors have zero Lebesgue measure, µ cannot be supported on them. Then Theorem 23
applies.

We claim that µ is equivalent is to λ. Assume the contrary to find a measurable set A
such that µ(A) = 0 < λ(A). Let B =

⋃∞
n=0 f

−n(A). Then µ(B) = 0 but, by Theorem 23,
λ(B) = 1. This is impossible.

The equivalence of µ and λ (or just the absolute continuity of µ) and Theorem 23 im-
ply that if µ(A) > 0, then lim supn µ(fn(A)) = 1. Since µ is invariant, the sequence
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{µ(fn(A))}n∈N is non-decreasing. Therefore limn µ(fn(A)) = 1, and also limn λ(fn(A)) =
1 by the equivalence of µ and λ. Moreover, λ is exact, hence λ2 is ergodic (Lemma 18), and
µ2 is conservative (because of Poincaré recurrence), so λ2 is conservative as well (because
µ2 and λ2 are equivalent). ¤

5. Li-Yorke pairs and scrambled sets

In this section we prove our results on scrambled sets and the λ2-measure of the sets Dis,
Asymp and LY.

Proof of Theorem B. Assume that a scrambled set S has positive measure. We can
assume that all its points are attracted by the same attractor, which must be either a
cycle of intervals containing a dense orbit, or a minimal Cantor set. Since fn is one-to-one
on S for every n, the first possibility can be immediately discarded by Theorem 23. Hence
we may assume that all points of S are attracted by a minimal Cantor set W . (In fact W
must be a wild attractor, because points attracted by solenoidal sets are approximately
periodic and a scrambled set can contain at most one approximately periodic point by
Proposition 6.)

By Theorem A there are integers n < m such that fn(S) ∩ fm(S) 6= ∅. Let x ∈ fn(S) ∩
fm(S). Then there is y ∈ fn(S) such that fm−n(y) = x. Since (x, y) is a Li-Yorke pair,
so is (fm−n(x), fm−n(y)) = (fm−n(x), x). Find a sequence {lk} such that |fm−n+lk(x) −
f lk(x)| → 0. We may assume that (f lk(x))k∈N accumulates at p ∈ W . Then fm−n(p) = p,
which is impossible because W is infinite and minimal. ¤
Proposition 26. A multimodal map f has no closed invariant scrambled set (apart from
a singleton set).

Proof. Suppose by contradiction that the closed non-singleton S is invariant and scram-
bled. Then clearly it can contain at most one fixed point. Let y ∈ S be a non-
fixed point. Then because (y, f(y)) is Li-Yorke, there is a sequence (nk)k∈N such that
limk |fnk(y) − fnk(f(y))| = 0 and {fnk(y)} converges. By continuity limk f

nk(y) =
limk f

nk+1(y) = f(limk f
nk(y)), so the limit is a fixed point p ∈ S. Since (y, f(y)) is

Li-Yorke, {fn(y)} does not converge to p.

Since f is multimodal, there are a sequence (mk) and a number ε > 0 such that fmk(y) → p
but |fmk−1(y) − p| > ε. By taking a subsequence, we can assume that {fmk−1(y)}k∈N
converges, say to q. But then p = limk f

mk(y) = f(limk f
mk(y))) = f(q), so (p, q) is not

Li-Yorke. This contradiction proves the proposition. ¤

Proof of Theorem C. Assume that λ2(Asymp \(AsPer×AsPer)) > 0. Then there are
a point x ∈ I \ AsPer and a Borel set Y ⊂ I \ AsPer of positive measure such that
limn→∞ |fn(x)− fn(y)| = 0 for every y ∈ Y . We can assume that orb(x) accumulates on
a non-periodic point u.

For every n ≥ 0, let dn : Y → R be defined by dn(y) = supm≥n |fm(x) − fm(y)|. Then
(dn) is a sequence of Borel measurable maps converging pointwise to zero. According
to Egorov’s theorem we can remove from Y a small set (so that the remaining set Z
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has positive measure) in such a way that {dn|Z}n∈N converges uniformly to zero, that is,
diam(fn(Z)) → 0 as n→∞.

Use Theorem A to find integers k > m such that fk(Z)∩ fm(Z) 6= ∅. Recall that orb(Z)
accumulates at a point u with |f j(u)−u| = ε > 0 for j = k−m. Find δ ∈ (0, ε/4) such that
|f j(v)− f j(w)| < ε/2 whenever |v − w| < 2δ. Next take l > m so that dist(f l(Z), u) < δ
and diam(f l(Z)) < δ. Then |f l(z) − u)| < 2δ < ε/2, hence |f l+j(z) − f j(u)| < ε/2
for every z ∈ Z. Thus f l+j(Z) ∩ f l(Z) = ∅, contradicting fm+j(Z) ∩ fm(Z) 6= ∅ and
l > m. ¤
Proposition 27. If (I, µ, f) is exact, then µ2(Dis) = 0.

Proof. Assume by contradiction that µ2(Dis) > 0. Write Disx = {y ∈ I : (x, y) is distal}
and GDis := {x : µ(Disx) > 0}. Then by Fubini’s Theorem, µ(GDis) > 0. For x ∈ GDis,
take

Yε := {y ∈ Disx : lim inf
n→∞ |fn(x)− fn(y)| ≥ ε}.

Clearly Yδ ⊂ Yε if δ > ε and fn(Yε) ∩ fn(I \ Yε) = ∅ for all n ≥ 0. If for some ε > 0,
both Yε and I \Yε have positive measure, then we have a contradiction to exactness. The
remaining possibility is that there is ε = ε(x) > 0 such that Yε has full measure, whereas
λ(Yδ) = 0 for all δ > ε. Now take η > 0 such that Gη := {x ∈ GDis : ε(x) > η} has positive
measure. Let R > 1/η, and take distinct points x0, x1, . . . , xR ∈ Gη. Clearly these points
can be chosen so that lim infn |fn(xi) − fn(xj)| > η for all i 6= j. Take N minimal such
that |fn(xi)− fn(xj)| > η for all i 6= j and n ≥ N . However, by the choice of R, there is
no space in I to fit the points fN(xi), i = 0, . . . , R, so that they have pairwise distance
greater than η. This contradiction proves that µ2(Dis) = 0. ¤

Next, for the proof of Theorem D, recall that we assumed that f has no wild attractor.

Proof of Theorem D. Theorem 23 implies that f is lim sup full w.r.t. Lebesgue mea-
sure. By [Ba, Theorem A], if f : I → I is a multimodal surjective map that is lim sup full
with respect to a measure µ, then f is exact. (The proof is stated for d-to-1 maps, but
applies with minor changes to the “at most d-to-1” setting as well.) Hence λ is exact. By
Lemma 18, λ2 is ergodic for (I2, f2).

Take x ∈ I. We prove that there is a full measure set Ax such that lim supn→∞ |fn(y)−
fn(x)| ≥ diam(I)/2 for every y ∈ Ax. If the opposite is true, then there are a set A of
positive measure and an m ∈ N such that |fn(y) − fn(x)| < diam(I)/2 for every y ∈ A
and every n ≥ m. But this contradicts the conclusion of Theorem 23 applied to A, i.e.,
that lim supn λ(fn(A)) = 1. Similarly, we can prove that there is a full measure Bx such
that lim supn→∞ |fn(y)−fn(x)| = 0 for every y ∈ Bx. Indeed, if this were false then there
are m ∈ N, ε > 0 and a set B of positive measure such that |fn(y)− fn(x)| > ε for every
y ∈ A and every n ≥ m. Again, this contradicts that lim supn λ(fn(B)) = 1. Hence

lim inf
n→∞ |fn(y)− fn(x)| = 0, lim sup

n→∞
|fn(y)− fn(x)| ≥ diam(I)/2,

for every y ∈ Ux = Ax ∩Bx. ¤

By Proposition 24 and Lemma 19 we immediately recover a well-known result on weak-
mixing.
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Corollary 28. If f ∈ C3
nf(I) is topologically mixing and has an acip, then λ2-a.e. (x, y)

has a dense orbit in I2.

Remark 29. Probably the earliest result in this direction dates back to Ledrappier who
proves in [Le, Theorem 1] that a certain class of interval maps is weak Bernoulli. Keller
[Ke] proved (weak-)mixing for acips µ of multimodal maps assuming negative Schwarzian
derivative. he also showed that dµ/dλ is bounded away from zero on supp(µ). One can
prove that µ is also mixing by means of an induced map F : U → U as in Theorem 21 which
possesses an acip ν, cf. [Y]. In fact, by taking an appropriate power of FN , U decomposes
into a finite number of FN -invariant parts on which ν is invariant and mixing. Pulling
back ν to the original system, we recover µ and by the topologically mixing condition, µ
can have only one mixing component.

Conservativity of λ2 is crucial in Lemma 19, and even if λ itself is conservative for (I, f),
this does not guarantee that λ2 is conservative for the Cartesian product. It is for this
reason that Proposition 27 and Theorem D are not just direct consequences of ergodicity
of λ2 from Lemma 18. The following conjecture suggests conditions under which λ2-a.e.
pair is Li-Yorke, but has no dense orbit.

Conjecture 30. We think that if (I, f, λ) is conservative and has no acip, but instead
the induced time kx associated to the induced map in Theorem 21 is non-integrable w.r.t.
Lebesgue, and in fact the tail λ({x : kx > s}) ≥ 1/ log s, then the product system
(I2, f2, λ2) is dissipative.

6. Li-Yorke chaos in the presence of Cantor attractors

In this section, we concentrate on C2 unimodal maps with Cantor attractors A = ω(c) for
the unique critical point c. If f is infinitely renormalizable (i.e., type (3) in Proposition 9),
then the situation regarding Li-Yorke pairs is well-known: there are none. Instead, the
attractor is Lyapunov stable and conjugate to an adding machine (Ω, g). In other words,
Ω = {(ωj)j≥1 : 0 ≤ ωj < pj}, for some sequence (pi)i≥1 of integers pi ≥ 2 (where p1 · · · pi

are the periods of the periodic intervals) such that is equipped with product topology and
the map g of “adding 1 and carry”:

g(ω1, ω2, . . . ) =

{
0, 0, , . . . , 0, ωk + 1, ωk+1, ωk+2, . . . if k = min{i : ωi < pi − 1};
0, 0, 0, 0, . . . if ωi = pi − 1 for all i ≥ 1.

(4)

The following classification is due to [BrJ, Proposition 5.1].

