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Abstract

We consider a class of random billiards in a tube, where reflection angles at collisions with the
boundary of the tube are random variables rather than deterministic (and elastic) quantities. We
obtain a (non-standard) Central Limit Theorem for the displacement of a particle, which marginally
fails to have a second moment w.r.t. the invariant measure of the random billiard.
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1 Introduction

In this paper we prove a non-standard Central Limit Theorem for the horizontal displacement of
a particle that moves horizontally, but in a random way, in an infinite strip (called the tube) of
width W that has a non-smooth boundary. A billiard system like this was first considered in [13],
where the aim was to devise a more mathematical approach to studying a gas flow in a tube where
collisions with the wall are not deterministic, but random. This randomness can be caused by
some energy at the boundary, or by the presence of a chemical structure on the boundary. In the
second case a question, already posed by Knudsen in [19], is how the chemical structure affects
the movement of the particles.

The long-term behaviour of particles, can be understood by proving statistical properties about
a corresponding billiard model such as introduced in [13]. A recurring property of these models is
that the post-collision angle will be random variables depending on the pre-collision angles. This
gives rise to a Markov chain, of which variations were studied in [12, 13, 14, 15]. Similar to
what is done in the previously mentioned papers, we will model the roughness of the boundary
of the tube by covering it with tiny so-called microstructures, which are small billiards tables
bounded by finitely many convex smooth curves and an open side at the boundary of the tube, see
Section 2 for a precise description of these microstructures. We will compute the trajectories in
these microstructures using the rules of deterministic, elastic billiards. The randomness is sitting
only in the entrance point of the particle into a microstructure; this will be a random variable
on the open side. This is motivated by the fact that microstructures model microscopic chemical
structures which are tiny compared to the width W of the tube. The randomness captures the
effect that from the macroscopic scale of the tube it is hard to predict where exactly a microscopic
structure will be entered, so that it will seem random.

The geometric setup is somewhat analogous to the Lorentz gas in a one-dimensional tube
with infinite horizon, see [21], especially since we model the microstructures to be tangent to the
tube. Several refined stochastic properties of the deterministic Lorentz gas with infinite horizon
(for dimensions 1 and 2) have been obtained in recent years, see [7, 4, 5, 20] and references
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therein. Substantial progress was made in understanding a certain class of random perturbations
(for instance, random perturbations of the shape of the scatterers) of finite and infinite horizon
billiards [9]. In the finite horizon case, a (standard) central limit theorem is also obtained in [9].
In the random billiard model considered here we don’t prescribe the exact positions of the
particle along the boundary of the tube and as a consequence, there is no spacial periodicity.
Therefore, the existing methods of treating determistic Lorentz gases do not work as such. We
consider the position of the particle once it reaches the boundary of the tube as random, and
use this randomization to replace the two-dimensional billiard map by a piecewise expanding one-
dimensional random map ¥g,. The parameter R; is a random variable taking values in [0, 1],
distributed according to some probability measure v and representing the entry point into the
microstructure when the particle reaches the boundary for the i-th time, see Sections 2 and 3 for a
precise description. Similar to the deterministic billiard case, where the invariant measure is of the
form dfi(r,0) = C'sin(6 dr df, the maps ¥ g, preserve a measure du(f) = 3 sin(6)d#, for each R; (it
is in fact the restriction of fi to the angle component). Instead of modelling the random billiard
system by a Markov chain, we carry out the analysis in terms of a random dynamical system (that
is, a skew product) with expanding fiber maps Ug,. An orbit of such a random dynamical system
has the form
0, \IIR1 (0)7 (\Ile © ‘1132)(9)7 (‘1133 © ‘Iij ° \IlRl)(e)ﬂ cee (1)

This orbit is the sequence of post-collision angles of the particle in this model. The random
dynamical systems point of view allows us to consider a so-called averaged transfer operator
P : BV — BV (analogue of the Markov operator for the involved Markov chain) on the space
of functions of bounded variation BV. This space is convenient for proving the main goal in this
paper, namely the statistical properties of the horizontal displacement of the particles in the tube.
For this, we introduce the observable X : (0,7) — R, X () := W/ tan(¢), the (one-step) horizontal
displacement. The main result of this paper is Theorem 1.1, which gives a Central Limit Theorem
with nonstandard normalization of X. The nonstandard scaling comes from the fact that X does
not have a second moment, i.e., it is superdiffusive. Note that the expectation E,(X) = 0.

Theorem 1.1. Write S, := Z;:ll X; where X; :== X o(Wg,0---0Wg,). Then \/% converges

in distribution to a Gaussian random variable with mean zero and variance W= under the measure
z
v®¥% @ p.

A direct consequence of Theorem 1.1 is that the horizontal position of a particle in the long
run will not be influenced by the specific geometric parameters of the microstructures, such as the
curvature, but only by the width of the tube W. A technical reason for this is that the variance of
the Gaussian only depends on the tail u(|X| > t), see Sections 7.2 and 7.3. Here the tancency of
the microstructures to the tube boundary from assumption (M2) in Section 2.2 is crucial. Since
the invariant measure p does not depend on the specific shape of the microstructure, other than
by the curvature being positive!, and since X does not depend on the microstructures, there will
be no geometric parameters of the microstructure in the expression of this tail, see Lemma 7.1.

There is still some effect on of the specific parameters of the microstructures on the particle
movement, but this is only visible in the sequence of post-collision angles (1). As a consequence
of the Lasota-Yorke inequality Proposition 6.1, this sequence is mixing exponentially on average,
that is

/ (¥r, o0 Ur, (A) N B) — w(A)u(B)d(Ry, .., Ry)| < Ca,
[O,I]TL

where a < %Jr C_ , and where Kmin is the minimal curvature on the boundary of a microstructure.

Kmin

Thus, the larger the minimal curvature, the stronger the decay of correlations for the angle process.

Main ingredients of the proofs. The proof of Theorem 1.1 relies on the use of the Nagaev-
Guivarc’h spectral method to the type of randomness considered here, as previously described.
We consider the transfer operator of the fiber maps Ug, (see formula (17)) and using the measure
v according to which the random variables R; are distributed (see again Section 3), we define the
average transfer operator P of the random dynamical system (see formula (18)). For the transfer

LIf the curvature of all the curves that make up the boundary of a microstructure is 0 at too many places, some
different, atomic, invariant measures are possible. See for example [12].



operator P, along with its perturbation P;f = P(e“Xf), we obtain a spectral gap in BV. We also
obtain a required good continuity estimate (in t) for ||P; — P||pv. For both ingredients, spectral
gap and continuity, we will heavily use the type of randomization described above, by which the
random dynamical system is defined.

Structure of the paper. In Section 2 we give a precise description of the model and record
some needed technical results. In Section 3 we discuss the randomization, and the form of the
transfer operator that comes with it. Section 4 contains the main variation estimates of the map
Wg,. In Section 5 we give the continuity estimates for the transfer operator perturbed with the
displacement function X, as needed for the Nagaev method. The spectral decomposition (in BV)
of the averaged operator, along with Lasota-Yorke inequalities, is obtained in Section 6. The
Lasota-Yorke inequality is done after the continuity estimate since the former will have similar but
easier estimates than the latter. In Section 7 we complete the proof of Theorem 1.1.

2 Definition of model and basic calculations

2.1 The tube

The tube is a bi-infinite strip R x [0, W], bounded by two horizontal lines ¢o = R x {0} and
lw = R x {W} for some large W > 0. A particle moves with constant speed back and forth
between £y and /. When the particle reaches £y or £y for the i-th time, it enters a microstructure
M;. It will bounce a bounded number of times inside M before exiting and moving to the other
side of the tube gaining a horizontal displacement X; = W/ tan 65", see Figure 1.

Lw
X; = W/ tan 6%
w the particle
Arrows indicate the
Lo direction of parametrization

e Mz righ
Fﬂ/m/;; = Fig *

Figure 1: The tube with a piece of trajectory and microstructure M;.

Remark 2.1. All angles will be between Lo or £w (for 05“') or tangent lines at collision points
(for 6 ;) and the outgoing trajectory. We use the direction of the parametrization, as in the
Chernov & Markarian book [8], except that they use angles with the normal vectors, rather than
with tangent lines, see Figure 2. This convention means that £y is parametrized left-to-right and
lw is parametrized right-to-left, as shown already in Figure 1.

Let us denote by h; the map that assigns the i-th entrance coordinates (rf"7 92:") to the previous
exit coordinates (r“%, 62“%). The arrows of £y and £y as depicted in Figure 1 follow this convention
for the tube, but for the open side of the microstructures M;, the arrow should be reversed. The
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Figure 2: Convention for the angles 69**, 6" and 0; ;.

map h; therefore has the form

hi(reet, 028) = (ri™,0%) = (%% — W/ tan 621, 07"

Dh — 1 W/sin® 6%, (2)
o 1 '

Thus h; represents the flight from fw to £y (or from £y back to fw ), and this flight has length
7i = W/sin 02", The term W/ sin? 054 in Dh; in (2) expresses the effect of a change in 5% on
the horizontal displacement at the entrance on the other side of the tube; it depends on W and
even if it has no effect on 6", it will have an important effect on the next collision points and
angles.

