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Abstract. A rotated odometer is an infinite interval exchange transformation (IET) obtained as
a composition of the von Neumann-Kakutani map and a finite IET of intervals of equal length. In
this paper, we consider rotated odometers for which the finite IET is of intervals of length 2−N ,
for some N ≥ 1. We show that every such system is measurably isomorphic to a Z-action on a
rooted tree, and that the unique minimal aperiodic subsystem of this action is always measurably
isomorphic to the action of the adding machine. We discuss the applications of this work to the
study of group actions on binary trees.

1. Introduction

In this paper, we consider infinite interval exchange transformations (IETs) obtained by precom-

posing the von Neumann-Kakutani map of an interval with a finite IET of equal length intervals,

and study the dynamics of such systems.

Let a be the von Neumann-Kakutani map, represented on the half-open unit interval [0, 1) as

a(x) = x− (1− 3 · 2−n) if x ∈ [1− 21−n, 1− 2−n), n ≥ 1.(1)

For q ∈ N, divide the interval I = [0, 1) into q half-open subintervals of length 1
q . Let π be

a permutation of q symbols and let Rπ be the corresponding piecewise continuous map of the

subintervals. The infinite IET Fπ : I → I defined by Fπ = a ◦ Rπ is called the rotated odometer.

This generalizes the case when Rπ : x 7→ x+ p/q mod 1 is a circle rotation, and we keep the name

for the general case.

It was shown in [4] that every rotated odometer (I, Fπ, λ) with Lebesgue measure λ is measurably

isomorphic to the first return map of a flow of rational slope on a certain infinite-type translation

surface. The translation surfaces in question have interesting properties: they are non-compact

surfaces of finite area, infinite genus and with a finite number of ends. The closure of such a surface

contains a single wild singularity and possibly a finite number of cone angle singularities, see [5, 13]

for definitions and details about translation surfaces of infinite type. On the other hand, one can

consider (I, Fπ, λ) as a perturbation of the von Neumann-Kakutani system (I, a, λ). A natural

question is, what dynamical properties of (I, a, λ) are preserved under such perturbation? For the

case q 6= 2N , N ≥ 1, this question was partially answered in [4].
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Let Iper the set of periodic points in I and Inp = I \ Iper be the non-periodic points. It was shown

in [4] that the aperiodic subsystem (Inp, Fπ) of the rotated odometer (I, Fπ) can be embedded into

the Bratteli-Vershik system on a suitable Bratteli diagram, which can be constructed using coding

partitions. The ergodic measures and the spectrum of the Koopman operator for (Inp, Fπ) can

then be studied using the methods developed in the literature for stationary Bratteli diagrams, see

[2, 6]. In [4] we investigated these questions for the case q 6= 2N , N ≥ 1. In particular, it was

shown that (Inp, Fπ) may be non-minimal with unique minimal set, and that it admits at most q

invariant ergodic measures (examples of rotated odometers with 2 invariant ergodic measures are

given too).

In this paper, we consider the case q = 2N , N ≥ 1, where it is possible to construct a different,

simpler Cantor model for the dynamical system of a rotated odometer than in [4]. More precisely,

we show that the rotated odometer (I, Fπ, λ) is measurably isomorphic to a Z-action on a rooted

binary tree, and, using this model, we study the dynamical and ergodic properties of the system.

We also discuss the applications of our results to the study of group actions on binary trees.

We now give an overview of the main steps in the procedure which builds a measurable isomorphism

between (I, Fπ, λ) and a Z-action on a tree.

As a first step, we embed (I, Fπ) into a dynamical system given by a homeomorphism of a Cantor

set, that is, there exists a Cantor set I∗, a homeomorphism F ∗π : I∗ → I∗ and an injective map

ι : I → I∗, such that the image ι(I) is dense in I∗ and ι ◦ Fπ = F ∗π ◦ ι. This procedure has an

important difference with an embedding of (I, Fπ) into a compact space (I∗, Fπ) constructed in [4].

Indeed, to define the compact space I∗ in [4] we employ a technique standard in the study of

finite IETs, see for instance [9]. Namely, we create gaps in I by doubling points in the orbits

of discontinuities of Fπ. Periodic points in [4] have half-open neighborhoods where each point is

periodic with the same period as x, and no points in this neighborhood get doubled. Consequently

I∗ is not totally disconnected. However, the closure of ι(Inp) is always a Cantor set.

In this paper I∗ is constructed by simply doubling every dyadic rational p/2m, m ≥ 1, 0 < p < 2m,

thus repeating the construction of the middle-third Cantor set, if we think of the middle interval

as collapsed to a point. The compact space I∗ obtained this way is always totally disconnected.

The discontinuity points of (I, Fπ) are among the doubled points, which implies that Fπ extends to

a homeomorphism F ∗π of I∗. The embedding ι is a measurable map with respect to the Lebesgue

measure λ on I and the measure µ on I∗ defined in Section 2.1.

We next build a tree model.

Definition 1.1. A rooted binary tree T consists of the set V =
⊔
i≥0 Vi of vertices and the set

E =
⊔
i≥1Ei of edges, which satisfy the following properties for all i ≥ 0:

(1) The cardinality |Vi| = 2i.
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(2) Every vertex in Vi is connected by edges to precisely two vertices in Vi+1.

