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Abstract. We study the structure of inverse limit space of so-called Fibonacci-like tent
maps. The combinatorial constraints implied by the Fibonacci-like assumption allow us
to introduce certain chains that enable a more detailed analysis of symmetric arcs within
this space than is possible in the general case. We show that link-symmetric arcs are
always symmetric or a well-understood concatenation of quasi-symmetric arcs. This
leads to the proof of the Ingram Conjecture for cores of Fibonacci-like unimodal inverse
limits.

1. Introduction

A unimodal map is called Fibonacci-like if it satisfies certain combinatorial conditions

implying an extreme recurrence behavior of the critical point. The Fibonacci unimodal

map itself was first described by Hofbauer and Keller [15] as a candidate to have a so-

called wild attractor. (The combinatorial property defining the Fibonacci unimodal map

is that its so-called cutting times are exactly the Fibonacci numbers 1, 2, 3, 5, 8, . . . ) In

[12] it was indeed shown that Fibonacci unimodal maps with sufficiently large critical

order possess a wild attractor, whereas Lyubich [18] showed that such is not the case if

the critical order is 2 (or ≤ 2 + ε as was shown in [17]). This answered a question in

Milnor’s well-known paper on the structure of metric attracts [20].

In [8] the strict Fibonacci combinatorics were relaxed to Fibonacci-like, see Definition 2.1.

Intricate number-theoretic properties of Fibonacci-like critical omega-limit sets were re-

vealed in [19] and [13], and [9, Theorem 2] shows that Fibonacci-like combinatorics are

incompatible with the Collet-Eckmann condition of exponential derivative growth along

the critical orbit. This makes Fibonacci-like maps an interesting class of maps in between

the regular and the stochastic unimodal maps in the classification of [1].
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Our interest in the Fibonacci-like properties lies in the fact that they allow us to resolve the

Ingram Conjecture for cores of Fibonacci-like inverse limit spaces. The original conjecture

was posed by Tom Ingram in 1991 for tent maps Ts : [0, 1]→ [0, 1] with slope±s, s ∈ [1, 2],

defined as Ts(x) = min{sx, s(1− x)}:

If 1 ≤ s < s′ ≤ 2, then the corresponding inverse limit spaces lim←−([0, s/2], Ts)

and lim←−([0, s
′/2], Ts′) are non-homeomorphic.

The first results towards solving this conjecture have been obtained for tent maps with a

finite critical orbit [16, 23, 4]. Raines and Štimac [21] extended these results to tent maps

with an infinite, but non-recurrent critical orbit. Recently Ingram’s Conjecture was solved

for all slopes s ∈ [1, 2] (in the affirmative) by Barge, Bruin and Štimac in [3], but we still

know very little of the structure of inverse limit spaces (and their subcontinua) for the

case that the orbit of a critical point is infinite and recurrent, see [2, 5, 10]. The inverse

limit space lim←−([0, s/2], Ts) is the union of the core lim←−([c2, c1], Ts) and a ray C, containing

the endpoint 0̄ := (. . . , 0, 0, 0), converging onto the core. Since the arc-component C is

important in the proof of the Ingram Conjecture in [3], the “core” version of the Ingram

Conjecture for tent maps with an infinite critical orbit stayed open. It is this version that

we solve here for Fibonacci-like tent maps:

Main Theorem 1. If 1 ≤ s < s′ ≤ 2 are the parameters of Fibonacci-like tent-maps,

then the corresponding cores of inverse limit spaces lim←−([c2, c1], Ts) and lim←−([c2, c1], Ts′)

are non-homeomorphic.

The set of all Fibonacci-like parameters s ∈ [1, 2] intersects every open subset of [1, 2] in

an uncountable set. The inverse limit spaces of Fibonacci-like maps share the property

that their only subcontinua are points, arcs and sin 1
x
-continua, see [10], and they are not

homeomorphic to the inverse limit spaces of tent maps with finite or non-recurrent critical

orbits.