2.2 The microstructures

The microstructure M, entered at the i-th visit to the boundary of the tube is an area of unit
length, with a boundary d.M; made up of a finite number of smooth convex curves

lef 1 k igh
OM; :=TF"uUrju.-.--uryurye

for some fixed k. Here I'*®* and F?ght are the left and right curve of the microstructure directly
adjacent to the tube boundary, called the left cheek and right cheek respectively. When we consider
a trajectory inside M;, we will only be interested in the boundary curves with which the particle
has a collision. Given a trajectory with n; = n(ri", ") collisions with OM; during the i-th visit
to a microstructure, we will denote the boundary curve at the j-th collision in M; by I'; ;, so
with a subscript instead of a superscript, and where j = 1,...,n,;. Thus, during the trajectory
in M;, the particle first collides with I'; 1, next with I'; 2, etc. Let I'; 0 C OM; be the open side
of M;, so I'; 0 belongs to €y and fyw, alternatingly. The lengths |I'; 0| = 1. We use coordinates
(ri" ™) € R x (0,), i € Z, for the entrance of the trajectory at the open side I'; o of M;, and
(r2“t, 09") for the exit coordinates at I'; o.

In accordance with Remark 2.1, the boundary pieces are parametrized by r oriented in such a
way that M, is always to the left of the positively oriented tangent vector.

Let (74,5,0:,;) indicate the position and outgoing angle at the j-th collision with 9M,;. The
angle 6; ; is measured with respect to the tangent line at the collision point I'; ;(r;,;) following the
convention of Remark 2.1, so 6; ; € [0, 7], with grazing collisions for ; ; = 0 or w. Note that

(ri",07") = (rio,6i0) and  (r{"",67"") = (rim,, 0in,)- 3)

The curvatures of M, at the collision points I'; j(7; ;) are denoted as r;,;. The “open” side I'; 0
of OM; is a straight arc, so Ki,0 = Kin; = 0.

We assume that all microstructures have the same shape and size, and satisfy the following
general conditions.



(M1) All Ff are convex and there exist 0 < Kmin < Kmax < 00 such that the curvature r — /i{ (r)
are piecewise monotone functions bounded between Kmin and Kmax. Here r is the parameter
parametrizing I'7.

(M2) The curves I'*® and F;?ght that are adjacent to the open side I'; o of M; are circle segments
tangent to the boundary of the tube, that is, at the intersection points, the tangent lines of
left right .
" and I';*™ are horizontal.

(M3) There is 7o > 0 such that the angle v between any neighbouring pair of curves (other than
Tio0) lies in (0,7 — 70)-

(M4) There is ag < 5 such that the normal vectors on I'; pointing toward the tube have an angle
a € [—ao, ap] with the vertical direction pointing towards the tube.

Assumption (M1) makes the fiber maps Ug, expanding, which will be important for the proofs in
the later sections. The tangency from assumption (M2) is crucial for obtaining the tail estimates
1(|X| > t) that underlie the superdiffusion, i.e., the need of nonstandard scaling in the Central
Limit Theorem. Furthermore, this assumption gives a more predictable bouncing of particles
hitting the boundary of the tube with small angles, not unlike the skipping stones over the surface
of the water. Some parts of these assumption (i.e., that the curvature is uniformly bounded and
bounded away from 0 and that I'°® and F;ight are circle segments) are somewhat artificial and
probably needlessly strong, but they much reduce the technicalities of the proofs, as needed in for
example Section 4.

Assumptions (M3) and (M4) imply that there is a uniform upper bound N of the number of
collisions n; that a particle can have before exiting M;, see Lemma 2.3 below. Assumption (M3)
prevents that OM; has cusps (essential for establishing the bound N), and it also prevents that
there are two grazing collisions (i.e., sinf; j_1 = sin#; ; = 0) with arbitrarily small intermediate
flight time. A somewhat more technical version of this fact is stated in the next lemma,; it is used
this way later in Lemma 4.2.

Lemma 2.2. Under Assumption (M38) above, there is K = K () > 0 such that such that

inf7i jKi ki1 + Kij-18inb; + ki jsind ;1 > K. (4)
¥

Figure 3: The triangle with angles 6; ;_1, 6; ; and 7 > =, siny > 7.

Proof. All curvatures k; ; are bounded away from zero, so the three terms in (4) are non-negative.
Thus it suffices to show that no more than two of these terms can be arbitrarily small. Assume
that the j-th flight-time 7; ; is very small. Then the j—1-st and j-th collision points P;_1 ad P; are
on neighbouring arcs of I';. Consider the triangle as in Figure 3; its angles are m — 0; ;_1, ™ — 0, ;
and v where 7/ > «, which is the angle between T'; ;_1 and T'; ;. This angle v/ — ~ as 7;,; — 0,
so we can assume that 7 < (7 + ~)/2 for small 7; ;. Then 0, ;_1 +6;; =7+~ < B +7)/2is
bounded away from 27. Thus for small 7; ;, the angles 6; ;_1 and 6;,; cannot be simultaneously
close to m. The lemma follows from this. ]

Lemma 2.3. Under (M2) and (M4), the number of collisions during a visit to a microstructure
is bounded.
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Figure 4: Rules 1. and 2. in the proof of Lemma 2.3.

Proof. Condition (M2) excludes cusps, so there are ¢ > 0 and > 0 such that if 7; < &, then
the angle between the tangent lines at collision point 7; ;1 and r; ; is at least §. This prevents a
trajectory from having many consecutive collisions near a single corner point.

Let 45,; be the angle of the outgoing trajectory from collision point r; ; with the horizontal.
We will assume that cos;,; > 0; otherwise we can look at the image under left-to-right reflection
and get the same result. Also assume that sin); ; > 0, so the trajectory points away from the
tube.

Let as,; be the angle of the normal vector at r; ; with the horizontal. By assumption, a;,; €
(0, 7). Recalling (M4), we have two cases, see Figure 4:

1. fas 5 €[5, 5 + aol, then 4 j_1 > ay ; — 5. Therefore

™
i = Wig—1 4 2y = Yijo1) =T S i1 +25 =i

This can happen without ; ;—1 actually decreasing, namely at a grazing collision when

i j—1 = i j — 5. But according to Lemma 2.2, consecutive (almost) grazing collisions can

only occur with a definite distance in between, so after a bounded number of collisions, ¥; ;1

becomes negative, or the other case occurs.

2. Ifay; € [% — Qp, g), then
Yig = — (Yij-1—2(ij-1 — i) = Yij—1 — 2,5 < i jo1 — (7 — 200).

This means that starting with ;o € (0, 7), ¥;,; will decrease with j, until, after a bounded number
of steps, 1, ; < 0 and the trajectory will move towards the tube again. From this point onward,
we can use rules for the time-reversed trajectory. This leads to the claimed bounded number of
collisions. O

2.3 Collision maps and their derivatives
We define a two-dimensional map
U= (U, W)« ({0, 0570) = (9,07, (5)

mapping the exit coordinates of the previous microstructure M;_; to the exit coordinates of the
current microstructure M;.

Let F;; : (rij—1,0i;-1) — (7ij,0;;) be the collision map in M; and 75 ; the lengths of the
flights involved. By (2.26) from the Chernov & Markarian book [8], we have

DF,, = —1 ( Ti,jRij—1 + siné; j_1 Tij ) 7 ©)

sinfi; \Ti,jfi,jki,j—1 + Kij—18i00; 5 + ki jsinbj1 7ijki; +sinb;;

so apart from the initial minus sign, all the entries are positive. That is, 6; ; and r; ; are decreasing
functions, both of 7; ;1 and of 8; ;1. Composing these collision maps shows that the signs of the



corresponding derivatives satisfy

dbij—1 _  drij-1 _ db; ; dri;

" agert T Tapet T T agpd T T ag

£0, (7)

The map ¥’ is obtained by composing the separate collision maps:
\I/i = Fz’n7 o---0 Fz‘,l o hz

Remark 2.4. The map h is not a collision map, because o and bw are not part of the boundary
of the billiard table. However, when composed with a collision map, the composition is in the form
(6). Indeed, because Ki—1n; , = Ki,o =0),

DF.y-Dhi = -1 ( sin 6; o Ti1 ) . (1 Ti/sineiﬁo)

sinf; 1 \ki,18in0;0 Ti1k1 +sinb;y 0 1

-1 (sin&w Ti + Ti1 ) (8)

sinf; 1 \ri,15in0; 0 (75 + Ti,1)Ki,1 +sin6; 1

as 1s to be expected.
Now to get a lower bound for |d€%\lﬂé (re™t 0541)|, necessary to prove that randomized angle
1—1

map Vg, is expanding, we can look at the right bottom entry of the derivative matrix
DV' = DF;,,---DF;:-Dh; (9)

-1 sin 0; o Ti +Til
= DF,,---DF - — i, 1 ’
sin@;1 \Fi,1sinbio0  (7i + 7i,1)ki1 +sinbi

where we used (8) to get the second line. Note that 7; = W/sin6:™. Just multiplying the right
bottom entries of each matrix and ignoring the factors —1, we obtain a term

(75 + Ti,0)Ki1 - Ti,jKi,j TiK1
14— 14+ == > 1 :
( * sin 6; 1 31:[2 + sin6; ; - + max(sin 6™, sin 624*)

Wlﬂ,l

2 — — . (10)
sin 0i™ max(sin 0:™, sin 94*)
The other terms all have the same sign, so the total derivative —dgggfi W) (rg™t,09%) is only larger in

absolutely value. The next lemma is necessary for the estimates of the variation of 1/|¥’.| done
in Section 4.

Lemma 2.5. The flight-times T; ; as functions of 03 have at most two monotone branches on
each piece of continuity.

Proof. Recall that I'; j_1 and I'; ; are the pieces of the boundary of the i-th microstructure that
the particle has its j — 1-st and j-th collision with, namely at the collision points I'; j_1(r; —1)
and I'; j(r:,;). These 7; ;1 and r; ; are functions of %}, as are the outgoing angles 6; ;_1 and 6; ;
at these collision points. Let A; ; := [['s;-1(7ij—1),4,;(rs,5)] be the straight arc between these
two consecutive collision points, so the flight time 7; ; = |A4; ;| is also a function of %}.