(3) Every vertex in Vi+1 is connected by an edge to precisely one vertex in Vi.

We modify the binary tree to obtain a grafted binary tree as follows.

Definition 1.2. For N ≥ 1, a grafted binary tree TN consists of the set V =
⊔
i≥0 Vi of vertices

and the set E =
⊔
i≥1Ei of edges, such that:

(1) |V0| = 1, |V1| = 2N and for i ≥ 2 we have |Vi| = 2N+i−1.

(2) The root v0 ∈ V0 is connected by edges to 2N vertices in V1.

(3) For i ≥ 1, every vertex in Vi is connected by edges to precisely 2 vertices in Vi+1, and to a

single vertex in Vi−1.

In the notation of Definition 1.2, we have T1 = T , where T is the binary tree of Definition 1.1.

We introduce a labelling of vertices in V . Write Ak = {0, 1, . . . , 2k − 1}, for k ≥ 1, and consider

the tree TN . The root v0 ∈ V0 is not labelled, vertices in V1 are labelled by digits in AN , and for

i ≥ 1, if v ∈ Vi is labelled by a word w1w2 · · ·wi where w1 ∈ AN and wi ∈ A1 for i ≥ 2, then the

two vertices in Vi+1 connected to v are labelled by w1 · · ·wi0 and w1 · · ·wi1.

Definition 1.3. An infinite path in the tree TN is an infinite sequence in the product space

∂TN = {(wi) = w1w2 . . . | w1 ∈ AN , wi ∈ A1, i ≥ 2} = AN ×
∏
i≥2
A1,i, A1,i = A1 for i ≥ 2.(2)

The space ∂TN is called the boundary of the tree TN .

Since N and the cardinality of A1 are finite, ∂TN is a Cantor set.

Definition 1.4. An automorphism g : TN → TN is a map of TN which restricts to bijective maps

on the sets V and E of vertices and edges respectively, and which preserves the structure of the

tree. That is, if v1 · · · vi ∈ Vi is a vertex, then for any vertex v1 · · · viw ∈ Vi+1, where w ∈ {0, 1},
we have that g(v1 · · · vi) is a subword of g(v1 · · · viwi). In other words, two vertices in Vi and Vi+1

are joined by an edge if and only if their images under g are joined by an edge.

We denote by Aut(TN ) the group of automorphisms of TN . It is straightforward to see that every

automorphism g ∈ Aut(TN ) induces a homeomorphism of the boundary ∂TN .

A cylinder, or a cylinder set [w1w2 . . . wi] in TN , i ≥ 1, is the set of all infinite paths starting with

the finite sequence w1w2 . . . wi. The Bernoulli measure µN on ∂TN is the standard measure in

which every cylinder [w1w2 . . . wi] has the mass 2−N−i+1. It is straightforward that µN is preserved

under every automorphism of TN .

Theorem 1.5. Let q = 2N , let π be a permutation on q symbols and let (I, Fπ, λ) be a rotated

odometer with Lebesgue measure λ. Then there exists an automorphism F̃π ∈ Aut(TN ) and a
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measurable isomorphism

φ : (I, Fπ, λ)→ (∂TN , F̃π, µN )

such that F̃π ◦ φ = φ ◦ Fπ.

Theorem 1.5 is proved in Section 2.3.

A consequence of Theorem 1.5 is the following description of the dynamics of (I, Fπ, λ) in the case

q = 2N , N ≥ 1, which is more precise than the result of [4].

Theorem 1.6. Let q = 2N for some N ≥ 1, and let (I, Fπ) be a rotated odometer. There exists a

decomposition I = Iper ∪ Inp with the following properties:

(i) Every point in Iper is periodic, the restriction Fπ : Iper → Iper is well-defined and invertible.

(ii) If Iper is non-empty, then Iper is a finite union of half-open maximal periodic intervals

[x, y), x, y ∈ I. Thus the set of periods of points in (I, Fπ) is finite.

(iii) The set Inp contains 0 and Fπ : Inp → Inp is well-defined and invertible at every point in

Inp \ {0}.
(iv) The aperiodic system (Inp, Fπ) is minimal.

The difference with the general case q ≥ 2 in [4] is that there Iper can be an infinite union of

half-open intervals, while for q = 2N , Iper is at most a finite union of half-open intervals. It follows

that the set of periods which occur in (I, Fπ) is finite, which need not be the case in [4]. Another

difference is that for q = 2N the aperiodic subsystem (Inp, Fπ) is always minimal, while this need

not hold for q 6= 2N . Theorem 1.6 is proved in Section 2.3.

Since Iper is a finite union of half-open intervals, Inp is also a finite union of half-open intervals,

and its Lebesgue measure λ(Inp) > 0. We normalise λnp(U) = λ(U)/λ(Inp) for every U ⊂ Inp. The

dyadic adding machine a : {0, 1}N → {0, 1}N is a well-known example of a minimal Z-action on the

space of one-sided infinite sequences of 0’s and 1’s. For a finite set S = {0, . . . , r − 1}, r ≥ 1, we

define the adding machine aS : S × {0, 1}N → S × {0, 1}N as the addition of 1 in S with infinite

carry to the right. In other words,

aS(s, x) =

{
(s+ 1, x) if s < r − 1,

(0, a(x)) if s = r − 1, where a is the dyadic adding machine,
(3)

The adding machine aS preserves the obvious Bernoulli measure µS .