In this paper we develop tools to use the arc-component of the core which contains the

point (. . . , r, r, r) fixed for the shift homeomorphism, where r = s
s+1

is a fixed point of

Ts. One key observation of the paper is that this arc-component is fixed for every self-

homeomorphism of the core, see Theorem 4.2. The other key observation is Proposition 3.2

which implies that every homeomorphism maps symmetric arcs to symmetric arcs, not

just to quasi-symmetric arcs. (The difficulty that quasi-symmetric arcs pose was first

observed and overcome in [21] in the setting of tent maps with non-recurrent critical
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point.) To prove Proposition 3.2, the special structure of the Fibonacci-like maps is used.

But assuming the result of Proposition 3.2, the proof of Theorem 4.2 and of the main

theorem work for general tent maps. Therefore, this paper is an important step towards

proving the core Ingram conjecture for all tent maps.

The paper is organized as follows. In Section 2 we set the notation, review some necessary

tools, mostly from [3], and gradually generalize them to obtain new, more suitable tool for

investigation of the core of Fibonacci-like inverse limits and its self-homeomorphisms. In

Section 3 we show that any homeomorphism on the core of the Fibonacci-like inverse limit

space maps symmetric arcs to symmetric arc, and using this we prove our main theorem

in Section 4. Appendix A is devoted to the construction of the chains C having special

properties that allow us to prove desired properties of folding structure in Appendix B. In

Appendix C, we show that link-symmetric arcs are always symmetric or a well-understood

concatenation of quasi-symmetric arcs.

2. Definitions

2.1. Combinatorics of tent maps. The tent map Ts : [0, 1] → [0, 1] with slope ±s is

defined as Ts(x) = min{sx, s(1 − x)}. The critical or turning point is c = 1/2 and we

write ck = T k
s (c), so in particular c1 = s/2 and c2 = s(1− s/2). We will restrict Ts to the

interval I = [0, s/2]; this is larger than the core [c2, c1] = [s − s2/2, s/2], but it contains

both fixed points 0 and r = s
s+1

.

Combinatorics of unimodal maps can be described by cutting times, see e.g. [7]. The

cutting times {Sk}k≥0 are those iterates n (written in increasing order) for which the

central branch of T n
s covers c. More precisely, let Zn ⊂ [0, c] be the maximal interval with

boundary point c on which T n
s is monotone, and let Dn = T n

s (Zn). Then n is a cutting

time if Dn ∋ c. Let N = {1, 2, 3, . . . } be the set of natural numbers and N0 = N∪ {0}. It
can be shown that the difference of consecutive cutting times is again a cutting time, so

there is a function Q : N→ N0 such that

(2.1) Sk − Sk−1 = SQ(k)

for all k. This function is called the kneading map.

Definition 2.1. A unimodal map is called Fibonacci map if its kneading map Q(k) =

max{k−2, 0} (and hence the cutting times {Sk}k≥0 = {1, 2, 3, 5, 8, . . . } are the Fibonacci
numbers). A unimodal map is called Fibonacci-like if its kneading map is eventually
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non-decreasing, and satisfies Condition (2.2) as well:

(2.2) Q(k + 1) > Q(Q(k) + 1) for all k sufficiently large.

Remark 2.2. Condition (2.2) follows if the Q is eventually non-decreasing and Q(k) ≤
k−2 for k sufficiently large. (In fact, since tent maps are not renormalizable of arbitrarily

high period, Q(k) ≤ k − 2 for k sufficiently large follows from Q being eventually non-

decreasing, see [7, Proposition 1].) Geometrically, it means that |c − cSk
| < |c − cSQ(k)

|,
see Lemma A.4 and also [7].

2.2. Inverse limit spaces. The inverse limit space Ks = lim←−([0, s/2], Ts) is the collection

of all backward orbits

{x = (. . . , x−2, x−1, x0) : Ts(xi−1) = xi ∈ [0, s/2] for all i ≤ 0},

equipped with metric d(x, y) =
∑

n60 2
n|xn − yn| and induced (or shift) homeomorphism

σ(. . . , x−2, x−1, x0) = (. . . , x−2, x−1, x0, Ts(x0)).