Proposition 31. Let f : I → I be a continuous map and x ∈ I. The system (ω(x), f) is
conjugate to some adding machine if and only if x is approximately but not asymptotically
periodic, see Definition 1.

However, there are several constructions leading to strange adding machines, i.e., (criti-
cal) omega-limit sets that are conjugate to adding machines, but not involving periodic
intervals, see [BKM, BrJ, Br4]. In [Br4] it is shown that a strange adding machine can
still be an attractor, but in this case it is a wild and not a solenoidal attractor.
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The dynamics on such attractors can frequently be understood in terms of generalized
adding machines as done in [BKS] and in the proof of Theorem 34 below. Such generalized
adding machines are based on the sequence of cutting time, which we will define now.

Let Zn(x) be the n-cylinder, i.e., maximal interval containing x on which fn is monotone.
Unless x ∈ ∪m<nf

−m(c), Zn(x) is well-defined, but the critical point itself has two sets
Z±n (c) on either side of it, with Dn := fn(Z±n (c)) independent of ±, if n is sufficiently large.
One can show that for every x and n ≥ 1, there is m ≤ n such that fn(Zn(x)) = Dm;
if x ∈ f−m(c), then x is the common boundary point of two n-cylinder sets Z±n (x), but
fn(Z±n (x)) = Dm independently of ±, again if n is sufficiently large. We say that n is a
cutting time if Dn 3 c, and we list them in increasing order 1 = S0 < S1 < . . . . Write
cn := fn(c). By a short induction proof one can show that D1 = [0, c1] and for n ≥ 2

Dn = [cn, cβ(n)] and Dn ⊂ Dβ(n), (5)

where the map β : N→ N is defined as β(n) = n−max{Sk : Sk < n}. In the special case
that n = Sk is a cutting time, this means that Sk − Sk−1 is again a cutting time, so one
can define the kneading map Q : N→ N ∪ {0,∞} by

Sk = Sk−1 + SQ(k),

see [H, Br2]. Here Q(k) = ∞ means that Sk does not exist; in this case c is attracted
to an orbit of period Sk−1 or 2Sk−1. Since we assumed that f has a Cantor attractor,
Q(k) < ∞ for all k ∈ N. Some properties of the kneading map related to ω(c) are as
follows.

Proposition 32. (a) The minimal n such that Z±n (c) ⊂ [c, cSk
] is n = SQ(k+1).

(b) If f is a unimodal map with kneading map Q(k) →∞, then the length |Dn| → 0 and
ω(c) is a minimal Cantor set.

(c) If maxk k −Q(k) ≤ B, then ω(c) ⊂ ∪Sk+B

n=1+Sk
Dn for every k.

(d) The map is renormalizable if and only if there is k ≥ 1 such that k = Q(k + 1) ≤
Q(k + j) for all j > 1. In this case Sk is the period of renormalisation.

Proof. By definition of the kneading map, n = SQ(k+1) is the smallest positive iterate such
that fn([c, cSk

]) 3 c, implying statement (a).
Under the assumption that Q(k) →∞, this means that |cSk

−c| → 0 and also |cSQ(k)
−c| →

0 as k →∞. Since DSk
= [cSk

, cSQ(k)
], the non-Contraction Principle shows that |Dn| → 0

as well. Minimality of ω(c) follows as in i.e., [Br2, Proposition 2] (which proves that c is
persistently recurrent) and [Br2, Lemma 8]. This proves statement (b).
For statement (c), observe that D1+Sl

⊂ D1+Sk
for all l ≥ k+B because of the assumption

maxk{k−Q(k)} ≤ B and statement (a). It follows that Dm+Sk+B
⊂ Dm+Sk

for all m ≥ 1,

and ∪n≥1+Sk
Dn ⊂ ∪Sk+B

n=1+Sk
Dn. By definition, ω(c) ⊂ Cl∪n≥1+Sk

Dn ⊂ Cl∪Sk+B

n=1+Sk
Dn =

∪Sk+B

n=1+Sk
Dn as asserted.

Part (d) is [Br2, Proposition 1(iii)]. ¤

Special types of unimodal maps are the Feigenbaum map (Sk = 2Sk−1) and the Fibonacci
map (Sk = Sk−1 + Sk−2). We call f Fibonacci-like if {k −Q(k)}k is bounded.

The proof of the existence of wild attractors was first established in [BKNS] for Fibonacci
maps with sufficiently large critical order `. In [Br3], this result was extended to C3
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unimodal maps with negative Schwarzian derivative, sufficiently large critical order and
eventually non-decreasing kneading map Q such that lim supk k−Q(k) ≤ B. If the cutting
times increase more slowly than Fibonacci-like, then no unimodal map with finite critical
order can have a wild attractor.

Before we continue, let us give a short exposition how the existence of wild attractor is
proved for unimodal maps. There are two approaches, both based on a random walk on
a Markov graph. In [BKNS, Br3, BHa], this Markov graph of I is based on preimages
of the orientation reversing fixed point p. The states of that Markov system are pairs of
intervals Uk ⊂ (Z+

Sk
(c)∪Z−Sk

(c)) \ (Z+
Sk+B

(c)∪Z−Sk+B
(c)) and ∂Uk belongs to the backward

orbit of p. The induced Markov map defined by G|Uk
= fSk preserves the partition {Uk}

of [p̂, p], where f−1(p) = {p, p̂}. Viewing the dynamics of G as a random walk, we define
“random variables” χn by

χn(x) = k if Gn(x) ∈ Uk. (6)

It is then shown that this process has positive drift, i.e., the expectations (measured with
respect to Lebesgue measure)

E(χn+1 − k|χn = k) ≥ η > 0

uniformly in n and l. The second moments E((χn+1 − k)2|χn = k) are shown to be
bounded as well. It follows that χn(x) → ∞ for λ-a.e. x and hence Gn(x) → c. Since
Uk ⊂ (Z+

Sk
(c) ∪ Z−Sk

(c)), fSk(Uk) ⊂ DSk
and since |Dn| → 0 as n→∞, this means for the

original map that fn(x) → ω(c) for λ-a.e. x, so A = ω(c) is an attractor.

In [BHa, Theorem 5.2], a further conclusion is drawn from the positive drift, namely a
Borel-Cantelli Lemma argument shows that for λ-a.e. x ∈ Bas(A), there is k0 = k0(x)
such that such that for all k ≥ k0

if Gm(x) ∈ Uk, then Gm+j(x) /∈ Uk for j > k. (7)

In this paper, we will use a second approach from [Br1, BKS], where the Markov system

is a disjoint union Î = tn≥2Dn (the Hofbauer tower) for intervals Dn defined above. Let

f̂ : Î → Î be defined by

f̂(Dn) =

{ Dn+1 if n is not a cutting time;

D1+Sk
t (D1+SQ(k)

\ {c1}) if n = Sk is a cutting time.

Then i◦ f̂ = f ◦ i, where i : Î → I is the inclusion map, and f̂ is continuous, except at the
points c ∈ DSk

, k ≥ 1, which are mapped to c1 ∈ D1+Sk
. Since these are only countable

many points, this has no effect on the Lebesgue typical behavior. The collection {Dn}n≥2

is a Markov partition of Î, because f̂ maps each Dn to the union of partition elements
(ignoring again the point c1 ∈ D1+SQ(k)

). Starting in some Dn, the subsequence intervals
visited are unique determined up to the moment we reach some DSk

, where we have a
choice between D1+Sk

and D1+SQ(k)
. Therefore it suffices to consider the transitions from

interval El := D1+Sl
realized by the SQ(l+1)-th image of f , see Figure 1. It follows that

{El}l≥0 is a Markov partition for the induced map

F : tl≥0El → tl≥0El, F |El
= f̂SQ(l+1) .
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Figure 1. The transitions from D1+Sl
, l ≥ 1. Backward transitions go

from D1+Sl
to D1+SQ(l+1)

.

One can show that if f is renormalizable of period Sk, then tl≥k−1El is a trapping region
for F , see part (d) of Proposition 32. Now we need to translate the results on positive
drift to the current set-up. Write χ̂n(y) = l if F n(y) ∈ El.

Lemma 33. If {χn}n≥0 has positive drift as in (6) (and bounded second moments), then

for λ-a.e. y ∈ tl≥0El, we have χ̂n(y) →∞. Furthermore, there is k̂0 = k̂0(y) and C > 0

such that for all k̂ ≥ k̂0, if χ̂n(y) = k̂, then χ̂n+j(y) > k̂ for all j > Ck̂.

Proof. The positive drift of {χn} ensures that for λ-a.e. x and k ∈ N, there is nk such that
Gn(x) ∈ ∪j≥kUj for all n ≥ nk. Since Uk ⊂ Z+

Sk
(c) ∪ Z−Sk

(c), the image fSk(Uk) ⊂ DSk

and f 1+Sk(Uk) ⊂ D1+Sk
∪ D1+SQ(k)

= Ek ∪ EQ(k). This means that y := f 1+Sk ◦ Gn(x) ∈
Ek ∪ EQ(k). If consequently Gn+1(x) ∈ Ul, l > k, then fSl(y) ∈ El ∪ EQ(l) but the move
from Ek or EQ(k) up to El or EQ(l) in tj≥0Ej involves passages through the intermediate
states Ei as well, but “lower” states Ei, i < k −B ≤ minj≥k Q(j) are avoided. Therefore
χ̂n(f(x)) →∞ for all n→∞.

For the second statement, observe that the passage from Ek or EQ(k) up to El or EQ(l)

requires un iterates of F for some l − k − B ≤ un ≤ l − k + B. Suppose Gm(x) ∈ Uk,

k ≥ k0(x) as in (7), then Gm+j(x) /∈ Uk for j ≥ k. Take k̂ ∈ {k,Q(k)} such that
y = f 1+Sk(Gm(x)) ∈ Ek̂. The iterates m + 1, . . . ,m + k of G correspond to

∑m+k
j=m+1 uj

iterates of F . Each uj ≥ 1, and if χm+j(x) < χm+j−1(x), then this single iterate of G
corresponds to a single iterate of F , reducing the index of the state by at most B. If
χm+j(x) À χm+j−1(x), then one iterate of G corresponds to many iterates of F , but
if some of these iterates brings y above state Ek̂+kB, then it would take more than k

steps of G to return, hence this will not occur. Thus, if the
∑m+k̂

j=m+1 uj iterates of F

(corresponding k iterates of G) keep y close to state Ek̂, then
∑m+k̂

j=m+1 uj ≤ 2Bk ≤ 3Bk̂,

where the last inequality follows because k−B ≤ k̂ ≤ k. This proves the second statement
for C = 3B. ¤

The dynamics of wild attractors has been investigated in [BKS]. In that paper, various
combinatorial types are presented for which (A, f) is semi-conjugate to a monothetic
group (G, g), where g : G → G is an isometry for which every orbit is dense. The best
known example goes back to Lyubich and Milnor [LM]; it is the Fibonacci map and its
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omega-limit set ω(c) factorizes over the golden mean circle rotation. In [BKS], similar
examples are shown factorising onto tori of any dimension, and even onto a solenoid. On
the other hand, [BKS] gives examples for which (A, f) is weak mixing with respect to
the unique invariant probability measure µ supported on A. In [BHa], the simplest such
example is shown to be Lebesgue exact as well.