Assume by contradiction that 5% — 7 ;(62“%) has at least three monotone branches on an
interval where it is well-defined and continuous. Then there is a local maximum in the interior of

this interval. Hence there is a pair of distinct angles #5** such that
7,07 = 7 ;(07) =17, and T ;(05]) > 7 for all 071 € (67, 09). (11)
Let T;_,Ljﬂ =7ri-1(03"), rfj = 7;,;(03"") and AT = A, ;(63*"). Also define the straight arcs
A'=ijo1(ri; 1), Tija(ri; )] and A" = [T (r;;), T (r))]

Then A", A=, A’ and A” define a quadrilateral Q with two equal sides, see Figure 5.
By convexity, the segment of I'; ;1 between I'; j—1(r; ;_;) and Piyjfl('r:—jil) and the segment
of T;,; between I'; ;(r; ;) and I'; ; (rj'J) lie inside Q.
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Iij—1

Figure 5: The quadrilateral @ in the proof, with [A~| = |AT| = 7.

Orient A’ in the same way as I'; j_1, and let a(85*) be the angle between A’ in its negative

direction and A;,;(6*}). Monotonicity of 054 — 0; j_1(0"}) together with the convexity of I'; j_1
imply that 6% — «(6¢“%) is monotone. Note that r;; — (62"t (r;;)) is increasing, when we
consider a as function of r; j, namely by taking the inverse function of %% s 7; ;(69*}), which is
decreasing due to (7).

Let a® = a(03*). The monotonicity of 874 — (™) implies that |A’] < |A”|. As mentioned,
the sides ATand A~ have equal length 7.

Let 5% be the internal angles of Q where A” meets with A%. Since |A”| > |A’|, the smallest
of B*, say 87, is a sharp angle. Therefore, the arc A" near T (rj'])) lies inside a circle of radius
7 with center I'; ; (7';171)» see the circle segment S as in Figure 5.

Now take o = (65" —¢) € (o™, o) and 7 ;_; = r; j_1(05"" —¢€) for a small £ > 0. Then it
is impossible to fit a segment of length 7 between I'; ; (r;r]- —¢) and T ; at an angle o € (a™,a™)
with A’. So 7;,;(6°** — €) < #, contradicting (11). This proves the lemma. O

3 Randomization and transfer operators

3.1 Randomization

As mentioned in the beginning of Section 2, the randomness concerns the position of microstructure
M, relative to the position ;" where the trajectory crosses the boundary of the tube, namely, the
left endpoint of M; is randomized to

ms =ri" — Ry, (12)

where R; are independent identically distributed random variables, distributed according to some
probability measure v such that the Radon-Nikodym derivatives d(;i]:é) exist and are bounded.
(One can think of a uniform distribution: R; ~ U([0, 1]).)

Remark 3.1. This choice of randomization has the advantage that the trajectory and its deriva-
tives still follow the rules of non-random elastic billiards. The randomization only affects where the
particle collides with the closed sides of microstructure M;. This randomization doesn’t neglect the
expansion and sensitivity of the past trajectory. In particular, it doesn’t ignore the expansion built
up due to the width of the tube, which the model considered in [14, 15] seems to ignore. Ignoring
the size of the tube would be physically inconsistent with the fact that the width of the tube W
features in the displacement X; = W/tan 05" after exiting M;. For us, a large value of W is
crucial to get enough expansion for the Lasota-Yorke inequalities to hold.



The random version of U* is a one-dimensional random map, denoted as:
Vg, : (0,7) = (0,7), 677 — 67", (13)

where R; is the sequence of random variables introduced in (12). To be more precise, ¥ g, (7)) is
the angle component of the image of W' (rf*4, 02%t), with ¥ defined in (5), where the random shift
R; is taken into account after the particle is transported to the other side of the tube according
to the function h;. Notice that we can always set r{™f = 0, since the periodic arrangement of
microstructure is Z-shift invariant (remember that the open side of each microstructure has length
1), and the precise position on the previous side of the tube modulo Z is forgotten after the random
shift. Thus we obtain a random map of angles. Independent of the value of R;, we can use the
equation before (10) to obtain

_ Wlii 1
U (U, >1 . . . 14
W ( R} @Iz 1+ sin 0{" max{sin 6", sin H9“* } (14)
We can represent W, as a skew-product with fiber map ¥g,, as follows
T: [07 1]2 X (0,71’) - [Oa 1]Z X (07 7T)v T((R’L)’LEng) = (U((Ri)iez), \I/RO (9))a (15)

where o is the usual left shift. The infinite product measure % lives on [0, 1]* and is left-shift
invariant. The iterates of T™ are given by T"((R;:)icz,0) = (6" ((Ri)icz), Yr,,_, ©--- 0 ¥Ry (0)).

The whole random billiards seen as a Z-extension over a compact billiard table is given by the
skew-product with one extra component u € Z:

((Ri)iez,0,u) = (o((Ri)iez), R, (0), u + £(0)), (16)
where £(0) = [(r¢*" — m;) + W/ tan ).

3.2 Transfer operators (average and perturbed) and the BV space
for one dimensional maps

Before writing down the an explicit formula for the transfer operators, we have to describe Vg, as
an interval map. For every R; € [0,1] the map ¥g, : (0,7) — (0, 7) has singularities caused by the
particle having a grazing collision or hitting a corner of M;. The interval (0, 7) is partitioned into
sub-intervals by the singularities on which Vg, is continuous, called pieces of continuity. We can
specify the pieces of continuity per microstructure. The discrete horizontal displacement between
two microstructures M;_1 to M; is an integer £ € Z, so we can define a subset Js = Jg, ¢ such
that 0“4 € Je means £(09*%) = £. Since the numbers of collisions within a single microstructure is
uniformly bounded, see Lemma 2.3, the number of pieces of continuity of ¥ g, inside J¢ is finite (and
in fact three if |€] is large). Restricted to a piece of continuity, ¥r, need not be monotone. So we
will subdivide the pieces of continuity into maximal subintervals (called domains of monotonicity),
where Ug, is monotone as well. This will be important for computing the variation. The domains
of monotonicity within J¢ will be denoted by J¢ ¢ and the index set by A¢ = A¢ R, .

Our transfer operators will be with respect to the invariant measure dpy = %sin 0d Leb given
by [Pr,f-gdu= [ f-goUr,du. In the random setting of Ug,, i € Z, the pointwise formula for
the transfer operator Pg, (defined w.r.t. u) takes the form

FURH0)) sin(W L1 (6))
2 (W, (P, (0))]sin 6

Pr, f(0) = Ly, (U5, 0). (17)

€€z, 0ehe

The average transfer operator is given by

) F(W31(0)) sin(w51(6)
Pf(6) = / :

|0 (UR(0))]sin 6 Lo (Wi, 6) dv(Rq). (18)

ez, ten,

Remark 3.2. In (18) and throughout, f[o,u' dv(R;) is shorthand for f[0,1]2' dv®% ((R)jez).
This is justified because the integrand depends on R; only and it is independent of R;, j # 1.



To obtain the desired limit theorem we consider a perturbed version of P by e'** ¢ € R, where
X (0) = W/ tan(0). The perturbed averaged operator is defined by

_ / P, f(€")(0) dv(R). (19)

We note that Py = P, as defined in (18).

We want to apply the usual Nagaev method to P;. In this sense, we need to establish Lasota-
Yorke inequalities and ’good’ continuity estimates (as in Section 5 below) in BV for P;. Here and
throughout,

I fllBv = Var(f) + || fllec, Var(f) =inf  sup Z|g i) — 9(yi-1)],

9~f 0=yo<...<yp= 15

where g ~ f if f and g differ on a null set. Here and throughout, Var(f) denotes the variation of
the (equivalence class) of f.

‘We record two inequalities that we shall use throughout without further comments. While it is
clear that || Pf(0)||c < fol || Pr, f(0)]|ccdv(R:), we clarify that Var(Pf(8)) < fo Var(Pr, f(0)) dv(R;).
The latter can be justified as follows

1
ar (/ PRifdy(Ri)) = / d@/ Pr, f(0) dv(R;)| df < PR 1 ’ v(R;) do
0 0
= / / dQPR fo ‘d@dl/ / Var(Pr, f) dv(R;).
3.3 A classical estimate for near-grazing collisions
In the remainder of the paper we abbreviate systematically
6:=6" and 0:= 67" = Wg,(0). (20)

We also introduce a threshold n > 0 such that if sinf < 7, then there are only three collision
patterns possible in the microstructure M;, namely (when the particle enters M, from the left) a
single collision with the left cheek, a single collision with the right cheek, or a single collision with
the left cheek followed by a collision with the right cheek. The latter we call a double collision.
(If the particle enters M; from the right, then we have to swap the word “left” and “right”, but
there are still these three collision patterns.) It follows that ¥g, has six branches on the region
sin@ < 7, three for 6 close to 0 and another three for § close to .

The following lemma compares sind with sin6 in these cases. It comes basically from [21,
Propositions 8 and 9], but we give a proof for transparency and completeness.

Lemma 3.3. Given (M1) and (M2), there exists a constant Cyx > 0 (depending only on k) such
that when sinf < 7,

C'sin®0 < sinf < C,Vsin#. (21)
This means that W (sin)~/? « E(\Ilgil(ﬂ)) < W(sin6) ™2, where £ is the skew-function from
(16). Also sinf < 7 implies that sin@ < /nCs.