Since {0, 1}N is homeomorphic to ∂T1, there is a conjugate action on ∂T1 which we also call the

adding machine and denote by a. A recursive definition of the adding machine on the boundary

∂TN of the grafted tree TN is given in Example 2.3.

Corollary 1.7. Let q = 2N for some N ≥ 1, and let (I, Fπ) be a rotated odometer. The aperiodic

system (Inp, Fπ, λnp) is measurably isomorphic to the action of the adding machine on S ×{0, 1}N,

for |S| ≤ 2N , with Bernoulli measure µS.
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A rotated odometer need not be conjugate to an automorphism of the binary tree T , since Fπ may

be such that the permutation π does not respect the structure of the binary tree, see Remark 3.1.

Therefore TN cannot be substituted by T1 in Theorem 1.5.

Theorem 1.5 has applications in the study of group actions on binary trees. Infinite IETs and

actions of self-similar groups on binary trees are related. For instance, the famous Grigorchuk

group was initially defined as a group of infinite IETs of the unit interval, see [7, Section 2].

Actions of self-similar groups on binary rooted trees are an active topic of research in Geometric

Group Theory [1, 7, 11], and they also have applications in the study of arboreal representations

of absolute Galois groups of number fields [8, 10]. We now present a corollary of Theorem 1.5 for

the actions of groups on binary trees.

To this end, let T1 = T be the binary tree. An automorphism g ∈ Aut(T ) is of finite order if

gm = id for some m ≥ 1. For instance, if gi interchanges 0’s and 1’s in the i-th coordinate wi, then

gi has order 2. Another example of an element of order 2 is geven, which interchanges 0 and 1 in wi

for every even i, and of course one can construct many more examples. The adding machine (3) is

an automorphism of T of infinite order.

Let G ⊂ Aut(T ) be a profinite group such that G acts transitively on ∂T . Given g ∈ Aut(T ), the

restriction g|Vn is a permutation of a finite set Vn, and so it can be written as a product of cycles.

Let (xi) = x1x2 · · · ∈ ∂T , then x1 · · ·xn is a vertex in Vn. Denote by gn,x1···xn the cycle containing

x1 · · ·xn, then one can ask how the sequence of cycles {gn,x1···xn} behaves as n increases. It is

conjectured in [3], that when G is a representation of the absolute Galois group of a number field,

elements with a certain type of cycle structure are dense in G. To the best of our knowledge, this

conjecture is solved only in a few cases.

As a rule, given g ∈ Aut(T ), it is not immediate to determine the cycle structure of g, except in

a few simple cases when g is periodic or when g acts transitively on every level Vn, n ≥ 1. The

theorem below allows us to determine the cycle structure for compositions of the adding machine

and some periodic elements of Aut(T ).

Theorem 1.8. Let µ1 be the Bernoulli measure on ∂T , and let λ be Lebesgue measure on the

half-open unit interval I. Let g ∈ Aut(T ) be such that there exists m ≥ 1 such that for every i > m

and every sequence w1w2 · · · ∈ ∂T the action of g leaves wi unchanged (which implies that g has

finite order). Let a ∈ Aut(T ) be the adding machine. Then the following is true:

(1) For some permutation π on 2m intervals, there exists a rotated odometer (I, Fπ) and an

injective measure-preserving map φ : (I, λ)→ (∂T, µ), such that φ ◦ Fπ = (a ◦ g) ◦ φ.

(2) Consequently, a ◦ g has infinite order, there is a clopen subset U ⊂ ∂T such that the

restriction 〈a ◦ g〉|U is minimal, and there is an n0 ≥ 0 such that every x ∈ ∂T \ U is

periodic of period 2k for some k ≤ n0.
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The realization of a tree automorphism as an interval exchange transformation in Theorem 1.8 relies

on the fact that, under the hypotheses of the theorem, g respects the embedding of an interval into

the boundary of a tree T in Theorem 1.6. This means, in particular, that the orbits of points which

do not have preimages under φ consist of points which also do not have preimages under φ. This

condition need not hold for a general finite order automorphism of T . We discuss this and the

possibility of generalizing Theorem 1.8 to a larger class of tree automorphisms in Remark 3.3.

Remark 1.9. In the literature, an odometer in Aut(T ) is sometimes defined as any h ∈ Aut(T )

such that the action of the cyclic group 〈h〉 is transitive on each Vn, n ≥ 1. Every such h is conjugate

to the adding machine in Example 2.3 by some g ∈ Aut(T ) [12]. We stress that Theorem 1.8 only

holds for the adding machine and need not hold for an odometer h. To this end we show in

Remark 3.2 that it is possible to find h ∈ Aut(T ) such that the action of the cyclic subgroup 〈h〉
on ∂T is minimal, and a periodic g ∈ Aut(T ), such that the product h ◦ g has finite order. There

exists an infinite IET that is measurably isomorphic to the action of such 〈h〉 on ∂T , but this IET

will not be the rotated odometer of the form defined at the beginning of the introduction.