Let fp(x) := x− round(x) ∈ [−1
2
, 1

2
) be the signed distance of x to the nearest integer.

Theorem 34. Assume that a unimodal map has a wild attractor with positive drift. If
there exists ρ such that the cutting times satisfy

∑

k

k max
i≥k−B

| fp(ρSk)| <∞,

for B = lim supk k −Q(k), then λ2(Dis) = 1.

Proof. Step 1: Construction of the factor map.
An enumeration scale is a symbolic system resembling an adding machine as in (4) based
on, in this case, the sequence of cutting times. Any non-negative integer n can be written
in a canonical way as a sum of cutting times: n =

∑
j ejSj, where

ej :=

{
1 if j = max{k;Sk ≤ n−∑

m>k emSm},
0 otherwise.

In particular ej = 0 if Sj > n. In this way we can code the non-negative integers as
zero-one sequences with a finite number of ones: n 7→ 〈n〉 ∈ {0, 1}N. Let E0 = 〈N ∪ {0}〉
be the set of such sequences, and let E be the closure of E0 in the product topology. This
results in

E := {e ∈ {0, 1}N ; ei = 1 ⇒ ej = 0 for Q(i+ 1) ≤ j < i}.
The condition in this set follows because if ei = eQ(i+1) = 1, then this should be rewritten
to ei = eQ(i+1) = 0 and ei+1 = 1. It follows immediately that for each e ∈ E and j ≥ 0,

e0S0 + e1S1 + · · ·+ ejSj < Sj+1. (8)

We denote by g the standard addition of 1 by means of “add and carry”, cf. (4). Let 〈n〉 be
the representation of n ∈ N ∪ {0} in the enumeration scale based on {Sk}k≥0. Obviously
g(〈n〉) = 〈n + 1〉. Under the condition that Q(k) → ∞, g : E → E is continuous, and
is invertible on E \ {〈0〉}, see [BKS, GLT]. Since

∑
k | fp(ρSk)| < ∞, we can define a

continuous projection πρ : E → S1 by

πρ(e) =
∑

k

ek fp(ρSk) mod 1,

and πρ ◦ g = Rρ ◦ πρ for the circle rotation Rρ : x 7→ x + ρ mod 1. At the same time,
the map P : E → A defined as the continuous extension of P (〈n〉) = fn(c) satisfies
P ◦ g = f ◦ P . We know from [BKS] that there is semi-conjugacy π = πρ ◦ P−1 : A → S1

such that π ◦ f = Rρ ◦ π, provided
∑

k | fp(ρSk)| < ∞. A more direct way to construct
π : A → S1 is by setting

π(x) =

{
ρn mod 1 if x = cn,

limj→∞ ρnj mod 1 if x ∈ A \ orb(c) and (nj)j∈N is such that x ∈ ∩jDnj
.
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In [BHa] it was shown how to extend the map πρ ◦ P−1 to a measurable factor map
π̃ : Bas(A) → S1. Here we will give a construction of π̃ which is more closely connected
to [BKS].

For any x with χ̂n(x) →∞, the number bn(x) defined as

bn(x) := max
j
{j : f j(Zj(x)) = Dn}

exists. If x ∈ f−k(c) for some k ≥ 0, then we need to write Z±n (x) for n > k, because
x is the common boundary point of two cylinder sets, and fn(x) = cn−k ∈ Dn−k for n
sufficiently large. So bn(x) is well-defined in this case too. Set

π̃n(x) := −∑

k

fp(ρ〈bn(x)− n〉kSk) mod 1 = −ρ(bn(x)− n) mod 1. (9)

If n + 1 is not a cutting time, then bn+1(x) = bn(x) + 1; in this case π̃n+1(x) = π̃n(x). If
n+ 1 = Sk is a cutting time, f bn(x)(Zbn(x)(x)) = DSk−1 and f bn(x)+1(Zbn(x)(x)) = DSk

, but
bn+1(x) can be strictly larger than bn(x) + 1. In this case, however,

bn+1(x) = bn(x) + 1 +
∑

j≥k

djSQ(j)

for some non-negative integers dj. Recall from Lemma 33 that for λ-a.e. x ∈ Bas(A),

there is k̂0 = k̂0(x) such that for all k > k̂0

if Fm(x) ∈ Ek, then Fm+j(x) /∈ Ek for all j > Ck. (10)

This means that
∑

j≥k dj ≤ k, and therefore 〈bn(x) − n〉 and 〈bn+1(x) − (n + 1)〉 are
sequences which differ by at most Ck entries and the indices of these entries are ≥ k−B.
This means that by the definition of (9)

|π̃n(x)− π̃n+1(x)| ≤ Ck max
i≥k−B

| fp(ρSi)|, (11)

which is summable over k by assumption. It follows that {π̃n(x)}n is a Cauchy sequence
in S1 for λ-a.e. x ∈ Bas(A), and hence π̃(x) := limn→∞ π̃n(x) exists.

Let us complete Step 1 by showing that π̃ ◦ f = Rρ ◦ π̃ for λ-a.e. x ∈ Bas(A). Assume
that x /∈ ∪jf

−j(c), then f(Zj(x)) = Zj−1(f(x)) for all sufficiently large j. Therefore
bn(f(x)) = bn(x) − 1, so substituting into (9) gives π̃n(f(x)) = π̃n(x) + ρ for each n. In
the limit, π̃ ◦ f = Rρ ◦ π̃.

Remark 35. It can be shown that π̃ is well-defined on A and coincides with π, but since
it plays no role in Theorem 34, we will omit the proof.
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Step 2: The measure of Dis.
We will show that if π̃(x) 6= π̃(y), then (x, y) form a distal pair. This is more involved
than in Proposition 38 below, because π̃|Bas(A) is not continuous. With the exception of a

set of measure zero, we can assume that x and y satisfy (10); let k1 = max{k̂0(x), k̂0(y)}.
Suppose that π̃(x) 6= π̃(y) and take N ∈ N and η > 0 such that |π̃n(x)− π̃n(y)| > 2η for
all n ≥ N . Take k2 ≥ k1 so large that Ckmaxi≥k−B | fp(ρSi)| < η for all k ≥ k2 and C as
in Lemma 33.

We know that A ⊂ ∪n≥Sk2
Dn, but by Proposition 32, part (c), ω(c) ⊂ ∪Sk2+B

n=1+Sk2
Dn. Take

ε > 0 so small that every two intervals Dn,Dn′ , Sk2 < n, n′ ≤ Sk2+B either are at least ε
apart or their intersection has length at most ε.

For λ-a.e. x ∈ Bas(A), we have that χ̂n(x) →∞. Hence f i(x) ∈ D for i sufficiently large,
even though D only contains a “one-sided” open neighbourhood of ω(c). (In fact it is
possible to prove that the same statement is true for all x ∈ Bas(A), but this is enough
for our purposes.)

Suppose now by contradiction that (x, y) is not distal. Then there is i ≥ N such that
f i(x), f i(y) ∈ D and |f i(x) − f i(y)| < ε. So f i(x) and f i(y) belong to the same interval
Dn for some n ≥ Sk2 , and taking i larger if necessary, we can assume that n is a cutting
time. By (10), 〈bn(x)− i〉 and 〈bn(y)− i〉 are sequences which differ by at most Ck entries
and the indices of these entries are ≥ k −B. Similar to (11), we have

|π̃n(x)− π̃n(y)| ≤ Ckmax{| fp(ρSi)| : k −B ≤ i ≤ 2k −B} < η.

This contradiction to the choice of η and N proves that (x, y) is distal. Therefore proximal
pairs (x, y) can only exist within fibers of π̃.

Finally, if W = π̃−1(s) with λ(W ) > 0 for some s ∈ S1, then since π̃ ◦ f = Rρ ◦ π̃ and Rρ

is invertible, it follows that fm(W ) ∩ fn(W ) = ∅ for all 0 ≤ m < n, and this contradicts
the non-existence of strongly wandering sets. Therefore each fiber has measure zero. This
completes the proof. ¤

Corollary 36. If Sk = Sk−1 + Sk−d for d = 2, 3, 4, and f is a map with cutting times
{Sk}k≥0 and sufficiently large critical order so that A is a wild attractor with positive drift,
then λ2(Dis) = 1.