Let πk : lim←−([0, s/2], Ts) → [0, s/2], πk(x) = x−k be the k-th projection map. The arc-

component of x ∈ X is defined as the union of all arcs of X containing x. Since the

fixed point 0 ∈ [0, s/2], the endpoint 0̄ = (. . . , 0, 0, 0) is contained in lim←−([0, s/2], Ts), and

the arc-component of lim←−([0, s/2], Ts) of 0̄ will be denoted as C; it is a ray converging

to, but disjoint from the core lim←−([c2, c1], Ts) of the inverse limit space. The other fixed

point r ∈ [c2, c1], so the point ρ = (. . . , r, r, r) is contained in lim←−([c2, c1], Ts). The arc-

component of ρ will be denoted as R; it is a continuous image of R and is dense in

lim←−([c2, c1], Ts) in both directions.

We fix s ∈ (
√
2, 2]; for these parameters Ts is not renormalizable and lim←−([c2, c1], Ts) is

indecomposable.

A point x = (. . . , x−2, x−1, x0) ∈ Ks is called a p-point if x−p−l = c for some l ∈ N0. The

number Lp(x) := l is called the p-level of x. In particular, x0 = T p+l
s (c). By convention,

the endpoint 0̄ = (. . . , 0, 0, 0) of C and the point ρ = (. . . , r, r, r) of R are also p-points

and Lp(0̄) = Lp(ρ) :=∞, for every p.

The folding pattern of the arc-component C, denoted by FP (C), is the sequence

Lp(z
0), Lp(z

1), Lp(z
2), . . . , Lp(z

n), . . . ,

where EC
p = {z0, z1, z2, . . . , zn, . . . } is the ordered set of all p-points of C with z0 = 0̄, and

p is any nonnegative integer. Let q ∈ N, q > p, and EC
q = {y0, y1, y2, . . . , yn, . . . }. Since
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σq−p is an order-preserving homeomorphism of C, it is easy to see that σq−p(zi) = yi and

Lp(z
i) = Lq(y

i) for every i ∈ N. Therefore the folding pattern of C does not depend on p.

The folding pattern of the arc-component R, denoted by FP (R), is the sequence

(2.3) . . . , Lp(z
−n), . . . , Lp(z

−1), Lp(z
0), Lp(z

1), . . . , Lp(z
n), . . . ,

where ER
p = {. . . , z−n, . . . , z−1, z0, z1, . . . , zn, . . . } is the ordered set (indexed by Z) of all

p-points of R with z0 = ρ, and p is any nonnegative integer. Since r > 1/2, we have

πi(ρ) > 1/2 for every i ∈ N0. It is easy to see that for every i ∈ N0, there exists an arc

A = A(i) ⊂ R containing ρ such that πi(A) = [c, c1]. Therefore two neighboring p-points

of ρ have p-levels 0 and 1. From now on we assume, without loss of generality, that the

ordering on R, i.e., the parametrization of R, is such that Lp(z
−1) = 0 and Lp(z

1) = 1.

Let q ∈ N, q > p, and ER
q = {. . . , y−n, . . . , y−1, y0, y1, . . . , yn, . . . } with y0 = ρ. Since

σq−p is an order-preserving (respectively, order-reversing) homeomorphism of R if q − p

is even (respectively, odd), σq−p(zi) = yi and Lp(z
i) = Lq(y

i) for every i ∈ Z. Therefore

the folding pattern of R does not depend on p.

Note that every arc of C and of R has only finitely many p-points, but an arc A of the

core of Ks can have infinitely many p-points.

We will mostly be interested in the arc-componentR, but also in some other arc-components

’topologically similar’ toR. Therefore, unless stated otherwise, let A ⊂ lim←−([c2, c1], Ts) de-

note an arc-component which does not contain any end-point, such that every arc A ⊂ A

contains finitely many p-points, and let A be dense in the core of Ks in both directions.

Let EA
p = (ai)i∈Z denote the set of all p-points of A, where a0 = (. . . , a0−2, a

0
−1, a

0
0) ∈ A is

the only p-point of A with a0−j ̸= c for every j ∈ N0, and let by convention Lp(a
0) = ∞

for every p. Also, we abbreviate Ep := EA
p . The p-folding pattern of the arc-component

A, denoted by FPp(A), is the sequence

. . . , Lp(a
−n), . . . , Lp(a

−1), Lp(a
0), Lp(a

1), . . . , Lp(a
n), . . . .