Proof From Figure 6, for the collision with the right cheek we find o = 8+6— 7, (7r70)+0~+20¢ =7
and 1(1 — cosf) = ssinf for some s € (0,1). Rearrangement gives sin3 = /1 —cos?2 3 ~
V/2kssin 6, which combined with 71 — 0 = 6 + 8 < 28 gives sinf = sin(m — 0) ~ V8ks sinf <
V/Blmax Vsin 6. Swapping the role of § and 6 (that is, looking at the collision with the left cheek),
gives the other inequality.

For the double cheek collision, we use notation and estimates from Figure 9, with § = 62",
6 = Hf“tl, 01 = 0;1 and 62 = 0; 2. Also B1 and (2 are the angles at the collision points with I'; 1
and I'; o with curvatures k1 and k2, respectively.

We have

{51+(W—01)=§, T—0=PBy+(r—0) and Bo—(mr—0)=(7—0))— B

22
,Tll(l —cos 1) ~ 712(1 —cosfB2) + ssin(mr — 01 — f1)  for s < 1. 22)

10
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1
< cosf

tangent line -~

Figure 6: Comparing 6 to 6 for sinf < n at a right cheek collision.

First assume that 82 — (7 — 02) = # — 61 — 81 > 0, which means that the middle part of the
trajectory in M; goes upwards, as in Figure 9. This means that

2/31S51+(7r*91)=é<3/31,

where the second inequality follows because ssin(m — 61 — 1) < é(l — cos 1) to make a collision
with I'; » possible. Using the main term in the Taylor expansions of cos and sin, we can rewrite
(22) to

&8

2/{1 2/@'2 * /82 B (ﬂ- h 02)

If Bo — (7 — 61) > 22 then

~ 2Ko

sinf < 1/6k82 < V1251 sin.

.= K [K1 .
sinf > —162 > L sing.
K2 K2

If B — (m — 62) = 7 — 61 — B1 < 0, then we can reverse the roles of 6 and 0, and the analogous
inequalities follow. O

Otherwise,

4 The variation of 1/|VY |

In this section we will consider the variation of 1/ ‘\IJ'RZ‘ We do this by considering the cases

sin@ > 7, when the absolute horizontal displacement |¢| is relatively small, and sinf < 7, when |£|
is large.

Lemma 4.1. Assume (M3) and (Mj). Let Ay = Ay(W, R;) refer to the set of branches of
Wg, : 0 — 6 on the subinterval of (0, ) where sinf > n. There is Cy, > 0 such that #A, < C,W.

Proof. By the assumption on the microstructures, there is an upper bound N on the number
of branches associated to a single microstructure M;. At angles 7 satisfying sind > n, only
microstructures with displacement |¢| < W/|tan| < W/n can be reached. So the lemma holds
for Cyy = N/n. O

From Lemma 2.5 we can derive that there are a bounded number of pieces of monotonicity inside
each piece of continuity J, and therefore Wg,|; has bounded variation. Let Iz be the collection
of branches associated to a displacement &, i.e., f(é) = ¢ for each 0 € Je. The next lemma
estimates the variation of 1/|W’, | restricted to each J¢ for sin@ < n (which means large values of

11



€| ~ W/|tanf]), as function of § = Wx;(A). On each monotone branch of Wg,, the variations in
6 and in 0 = E,l are the same. Also, the variation of a monotone function Var( ) < 2||f|loc, or
even Var(f) < || f |l if f is non-negative. If f is non-negative with N monotone branches, then
Var(f) < N||f|loo, which is why Lemma 2.5 is important in the next estimates.

Lemma 4.2. Assume properties (M1), (M3) and (M4) of the microstructures. Then
Varg (| ) =00e7%)  as el -
arg | —— = as 0.
“I’/RJ Je

Proof. Throughout this proof we suppress the index 6 in the variation, and also write R instead
of R;. Separating the entries with 7; + 7,1 and (7; + 74,1)K4,1 + sinf;1 in the rightmost matrix in
(9), obtain

NG ‘ Ti + Tij Q(sin@i,l, Sineig, e Sinei,nifl,’n,ﬁ’l, ey Ting s Bily - e ey lﬂ,ni)
RI|J = p o "
¢ —sinb;,1 [I/i,(—sinb; ;)
(15 + Ti,1)kKi,1 +sin6; 1 (sm@l 1,80 605 2, ..., SIN0; n, 1, Tiy Tisls v oy Tings Kisly - -5 Kiyng )
+ 0 n; in@:
—sinfi [1T;L,(—sinb: ;)
(15 + Ti,1)Ri,1 +sinb; 1
- - X (23)
—s1n(9i,1
( Ti+Ti,1 Q(sin&i,l,sinﬁiyg,...,sin&imi_l,n,n,l,...,Ti,ni,/{i,l,...,m’ni)
. g .
(Ti + Ti1)Kia +sinbi g [I;Z,(—sinb; ;)
Q(Sin@z‘,l, sin@i,% ey Sin@iyniflﬂ'i,ﬁ,h ey Tingy KRiyly - ooy fii,ni))
o T )
Hj;2(_ sin ;. ;)

where 2 and () are multivariate polynomials of their arguments. It follows that

1 _ —sinf; 1 H? o(—sind; ;) (24)
‘I’H‘Jg (Tt Tia)kig +sind; g Tit T QO+

(Ti+7i, 1)K, 1+sin6; 1

By our assumptions (see Section 2.2), there are n; < N collisions. So, every ¥g,|s, has a
uniform bounded number of pieces of continuity. Below we show that the variation of 1/ \Il’Ri on
each of these pieces is O(1/W).

Next, we use of the general formula

g ~|glz;)  glz—1)
Var [ = = sup E T
(f) ro<x < <Tp j=1

flzg)  flxj-1)
lg(@)| 1f(@5) = flzj—0)| + lg(@)] |f(z;) = f(@i-1)]

= e ® o) f )]
sup |g| Var(f) + sup | f| Var(g)
= inf []2 ' ()

Applying this for f = (7 + 7i,1)ki,1 +8inb;1 > /W2 4+ €2 and g = sinb; 1, we get

—sin6; 1 . .
Var ((7— e v Jisin&» - ‘J{) < W(sup |sin@;,1| Var((Ti + 7i,1)Ki,1 +sinf; 1)

+ Var(sin 6;,1) sup((7: + 7i,1) ki1 —|—51n911))

< W2+£2 (\/7 \/;\/ +£2> as & — oo.

This bound is summable over all displacements £ € Z, and the best upper bound of the sum is
independent of W. This makes Var (‘\P,‘) =0(1).

12



It remains to show that the second factor in (24) has bounded variation and supremum.
Tit+Ti
(Ti+7'7:,1)'€7:,1YJ1rSiH91:,1 ,
four branches, so the variation is bounded by 4/Kmin.
The factor Q = Zf:ll Q = ZeL:il [Tii, Qe k, where Qg is one of the four entries of the
2 x 2 matrix of DFy, (without the prefactor —1/sin#; ;) in (6), and L; is some bounded number,
depending on the (bounded) number of collisions n;. All these functions have bounded varia-

The quotient is bounded by 7117 bounded away from zero, and has at most

tion, so Var(Q2) < oo, independently of W. The same holds for Q). Therefore the denominator
Ti+Ti1
(Ti+7i,1) k4,1 +sin 65,1

Next, we use (25) for f = it i Q+ € and g = 1. For this, we need to show that

(Ti+735,1)ki,1+sin ;1
inf | f| is bounded away from zero. This infimum inf |f| is positive because €2’ has only positive
terms, including

Q + Q' has bounded variation, and so has the numerator []72,(—sin6;;).

ng
H (Ti,kkikbik—1 + Kik—15060; k + Kk sinb;r_1)
k=2
obtained from taking the left bottom entries of the DF;x, k = 2,...,n;, in (6). According to
Lemma 2.2, this term is at least K™~ > 0 (recall that n; < N < oo by assumption). This ends
the proof. O
An immediate consequence of Lemma 4.2 is

Corollary 4.3. There is a constant C > 0 such that for those & ~ w/ tand corresponding to

sinf < 7,
Varg (Sln9~ ) < Cle| k.

|9k, (0)] ‘Ja
Proof. This follows from Lemma 4.2 with the multiplication with the factor sin 0~, for which we
notice that Var(sin|,,) < SUPge (sin@). O

5 Continuity estimates

In this section, we obtain the needed continuity estimate for the perturbed average operator P;
defined in (19).

Proposition 5.1. Let f € BV. There ezists Cpy > 0 so that for all 0 € (0,7) and all t € R,
(Pe = Po) fll gy < Cv [t | fllBv

The proof is carried out in the remainder of this section.

5.1 Continuity estimates using averaging for sinf < 7.

Due to (M1)-(M4), the microstructures are shaped so that a visiting trajectory has only a bounded
number of collisions, so the map ¥y, : (0,7) — (0, 7) has finitely many branches associated to
a single microstructure. However, every microstructure can be reached by taking 6 € \I/I_{il 9)
sufficiently close to 0 or w. Therefore Wg, has infinitely many branches, but the domains of these
branches have only 0 and 7 as accumulation points. If sinfd < n where 7 is as in Lemma 3.3, i.e.,

|€(0)] > &, ~ W/n, and if the particle enters M; from the left, then there are only three branches
associated to each microstructure, representing trajectories that

1. collide only with the left cheek of the microstructure: sinf < sinf;; < sin 0~;

2. collide only with the right cheek of the microstructure: sinf < sin 0;,1 < sinb;

3. colli~de once with the left cheek and once with the right cheek of the microstructure: sin ;1 <

sinf and sin6; 2 < sin6.