We finish with a sample open question motivated by applications to actions on binary trees. Con-

sider compositions of the adding machine with a periodic element which does not satisfy the hy-

potheses of Theorem 1.8 but which respects the embedding of I in Theorem 1.6, see Remark 3.3

for the justification of such an assumption. It may be possible to solve the following problem

by considering a sequence {Fπi}i≥1 of rotated odometers, where each πi is a (possibly different)

permutation of a finite number of symbols.

Problem 1.10. Let g ∈ Aut(T ) be periodic such that for any i ≥ 1 there is j > i and w1 · · ·wj · · · ∈
∂T such that g(wj) 6= wj, and such that g preserves the embedding φ in Theorem 1.6. Find a model

for the action of the product a ◦ g, where a is the adding machine, in terms of rotated odometers.

What are the topological properties of infinite translation surfaces, which admit flows whose first

return map is measurably isomorphic to such systems?

The paper is organized as follows. In Section 2 we develop a tree model for rotated odometers

and prove Theorem 1.5. In Section 3 we discuss the dynamics of rotated odometers and prove

Theorems 1.6 and 1.8 and Corollary 1.7.

2. The tree model

In this section we build a tree model for a rotated odometer with q = 2N , and prove Theorem 1.5.

2.1. Embedding into a Cantor set. Set C = {p2−n | n ≥ 1, 0 < p < 2n}; these dyadic rationals

are used as cut-points. For each point x ∈ C we add a double point x− to I, and define

I∗ = I ∪ {x− | x ∈ C} ∪ {1}.
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The subset I ∪ {1} of I∗ has total order < induced from R. We extend this order to I∗ by defining

x− < x if x ∈ C, and y < x− if y ∈ I \ C, x ∈ C and y < x. Since there are no points between

x− and x in I∗, adding x− to I can be thought of as creating a gap. We give I∗ an order topology

with open sets

B = {(a, b) | a, b ∈ I∗}
⊔
{[0, b) | b ∈ I∗} ∪ {(a, 1] | a ∈ I∗}.

It is straightforward that the sets {[x, y−] | x, y ∈ C} are clopen in this topology. Since C is dense

in I, every point z ∈ I∗ has a system of decreasing clopen neighborhoods

C(z, n) = {[pn2−n, (pn + 1)2−n] | n ≥ 0, 0 ≤ pn < 2n}.

Recall that a metric d on a space X is an ultrametric if it satisfies the following stronger form of

the triangle inequality,

d(x, y) = max{d(x, z), d(z, y)} for all x, y, z ∈ X.

We put an ultrametric on I∗ by declaring that

d(z1, z2) =
1

2r
, r = max{n ≥ 0 | C(z1, n) = C(z2, n)}.

Then I∗ is a compact totally disconnected perfect metric space, that is, I∗ is a Cantor set.

Define a measure µ on I∗ by setting for each clopen set {[x, y−] | x, y ∈ C}

µ([x, y−]) = y − x,

and denote by ι : I → I∗ the inclusion map. Clearly µ(I∗) = 1. Since C is countable, the following

is straightforward.

Lemma 2.1. The map ι : (I, λ)→ (I∗, µ) measurable.

Denote by D0 = {1 − 2−k | k ≥ 0} the set of discontinuities of the von Neumann-Kakutani map

a, and let D+ and D− be the sets of forward and backward (whenever defined) orbits of points in

D0. Since a is continuous on the intervals Ik = [1 − 2−(k−1), 1 − 2−k), k ≥ 1, and, moreover, the

restriction a|Ik for each k ≥ 1 is a translation by ±p2−s for some p, s ∈ N, the set D0 ∪D+ ∪D−

of forward and backward orbits of the points of discontinuity of a is contained in C.

We can extend a : I → I to a continuous map a∗ : I∗ → I∗ by setting a∗(x) = a(x) if x ∈ I, and

a∗(x−) = lim
y↗x

a(y), for all x ∈ C ∪ {1}.

Every point x ∈ I except 0 has a two-sided orbit, and it follows that ι(x) has a two-sided orbit in

I∗. For any sequence y ↗ 1 the sequence of images a(y) ↘ 0, so a∗(1) = 0 and 0 has a two-sided

orbit in I∗ under a∗. It follows that a∗ is a homeomorphism. It is immediate that a∗ ◦ ι(x) = ι◦a(x)

for all x ∈ I.

Note that the finite IET Rπ : I → I extends in a similar manner to a periodic homeomorphism

R∗π : I∗ → I∗, which satisfies R∗π ◦ ι(x) = ι ◦ Rπ(x) for all x ∈ I. Then for the composition



8 HENK BRUIN AND OLGA LUKINA

F ∗π = a∗ ◦ R∗π it follows that F ∗π ◦ ι(x) = ι ◦ Fπ(x) for all x ∈ I, and thus (I, Fπ, λ) is measurably

isomorphic to (I∗, F ∗π , µ) via the embedding ι.

2.2. Actions on trees. The binary tree and the grafted binary trees were defined in Definitions 1.1

and 1.2, and automorphisms of trees were defined in Definition 1.4. We now introduce a description

of elements in Aut(TN ) convenient for computations. This approach is a slight modification of the

one routinely used in Geometric Group Theory to study actions on binary trees, see for instance

[11]. The purpose of this modification is to take into account the fact that in the grafted binary

tree the vertex set V1 has more than 2 vertices.