Proof. We know from [BKS] that the dynamics (A, f) is semi-conjugate to a minimal ro-
tation on a d−1-dimensional torus. If fact, the characteristic equation λd = λd−1+1 of the
recursive relation Sk = Sk−1+Sk−d has a leading root ρ which is a Pisot number, i.e., all its
algebraic conjugates lie within the unit disk. It follows easily that fp(ρSk) is exponentially
small in k so that the condition

∑
k k| fp(ρSk)| <∞ is obviously satisfied, and Theorem 34

shows that λ2(Dis) = 1. By defining Π : Bas(A) → Td−1 as Π(x) = (π̃ρ(x), . . . , π̃ρd−1(x))
(which is well-defined λ-a.e.), we obtain a factor map onto (Td−1, Rρ,...,ρd−1) with Haar
measure, which is the maximal automorphic factor of (Bas(A), λ, f). ¤

Proposition 37. Under the conditions of Theorem 34 and if there is a continuous factor
of (A, f) onto a d-dimensional torus Td (with d ≥ 1), then the fiber π̃−1(τ) ⊂ Bas(A) for
each τ ∈ Td contains an uncountable ε-scrambled set for some ε > 0.
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Proof. Assume for simplicity that d = 1 and take ρ ∈ R such that π̃ ◦ f = π̃ + ρ mod 1
for λ-e.a. x ∈ A. Because a zero-dimension set cannot be mapped injectively onto a set
of higher dimension, see [E], the continuity of the factor map π : A → Td implies that
π cannot be injective. Therefore we can find a 6= â ∈ A such that f(a) = f(â). By
Proposition 32, part (c), we can find, for every k, integers κ and κ̂ with k < κ, κ̂ ≤ k+B
and N ≤ min(Sκ, Sκ̂), such that DSκ−N 3 a and DSκ̂−N 3 â.
Hence we can find two sequences (κj)j∈N and (κ̂j)j∈N with |κj − κ̂j| ≤ B, but possibly
κj+1 À κj, and another sequence (Nj)j∈N such that DSκj−Nj

3 a and DSκ̂j
−Nj

3 â.
Recall the Markov map was defined as F : tl≥0El → tl≥0El. For each j, we will create
loops from Eκj

to itself and from Eκ̂j
to itself, as indicated in Figure 2. Both loops require

the same steps under F , only arranged in a different order, hence they involve the same
number sj of iterates of f . Because lim supk k − Q(k) ≤ B, both loops involve no more
than 2B steps, and the width (highest vertex minus smallest vertex) is less than 2B as
well.

s
Eκj

Eκ̂j
- c - c - s

©©©©¼c
©©©©¼c - s

loop Eκj
→ Eκj

s
©©©©¼c

©©©©¼ c- s
path Eκ̂j

→ Eκj

Eκj
Eκ̂js

©©©©¼c
©©©©¼c - s - c - c - s

loop Eκ̂j
→ Eκ̂j

Figure 2. Different loops ending at Eκj
and Eκ̂j

respectively. Both loops
contain the same path from Eκ̂j

to Eκj
, depicted in the middle. Backward

arrows go from El to EQ(l+1).

Assume that κj < κ̂j and Eκj
⊃ Eκ̂j

. (The other three cases can be treated similarly.)

Since {El}l≥0 is a Markov partition for F , there are intervals Jj ⊂ Eκj
and Ĵj ⊂ Eκ̂j

such

that f sj : Jj → Eκj
and f sj : Ĵj → Eκ̂j

are diffeomorphic and onto. There is a similar

interval K̂j ⊂ Eκ̂j
representing the path from Eκ̂j

to Eκj
, that is if the path from Eκ̂j

to

Eκj
requires tj iterates of f , then f tj : K̂j → Eκj

is diffeomorphic and onto.

Combining the two, we find intervals Hj ⊂ Jj such that





(a) f sj(Hj) = K̂j ⊂ Eκ̂j
⊂ Eκj

,

(b) f sj+tj(Hj) = Eκj
, and

(c) f sj−(Nj+1)(Hj) contains, or is close to, a.

Similarly, we can find Ĥj ⊂ Ĵj such that





(â) f sj(Ĥj) = K̂j ⊂ Eκ̂j
,

(b̂) f sj+tj(Ĥj) = Eκj
, and

(ĉ) f sj−(Nj+1)(Ĥj) contains, or is close to, â.
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Let Σ ⊂ {0, 1}N be an uncountable scrambled subset of the full shift. The idea is now,
for each τ ∈ T and each σ ∈ Σ, to find a point x ∈ π−1(τ) such that

f rj(x) ∈
{ DSκj−Nj

3 a if σj = 0,

DSκ̂j
−Nj

3 â if σj = 1,
(12)

where the sequence rj depends of t but not on σ.

Start with some y ∈ D2 = E0 with π̃(y) = τ + ε where ε will be determined later. Then,
when the orbit of y under iteration of F goes from Eκj

to Eκ̂j
, we insert one of the loops

as in Figure 2 according to whether σj = 0 or 1, and the extra path from Eκj
to Eκ̂j

.
That is, when q1 is such that f q1(y) ∈ Eκj

, we insert one of the extended loops, both
taking s1 + t1 iterates, and iterate r1 := q1 + s1− (N1 + 1) brings the path close to a or â,
depending on whether σ1 = 0 or 1. Then, when y visit Eκ2 , the new extended loop takes
s1 + t1 iterates more to reach it; call this number q2, insert the appropriate extended loop
of s2 + t2 iterates, and find that after r2 = q2 + s2 − (N2 + 1) iterates, the path will be
close to a or â, etc.

Due to the Markov property, there is some x ∈ E0 whose infinite path under F is precisely
the path we have created, so x satisfies (12). Furthermore, the values bn(x) = bn(y) +∑

j,qj+B<n sj + tj. When we compute π̃(x), the contribution ε of all the inserted extended
loops bounded by ∑

j

3B max
κj−B≤i≤κj+B

| fp(ρSi)| <∞.

Here we used that each loop requires at most 2B steps and each path from Eκj
to Eκ̂j

(or vice versa) has at most B steps, and that all these steps are taken within a distance
B from the step Eκj

→ Eκj+1.

In particular, π̃(x) is well-defined, and π̃(x) = π̃(y) − (π̃(y) − π(x)) = π̃(y) − ε = τ , so
x ∈ π̃−1(τ).

Finally, if σ 6= σ′ both belong to Σ, there are infinitely many js such that σj 6= σ′j,
and consequently lim supj→∞ |f rj(x) − f rj(x′)| = |a − â| > 0. On the other hand,
limj→∞ |f qj(x) − f qj(x′)| = 0, because f qj(x) and f qj(x′) both belong to Eκj

or to Eκ̂j

Therefore {x(σ) : σ ∈ Σ} is an |a− â|-scrambled subset of π−1(τ), as required. ¤
Proposition 38. Let f be a unimodal map with kneading map Q(k) = max{k− d, 0} for
d = 2, 3, 4, and let µ denote the unique invariant probability measure supported by ω(c).
Then

• µ2-a.e. pair of points is distal;
• if d = 2 (the Fibonacci map) then ω(c) contains no Li-Yorke pair, and the only

asymptotic pairs (x, y) are such that fn(x) = fn(y) = c (only one such pair for
each n ≥ 1);

• if d = 3, 4 then there are uncountably many Li-Yorke pairs in ω(c).

Proof. As in Corollary 36, there is a continuous map π : ω(c) → Td−1 onto the d − 1-
dimensional torus and an irrational rotation R := Rρ,...,ρd : Td → Td such that π◦f = R◦π.
If π(x) 6= π(y) then (x, y) is distal, as in Corollary 36. It follows from [BKS] that this
happens for µ2-a.e. (x, y).
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Furthermore, π−1(b) consists of at most d points a1, . . . , ad for any b ∈ Td−1. If there are
indeed d distinct points, then there is n ≥ 0 such that fn(a1) = fn(a2) = · · · = fn(ad) = c,
cf. [Br4]. For the Fibonacci map, this accounts for all non-distal pairs. For d = 3, 4, other
non-singleton fibers π−1(b) are possible, and Li-Yorke pairs exists within such fibers. They
are related to incidences in the substitution shift description, as described implicitly in
[BD]. ¤

The question is whether the situation is the same for the “next” Fibonacci-like map with
Q(k) = max{k − 5, 0}. In this case, the system of (ω(c), f) with its unique probability
measure is weak mixing, so there is no continuous (or even measurable) factor map onto a
group rotation. The difference with the previous cases is that the characteristic equation
of the recursive relation

0 = λ5 − λ4 − 1 = (λ2 − λ+ 1)(λ3 − λ− 1)

is reducible, and more decisively, its leading root is not a Pisot number. The following
curiosity about the cutting times holds in this case:

Sk = Sk−2 + Sk−3 +





+1 if k ≡ 2, 3 mod 6;
−1 if k ≡ 5, 0 mod 6;

0 if k ≡ 1, 4 mod 6.
(13)

Note that the same algebraic curiosity holds for any characteristic equation λ6m−1 −
λ6m−2 − 1 = 0, because in each such case, λ2 − λ + 1 (with solutions λ = 1±i

√
3

2
on the

unit circle) divides the equation. As an example, the case m = 2 gives:

λ11 − λ10 − 1 = (λ2 − λ+ 1)(λ9 − λ7 − λ6 + λ4 + λ3 − λ− 1),

and one can indeed check that

Sk = Sk−2 + Sk−3 − Sk−5 − Sk−6 + Sk−8 + Sk−9 +





+1 if k ≡ 2, 3 mod 6;
−1 if k ≡ 5, 0 mod 6;

0 if k ≡ 1, 4 mod 6.

Proposition 39. If Sk = Sk−1 + SQ(k) for Q(k) = max{0, k − 5} and f is a map with
cutting times {Sk}k≥0 and a wild attractor with positive drift, then λ2(LYε) = 1 for some
ε > 0.

Proof. As pointed out before, it was shown in [Br3] that A = ω(c) is a wild attractor, and
from [BHa] it follows that dynamics on the basin of the attractor is Lebesgue exact. Thus
Proposition 27 implies that λ2(LY) = 1. In fact, the construction of Proposition 37 can
also be used here to show that there is ε > 0 such that λ2-a.e. pair belongs to LYε. ¤
Example 40. Let f be a unimodal map with cutting times satisfying

S0 = 1, S1 = 2, S2 = 3, S3 = 4, S4 = 6, S5 = 8, S6 = 10, S7 = 12

and

Sk = Sk−1 + Sk−5 for k ≥ 8.

This means that the cutting times Sk are even for k ≥ 3 and eventually are twice the
numbers occurring in the example of Proposition 39. Assume also that the critical order
of ` is so large that f has a wild attractor A. Then A decomposes into two disjoint Cantor
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sets A0 and A1 which are permuted by f . Note, however, that f is not renormalizable,
see Proposition 32, and therefore f is topologically mixing on [c2, c1].

Let B0 and B1 be disjoint neighborhoods of A0 and A1; for example we can take B0 =
[c2, c14] ∪ [c4, c6] and B1 = [c3, c15] ∪ [c5, c1]. Every point in the basin of A will eventu-
ally be trapped in B0 ∪ B1. But every pair (x, y) with x ∈ B0 and y ∈ B1 such that
orb(x), orb(y) ⊂ B0 ∪ B1 is distal. On the other hand f 2|A0 and f 2|A1 behave like the
example of Proposition 39, so λ2-a.e. every pair (x, y) ∈ B0 × B0 (or (x, y) ∈ B1 × B1)
such that orb(x), orb(y) ⊂ B0 ∪B1 is Li-Yorke.