If the particle enters M; from the right, then the three above cases work with “left” and “right”
swapped.

The derivative of those branches > Wk; 1/sin? @ according to (10). In cases 1. and 2. this
bound is sharp, in case 3. there is another factor ~ 1 + —=2 associated to the second reflection

sin 6; o
in the microstructure and s = 752 &~ 1 (i.e., the width of the microstructure). Hence the derivative
of the branch of case 3. is much larger.

13



5.1.1 Estimating without using averaging

Recall that X (¢) = W/tan6 and that

Pr, f (e“x - 1) 0= 3

cez,ten,

F(URH0) sin(\II};il(a))(e”X(‘I'El.l@)) 1
| (U5 (0))]sin®

Lre. (Vr, (6)).  (26)

The continuity estimate of the transfer operator involves (17) with an extra factor |e"* —1| < |tX]|
for X = W/ tan \I/};j (0). The estimate below suggests that without averaging, there is no hope
to obtain the desired continuity estimate. For sinf — 0, using the only the “left cheek” where
sind > sin 6, ; > sin6 in (10), we obtain, say for a positive f:

W
sin 6
; 0) sin(0) |t|W/\tan9|
Pr, (e”X—l)e‘>> K
[Pt ) 2 W @lsino O
S:Wmax(jla\/m}
W
sin 0 N N
f(0)] cos(6)]
> |tW = 15—
g IZ (Wk/ sin? 0) sin 0 s(0)=¢
§=Wmax{y ' /Cr sme}
w
sin 0 2N N
sin” 01(0)
AW 2 Tesmg o 27
§:Wmax{%,m
W
|t|W sin 6 W ‘t| /CNW
_ 0 f
> P sin @ Z 52 ( ) > in ‘f' 2K,max ﬁsine’
&= Wmax{n \/m}

so this blows up as sind — 0. This shows that the averaging in Pf is crucial to obtain a useful
continuity estimate.

5.1.2 Estimates using averaging

The main idea of exploiting the averaging for small values of sin is that the integration over
dv(R;) will be over a small subinterval p(Je,6) of [0,1], which leads to a gain of a small factor
v(p(Je,0)) inside the sum in (26). By our assumption on v, this is comparable to the length
Ip(Je,0)|, and this multiplication will lead to bounded sums, as argued below.

If the exit angle § = 69“' is fixed, and the displacement |£| > &,, then the inverse map Ve 1
has only three branches. But not all entrance positions agree with these branches. Depending on
whether we look at the left cheek branch Je¢ ., double cheek branch Je¢ p or right cheek branch Jg¢ g,
there is a different interval of possible entrance positions. This means that a different subinterval
p(Je..,0) C [0,1] of Ri-values such that the random shift of the position of M; realizes the required
entrance.

In the following illustrating computation, all summands are non-negative, and thus, we can
swap an integral and an infinite sum. Recall from Lemma 3.3 that &, ~ W/n is a lower bound for
the absolute value of all displacements when sin 6 < n.

sin 6 .
Pf(e) {sinf<n} o / Z ‘\I// smGlJ&”f(e) dl/(Rz)
6) sinf ~
- / #sm&lju(e) dv(R:)
O je>e, ée{LRD} | (9)]

Z Z / |\1]/ :Ez Je, 1/(9) dv(R;)

[§]=€r £e{L,R,D}

D /,, _JO) _sinly ) du(Ry). (28)

€1>¢y te{L R, D} Y PUe,e:0) | Vg, (0 )| sin 0

14



The interval p = p(Jg, é) is portrayed in Figure 7.

0
x/\fij
Figure 7: The interval p = p(Je, 9~) C T'yg. We took sin @ far from 0 to make the picture clearer.

In words, (28) tells us that estimating the integrand by its supremum (or its variation, if that
is what we are interested in), we can replace the integral by a multiplication of v(p(Je ;,0)) <
ht |p(Je ;,0)] for bt := sup d‘iﬁ, which gives the mentioned factor in the estimates of the sums.
More precisely, using (28),

s (e 1)

W (Cp sin 6) ~2

{sinf<n} ‘ oo

£(6) sin() ~|t|VV/\ tan 0|
[¥%, ()] sin®

< sup v (p(Je, 0)) Legy—c- (29)

E=W(C7 1 sing)—1/2

A similar argument can be used to bound the variation, again starting from (28). The precise
details are provided in Section 5.1.4.

Recall that p(Je /g, 0) denotes the interval in [0, 1] obtained from looking at the left or right

cheek branches, while p(J¢ p,0) denotes the interval coming from looking at the double cheek
branch.

Lemma 5.2. The following estimates for the left, right and double cheek collisions hold:

Rt max{|tanf|?>: £(0) = ¢} _ ntTW 1

f)) <h* 0)| <
v(p(Je,0,0)) < b7 |p(Jee, 0)] < Yemin W = 2min (€] — 1)2”

where h™ = sup diﬁ and L € {L,R,D}.

Proof. We start with the computation for the right cheek branch. Let §+ and 6_ be the angles
whose trajectories correspond to the end-points of p. The angles between the outgoing normal
vectors with the vertical at the corresponding collision points at the left or right cheek of the
microstructure are 8+ and B_. Let a4+ and a— be the angles that the outgoing trajectories makes
with the normal vectors at the two collision points. Adding up the angles in the triangles APC
and BPC in Figure 8 (and doing the same for the trajectory with incoming angle 6_), we obtain

- = —| < 1.
0=2a-+0_, a-=p_+60-7, tanfy  tanf_|

{9=2a++9~+7 ay =y +0-73, an w w

15
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Figure 8: Relations between «, 3,6 and 6.

So - )
1~ ~ tan 6" tan 6~
o — | = 1y~ | = iy | < O tan 0]

Thus, by (M2),

sin 84 sin - < max{|tan 6]? : £(0) = ¢}
K K 2cW '

‘p(Jé,R7 é)' S

The estimate for the left cheek branch is the same.
For the double cheek branch we have the following relations between the angles indicated in
Figure 9 (where we abbreviated 61 = 6;1 and 02 = 0;2):

=P+ (m—01), m1—0=Pa+m—02, 61— 1 = P2 — (7 —02).

This gives T—0+6 = 2(B14B2) =: 2. As before, let 6* be angle corresponding to the left-most and
right-most entrance positions satisfying §(§+) = E(é‘) = ¢, and let Bli and BQi and gt = Bli —|—ﬂ§t
indicate the angle of the corresponding collision points. The collision points themselves satisfy
rin1 ~ B1/k1 and 12 ~ (7 — B2)/k2 as arc-lengths of I'; 1 and I'; » with local curvatures 1 and
K2, respectively. Therefore

d/B1 d?‘i’l d?"i,z n Lﬂz

Sgn — = sgn —— = —sgn —=— =§ =.
gd& & do & do gd0

This shows that |3 — 87| < |81 — 87|

As before # — ta:‘%f ’ < 1. This gives, again due to (M2),

| sin 8" — sin B} | < |82 — Bl < |é+70~7| < max{|tan6‘~|2:§(0~):§}.

Je.p,0)] <
|p( §,D )‘ = K1 K1 2K1 - 2KminW

Finally, we estimate the v-measure of the interval p(Je r/r/p, 9~) by AT |p(Je,r/L/D> é)\, and recall
that |tan | < W/(|€(0)] — 1). O

5.1.3 Estimating the | - ||oc norm

Lemma 5.3. Assume sinf = sin \111_211 (0) <. There exists Coo > 0 (independent of ) so that for
allteR and f € BV,

< Cos [t [ floo-

’ e}

P = PO}l incny
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Figure 9: Relations between (1, 82,61, 62,60 and 6.

Proof. Formula (29) tells us that we have an extra factor v(p(Je, 6)) in each term of (27). We split
the sum according to the type of trajectory inside the microstructure. If the inward trajectory
(approaching ¢y N M, from the left) first hits the left cheek and then exits, then sinf < sin 6.
If the trajectory first hits the right cheek and then exits, then sind < sinf. As a result, for
fixed 6, the ranges of sin are adjacent subintervals of [C ' sin? 0, sin 6] for the right cheek, and
[sinf, C.Vsin 0] for the right cheek, and hence the boundaries of the sums for these cheeks in the
computation below overlap only for W/ sin6.

If there is a collision with both cheeks, then we can still compare sinf and sin6 according to
Lemma 3.3, but we have sin6;; < sinf and sin6; > < sinf, and also |W,| has an extra factor

> Ti1ki,1/sin6; o > Jmin This leads to three cases in the estimate of the derivative of (10) and
s s > 2sin 0

17



therefore three sums in the estimate P(f - |[e*X — 1[)(6), as follows:

W
; 14144 S |tan 6|2 | £ ()] | cos 0
P(f- e =10 < _1w_ 1.5 _ left cheek
(e =) < S > e ik O )
E=Wmax{y, Ze=ep} sin 6
W2
Cy sin® 6 ~ ~ ~
[t|W g [tan @] £(8)|cosd| .
+ Y. LZ— 1 5)=¢ (right cheek)
{:Wmax{%,ﬁ} sin 6 sin 6
C w 0
t = tan 6|2 |f(0)||sind
_Hw_ Z | tan 07| f(6)] | sin ) 1,45 —c (double cheek)
2kmin W 2W k2 . s E0)=¢
min Y max{ L Ly o sin @ | tan 0|
"' /O, sing]l sin 0 sin 6
W - -
g =2 [sindl* [£(@)] |
- ,{fnin sin @ Z W4 £(0)=¢
§:Wmax{%,\/ﬁ}
W2
Ch, sin2 0 ~ ~
Sl T P,
5 W3 £(0)=¢
min .f:Wmax{%,ﬁ}
w
Cr. sin2 0 ~ ~
Sl T el @)
263 | w4 £(0)=¢
1in . 1 1
§7Wmax{;,m}
X w(C;'sing)—2
W2 £l — 1 W2 fllse " 1
< K’y2nin sin 6 Z 1 |€|4 * K’?nin Z 53
E=W max{;, ePETY] max{{n,si‘fa }
W2
Cp, sin2 0
+ W2 flloo S 1
2K’?nin 1 1 €4
E:Wmax{ﬁ,\/ﬁ}
tfllo (Cen 0>, 0°
< i/ oo I
- K2, 3 + 2 + 3kmin /
so taking Coo = ﬁ (% + 37+ 3,:11“) gives the lemma. O

5.1.4 Estimating the variation

Lemma 5.4. Assume sinf < n. Let f € BV. There exists Cvar > 0 (independent of 0) so that
forallt € R,

Varg (P = P)f|nscny ) < Cvar 1 v

Proof. We first obtain a general bound for the variation starting from (28).