Let T = T1 be the binary tree with the labelling of vertices by finite words in A1 as defined in the

Introduction. Let w = w1 · · ·wk ∈
∏k
i=1A1 and denote by T (w) the subtree of T consisting of all

paths starting with the finite word w. All such paths pass through the vertex in Vk labelled by w.

Then there is an isomorphism of trees

κw : T (w)→ T, w1 · · ·wkvk+1 · · · 7→ vk+1 · · · , vi ∈ {0, 1} for i > k.(4)

For every g ∈ Aut(T ), the restriction g|Vn is a permutation of a set of 2n elements.

Definition 2.2. Given an automorphism g ∈ Aut(T ), and a finite word w, we define a section at

w by

gw = κg(w) ◦ g ◦ κ−1w ∈ Aut(T ).(5)

Let g|Vn = τ . Then we can write g as a composition (we compose the maps on the left)

g = (gτ−1(0n), gτ−1(0n−11), . . . , gτ−1(1n))τ,(6)

where gτ−1(w) are sections, for finite words w of n letters. Equation (6) means that to compute g,

we first apply τ on Vn, and then we apply a section gτ−1(w) to the subtree T (w), for all w ∈ Vn.

Example 2.3. Using sections, we can write automorphisms of T recursively. Recall that a generator

of the adding machine action on a Cantor space {0, 1}N is given by

a(w1w2 · · · ) =

 (w1 + 1)w2 · · · if w1 = 0,
0 0 · · · 0 (wk+1 + 1)wk+2 · · · if wi = 1 for 1 ≤ i ≤ k, wk+1 = 0,
0 0 · · · if wk = 1 for all k ≥ 1.

(7)

Recall that for the binary tree T we have ∂T ∼= {0, 1}N. Let σ be the non-trivial permutation of

A1. Then using (6) we can write

a = (a, 1)σ,

where 1 is the identity map in Aut(T ). Here σ performs the addition of 1 modulo two in the first

entry of the sequence, interchanging 0 and 1, while (a, 1) implements the recursive procedure of

infinite carry to the right. For example, if w = 10∞, then applying σ to w interchanges 1 to 0

in the first component, so σ(w) = 0∞, and we must compute (a, 1)(0∞) next. The sequence 0∞

belongs to the subtree T (0) which means that we must apply the section a0 = a to 0∞. That is,

we apply a to 0∞ starting from the second entry. Since a|V1 = σ, we must interchange 0 and 1 in
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the second entry, obtaining 010∞ ∈ T (01). We have for the sections a1 = 1, then also a01 = 1, and

the computation stops with the result a(10∞) = 010∞.

Using (6) we can compute the compositions of elements in Aut(T ). The following statement is

obtained by a straightforward computation.

Lemma 2.4. Let g, h ∈ Aut(T ), and suppose g = (g0, . . . , g2n−1)τ and h = (h0, . . . , h2n−1)ν, where

τ, ν are permutations of 2n symbols and gi, hi ∈ Aut(T ) for 0 ≤ i < 2n. Then

gh = (g0, . . . , g2n−1)τ(h0, . . . , h2n−1)ν = (g0hτ−1(0), . . . , g2n−1hτ−1(2n−1))τν.(8)

Now let TN be the grafted binary tree. Similarly to (4), for any w ∈ Vk, k ≥ 1 we define a map

κw : TN (w)→ T1, w1 · · ·wkvk+1 · · · 7→ vk+1 · · · .(9)

The difference with (4) is that the range of κw is not the grafted tree TN but the binary tree T . A

section gw of the grafted tree TN at w is defined by (5) with κw given by (9). Again, the difference

with the setting of the binary tree is that for the grafted binary tree TN sections are elements of

Aut(T ) and not of Aut(TN ).

Lemma 2.5. Given an automorphism g ∈ Aut(T ) of the binary tree T , there is always an au-

tomorphism ĝ ∈ Aut(TN ) of the grafted tree TN , such that the induced homeomorphisms on the

boundaries of the corresponding trees are conjugate.

Proof of Lemma 2.5. Vertices in the vertex level set VN of T are labelled by words of length N

in the alphabet A1. Define the map

κN : AN1 → AN , w1 · · ·wN 7→
N∑
i=1

2N−iwi.

Using the identification (2) of the path spaces ∂T and ∂TN with products of finite sets we obtain

a homeomorphism

κ∞ : ∂T → ∂TN , w1w2 · · · 7→ κN (w1 · · ·wN )wN+1 · · · .

It follows that the map g̃ = κ∞ ◦ g ◦ κ−1∞ : ∂TN → ∂TN is a homeomorphism. Moreover, by

construction if two paths (wi), (vi) ∈ ∂T coincide up to level m ≥ N , then their images under κ∞

coincide up to level m − N , so every subtree T (w) for w ∈ VN is mapped isomorphically onto a

subtree TN (κN (w)). It follows that g̃ defines an automorphism ĝ of TN . �

Given a recursive definition of g ∈ Aut(T ) as in (6), we can obtain a recursive definition of ĝ ∈
Aut(TN ). Indeed, let g|VN = τ be a permutation of VN induced by g. Then τN = κN ◦ τ ◦ κ−1N is a

permutation of the level set V N
1 of TN , and if g = (g0, . . . , g2N−1)τ , then ĝ = (g0, . . . , g2N−1)τN .
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Example 2.6. Let a = (a, 1)σ be the standard adding machine as in Example 2.3, and let N ≥ 2.