Proof of Theorem E. From Theorem C we know that λ2(Asymp) = 0. Also, if some
x ∈ Bas(A) is approximately periodic, then by Proposition 31, A is conjugate to an
adding machine, so all points in Bas(A) are approximately periodic. By Proposition 6,
Bas(A) contains no Li-Yorke pairs. Therefore (a)-(d) are the only possibilities, and they
all occur:
(a) The strange adding machine case as wild attractor, see [Br4].
(b) The Fibonacci-like map with kneading map Q(k) = max{k − d, 0}, d = 2, 3, 4, see
Theorem 34 and Corollary 36.
(c) The Fibonacci-like map with kneading map Q(k) = max{k−5, 0}, see Proposition 39.
(d) See Example 40.
Proposition 37 implies the existence of ε-scrambled sets in the fibers π̃−1(τ) for all τ ∈ S1

and factor maps π̃ in case (b), and for cases (c) and (d), the ε-scrambled set is also
immediate. Li-Yorke sensitivity follows as well. ¤

Remark 41. In case (a) and (b) of Theorem E, (A, µA, f) is not weakly mixing. Instead,
there is an f2-invariant set of positive µ2-measure that is bounded away from the diagonal
of A2. We expect that case (c) always corresponds to the weakly mixing case, cf. Proposi-
tion 39, and in particular, µA×µA-a.e. pair (x, y) has a dense orbit in A×A, and hence
is Li-Yorke.

Remark 42. In case (a), points x in the basin of A have a distinct target point tx ∈ A
such that dist(fn(x), fn(tx)) → 0, see Proposition 6. In case (b), such target points tx ∈ A
do not exist in general, cf. the proof of Proposition 37 and also [BHa, Remark 2].

7. Appendix

In this appendix, we prove the more technical results of the paper, divided into four parts.
First we give a result on the structure of solenoidal sets of Feigenbaum type, next we prove
Theorem 20, then we formulate an improved C3 Koebe distortion lemma, and finally we
prove Theorem 21.

7.1. Neigborhoods of Solenoidal Sets. Assume that S is a solenoidal set and cyc(K)
is a solenoidal cycle of period r containing S. Let Si = S ∩ f i(K), 0 ≤ i < r. Since the
critical points in cyc(K) belong to S, the convex hulls Ji of Si form a cycle of intervals,
that is, f(Ji) = Ji+1 for every i (with this we also mean f(Jr−1) = J0). We call it the
r-minimal solenoidal cycle covering S. We emphasize that the intervals Ji are pairwise
disjoint (because a solenoid contains no periodic points). Moreover, if they are ordered in
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the real line as Ji1 < Ji2 < · · · < Jir , then there is a union of periodic orbits P = {pi}r−1
i=1

such that Ji1 < p1 < Ji2 < p2 < · · · < pr−1 < Jir (see [MT] or [AJS]).

The existence of these periodic orbits of smaller period interlaced among the intervals
Ji allows us to prove immediately that the union Li of all periodic intervals of period r
containing Ji is also periodic of period r. Clearly, f(Li) ⊂ Li+1 and f(∂Li) ⊂ ∂Li+1 for
every i. However, although the intervals Li have pairwise disjoint interiors, they do not
form a cycle of intervals because f(Li) = Li+1 need not hold. In fact (Li)

r
i=0 is the pullback

chain of Lr := L0 along J0, J1, . . . , Jr = J0. Let Mi = IntLi. We call M =
⋃r−1

i=0 Mi the
r-shell covering S. Then M is nice and Ji ⊂Mi for every i.

Proposition 43. Let f ∈ C2
nf(I) and let S be a solenoidal set of Feigenbaum type. Let

T be the r-minimal solenoidal cycle covering S for some r, T =
⋃r−1

i=0 f
i(J), and let

M =
⋃r−1

i=0 Mi be the r-shell covering S, with f i(J) ⊂Mi for every 0 ≤ i < r. Then there
is ξ = ξ(f) > 0 such that f i(J) is ξ-well centered in Mi for every i.

Proof. Since S is a solenoid, there is a turning point c ∈ S. There is no loss of generality in
assuming that c ∈ J . Also, we can assume that r is large enough so that each interval Mi

contains at most one critical point of f and there are no critical points in ClM outside T .
Hence (Mi)

r
i=0 is the pullback chain of Mr := M0 along J, f(J), . . . , f r(J) = J . Let cyc(R)

be the 2r-minimal solenoidal cycle covering S, with c ∈ R. We can for example assume
that [u, v] = R, f r(R) = [w, z] and c ∈ R is a local maximum, Note that J is the convex
hull of R∪ f r(R). Observe that there is a periodic point p of period r such that f i(p) lies
between f i(R) and f i+r(R) for every i. Since T is a solenoidal cycle, orb(p) is hyperbolic
repelling. In fact, since f is monotone on each on the intervals connecting f i(R) and
f i+r(R), it is the only r-periodic orbit in T and f r([u, p)) = (p, z], f r((p, z]) = [u, p).
Then (τc(p), p) is clearly the only nice periodic interval of period 2r containing c.
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Figure 3. The graph of f r : M0 = (a, b) →M0 with J and R and relevant points

By [SV, Theorem A’(1)] there are an integer s > 0, a number ξ0 = ξ0(f) > 0 and nice
periodic intervals Nm 3 c of periods s2m, m ≥ 0, such that Nm+1 is ξ0-well inside Nm
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for every m. We have shown in the previous paragraph that if s2m is large enough, then
there is just one nice periodic interval of period s2m containing c. Thus we can assume
that M0 = Nm and (τc(p), p) = Nm+1 for some m, with r = s2m.

Let q > p be the closest point to p satisfying f r(q) = τc(p). Then V = (p, q) is just the
pullback of U = (τc(p), p) along f r(R), f r+1(R), . . . , f 2r(R) = R. Since U is ξ0-well inside
M0, there is ξ1 = ξ1(f) such that V is ξ1-well inside M0, due to Corollary 14.

Let W = (q, b] with b the right endpoint of M0. Then ξ0|U | ≤ |V |+ |W | and ξ1|V | ≤ |W |,
hence

ξ0ξ1
1 + ξ0 + ξ1

(|U |+ |V |) ≤ |W |.

Then (τc(q), q) is well centered in M0 and so is any subinterval of (τc(q), q). In particular,
J is well centered in M0.

To finish the proof we must show that every interval f i(J) is well centered in the cor-
responding interval Mi. Note that we cannot directly use Corollary 14 because it only
guarantees that f i(J) is well inside Mi. Instead we proceed as follows. According to [SV,
Lemma 2], Mr := M0 is well inside an interval Gr which contains at most e = 2d+1 + 3 of
the intervals f i(M0), 0 ≤ i < r, with d = # Crit. Therefore it also contains at most e of
the intervals Mi. Now [SV, Lemma 3] implies that the pullback chain (Gi)

r
i=0 of Gr along

M0, . . . , f
r(M0) has order bounded by 2(e + d(e + 2)) + 1. Hence, by Corollary 14, Mi

is well inside Gi for every i and, additionally, if some iterate f l maps diffeomorphically
Mi onto Mi+l, then this diffeomorphism has bounded distortion. Thus, if f i+l(J) is well
centered in Mi+l, f

i(J) is well centered in Mi. Using now Lemma 11 and recalling that
J = f r(J) is well centered in M0 = Mr, we conclude that every interval f i(J) is well
centered in Mi as we set out to show. ¤

7.2. Proof of Theorem 20. Later on we will apply the lemma below to the set Q = Crit
of critical points of our map f ∈ C2

nf(I); recall that we are assuming that f has no periodic
critical points, see (2).

Lemma 44. Let f : I → I be a multimodal map without wandering intervals and let
Q ⊂ I \ ∂I be a finite set containing no periodic points. Let x ∈ Q. Then there is an
arbitrarily small nice interval J 3 x such that orb(Q)∩ ∂J = ∅ and dist(orb(∂J), Q) > 0.

Proof. Let Q′ =
⋃∞

n=−∞ f
n(Q). We claim that the set P = AsPer \Q′ is dense in I.

This implies the lemma. Indeed, let ε > 0 be small. Since x is not periodic, there is no
loss of generality in assuming that orb(Q) ∩ (x− ε, x + ε) does not contain any periodic

point. Take points â ∈ (x − ε, x) ∩ P , b̂ ∈ (x, x + ε) ∩ P , and let a < x < b be the

points from Cl(orb(â) ∪ orb(b̂)) closest to x from both sides. We emphasize that both

â and b̂ are asymptotically periodic and x is not periodic, so a and b are well defined.
Moreover, (a, b) is nice. Also, a /∈ Q′. If a ∈ orb(â) ∪ orb(b̂) this is obvious because

â, b̂ /∈ Q′. If a /∈ orb(â) ∪ orb(b̂), then a must belong to a periodic orbit attracting either

orb(â) or orb(b̂), and again a /∈ Q′ because Q contains no periodic points and neither
does orb(Q) ∩ (x − ε, x + ε). Similarly, b /∈ Q′. We have shown that orb(Q) ∩ {a, b} =
∅ and (orb(a) ∪ orb(b)) ∩ Q = ∅. Since a and b are asymptotically periodic and Q
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contains no periodic points, the property (orb(a) ∪ orb(b)) ∩ Q = ∅ implies in fact that
dist(orb(a) ∪ orb(b), Q) > 0. Thus J = (a, b) is the small nice interval we are looking for.

We prove that every interval K intersects P . If the intervals {fn(K)}n are pairwise
disjoint, then the absence of wandering intervals for f implies that these intervals are
attracted by a periodic orbit. Since f is multimodal, the set of points in K ∩ Q′ is
countable. Thus K intersects P .

Now assume that fn(K) ∩ fm(K) 6= ∅ for some n < m. Let k = m − n. Using again
that f is multimodal, we get that T = Cl(

⋃∞
r=0 f

n+rk(K)) is a nondegenerate interval.
Moreover, it is invariant for fk. If fk|T has finitely many periodic points, then all points
from T are asymptotically (or eventually) periodic, see e.g. [BC, p. 127], so all points
from K are asymptotically periodic as well and K ∩P 6= ∅ as before. If fk|T has infinitely
many periodic points, there is a family of disjoint periodic orbits {Oj}∞j=1 such that
orb(K) ∩Oj 6= ∅ for every j. If j is large enough, then orb(Q) ∩Oj = ∅. Let y ∈ K be a
preimage of such Oj. Then y /∈ Q′, which finishes the proof. ¤

The next proposition strengthens [CL, Proposition 5]. In what follows, we say that a
nice set V is ξ-nice if all return domains to V are ξ-well inside the components of V
containing them. Sometimes we say that V is uniformly nice if it is ξ-nice for some
constant ξ depending only on f . We denote

Z = {x ∈ I : x /∈ orb(Crit), dist(orb(x),Crit) > 0}.
Observe that f−1(Z) = Z and that (reasoning as in the proof of Lemma 44) Z is dense
for f ∈ C2

nf(I). We denote by Feig the critical points of Feigenbaum type.