Given an arc A ⊂ A with successive p-points x0, . . . , xn, the p-folding pattern of A is the

sequence

FPp(A) := Lp(x
0), . . . , Lp(x

n).

An arc A in lim←−([0, s/2], Ts) is said to p-turn at cn if there is a p-point a ∈ A such that

a−(p+n) = c, so Lp(a) = n. This implies that πp : A → [0, s/2] achieves cn as a local

extremum at a.
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2.3. Chainability and (quasi-)symmetry. A space is chainable if there are finite open

covers C = {ℓi}Ni=1, called chains, of arbitrarily small mesh (mesh C = maxi diam ℓi) with

the property that the links ℓi satisfy ℓi∩ℓj ̸= ∅ if and only if |i−j| 6 1. The combinatorial

properties of Fibonacci-like maps allow us to construct chains Cp such that whenever an

arc A p-turns in ℓ ∈ Cp, i.e., enters and exits ℓ through the same neighboring link, then

the projections πp(x) = πp(y) of the first and last p-point x and y of A ∩ ℓ depend only

on ℓ and not on A, see Proposition A.6. We will work with the chains Cp which are the

π−1
p images of chains of the interval [0, s/2].

Definition 2.3. An arc A ⊂ A such that ∂A = {u, v} and A∩Ep = {x0, . . . , xn} is called
p-symmetric if πp(u) = πp(v) and Lp(x

i) = Lp(x
n−i), for every 0 6 i 6 n.

If A is p-symmetric, then n has to be even and Lp(x
n/2) = max{Lp(x

i) : xi ∈ A ∩ Ep}.
The point xn/2 is called the midpoint of A.

It frequently happens that πp(u) ̸= πp(v), but u and v belong to the same link ℓ ∈ Cp. Let
us call the arc-components Au, Av of A∩ ℓ that contain u and v respectively the link-tips

of A, see Figure 1. Sometimes we can make A p-symmetric by removing the link-tips.

Let us denote this as A \ ℓ-tips. Adding the closure of the link-tips can sometimes also

produce a p-symmetric arc.

�� ���� ��
A = [u, v]ℓ

�
�

�	

link-tips Au and Av

�
�
�
�
�
���

'
&

$
%�� r

r
v

u

Figure 1. The arc A is neither p-symmetric, nor quasi-p-symmetric, but
both arcs A \ ℓ-tips and A ∪ Cl(ℓ-tips) are p-symmetric.

Remark 2.4. (a) Let A be an arc and m ∈ A be a p-point of maximal p-level, say

Lp(m) = L. Then πp is one-to-one on both components of σ1−L(A \ {m}), so m is the

only p-point of p-level L. It follows that between every two p-points of the same p-level,

there is a p-point m of higher p-level.

(b) If A ∋ m is the maximal open arc such that m has the highest p-level on A, then we

can write ClA = [x, y] or [y, x] with Lp(x) > Lp(y) > Lp(m) =: L, and πp is one-to-one

on σ−L(ClA). Here Lp(x) =∞ is possible, but if Lp(x) <∞, then A′ := πp ◦ σ−L(A) is a
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neighborhood of c with boundary points cSk
= πp ◦σ−L(x) and cSl

= πp ◦σ−L(y) for some

k, l ∈ N such that l = Q(k). By Lemma A.4 this means that the arc [x,m] is shorter than

[m, y].

Definition 2.5. Let A be an arc of A. We say that the arc A is quasi-p-symmetric with

respect to Cp if

(i) A is not p-symmetric;

(ii) ∂A belongs to a single link ℓ;

(iii) A \ ℓ-tips is p-symmetric;

(iv) A∪ℓ-tips is not p-symmetric. (So A cannot be extended to a symmetric arc within

its boundary link ℓ.)