We can compute that

τN = κN ◦ (a|VN ) ◦ κ−1N = (0, 2N−1, 2N−2, 2N−1 + 2N−2, . . . , 2N − 1),(10)

and â = (a, 1, . . . , 1)τN ∈ Aut(TN ).

More generally, given a finite set S ⊂ VN , we can consider a subtree TS =
⋃
w∈S TN (w) ⊂ TN . Let

η be a transitive permutation of S, and consider the map aS = (a, 1, . . . , 1)η on TS . Then aS is

transitive on Vn ∩ TS , for any n ≥ 1, so aS is the adding machine on TS .

We note that, given h ∈ Aut(TN ), the composition κ−1∞ ◦ h ◦ κ∞ need not define an automorphism

of T . Indeed, let N = 2, so TN has 4 vertices at the first level, and let h|V2 = τ2 = (012), so the

vertex 3 is fixed. We have κ−12 (3) = 11 ∈ V2 and κ−12 (2) = 10 ∈ V2. At the same time

κ−12 ◦ τ2 ◦ κ2(10) = κ−12 (τ2(2)) = κ−12 (0) = 00.

Thus κ−1∞ ◦ h ◦ κ∞ maps paths starting with 1 in ∂T to paths starting with either 1 or 0 depending

on the second symbol in the sequence. This means that κ−12 ◦ τ2 ◦ κ2 is incompatible with the

structure of the binary tree T , and so κ−1∞ ◦ h ◦ κ∞ does not define an automorphism of T .

2.3. Tree models for rotated odometers. In this section we prove Theorem 1.5.

Proof of Theorem 1.5. Recall that π is a permutation of 2N symbols, and ι : (I, λ) → (I∗, µ)

is a measurable embedding into a Cantor set. Write xn,p = p2−n for points in C, and x−n,p for the

corresponding double points in I∗. For each n ≥ 1, set x−n,2n = 1.

Note that for any n ≥ 0 we have

I∗ =
⋃
{[xn,p, x−n,p+1] | 0 ≤ p < 2n − 1}.

Consider the grafted tree TN , and recall that |V1| = 2N . We are going to construct a homeomor-

phism φ̃ : I∗ → ∂TN inductively as follows.

Define φ̃1 : I∗ → AN by setting

φ̃1(z) = p if and only if z ∈ [xN,p, x
−
N,p+1].

For n ≥ 2, there is a unique 0 ≤ m < 2n − 1 such that z ∈ [xn,m, x
−
n,m+1]. Set

wn = φ̃n(z) = m mod 2.

Then define

φ̃∞ : I∗ → ∂TN , z 7→ (φ̃1(z), φ̃2(z), . . .).

This mapping is bijective, since every point in I∗ has a system of clopen neighborhoods of the form

{[xn,p, x−n,p+1] | n ≥ 0}, and every clopen neighborhood [xn,p, x
−
n,p+1] is non-empty. The mapping

φ̃∞ is clearly continuous and so it is a homeomorphism. Note that by construction the inclusions

of clopen sets in I∗ correspond to vertices in TN joined by finite paths.
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The measure µ assigns equal weight to each interval {[xn,p, x−n,p+1] | 0 ≤ p < 2n} in the partition of

I∗, and µ(I∗) = 1. By construction each [xn,p, x
−
n,p+1] is mapped onto a unique vertex in Vn−N+1.

The Bernoulli measure µN assigns equal weight to every set ∂TN (w), where w ∈ Vn−N+1, and

µN (∂T ) = 1. It follows that φ̃∞ is measure-preserving.

Every map of I∗ which for all n ≥ 1 induces a permutation of clopen sets {[xn,p, xn,p+1] | 0 ≤ p <

2n−1}, induces a family of permutations of the vertex level sets Vn−N+1, n ≥ 1 of TN . Since paths

in TN correspond to inclusions of clopen sets in I∗, such permutations are compatible with the

structure of the tree TN and induce an automorphism of TN . We note that the maps a∗ : I∗ → I∗

and R∗π : I∗ → I∗ described in Section 2.1 satisfy this condition. Therefore, the composition

F ∗π = a∗ ◦ R∗π : I∗ → I∗ induces an automorphism of TN . The proof of Theorem 1.5 is completed

by composing φ = φ̃∞ ◦ ι : I → ∂TN with the measurable isomorphism ι : (I, Fπ, λ)→ (I∗, F ∗π , µ).

�

Remark 2.7. Consider the set of added points {x−m,p | xm,p ∈ C}. Suppose xm,p = p2−m is an

irreducible fraction, that is, p is odd. Then for n > m we have that φ̃n(x−m,p) = 1 since in that case

x−m,p corresponds to a right endpoint of a clopen interval in the partition {[xn,r, x−n,r+1] | 0 ≤ r < 2n},
and it is always contained in the second interval of the subdivision of [xn,r, x

−
n,r+1] into two intervals.