Proposition 45. Let f ∈ C2
nf(I). Then there are ξ0 = ξ0(f) > 0 and, for every ε > 0

and c ∈ Crit \Feig, open intervals c ∈ Vc with |Vc| < ε, such that V =
⋃

c∈Crit \Feig Vc is
ξ0-nice and ∂V ⊂ Z.

Proof. In Cai and Li’s version of this proposition, all critical points of solenoidal type
(not only those of Feigenbaum type) are excluded and no additional properties on ∂V
are obtained. Nevertheless, the proof remains very much the same. We sketch it below,
emphasizing the specific points where it must be modified.

First of all, we prove:

Claim 1. There is ξ1 = ξ1(f) such that if c ∈ Crit \Feig, then there are arbitrarily small
ξ1-nice intervals J containing c such that ∂J ⊂ Z.

This is [CL, Corollary 3], but including also solenoidal critical points of non-Feigenbaum
type. If c is recurrent, then Claim 1 follows immediately from Propositions 15 and 16.
In fact, if c is not solenoidal, and we take as the starting interval I0 in Proposition 16
a small nice interval containing c with ∂I0 ⊂ Z (which is possible by Lemma 44), then
the central return domain Im to Im−1 satisfies ∂Im ⊂ Z as well for all m. Thus if m is
large enough and Im+1 is well inside Im, then, by Proposition 15, Im+1 is the uniformly
nice interval we need. If c is solenoidal, then Propositions 15 and 16 again imply that
there is an arbitrarily small uniformly nice interval J containing c. Observe that if J is
sufficiently small, then it is contained in a solenoidal cycle very close to ω(c), which in
particular implies that the orbits of its endpoints cannot accumulate on any critical point
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outside ω(c). Also, since J is nice and ω(c) is minimal, they cannot accumulate on ω(c)
either. Thus ∂J ⊂ Z.

If c is not recurrent then the argument from [CL, Corollary 3] applies without any signif-
icant changes. Namely, let I ′ 3 c be a small nice interval with ∂I ′ ⊂ Z. We can assume
that c /∈ D(I ′). Let δ be the minimal length of the components of I ′ \ {c} and take an
interval (a′, b′) ⊂ (c − δ/2, c + δ/2) with a′, b′ ∈ Z. This is possible by Lemma 44. If
a′ /∈ D(I ′), define a = a′. Otherwise, let K be the return domain to I ′ containing a′ and
let a be the endpoint of K ′ in (a′, c). The point b is defined similarly. Then J = (a, b) is
1/2-well inside I ′, ∂J ⊂ Z and ∂J ∩D(I ′) = ∅. If x ∈ J ∩D(J), then the return domain L
to J containing x is well inside the return domain L′ to I ′ containing x by Proposition 15.
Since ∂J ∩D(I ′) = ∅, we obtain L′ ⊂ J . Then L is well inside J and J is uniformly nice.

Claim 2. Let c1, c2, . . . , ck ∈ Crit and Vi 3 ci be nice intervals such that V =
⋃k

i=1 Vi is
a ξ-nice set and ∂V ⊂ Z. Then there is ξ′ = ξ′(ξ) > 0 such that the following hold.

(1) For each 1 ≤ i ≤ k, there exist nice intervals Wi ⊃ Ṽi 3 ci such that
– Ṽi is ξ′-well inside Wi and Wi is ξ′-well inside Vi;
– ∂Ṽi ∩D(V ) = ∅ and ∂Wi ∩D(V ) = ∅. In particular,

⋃k
i=1 Ṽi is a nice set;

(2) For each x ∈ Vi \Cl Ṽi, there is a nice interval Jx 3 x such that Jx is ξ′-well inside
Vi and Jx ∩ Ṽi = ∅, ∂Jx ∩D(V ) = ∅.

(3) The endpoints of all intervals above belong to Z.

Claim 2 is exactly [CL, Lemma 3], except that we additionally request ∂V ⊂ Z and get
the extra property (3) in return. The proof requires no changes: only, instead of defining
the auxiliary interval (p′, q′) = (a− ξ′(b− a)/4, b+ ξ′(b− a)/4) for Ṽi = (a, b), we choose
p′, q′ ∈ Z with p′ ∈ (a−ξ′(b−a)/3, a−ξ′(b−a)/4) and q′ ∈ (b+ξ′(b−a)/4, b+ξ′(b−a)/3).

We are now in position to prove Proposition 45. This is done inductively. Let Crit \Feig =
{c1, . . . , cm}. If m = 1, then this is just Claim 1. Assume that we have constructed
intervals Vi 3 ci with |Vi| < ε and ∂Vi ⊂ Z, 1 ≤ i ≤ k, such that

⋃k
i=1 Vi is ξk-nice for

some constant ξk > 0. We will show that there are smaller intervals Ṽi 3 ci with ∂Ṽi ⊂ Z,
and a constant ξk+1 depending only on ξk, such that

⋃k+1
i=1 Ṽi is ξk+1-nice.

The intervals Ṽi, 1 ≤ i ≤ k, are those from Claim 2. To define Ṽk+1 and conclude the
proof, two cases must be considered. If ck+1 ∈ D(

⋃k
i=1 Vi), then Cai and Li’s proof works

without any changes (it uses Claim 2 in its full extension).

If ck+1 /∈ D(
⋃k

i=1 Vi), then we need to find intervals ck+1 ⊂ Ṽk+1 ⊂ Vk+1 with |Vk+1| < ε,
Ṽk+1 well inside Vk+1 and ∂Ṽk+1 ⊂ Z, such that

⋃k+1
i=1 Vi is nice and ∂Ṽi /∈ D(

⋃k+1
i=1 Vi) for

every 1 ≤ i ≤ k + 1.

We define Vk+1 and Ṽk+1. Since Ṽk+1 is well inside Vk+1 and ∂Ṽk+1 ⊂ Z, we only need to
show that ∂Vk+1, ∂Ṽk+1 /∈ D(

⋃k+1
i=1 Vi). (Recall that the endpoints of the intervals Vi, Ṽi,

i ≤ k, belong to Z, hence their orbits cannot visit Vk+1 if it is sufficiently small.)

As in the proof of Claim 1, three possibilities arise for ck+1. The simplest case is when
ck+1 is solenoidal. Then Vk+1 is defined as in Claim 1 and Ṽk+1 is the return domain to
Vk+1 containing ck+1; everything works because ck+1 /∈ D(

⋃k
i=1 Vi).
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Now assume that ck+1 is not solenoidal. Starting from a small interval (a′, b′) 3 ck+1

with a′, b′ ∈ Z and repeating the reasoning in Case 2 of Cai and Li’s proof, we find an
interval ck+1 ∈ (a, b) ⊂ (a′, b′) such that a, b ∈ Z and (a, b) ∪ ⋃k

i=1 Vi is nice. If ck+1 is
recurrent, we take I0 = (a, b) in Proposition 16, and define accordingly the intervals Im.
Then Im ∪ ⋃k

i=1 Vi is nice for every m because ck+1 /∈ D(
⋃k

i=1 Vi). Now it suffices to fix
m′ such that Im′ is uniformly nice and define Vk+1 = Im′ and Ṽk+1 = Im′+1. If ck+1 is
non-recurrent, then we find an interval J 3 ck+1, similarly as we did in Claim 1, such that
∂J ⊂ Z, ∂J ∩D((a, b) ∪ ⋃k

i=1 Vi) = ∅, and J is 1/2-well inside (a, b). Then Vk+1 = (a, b)
and Ṽk+1 = J are adequate to our purposes.

Let us finally show that with this choice, Ṽ =
⋃k+1

i=1 Ṽi is uniformly nice. Let x ∈ Ṽn∩D(Ṽ ),
say φṼ (x) ∈ Ṽl. Let 0 ≤ s ≤ t be the entry time of x to Ṽl and the return time of x to Ṽ ,

respectively, and denote the return domain to Ṽ and the entry domain to Vl containing
x by J and K respectively, so x ∈ J ⊂ K. By Proposition 15, the pullback H of Ṽl along
f s(x), . . . , f t(x) is well inside Vl. Note that J is the pullback of H along x, . . . , f s(x) and
K is the pullback of Vl along x, . . . , f s(x). Hence J is well inside K by Corollary 14.
Since ∂Ṽn /∈ D(

⋃k+1
i=1 Vi), K is contained in Ṽn, so J is well inside Ṽn. This proves that Ṽ

is uniformly nice. ¤

Proof of Theorem 20. Fix ε > 0. We define the sets c ∈ Uc ⊂ Vc and Wc as follows.
If c ∈ Crit \Feig, then Vc is the component of the set V from Proposition 45 containing
c. Write Vc = (a, b) and say, for instance, that (c, b) is the smallest component of Vc \ {c}.
Define the convex combinations

v0 :=
c+ ξ′0 b
1 + ξ′0

and vi :=
vi−1 + ξ′0 b

1 + ξ′0
, i = 1, 2, 3,

with ξ′0 = ξ0(f)/2 and ξ0(f) the constant from Proposition 45. Take v′ ∈ (v0, v1)∩Z close
to v0. If v′ /∈ D(V ), then set v = v′; otherwise let v be the right endpoint of the return
domain to V containing v′, and by having chosen v′ close to v0, we obtain v0 < v′ ≤ v < v1.
This gives v ∈ ((v0, v1) ∩ Z) \ D(V ), and, similarly, there is w ∈ ((v2, v3) ∩ Z) \ D(V ).
If c ∈ D(V ), let u denote the left endpoint of the return domain to V containing c; if
c /∈ D(V ), take u0 = c − (v0 − c) = 2c − v0 and find as before u ∈ (u0, c) belonging to
Z \D(V ). Finally we define Uc = (u,w) and Wc = (v, w).