Definition 2.6. Let ℓ0, ℓ1, . . . , ℓk be the links in Cp that are successively visited by an arc

A ⊂ A, and let Ai ⊂ Cl(ℓi) be the corresponding maximal subarcs of A. (Hence ℓi ̸= ℓi+1,

ℓi ∩ ℓi+1 ̸= ∅ but ℓi = ℓi+2 is possible if A turns in ℓi+1.) We call A p-link-symmetric if

ℓi = ℓk−i for i = 0, . . . , k. In this case, we say that Ai is p-link-symmetric to Ak−i.

Remark 2.7. Every p-symmetric and quasi-p-symmetric arc is p-link-symmetric by defini-

tion, but there are p-link-symmetric arcs which are not p-symmetric or quasi-p-symmetric.

This occurs if A turns both at Ai and Ak−i, but the midpoint of Ai has a higher p-level

than the midpoint of Ak−i and i /∈ {0, k}. Note that for a p-link-symmetric arc A, if U

and V are p-link-symmetric arc-components which do not contain any boundary point of

A, then U contains at least one p-point if and only if V contains at least one p-point.

Appendix B is devoted to give a precise description of quasi-symmetric arcs and their

concatenations. In Appendix C we use this structure to show that link-symmetric arcs

are always symmetric or a well-understood concatenation of quasi-symmetric arcs.

2.4. Salient Points. In [3, Definition 2.7] we introduced salient p-points of the arc-

component C. Let (si)i∈N be the sequence of all p-points of the arc-component C such

that 0 ≤ Lp(x) < Lp(si) for every p-point x ∈ (0̄, si). We call p-points satisfying this

property salient.

For every slope s > 1 and p ∈ N0, the folding pattern of C starts as∞ 0 1 0 2 0 1 . . . , and

since by definition Lp(s1) > 0, we have Lp(s1) = 1. Also, since si = σi−1(s1), Lp(si) = i,

for every i ∈ N. Note that the salient p-points depend on p: if p ≥ q, then the salient

p-point si equals the salient q-point si+p−q.
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Definition 2.8. Recall that R is the arc-component containing the point ρ = (. . . , r, r, r)

where r = s
s+1

is fixed by Ts. Let (ti)i∈Z ⊂ ER
p be the bi-infinite sequence of all p-points

of the arc-component R such that for every i ∈ N t0 = ρ,
Lp(t

i) > Lp(x) for every p-point x ∈ (ρ, ti),
Lp(t

−i) > Lp(x) for every p-point x ∈ (t−i, ρ).

Note that p-points (ti)i∈Z ⊂ R are defined similarly as salient p-points (si)i∈N; we call them

R-salient p-points, or simply salient p-points when it is clear which arc-component they

belong to. There is an important difference between the sets (si)i∈N ⊂ C and (ti)i∈Z ⊂ R,

namely Lp(si) = i for every i ∈ N, whereas Lp(t
i) ̸= |i| for all i ∈ Z \ {1}.

Lemma 2.9. For (ti)i∈Z ⊂ R we have

Lp(t
i) =

{
2i− 1 if i > 0,

−2i if i < 0.

Proof. Since r is the positive fixed point of Ts, the p-points closest to ρ = (. . . , r, r, r)

have p-levels 0 and 1. Also σ(ρ) = ρ implies σ(R) = R. The parametrization of R,

chosen in Section 2 below (2.3), is such that for ρ ∈ [x−1, x1] we have Lp(x
−1) = 0 and

Lp(x
1) = 1, thus x1 = t1. Since σ(ρ) = ρ ∈ σ([x−1, x1]) ⊂ R and σ|R is order reversing,

we have σ(x−1) = x1, σ(x1) ≺ x1, i.e., σ([x−1, x1]) = [x−2, x1] with Lp(x
−2) = 2. Note

that x−2 = t−1. For the same reason, σ([x−2, x1]) = [x−2, xj], where xj is the first p-point

to the right of x1 such that Lp(x
j) = 3, i.e., xj = t2. The claim of the lemma follows by

induction. �

Analogously, we define A-salient p-points of an arc-component A of the core of Ks.