Then the image of x−m,p in ∂TN is a sequence which is eventually constant with entries equal to 1.

3. Dynamics of rotated odometers

Using the tree model obtained in Theorem 1.5 we study the dynamics of rotated odometers and

prove Theorems 1.6 and 1.8 and Corollary 1.7.

3.1. Periodic and non-periodic points. For the von Neumann-Kakutani map a∗ : I∗ → I∗

denote by A = φ̃∞ ◦ a∗ ◦ φ̃−1∞ : ∂TN → ∂TN the induced map of the binary tree T . We want to

describe A using the recursive formula (6).

Proof of Theorem 1.6 and Corollary 1.7. In what follows n ≥ N . Let Ln = [0, 2−n) and

Mn = [1 − 2−n, 1), so that Ln is the first and Mn is the last set of the partition of I into 2n sets

of equal lengths. Then ι(Ln) ⊂ [xn,0, x
−
n,1] ⊂ I∗ and ι(Mn) ⊂ [xn,2n−1, 1] ⊂ I∗. The definition

of the von Neumann-Kakutani map in (1) implies that a(x) ∈ Ln if and only if x ∈ Mn, and for

any [xn,p, xn,p+1) except Mn the restriction a|[xn,p, xn,p+1) is a translation. Thus it preserves the

order ≤ on the points in [xn,p, xn,p+1) induced from R. The relation ≤ is not preserved by the

restriction a : Mn → Ln, where the order of two halves of Mn is interchanged, and the intervals

inside the image of the second half of Mn are further interchanged. The second half of Mn is

the set Mn+1, and we have a(Mn+1) = Ln+1. Thus the restriction of a to the set of intervals

{[xn,p, xn,p+1) | 0 ≤ p < 2n}, and therefore of a∗ to the set of intervals {[xn,p, x−n,p+1] | 0 ≤ p < 2n},
defines a permutation of 2n symbols, which is transitive since a is minimal on I.
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It follows that A|Vn−N+1 is a transitive permutation of Vn−N+1. Since further permutations of

subintervals, which do not respect the order <, only happen for the interval, mapped onto Ln−N+1,

for any w 6= 0n−N+1 ∈ Vn−N+1, the section Aw ∈ Aut(T ) is the identity map. The restriction of

the section A0n−N+1 to Vn−N+2 is a non-trivial permutation of two symbols, since a permutes two

subintervals of Ln−N+1. For n = N , we have A|VN−N+1 = A|V1 = τN , for τN given by (10), and

so A = (a, 1, . . . , 1)τN , where a = (a, 1)σ is described in Example 2.3.

Similarly, given a permutation π of 2N symbols, and the corresponding finite IET Rπ : I → I, we

deduce that the induced map R = φ̃∞ ◦R∗π ◦ φ̃−1∞ is given by R = (1, 1, . . . , 1)π, with R|V1 = π.

Now using the law for composition of tree automorphisms (8) we can easily understand the dynamics

of the system (∂TN , A ◦R). In particular,

A ◦R = (a, 1, . . . , 1)τπ,

which leads to the following conclusions:

(i) Consider the decomposition of τπ into cycles, and suppose c is a cycle containing 0. Let

O ⊂ AN be the set of symbols in c. Then

∂TN (O) =
⋃
{∂T (s) | s ∈ O}

is a clopen subset of ∂T and the restriction of A ◦R to this set satisfies

A ◦R|∂TN (O) = (a, 1, . . . , 1)c,

which shows that this system is the addition of 1 in the first component with infinite carry

to the right, and so it is minimal. Set S = {0, . . . , |c|−1}, then A◦R|∂TN (O) is isomorphic

to the adding machine on S × {0, 1}N defined in Example 2.6, and Corollary 1.7 follows.

Here |c| denotes the length of the cycle c. In particular, the system (∂TN , A◦R) is minimal

if and only if τπ is a transitive permutation.

(ii) In the cycle decomposition of τπ, let c′ be a cycle not containing 0, and let O′ ⊂ AN be

the set of symbols in c′. Then ∂TN (O′) =
⋃
{∂T (s) | s ∈ O′} is a clopen subset of ∂T , and

we have

A ◦R|∂TN (O′) = (1, 1, . . . , 1)c′.

Thus every point in TN (O′) has period |c′|.
(iii) Since τπ contains a finite number of cycles, the set of periods of periodic points in (∂TN , A◦

R), and so in (I, Fπ), is finite. Also, it follows that a point x ∈ ∂TN is periodic if and only

if x ∈ ∂TN (O′) for some cycle c′ not containing 0. There is at most a finite number of

such cycles c′ in τπ, and so there is a finite number of half-open intervals in I whose image

under the inclusion map φ = φ̃∞ ◦ ι is contained in ∂TN \ ∂TN (O). It follows that the set

of periodic points in (I, Fπ) is at most a finite union of half-open intervals.

These prove Theorem 1.6 and Corollary 1.7. �
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Remark 3.1. We note that the periods of points in (I, Fπ) need not be powers of 2. Let N = 2,

then A = (a, 1, 1, 1)(0213). Let π = (03). Then

A ◦R = (a, 1, 1, 1)(0213)(03) = (a, 1, 1, 1)(0)(321),

so the orbit of every infinite sequence in ∂T2 starting with 1, 2 or 3 is periodic with period 3.