For critical points of Feigenbaum type we rely on Proposition 43. More precisely, for every
Feigenbaum solenoidal set S, we find a minimal solenoidal cycle T = cyc(Ĵ) =

⋃s−1
i=0 f

i(Ĵ)
containing S whose constituting intervals are small enough to ensure that |Vc| < ε for the
components of the corresponding set V . Then the intervals Uc are those from the shell
M =

⋃s−1
i=0 Mi of T containing points from Crit (that is, from Feig). To define the sets

Vc assume, after reordering, that M0 = Ms is the smallest of all intervals Mi. Since the
intervals f i(Ĵ) are well centered in the intervals Mi by Proposition 43, there is an interval
Gs such that Ms is well inside Gs and Gs intersects no other interval from the solenoidal
cycle T than Ĵ = f s(Ĵ). Pulling back Gs along f(Ĵ), . . . , f s(Ĵ), we construct similarly

intervals Gi, i = 1, . . . , s, such that Mi is well inside Gi and Gi∩T = f i(Ĵ). The intervals
Vc are those intervals Gi containing points from Crit.

To define the sets Wc we take a boundary point q of M0 with f s(q) = q (in fact the proof of
Proposition 43 shows that it is possible that f s/2(q) = q). For every 0 ≤ i < s, let ui denote
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the middle point between f i(q) and the endpoint of f i(Ĵ) closest to f i(q). If Mi contains
a critical point, let Li be the interval with endpoints f i(q) and ui; if not, let Li = Mi.
Finally, let L′i ⊂ Li be the largest interval with endpoint f i(q) such that f j(L′i) ⊂ Li+j

for all 0 ≤ j < s with indices taken mods, and hence f s|L′i is a diffeomorphism. Now the
intervals Wc are those intervals L′i contained in intervals Uc = Mi intersecting Crit.

We show that (i)-(iii) in Theorem 20 hold. Clearly, the construction implies the existence
of a number ξ = ξ(f) > 0, thus not depending on ε, such that Uc is ξ-well inside Vc for
every c ∈ Crit. Moreover, since the endpoints of all sets Wc′ , Uc′ , Vc′ , c

′ ∈ Crit \Feig,
belong to Z \ D(V ), we can assume that they do not belong to D(Vc), c ∈ Feig, either.
If c′ ∈ Feig, then the niceness and invariance of shells still guarantees ∂Uc′ ∩ D(Uc) = ∅
for every c ∈ Crit and ∂Uc′ ∩ D(Vc) = ∅ for every c ∈ Crit not belonging to the same
solenoidal set as c′. In particular, U =

⋃
c∈Crit Uc is nice. This proves Theorem 20(i).

Now let J be an entry domain to U , say φ|J = f j|J and φ(J) = Uc. Then f j|J is a
diffeomorphism. We want to show that f j|J extends to a diffeomorphism f j|K : K → Vc.
Assume by contradiction that this is not the case. Then there is K ′ ⊃ J such that f j|K′

is a diffeomorphism, one of the endpoints a of K ′ satisfies c′ = fn(a) ∈ Crit for some
1 ≤ n < j, and f j({a} ∪K ′) ⊂ Vc.

Let b ∈ K ′ such that fn(b) ∈ ∂Uc′ (here we use that fn(J) does not intersect U). We
can assume that both c and c′ belong to the same Feigenbaum solenoidal set S, because
otherwise ∂Uc′ ∩D(Vc) = ∅, which contradicts f j(b) ∈ Vc. Let T = cyc(Ĵ) be the minimal
solenoidal cycle for S we used earlier to construct the sets Uc, Vc. Then there is i ∈ N
such that f j(J) = Uc ⊃ f i(Ĵ). Since f j(a) = f j−n(c′) ∈ S, there is i′ ∈ N such that

f j(a) ∈ f i′(Ĵ). But f j|{a}∪K′ is a homeomorphism, so f i(Ĵ) and f i′(Ĵ) are different. This
is impossible, because by its definition Vc intersects exactly one interval from T .

We have shown that if J is an entry domain to U , then f j|J : J → Uc extends to a
diffeomorphism f j|K : K → Vc. Since Uc is well inside Vc, there is κ = κ(f) such that f j|J
has distortion bounded by κ by the C2 Koebe Principle (Proposition 15). This finishes
the proof of Theorem 20(ii).

It remains to prove Theorem 20(iii). If c ∈ Crit \Feig, then the definition of Wc easily
implies that it is not too small compared to Uc. On the other hand, it is not too large
compared to the subinterval of Uc between c and Wc, so f |Wc has bounded distortion
because c is non-flat. Since ∂Wc ∩D(U) = ∅, Theorem 20(iii) holds in this case.

Assume now that c ∈ Feig and Uc is one of the above intervals Mi1 , with Wc = L′i1 .
Put kc = s and let i1 < i2 < · · · < it < i1 + s be the indices i such that Mi contains
some critical point. As shown in the proof of Proposition 43, each map f ir+1−ir−1|Mir+1

has
bounded distortion. Also, each map f |Lir

has bounded distortion because |Lir | is less than
half the distance from f ir(q) to the critical point in Mir and non-flatness applies. Hence
fkc |Wc = f s|L′i1 has bounded distortion. Recall that all periodic orbits in the intervals Mi

are repelling, and the same is true for orb(q). Then fkc(Wc) ⊃ Wc.

Finally, let us show that Wc is not too small compared to Uc. From its definition, Li1 is not
too small compared to Uc. Let Aj denote the largest interval with endpoint f j(q) such that
fk(Aj) ⊂ Lj+k for all 0 ≤ k ≤ ij− ij−1; hence A1 = Li1 and At = Wc. We claim that Aj+1
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is not too small compared with Aj. Indeed, Lij+1
is not too small compared to Mij+1

,
so a fortiori is not too small compared to f ij+1−i1(Aj). Since f ij+1−i1|Aj

has bounded

distortion and Aj+1 = Aj ∩ f−(ij+1−i1)(Lij+1
), Aj+1 cannot be too small compared to Aj

either.

This concludes the proof of Theorem 20. ¤

7.3. A C3 Koebe Distortion Lemma.

Lemma 46. Let f ∈ C3
nf(I). Then for any ξ > 0 and k ≥ 0, there is ξ′ = ξ′(ξ, k, f) > 0

such that the following statement holds: Let (Hi)
l
i=0 ⊂ (Gi)

l
i=0 be chains such that (Gi)

l
i=0

has order at most k and Gl is a small nice interval close enough to Crit. If Hl is ξ-well
inside Gl, then H0 is ξ′-well inside G0. Moreover, if k = 0, then there is κ = κ(ξ, f) > 0
such that f l|H0 has distortion bounded by κ.

A slightly weaker version of this lemma (requiring that the intervals Gi are not too close
to parabolic periodic points) appears in [LS], who in turns refer to [SV, Theorem C(2)].
Our proof is based on [SV, Proposition 3] and Theorem 20.

Proof of Lemma 46. Assuming that the components of U in Theorem 20 are suffi-
ciently small, we can conclude that iterates of f one beyond those mapping into U have
negative Schwarzian derivative. The idea behind obtaining negative Schwarzian derivative
goes back to Kozlovski [Ko], see also [GSS], and the precise statement is as follows.

Let f ∈ C3
nf(I) and U be as in Theorem 20. If the components Uc of U are

sufficiently small, and x is such that fn(x) ∈ U and f i(x) /∈ Crit for every
0 ≤ i ≤ n, then the Schwarzian derivative of fn+1 at x is negative.

“Sufficiently small” in this statement should be interpreted as that for each component
Uc of U and each i ≥ 0, each component of f−i(Uc) has length ≤ τ , where τ = τ(f)
is taken from [SV, Proposition 3] (choosing, with the notation in [SV, Proposition 3],
S = 1, N = 0 and δ the number ξ0 = ξ(f) from Theorem 20). If Uc is sufficiently small,
then this holds by Proposition 7. To prove the statement, let (Ji)

n
i=0 be the pullback

chain of Uc along x, f(x), . . . , fn(x) ∈ Uc. Let t1 < t2 < · · · < tm be the iterates such
that f tj(x) ∈ U , and hence the intervals Ji, tj + 1 ≤ i ≤ tj+1 are pairwise disjoint and∑tj+1

i=tj+1 |Ji| ≤ 1. Fix j > 1 for the moment. Then Jtj+1 is contained in an entry domain

J to U , say f tj+1−tj−1(J) = Uc′ . By Theorem 20(ii), there is K ⊃ J such that f tj+1−tj−1

maps diffeomorphically K onto Vc′ , hence the pullback chain of Vc′ along Jtj+1, . . . , Jtj+1

has order 0. Moreover, Jtj+1
is contained in Uc′ , so it is ξ0-well inside Vc′ . Therefore

[SV, Proposition 3] implies that f tj+1−tj has negative Schwarzian derivative at f tj+1(x).
For j = 1 and t1 > 0 (so x /∈ U), f t1+1 has negative Schwarzian derivative at x by the
same reasoning. If t1 = 0 (so x ∈ U), then f has negative Schwarzian derivative at x
by non-flatness. Since compositions of maps with negative Schwarzian derivatives have
negative Schwarzian derivative, the statement follows.

Now we continue with the proof of the lemma. Assume first k = 0. Fix ξ > 0 and
let (Hi)

l
i=0 ⊂ (Gi)

l
i=0 be chains such that (Gi)

l
i=0 has order 0 and Gl is contained in a

component Uc of the set U above. If G0 is an entry domain to Gl, then the statement is just



36 HENK BRUIN AND VÍCTOR JIMÉNEZ LÓPEZ

Proposition 13 because the intervals Gi are pairwise disjoint (Gl is nice). If not, again due
to the niceness of Gl, there is an interval Gt ⊂ Gl such that the intervals Gt+1, . . . , Gl are
pairwise disjoint, so we can apply Proposition 13 to the subchains (Hi)

l
i=t+1 ⊂ (Gi)

l
i=t+1.

Also, f t+1|G0 has negative Schwarzian derivative by the above statement, so we can apply
Proposition 12 to the subchains (Hi)

t+1
i=0 ⊂ (Gi)

t+1
i=0.

The general case k > 0 follows easily from this one (take also Lemma 11 into account).
Now we need Gl to be small enough so that every component of every preimage of Gl is
contained in U whenever it intersects Crit (again by Proposition 7). ¤

7.4. Proof of Theorem 21. Let x ∈ I be such that orb(x) is disjoint from ∂I. For every
n ∈ N and every 0 < ε < d(fn, ∂I) we construct the pullback chain of (fn(x)−ε, fn(x)+ε)
along x, f(x), . . . , fn(x). We define

rk
n(x) = sup{ε > 0 : order of the pullback chain of (fn(x)− ε, fn(x) + ε) ≤ k}.