Varg (Pf(eitx - 1)‘{sin 5<n})

=Varg | > /p Ve Lé)S’ing(e“’“‘”f1)1J§,,3(¢47)dy(1%i)

|é>¢, ¢e{L,R,D} ) [V, (0)] sin 0

<2 2 WM(A ﬂﬁwﬂ@“@Uhu@Mﬂ&O-

|€1>¢€, ¢e{L,R,D} (e.e-0) [V, ()] sind

The integral is over R;, not ¢, and for each (&, ¢), the set ©¢,c = g, ¥r,(Je,e) (where the union
only runs over those R; € [0, 1] for which the branch J¢ , actually exists) is an interval of length
O(/1/€]), according to Lemma 3.3. This is too long for our purpose.

18



However, for each pair (&,£), and 6 with £(f) = £, the measure v(p(Je¢,0)) < %

by Lemma 5.2. Also, the interval p(Je.c,0) _moves continuously in 0. Therefore, if O¢ () is a
sufficiently small neighbourhood of 8 = Uy, (#), and we set

p(§, 4, k) = {Ri €[0,1]: R; € p(Jge,é) for some 6 with \IlRi(é) € 9§,e,k},

then we can assure that v(p(€, £, k)) is about four times as big, say - &2 <v(p(& L, k) < Qhﬂg’z
The derivative of the corresponding branch ¥, is bounded away from zero, and therefore we can
partition O¢ ¢ into ﬁnitely many subintervals O¢ ¢ (i.e., for k in a finite index set K¢ ¢) such that

v(p(§, 4, k) < W for each k € K¢ ¢. Then

Varg < / &Sﬂ(e“"@ ~ 1)1y, ,(0) du(R¢)>
p(Jg,0,0) “I’Ri (0)| sin ¢

g) sinf X (6 B
</(5 k) ﬁm(e O —Dleg . 0 U, (H) dV(Ri)>
p(&:L, R,

Il
21

kEKe ¢
+ S d )
2hTW sup Var &sme(ezm(e) “1)le,,, 0 s ()
min€® KEK, o RiEP(ELE) | U, (0)] sin 6
S f(6) sind itX () ~
RS ke%: Risél[gl] Yaro (|‘I” )] Slne(e Dle¢, o ¥ri(9) ], (30)
I3%4

for some C, independent of ¢ and W. Let Jeop = {6 € Jeo : Ug,(f) € Ogrx}. These inter-
vals depend on R;, but in order not to overload the notation even more, we will suppress this
dependence.

The map Pg, |J. . is monotone for each €| > &,,¢ € {L, R, D}. So, if we split the above into
parts depending on € Jee and 0 = Up, (0) we can look at the variation in 6:

f(é) sin —tx(0) ~
Varg <|q}, @ g 1C 1)1J5,e,k(9)>
W, (0)]

1
V -
£(0)

1 . A0 itX(6)
+ su —— Var; ——__sinf(e —1
TR (% @ """ :
Ie o (f) + e en(f), (31)

and we estimate the sums of I¢ ¢ x and Ilg ok over k € Ke .

We start with I¢ ¢ in (31). As § — —L- is monotone on Vg, (Je,¢), and keeping in mind that
the sum of variations of a continuous function over adjacent intervals is the variation over the
union of those intervals, we have

f(é) s é(eitX(é) - 1)

1 1
sup  Varg 0|\1;R (Je.o) sup 7
kGKg‘e R;€p(§,4,k) sin QG‘I’R (Jg ) sin

Hence, the first term in (31) contains only suprema, and can be bounded by |t|x2 || f|lec using

the computation similar to the one used in Lemma 5.3. More precisely, recall from (14) that
1 sin 9;" max{sin 97‘;"” ,sin 92"}

T < s . Considering the worst case (i.e., left cheek collision) with
R; ©

. . ~ .25 . L~
max{sin 07", sin 0"} = sin §;" = sin§, we obtain that L_<C e 9 . Recalling that sing ~

[, O]
W/|€| and

<2E

2
sm9 = YrRW?2

from Lemma 3.3, we have:
£2 W2

2 2
sup  ITeon(f) < CLt I loo 75 25 = Cr [t fll oo
kere., FiEp(ELR) w2 ¢
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Thus, the sum in (30) coming from I satisfies (recall &, ~ W/n),

SO Y ren<cuifl- Y S CgQW O(tlflle).  (32)

[€|>&n £e{L,R,D} kEK¢ [£]>€&n £e{L,R,D}

Regarding Il¢ ¢ in (31), we first separate f:

1 sin eitx(é) —1
Ieorw(f) < sup ,—aVar(f|JE)[,k) sup ¥

0€0¢ 5, SN 0T o | W, (0)]
K sind (e"X@ — 1)
3 Var; _ 2 ] 33
T oel®  sing e 7, | (33)

For the remaining terms, we first note that = — € — 1 is smooth and sufficiently “mono-

X (6 -
tone” so that ZkeK” Varger,k/ (etX( ) — 1) < |t ZkeK“ VaréeryM X(0) <|t| SUPGec sy Trand] t:‘r/)é\ .
Therefore,

sinf (e’ — 1
sup ~ Varge, . <é|)> < (34)
kGngg R;€p(€,4,k)
w sin @ sin 0
|t| sup ——=  sup ————— | +|t| sup T~ sup  Varg,; — .
kez};; dese, | tanb| riepe.ek) \ [V, (0)] dege, 0 Riepeery etk \ [Wg |

We can merge the intervals J¢ ¢ over k € K¢ ¢ again and apply Corollary 4.3 for the remaining
sum over the variations in this expression. Using again the estimates listed before (32), continuing
from (34), we have that the following holds for some Co, C7 > 0:

sin @ (e — 1)
sup VaréEJ&,l,k <|\IJ 1 < Co|t| + Chlt| = |£|3/2
k€K 4 R;€p(€,4,k)

This together with (33) (recalling 5 < C.s W2 and &, ~ W/n) gives:

S0 > suwp Jeen(f)

|€[>€n Le{L.R,D} k€K, , i EP(ELF)

CpW C€2
<Cllfley ¥ 5 S (e + i) = olla).

52 W2
[§]>&n Le{L,R,D}

This together with (32) implies that Vary ((P; — Po)f) = O (%)7 as required. O

An immediate consequence of Lemmas 5.3 and 5.4 is
Corollary 5.5. Assume sin@ < n. Let f € BV. There exists C > 0 (independent of 0) so that
H(Pt — P)flsind<m ‘BV < Ct||Ifsv for allt €R.

5.2 Continuity estimates when sinf > 7

As in the proof of Lemma 5.6 below, the averaging plays no role when sinf > 7. Throughout this
paragraph we shall exploit the formula for transfer operator Pr, defined in (17).

Lemma 5.6. There exists C > 0 so that ‘( —PR)f

< ClHIfllsv-

{sin éZ”]} BV

Proof. We display the argument for bounding the variation. The argument for the || - || norm is
simpler and omitted.

If 0 — \111—%11 (0) = 0 € Je,, refers to a single monotone branch of ‘111;3, then Varg(f o \1’1_311) =
Varg(fli,,). Recall from Lemma 4.1 that A, indicates the collection of branches of \IIEQ_1 for
sin@ > 7.
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With these specified, writing again § = \I/E: (0) and using Var(f-g) = || fllcc Var(g)+||gllcc Var(f)
multiple times, we compute that

itX
Varg (PRi (6 - 1) f‘{sin 527}})

0 (D) HitX
< are( 1 ) ) sup f(8) -sin(0)(e 1) )
sin 6 {sin6>n} ten, GeJ, |\IJIRz(0)| {sin6>n}
D . ain(A)(o—itX _
+ sup (7.10) Z Varge ;, (f(e) bln(?)({ 1)>
sin 6>n SIn LEA,, |\I’R1 (9)|
It W C2 1 c? £(0) - sin(6)(e”"** — 1)
< THfHoo > v @) + el > Varge,, v (@)
LEA, R; o LeAy, R;
tjwe? 1 [tw 2 1
< 2| (Bl + Var(h)) + Varg —
P 2 | m( )+ 22 Yo\, @)
tWC? tWC? c'w
< Vs (31l + vax(0)) 0y + HC 71w < S 1,

for some C” > 0. Here we used that A, pertains to at most C, W branches (see from Lemma 4.1),

and Lemma 4.2 to get the bound Zee/\n Varéeh < Cy for some Cy > 0. The desired

1
W, O]
continuity estimate for the variation of the averaged operator follows immediately. O

5.3 Proof of Proposition 5.1
This follows at once from Corollary 5.5 and Lemma 5.6 with Cpy = Coo + C’/\/ﬁ.

6 Spectral properties for the averaged operator

Unlike in previous literature on random dynamical systems (see [3] and references therein), in
the present set up we have uniform expansion (that is, not just in average), but to deal with
the variation in 6 of the transfer operator in the case that sinf < 7, we will heavily exploit the
averaging (in a similar manner as in Section 5), see Section 6.3. For sin > 7, averaging plays no
role (again, similar to the continuity estimate in Section 5), see Section 5.2.