It follows from this example that there exist rotated odometers whose action is not measurably

isomorphic to the action of an automorphism of the binary tree T . Indeed, if g ∈ Aut(T ) is an

automorphism and x ∈ ∂T is a periodic point, then the period of x is a power of 2. To see this,

consider x = (x0, x1, . . .), and let rk be the period of xk in Vk. Then the period xk+1 in Vk+1 is

either rk or 2rk. Since the period r1 of x1 in V1 is either 1 or 2, the statement follows.

3.2. Applications. We prove Theorem 1.8.

Proof of Theorem 1.8. Suppose that g ∈ Aut(T ) is of finite order such that there is m ≥ 1 such

that for every i > m the action of g leaves wi unchanged. We need to show that there exists a

rotated odometer (I, Fπ) for some permutation π on 2m intervals, such that (I, Fπ, λ) is measurably

isomorphic to (∂T, a◦g, µ1), where λ is Lebesgue measure, µ1 is the Bernoulli measure on the binary

tree T and a is the adding machine described in Example 2.3.

Consider the partition of ∂T into clopen sets ∂T (w), where w = w1 · · ·wn. Also, consider a partition

of I∗ into subintervals {[xn,p, xn,p+1) | 0 ≤ p < 2n}. By construction every such subinterval is

mapped under φ = φ̃∞ ◦ ι into a distinct clopen set ∂T (w), and φ is injective on I. Define

g̃ : I → I, x 7→ (φ̃∞ ◦ ι)−1 ◦ g ◦ (φ̃∞ ◦ ι)(x).

The map g̃ is well-defined. Indeed, by Remark 2.7 the points in I∗ which do not have preimages in

I under ι are mapped into sequences which are eventually constant with entries equal to 1. Since g

does not change wi for i ≥ m, w ∈ ∂T is eventually a sequence of 1’s if and only if g(w) is eventually

a sequence of 1’s. Therefore, the map φ is invertible at g ◦ φ(x). Since g does not change wi for

i ≥ m, g̃ preserves the order of points in the sets {[xn,p, xn,p+1) | 0 ≤ p < 2n}, and it follows that

the restriction of g̃ to every interval {[xm,p, xm,p+1) | 0 ≤ p < 2m} is a translation. We conclude

that g̃ : I → I is a finite IET.

It is proved in Section 3.1 that the von Neumann-Kakutani map (I, a, λ) is measurably isomorphic

to (∂T, a, µ1), where a = (a, 1)σ is the standard adding machine. Set Fπ = a ◦ g̃, then (I, Fπ, λ)

is measurably isomorphic to (∂T, a ◦ g, µ1). The second statement of Theorem 1.8 follows from

Theorem 1.6. �

Remark 3.2. In the literature a transformation g such that the cyclic group 〈h〉 acts transitively on

every level Vn, n ≥ 1, of the tree T , is sometimes called an odometer. Every odometer is conjugate

to the adding machine in Example 2.3 by a tree automorphism [12]. We note that Theorem 1.8

only holds for the adding machine, but need not hold for its conjugates.
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Indeed, define a1 = σ and a2 = (a1, a2) using the recursive notation, then 〈a1, a2〉 is the dihedral

group. Both a1 and a2 have order two, and h = a1a2 generates an infinite cyclic group whose action

on every Vn, n ≥ 1, is transitive. The element h is conjugate to a = (a, 1)σ but it is not equal to a.

Recall that σ acts on (w1, w2, . . .) ∈ ∂T by interchanging 0 and 1 in the first entry, and keeps the

remaining entries fixed. We compute that hσ = σ(a1, a2)σ = (a2, a1) has order two.

Remark 3.3. We have seen in the proof of Theorem 1.8 that, under its hypotheses, a finite order

element g ∈ Aut(T ) respects the embedding of I into ∂T . More precisely, by Remark 2.7 points

which do not have preimages under this embedding correspond to sequences which are eventually

constant with entries equal to 1, and if g ∈ Aut(T ) satisfies the hypotheses of Theorem 1.8, then

it preserves the set of such sequences. Suppose g ∈ Aut(T ) does not satisfy the hypotheses of

Theorem 1.8, that is, for any n ≥ 1 there is (wi) ∈ ∂T and mn ≥ n such that g(wmn) 6= wmn . Then

the action of g on ∂T may or may not respect the embedding of I. If such g ∈ Aut(T ) respects

the embedding of I into ∂T (h in Remark 3.2 is an example), then g induces an IET of infinite

number of intervals. At the moment we do not have a unified way of describing the dynamics of a

composition of such an IET with the von Neumann-Kakutani map, and we pose this as an open

question in Problem 1.10. An example of an element which does not respect the embedding is, for

instance, geven given for any (wi) ∈ ∂T by

geven(w2n) = w2n + 1 mod 2, geven(w2n+1) = w2n+1, n ≥ 1.

It is not clear whether such elements induce IETs on the interval I, even if one discards the measure

0 set of orbits in ∂T which do not have preimages under the embedding, and/or allows reflections

of subintervals.
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