Definition 2.10. Let (ui)i∈Z ⊂ EA
p = (ai)i∈Z be the bi-infinite sequence of all p-points of

the arc-component A such that for every i ∈ N u0 = a0,
Lp(u

i) > Lp(x) for every p-point x ∈ (u0, ui),
Lp(u

−i) > Lp(x) for every p-point x ∈ (u−i, u0).

This fixes an orientation on A; the choice of orientation is immaterial, as long as we make

one.

Lemma 2.11. If there exist J, J ′, K ∈ N0 such that for every j ∈ N, Lp(u
J+j) = 2(K +

j)− 1 and Lp(u
−(J ′+j)) = 2(K + j), then A = R.
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In other words, the asymptotic shape of this folding pattern is unique to R.

Proof. Let J, J ′, K ∈ N0 be as in the statement of the lemma. Then for every j ∈ N we

have:

(i) Lp(u
−(J ′+j))− Lp(u

J+j) = Lp(u
J+j+1)− Lp(u

−(J ′+j)) = 1,

(ii) Lp(x) < Lp(u
J+j) for every p-point x ∈ (u−(J ′+j), uJ+j), and

(iii) Lp(x) < Lp(u
−(J ′+j)) for every p-point x ∈ (u−(J ′+j), uJ+j+1).

Therefore, πp+2(K+j)−1 : [u
−(J ′+j), uJ+j]→ [c, c1] and πp+2(K+j) : [u

−(J ′+j), uJ+j+1]→ [c, c1]

are bijections, implying that for every j ∈ N, FPp([u
−(J ′+j), uJ+j]) and FPp([u

−(J ′+j), uJ+j+1])

are uniquely determined by T
2(K+j)−1
s and T

2(K+j)
s respectively. Thus we have the follow-

ing: {
FPp([u

−(J ′+j), uJ+j]) = FPp([t
−(K+j), tK+j]),

FPp([u
−(J ′+j), uJ+j+1]) = FPp([t

−(K+j), tK+j+1]),

whence FPp([u
−(J ′+j), uJ+j+1]) = FPp(σ([u

−(J ′+j), uJ+j])) for every j ∈ N. It follows that
FPp(σ(A)) = FPp(A) = FPp(R) implying A = R. �

Note that in general J, J ′, K in the above lemma are not related since u0 = a0 can be any

point, but there exists a point a ∈ A such that for u0 = a, we have J = J ′ = K.

3. Homeomorphisms and Symmetric Arcs

Note that in this section all proofs except the proof of Proposition 3.2 work in general,

only the proof of Proposition 3.2 uses the special structure of the Fibonacci-like inverse

limit spaces revealed in this paper.

Let h : lim←−([c2, c1], Ts)→ lim←−([c2, c1], Ts) be a homeomorphism on the core of a (Fibonacci-

like) inverse limit space. Let q, p, g ∈ N0 be such that Cq, Cp and Cg are chains as in

Proposition A.6, and such that

h(Cq) ≼ Cp ≼ h(Cg).

It is straightforward that any q-link-symmetric arc A ⊂ lim←−([c2, c1], Ts) maps to a p-link-

symmetric arc h(A) ⊂ lim←−([c2, c1], Ts).

In Appendix A, we construct special chains by which we are able to describe the structure

of link-symmetric arcs (see Definition 2.6) precisely. The Fibonacci-like structure, and



10 H. BRUIN AND S. ŠTIMAC

the extra structure of these chains, allow us to conclude the stronger statement that q-

symmetric arcs map to p-symmetric arcs. This is a rather technical undertaking, but

let us paraphrase Remark C.6 so as to make this section understandable (although for

the fine points we will still refer forward to the appendix). Link-symmetric arcs tend

to be composed of smaller (basic) quasi-symmetric arcs Ak (see Definition B.1) that

are ordered linearly such that Ak and Ak+1 overlap, and the midpoint of Ak+1 is the

endpoint of Ak. An entire concatenation of such arcs is called decreasing quasi-symmetric

(respectively increasing quasi-symmetric, see Definition C.1) if the levels of the successive

midpoints (also called nodes) - all contained in, alternately, one of two given links -

are decreasing (respectively increasing). The concatenation is called maximal decreasing

quasi-symmetric (respectively maximal increasing quasi-symmetric, see Definition C.5)

if it cannot be extended to a concatenation with more components. The last endpoint

(respectively the first endpoint), namely, of the arc with midpoint of the lowest level, is

then no longer a p-point.