The result below gives the required Lasota-Yorke inequalities in BV.

Proposition 6.1. There exist o € (0,1) and C1,C3 > 0 so that for allm > 1 and all f € BV,

[P"fllav < a®[[fllav + Cillfllee  and  [[P" flloo < Cal|flloo-

The proof of this result is provided in Sections 6.3-6.5.

6.1 Spectral decomposition of P

Proposition 6.1 together with a classical result [17] implies that when regarded as an operator in
BV, for n > 1, P" = 3 A\'Il; + Q", where \; are eigenvalues of modulus 1, II; are finite-rank
projectors onto the associated eigenspaces, and @ is a bounded operator with a spectral radius
strictly less than 1. Also, there are only finitely many eigenvalues on the unit circle, and all \;
are roots of unity. (This type of decomposition for the perturbed averaged operator P; would be
enough for the proof of Theorem 1.1.)

Moreover, we can also ensure that 1 is a simple isolated eigenvalue in the spectrum of P. To
do so, we will employ the correspondence between properties of random dynamical systems and
associated Markov chains as in, for instance, [18, 3].

Following a similar notation as in [3, Sections 2 and 4], we note that the averaged Koopman
operator U acts on functions defined on (0,7) via Uf = fol f(¥r,)dv(R;). In particular, U
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corresponds to a transition probability matrix on (0,7) defined by
ULA(0) = v®7 ((By)jez € 0,117 : Wniy, i 0 0 UR,(0) € A), A€ A,

where A is the o-algebra of py-measurable sets on (0, 7).
Let

Yn((Rz)zEZ,e) = \I/RiJrnil O:-+0 ‘I/Rq; (9), e Ac A, (Rl, .. ~,Ri+n—1) € [0, 1]n (35)

Then (Yy),>1 defines a homogeneous Markov chain on state space ((0,7),.4). The transition
operator (probability matrix) is given by U.

Recall that p is an invariant measure for Wg,. Since p(A4) = fol p(\llgil(A)) dv(R;) for each
A € A, p is a stationary measure for the associated Markov chain and pU = p. As clarified
in Lemma 6.3 below, the Markov chain (Y»)n>1 is aperiodic. Thus, p is the unique stationary
measure for this Markov chain and thus the unique left eigenvector of U with eigenvalue 1, which
is simple. Recalling Remark 3.2, we see that the averaged operator P is the dual, or adjoint,
operator of U, i.e., fow Pfgdu= foﬁ fUgdp.

It follows that the constant function 1 is the unique eigenfunction of modulus 1 for P. Indeed,
if f # 1 were a fixed point of the average transfer operator: f = Pf := f[o,1]Z P(Ri),;ezde@Z, that
is, if 1 is not a simple eigenvalue of P, then, using duality for an arbitrary g : (0,7) — R,

/ / fraotn, v W= / / Pr)iezf - ng®Z dp
0 [0,1]2 0 [0,1]2

/ f-gdu=/ foWr, -goWg, du
0 0

/ / Zfo\I/RZ. -go\I/Ridu®Zd,u.
o J[o,]

Since g is arbitrary, this shows that

/ f(m)o\IlRi-go\I/Ri(m)dV@Z:/ f(x)-go\I’Ri(ac)du®z.
[0,1]Z

(0,12

for p-a.e. x € (0, 7). The special case g = 1 gives

Uf(z) = / foWg, (x)dv® = / f(z) dv®* = f(z) p-as.,
[0,1]% [0,1]Z
but this contradicts that U has a unique fixed point, i.e., it contradicts the uniqueness of the
stationary measure.

Hence 1 is a simple eigenvalue of P. If A; were another eigenvalue of the unit circle, say A¥ = 1,
then we repeat the argument with U* and P*. This would imply that the eigenvalue 1 would not
be simple for this iterate, contradicting the aperiodicity of U. Thus, 1 is the only eigenvalue on
the unit circle, and

P oTI4+Q", TIf :/ Fdu, 11Q"fllsyv < 6", for some & € (0,1).
0

An immediate consequence is exponential decay of correlation for f € BV and g € L, in the
sense that | [ fU"gdp — [ fdu [ gdp| < C5™||f|lsv |lgllLe, for some C' > 0 and § € (0,1)
independent of f,g, and n > 1.
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o

Figure 10: The definition of RT(09“}) and R~ (69“!) illustrated.

K2

6.2 Aperiodicity of the associated Markov chain
Let Z'(A) = {¥R,,,_, 0~ 0 Wg, (07“1) : 0 € A, (Ri,..., Riyn—1) € [0,1]"}.
Lemma 6.2. For every 6 € (0,1) and i € Z, we have

U Zrqeesy) = 0, ).

n>0

Proof. For 6 € (0,7), let

RT(0) = gg{R : the random trajectory in M; hits the right cheek and then leaves M}

and

R (9) = sup{R : the random trajectory in M; hits the left cheek and then leaves M;},
R>0

see Figure 10. This means that at RT, the random trajectory either hits a corner point of the
right cheek, or, after a collision with the right cheek, has a grazing collision with the left cheek,
and similar for R—. By convexity of the right and left cheek, for each 6 € (0, ),

lim Wgr(A) <O and lim Wgr(0) > 6. (36)
RN Rt () R /7R~ (0)

Now define recursively

6% if k=0, ot if k=0,
A = k=

limR\(R:Zrk(ak,l) \I/R(Ozk_l) if k 2 1, hmR/RLk(qu) \I/R(ﬁk_l) if k 2 1.

Then (ax)r>o is decreasing, and since it is bounded below by 0, there is a limit L, which is a
fixed point of the operation § + limp. g+ ) ¥r(#). This means by (36) that L = 0. The same
argument shows that (8x)r>0 is increasing to the limit .

Note that (a1, 81) = {¥r, (07*1) : R; < R; < R;}, and for larger values of 4, there are subsets
G; C [O, 1} for Ri+j;—1 so that (ak,ﬂk) = {‘IIRi+k—1 o---0 ‘IJRL(foi) tRiy; €G;,0< 5 < k} If

follows that
U Izn(ezogtl) > U(alﬁﬂk) = (0771-)’

n>0 k>0

as required. O

Lemma 6.3. The Markov chain (Yn)n>1 defined in (35) is aperiodic.
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Proof. We prove aperiodicity by showing that (Y,),>1 is indecomposable of all orders. Let n € N
be given. For indecomposability of order n, it is sufficient to prove for any A € A with u(A) >0
and which satisfies U"14(0) = 1 for p-a.e 0 € A, that u(A) = 1, see Definition 7.14 from Breiman’s
book [6]. Let such an A be given and take § € A. Then

Um14(0) = %7 ((Rj)jez €[0,1%: Tp,,, o0 0Ug,(0) € A) =1,

so for v%% x pa.e. ((Ri)icz,0) € [0,1]% x A we get
T"((Ri)iez,0) € [0,1]% x A.

Thus, for p-a.e. § € A we have Z"({0}) C AU N for some set N € A with p(N) = 0, and likewise
for any k € N we get
7% (0) C AU Ny,

for some Ny € A with u(Ny) = 0. We have that Z"*(0) is increasing in k since ¥(0,6) = ¥(1,0) =
0, and this implies that Z¥(6) C Z"*(6). Therefore, using Lemma 6.2, we get

om=z"o)cJz™O)cAu | UM | C(0m),

and this implies that u(A) = 1. O

6.3 Estimating |Pf|| 5y when sinf < 5

We start with ||Pf||sv of the average transfer operator P defined in (18).

Lemma 6.4. Assume that sinf < n. Then there exists a € (0,1) so that for all f € BV,
1P fllsv < allfllsv-

Proof. Estimating HPf

{sinf<n} ‘oo.

As in Section 5, averaging over I; means that in the formula for transfer operator Pg, defined

in (17) we multiply with v(p(Je ¢, 0)). Recalling that sin < n and proceeding similarly to (29),

m f(é) sin 6
P <su IR (e )Ly (37
H f {sinf<n} ‘oo - gp Z L |\II;%(9)‘SH’10 (p(§ )) £(0)=¢ ( )
§:Wmax{ﬁ,m} i oo

Recall that the estimate for the derivative is given in (10). Recall from Lemma 5.2 that in the

worst case scenario (left cheek collision), v(p(Je ¢, 0)) < %. Also, recall that sinf ~ W/|£|.

Putting these together and using (37), we obtain

w
m 27 + N2
1 sin“f h™ |tand)|
P o <su S
” f{siné<n}” - ngf” sin 6 T 1 KEminW  26min W
.f:Wmax{;,m}
w
w? (Orem?? 1 ht Vsing 1
<L 55— flloo sup > = < 573 1 flloo <2
2K2,, ¢ sin6 W man( L L, £ 3k2,,Cx w 8
1N’ \/Ch sin 0

provided we take W > 8h+/(3f-cfmnCE:/2).