If for every k we have rk
n(x) → 0 as n → ∞, then we call x a super-persistent point. In

[BM1, Theorem 2.7] (see also [BM2]) it is shown that for f ∈ C2
nf(I), the ω-limit set of

any super-persistent recurrent point of f is minimal.

Proof of Theorem 21. By definition of E and type (2) attractors, λ-a.e. x ∈ E has a
dense orbit in some cycle cyc(K) and therefore cannot be super-persistently recurrent,
nor map into ∂I. We can then find a sequence nj → ∞ and Nx ∈ N and δx > 0 such
that the pullback chain of (fnj(x)− δx, fnj(x)+ δx) along x, . . . , fnj(x) has order at most
Nx. Clearly we can take δf(x) ≥ δx and Nf(x) ≤ Nx (in fact, we have equality for large j
whenever x is not a critical point). Since Lebesgue measure has only finitely many ergodic
components [Ly1, Theorem 2], it follows that there are a single δ > 0 and N ∈ N such
that δx ≥ δ and Nx ≤ N for λ-a.e. x ∈ E.

Next choose ε > 0 in Theorem 20 so small that the intervals Uc ⊂ Vc, c ∈ Crit′, satisfy:

• if c is in the interior of the metric attractor cyc(K)r, then dist(Vc, ∂ cyc(K)) > 2δ;
moreover, if d ∈ Crit \Crit′, then either d ∈ ∂ cyc(K) or dist(d, cyc(K)) > δ;

• every component of every preimage of Vc, and every image fn(Vc), n ≤ 2r (with r
the period of cyc(K)), has length less than δ.

Recall that U ′ =
⋃

c∈Crit′ Uc, V
′ =

⋃
c∈Crit′ Vc. From their definition, both sets are nice.

Moreover, ∂U ′ ∩D(V ′) = ∅ where as before D(V ′) = ∪n>0f
−n(V ′).

Since orb(x) is dense in cyc(K), we can assume that the numbers nj are large enough so
that fnj(x) ∈ cyc(K) for every j. Let J be the entry domain to U (or the component
of U) containing fnj(x), say fmj(J) = Uc. Two possibilities arise. If J ⊂ cyc(K), then
c ∈ Crit′. Moreover, if K ⊃ J is such that fmj maps K diffeomorphically onto Vc, then
K ⊂ (fnj(x)− δ, fnj(x) + δ), so the pullback chain of Vc along x, . . . , fnj+mj(x) has order
at most N . The second possibility is that J contains some point from ∂ cyc(K), call it
a. It is not possible that a belongs to a periodic orbit contained in ∂ cyc(K), because
this would imply that one of the points of this periodic orbit belongs to Crit \Crit′, which
contradicts that cyc(K) contains dense orbits. Hence there is rj ≤ 2r (with r the period of
cyc(K)) such that |fnj−rj(x)−c′| < δ for some c′ ∈ Crit′. In fact, fnj−rj(x) ∈ Uc′ , because
otherwise fnj−rj(x) would belong to an entry domain J ′ to U contained in cyc(K), which
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leads to the contradiction f rj(J ′) = J ⊂ cyc(K). Since f rj(Vc′) ⊂ (fnj(x)− δ, fnj(x)+ δ),
the pullback chain of Vc′ along x, . . . , fnj−rj(x) has order at most N .

We have proved that there is a number N = N(f) such that, for a.e x ∈ D, there are
c ∈ Crit′ and a sequence sj → ∞ such that f sj(x) ∈ Uc and the pullback of Vc along
x, . . . , f sj(x) has order at most N . However, we need critical order 0, not N , for this
theorem, so a further argument is required.

Let kx ≥ 1 be the smallest integer for which there are Gx ⊃ Hx 3 x and c ∈ Crit′ such
that fkx maps Gx diffeomorphically onto Vc and fkx(Hx) = Uc. If x /∈ U ′, ω(x) = cyc(K)
and the entry domain Hx 3 x to U ′ is contained in cyc(K), then kx exists; it is the first
entry time kx = rU ′(x). But if x ∈ U ′, then kx is more difficult to find.

Claim 1. The set B := {x ∈ E : kx exists} has full Lebesgue measure in E.

Assume by contradiction that this claim fails, and that x is a density point of E \B. We
can find the sequence (sj)j∈N and c ∈ Crit′ as above, and let (Gj

i )
sj

i=0 and (Hj
i )

sj

i=0 be the
pullback chains of Gj

sj
= Vc and Hj

sj
= Uc along x, . . . , f sj(x), respectively. The chains

(Gj
i )

sj

i=0 have order ≤ N .

Let (Wt)t∈N be an enumeration of the return domains to V ′ within Vc \ Uc and also take
W0 := Uc. Recall that ∂Uc∩D(V ′) = ∅, so (Wt)t≥0 is a family of pairwise disjoint intervals
whose union has full measure in V ′. Since f sj |Gj

0
has at most N critical values, we can

arrange the enumeration of the Wts such that no critical value of f sj |Gj
0

is contained in

Wt if t > N . By Proposition 45 there is ξ = ξ(f) such that each Wt is ξ-well inside Vc.
By Lemma 46, there is ζ = ζ(ξ,N, f) such that each component of Gj

0 ∩ f−sj(
⋃N

t=0Wt)
is ζ-well inside Gj

0. This holds in particular for the at most M ≤ 2N+1 − 1 components
of f−sj(

⋃N
t=0Wt) in Gj

0. Let us denote these components as Yi, numbered in order of
decreasing size.

Claim 2. There are b = b(ζ,N) > 0 and Bj ⊂ Gj
0 such that λ(Bj) ≥ bλ(Gj

0) and for
every y ∈ Bj, there are ky ≥ sj, Gy ⊃ Hy 3 y and c(y) ∈ Crit′ such that fky maps Gy

diffeomorphically onto Vc(y) and fky(Hy) = Uc(y).

Take b = ζM/(M + 1)!. The components Yi are pairwise disjoint, and have ζ-collars
around them in Gj

0, which may intersect other components Yi′ or their collars. We will
show that λ(

⋃
i Yi) ≤ (1− b)λ(Gj

0). If λ(Y1) < λ(Gj
0)/(M + 1), then we get directly

λ(
⋃

i

Yi) < λ(Gj
0)M/(M + 1) = (1− 1/(M + 1))λ(Gj

0) < (1− b)λ(Gj
0).

Thus we can assume λ(Y1) ≥ λ(Gj
0)/(M + 1) and the ζ-collar of Y1 has two components

of length ≥ ζλ(Gj
0)/(M + 1). If the second largest Y2 satisfies Y2 < ζλ(Gj

0)/((M + 1)M),
then there is a set in the ζ-collar of Y1 of measure > ζλ(Gj

0)/((M + 1)M) which do not
intersect

⋃
i Yi. Hence

λ(
⋃

i

Yi) < (1− ζ/((M + 1)M))λ(Gj
0) < (1− b)λ(Gj

0)

again. Continuing this way, we find that at least one component Yk has a ζ-collar disjoint
from

⋃
i Yi and its size is ≥ ζMλ(Gj

0)/(M + 1)! = bλ(Gj
0).
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Now take Bj := E ∩ (Gj
0 \

⋃
i Yi). Then clearly λ(Bj) ≥ bλ(Gj

0), and if y ∈ Bj, we find ky

as follows. We have z := f sj(y) ∈ Wt for some t > N . There is rt such that f rt maps Wt

diffeomorphically onto a component of V ′. If f rt(z) ∈ U ′, then ky = sj + rt. Otherwise
f rt(z) ∈ V ′ \ U ′ and in fact f rt(z) belong to another return domain to V ′. We continue
iterating diffeomorphically until finally z falls into U ′, and we choose ky accordingly. This

proves the Claim 2. Obviously Bj ⊂ B, so λ(B ∩Gj
0) ≥ bλ(Gj

0) independently of j. Since
λ(Gj

0) → 0 as j →∞, this contradicts that x is a density point of I \B, proving Claim 1.

From Claim 1 the first part of Theorem 21 easily follows: if x, y ∈ B and kx ≤ ky, then
either Hx ∩Hy = ∅ or Hy ⊂ Hx. Now an easy maximality argument allows us to redefine
these sets if necessary so that either Hx ∩Hy = ∅ or Hy = Hx.

It remains to prove the second part of Theorem 21. Since a.e. point from U ′ belongs to
B, F : U ′ → U ′ is well defined a.e. It is important to note that if F is defined on x, then
Hx ⊂ Gx ⊂ U ′ because ∂(U ′) ∩D(V ′) 6= ∅. Now it is immediate to show by induction on
n that every branch F n|H = f j|H : H ⊂ U → Uc of F n admits a diffeomorphic extension
to an interval H ⊂ G ⊂ U with f j(G) = Vc. Therefore F n|H has distortion bounded by
a constant κ depending neither on n nor on H by Lemma 46. ¤
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[Ke] G. Keller. Exponents, attractors and Hopf decompositions for interval maps, Ergodic Theory
Dynam. Systems 10 (1990) 717–744.

[Ko] O. S. Kozlovski, Getting rid of the negative Schwarzian derivative condition, Ann. of Math. (2)
152 (2000) 743–762.

[Le] F. Ledrappier, Some properties of absolutely continuous invariant measures on an interval, Er-
godic Theory Dynam. Systems 1 (1981) 77–93.

[LS] S. Li, W. Shen, Hausdorff dimension of Cantor attractors in one-dimensional dynamics, Invent.
Math. 171 (2008) 1629–1643.

[LY] T. Li, J. A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975) 985-992.
[Ly1] M. Lyubich, Ergodic theory for smooth one dimensional dynamical systems, Stony Brook preprint

1991/11.
[Ly2] M. Lyubich, Combinatorics, geometry and attractors of quasi-quadratic maps, Ann. of Math. (2)

140 (1994) 347–404.
[LM] M. Lyubich, J. Milnor, The Fibonacci unimodal map, J. Amer. Math. Soc. 6 (1993) 425–457.
[MMN] M. Majumdar, T. Mitra, K. Nishimura (eds.), Optimization and chaos, Studies in Economic

Theory 11, Springer-Verlag, Berlin, 2000.
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