Estimating Var (Pf _ ) For this part we proceed as in Section 5.1.4 and we only
{sinf<n}

sketch the argument. Here the calculations are easier due to the absence of e®*X — 1.
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In short, (30) and (31) are replaced by

CyW f(6) sinf ~
Varg (P f| (g g<ny) < Z Z 272 Rfélf(?,z) Varg <|\II’()| Sno 1;.,(0) (38)

[§]>€&y te{L,R,D}

with

Lé) sinéle_’z (é)

f(0) sind ~ 1
e <|\I/’()|8in91J5’£(0) = Varo { Guglvn e ) Sup

0eJe 0 [W'r. (9)|
(_fO) s
o g (IO i)
= Vi(& [, W) + Va(&, f,W). (39)

For V1 we just need to recall that Varg (ﬁ\wm%,n) < SUPpewy (Je ) =5 by the proof of
Lemma 5.3 (first lines below (31)). Hence, the sums over terms with Vi (6, f,W) can be dealt

with similarly to estimating || Pf |loo, which gives another term strictly less than 1/8, or

{sinf<n}
similarly to estimating I inside the proof of Lemma 5.3.

For V2, we proceed as in estimating I/ inside the proof of Lemma 5.3. The absence of the
factor e"** — 1 much simplifies the calculation. More precisely,

Var(f) f(é) sin @ 1 £ oo sin 6
< 5 .
‘/2(53 f7 W) — Sgp < sin@ |\I/ | sin0 V&I‘g |‘IIIRL ‘ 1J§,Z (40)
From Corollary 4.3 we have Var; (@5‘0 1r,. 4) < Cl¢ \75/ 2 and for left cheek collisions, we have
W, (0)] < vf}g 9 and sin@ > sin®0/C2% ~ W?/(C,&)?. Therefore
Cc? Cc?
Va(§, £, W) < Var(f) + Slloo-
( s )+ )

Taking the sum over all relevant (&, £) and recalling that &, ~ W/n, we find

CpW
> > Va6, £, W) < 3C, Y Var(f) + 11l
2 5
ey cetimpy & B Ll €1>€, “"““'ﬂ |f|
3C,C%n? 1
< PR T -
S e Ifllsv < g
for W > 2C.«n+/6Cp/Kmin. The conclusion follows by adding the sums over Vi and V. O

6.4 Estimating ||Pf| sy when sinf > 7

In this section we proceed as in Section 5.2 without the presence of of the displacement X.

Lemma 6.5. Let n > 0 be as in Lemma 4.1. There exists a € (0,1) and C,C’ > 0 so that
Vato (Prf| sy ) < @Var() +Cliflloos || (Prcd] pingom )| < €111

Proof. 1f 8 — \Ilgil (8) = 0 € Je 4 refers to a single monotone branch of \111_21,17 then Varg(f o \Ilg,j) =
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Varg(f|1,,). Recall from Lemma 3.3 that sin @ > 7 implies that sin@ > n%/C2. Compute that

[0 WRL(0) - sin(W; (6)
Varg (PRif‘{sinézn}) - are 9 Z |\I/’ (\111;1(0))1 1y, (¥R, (0))

“q

) - sin(0) ~
Z Varg <|\I}’Ri(0~)|1(’§’2 (9))

X LeAy,

1 f - sin(@ ~
+ Var (sin0 |sin@2n) Z |\I// n 1‘76,@ (9)

LeAy

n|
sin @ '{sin6>n}

oo

IN
3
V|5

C Z (Vare(fjgyé)

Lehy,

+ ||f|:7§,z lleo Vare <\II

| 2
I B
- =
A~
NS
-

=
<,
o

~
=
™
=
v
\—/

202 sin( ~
Z ; ( z lJ{,z(a)
ey || 1VR,(0)]
2NW C N W C
< 2W Z Var( f‘Jg )+ 77”.)[”00 ”f”oo
LeAy
C 3N C’
< 22 W Var(f) +
By taking W > 3C/(2n?), this gives a Lasota-Yorke inequality for this part of the variation with
a = 7, already for the non-averaged transfer operator. Averaging cannot undo this, so we have
Varg (Pf|{sin0~2n}) < 3 Var(f) + C'||f|loo for some C” > 0. This proves the statement on the
variation. The estimate for the infinity norm is simpler and omitted. (I

6.5 Proof of Proposition 6.1

By Lemmas 6.4 and 6.5, Varg (Pf) < aVar(f) + C|f|le, and [|Pf]|,, < C2||f]leo, for some
C, C2 > 0. Repeated applications of these inequalities gives that Varg (P" f) < o™ Var(f)+Col| f|
for some Co > 0. Therefore |P" f|| 5, < &" Var(f) + Ci||flle < @"||fllBv + C1]|f]|oc, for some

C1 > 0, as desired.

7 Proof of Theorem 1.1

Recall that X (#) = W/tan6, that E,(X) = 0 by the symmetry of du = %sinfd6, and that
=>" L X, where X; = Xo(Ugr,0--0WUg).
In the rest of the section we show that for all t € R, as n — oo

E it e
VOZ %y, nlogn | — e . (41)

Provided (41) holds, the conclusion of Theorem 1.1 follows by the Levy Continuity Theorem. This
means that the Gaussian random variable has mean 0 and variance W.

We need to study the RHS of (41) relating to the behaviour of P;, which is Nagaev’s method.
By, for instance, repeating word by word the argument used in the proof of [3, Lemma 3.7], we
obtain

E it e f P" ., fd (42)
nlog n —
vOExp ¢ 0,m) V™ ltogn H

We record the following easy lemma, which shows that the displacement X (6) = W/ tan(6)

barely fails to be in L?(p).
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Lemma 7.1. The measures u(0 : X(0) > N) = %(1 + 0(1)) and p(@ : X(U) < —N) =
%(1 +0(1)) as N — oo.

Proof. For N > 0 given, it holds that X (6) = W/tan6 > N if and only if 0 < § < arctan(W/N).
Therefore

arctan(W/N) 1

W({0: X(6) > N}) = /Oﬁ 1w ooy (X (0)) dp = / 5 sin 66 = % (1 — cosarctan <%)) .

0

Using a Taylor approximation as N — oo, we find that

w 1 w?
cos arctan (ﬁ) == 1- W(l +0(1)),
1+ 5=

sou({6:X(0) > N}) = %(Pro(l)). The statement on p({6 : X(8) < —N}) follows likewise. [

7.1 Spectral decomposition for P,

Repeating the steps of the proof of Proposition 6.1, we can show that the average perturbed
operator P, t € R, also satisfies the inequalities | P* f||sv < o"||fllsv + C||flloc and || P f]loo <
C'|| floo for some a € (0,1) and C, C" > 0. By Proposition 5.1, the family (P;), ¢ € R, is continuous,
when regarded as operators acting on BV. As a consequence, the associated eigenfamilies are also
continuous in ¢. That is, the family of dominating eigenvalues A; with corresponding eigenprojector
operators II; and eigenvectors v, is continuous in ¢ (with the same continuity bound as that of
Proposition 5.1.) The family of eigenvalues A; is well-defined for ¢ € B.(0).

Recall the spectral decomposition for P in Section 6.1. Standard arguments for smooth per-
turbation of linear operators (see [1, 16]) ensure that for all |¢| < ¢,

Pr=MNTL+Qf, ILQ:=QJJ,=0 and |Qff|lzv <8 for somed € (0,1). (43)

7.2 Asymptotics of the dominating eigenvalue )\,
Using Lemma 7.1 and Proposition 5.1 we obtain the asymptotics of \;.
Lemma 7.2. 1 -\, = W72t2 log(1/]¢])(1 4+ o(1)) as t — 0.

Proof. Write v for the eigenfunction of A\;. Note that

1-X\ = /(1 — e vodp + /(1 — ") (vr — wo) dp.
Here vo = 1 is the eigenvector associated with the eigenvalue Ao = 1. From here onward the
argument is standard, see [2]. In particular, the first part of the calculations used in [2, Proof of
Theorem 3.1] shows that

/(1 — " vy dp = /(1 — " L itX)vodp = L(lT/lt')tz(l +o(1)),

for L(1/t) := f_lil/t“tl u? dP(u). Here P(u) = u(f : X(0) < u), so the tail estimates of Lemma 7.1

and integration by parts give

/j/m quP(u):/O quP(u)—/Ol/Mqﬁd(l—P(u))

1/1t] —1/1t|

L(1/]t])

N 7/0 2uP (u) du + [u*P(u)] */l/m 2u(1 — P(u)) du — [u?(1—P(u))],/"
—1/|t| —1/[t| 0 0

0 W2 1 J W2 1/|¢| W2 1 J W2
~ - 2 LI O L 2 o g
[1/\z| umax{‘luQ’Q} YT Jr/o umax{ 4 ’2} YT

~ W2log(1/t]) + O(W?) = W log(1/[t))(1 + o(1)),
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where ~ indicates factors 1+ o0(1) as t — 0. By Proposition 5.1 and standard perturbation theory
of linear operators, ||v; — vo||sv = O(|t|). Since BV C L*°,

\/(1 — %) (0 — o) d| < ] [ — vol]oe / X dp < [t] [or — ol v < 12.

and the conclusion follows. O

7.3 Proof of Equation (41)

2
By Lemma 7.2, A} = e~ P los(1/1th (o) a5 (), By Proposition 5.1, |II; - || sv = O(|¢]).

2
Combining this with (43), we get P f = e~ g 17 loa(1/ [t (1+e(1) [ fdu(l+0(1)).
Recalling (42), we get that for any ¢ € R, as n — oo,

€ o (TR ) = e ROV a1 o(1)) 5 [
as required.
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