For a point x, we denote a link of Cp which contains x by ℓxp , and the arc-component of

ℓxp which contains x by Ax.

Definition 3.1. Let x ∈ EA
q ⊂ A be a q-point, and let Ah(x) ⊂ ℓ

h(x)
p be the arc-component

of ℓ
h(x)
p which contains h(Ax) (and therefore h(x)). Let a, b ∈ N, a 6 b, be such that

h(∪b
i=aℓ

i
q) ⊆ ℓ

h(x)
p , h(ℓa−1

q ) * ℓ
h(x)
p and h(ℓb+1

q ) * ℓ
h(x)
p . Let Âx be an arc-component of

∪b
i=aℓ

i
q such that h(Âx) ⊆ Ah(x) ⊂ ℓ

h(x)
p . We call Âx the extended arc-component of the

q-point x. If a p-point u is the midpoint of Ah(x), then we write u ⊢ h(x).

The extended arc-component Âx is obtained by extending Ax so much on both sides that

h(Âx) fits almost exactly in the p-link containing h(Ax). Note that the arc-component

Ax of a q-point x depends on the chain Cq, while the extended arc-component Âx of the

q-point x also depends on the chain Cp. But we still can define its midpoint as the q-point

z ∈ Âx such that Lq(z) > Lq(y) for every q-point y ∈ Âx = Âz. If a q-point x is the

midpoint of its extended arc-component Âx we call it a qp-point.

Proposition 3.2. Let x, y ∈ EA
q ⊂ A be qp-points and let u ⊢ h(x) and v ⊢ h(y). Then

Lq(x) = Lq(y) implies Lp(u) = Lp(v).

Since the endpoints of a symmetric arc have the same level, and q-link symmetric arcs are

mapped to p-link-symmetric arcs by a homeomorphism h, Proposition 3.2 implies that h

maps symmetric arcs to symmetric arcs.
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Proof. Without loss of generality we suppose that between x and y, there are no q-points

with q-level Lq(x). Then the arc A = [x, y] is q-symmetric. The midpoint m of A is a

qp-point. Let w ⊢ h(m).

Let us assume by contradiction that Lp(u) ̸= Lp(v). Then D = [u, v] is not p-symmetric

with midpoint w. Since A is q-symmetric, D is p-link symmetric. By Proposition C.8 and

Remark C.6, D is contained either in an extended maximal decreasing/increasing (basic)

quasi-p-symmetric arc, or in a p-symmetric arc which is concatenation of two arcs, one

of which is a maximal increasing (basic) quasi-p-symmetric arc, and the other one is a

maximal decreasing (basic) quasi-p-symmetric arc.

(1) Let us assume that D is contained in an extended maximal increasing (basic) quasi-

p-symmetric arc G. Let B′ and B be the link-tips of G, so G = [B′, B]. Then, by Remark

C.6, B′ does not contain any p-point and hence B′ ̸= Au.

(a) Suppose first that the p-point z ∈ G, such that Lp(z) > Lp(d) for all p-points d ∈ G,

does not belong to the open arc (u, v). Then B ̸= Av.

N ′
x m y

N︸ ︷︷ ︸
M

A︷ ︸︸ ︷
-
h

h(N ′) = B′
b′

Au

u w

Av

v

h(N)

z

B

b

︸ ︷︷ ︸
G

D︷ ︸︸ ︷

@
@
@
@R

σq−g
�

�
�

�	

σq−g ◦ h−1

Aσq−g◦h−1(b′)

a′ x′ m′ y′

Aσq−g◦h−1(b)

a

︸ ︷︷ ︸
H︸ ︷︷ ︸

K

︸ ︷︷ ︸
σq−g(A)

Figure 2. The relations between points and arcs in Cq (left), Cp (right),
and Cg (bottom).

Let b′ be any point of B′ and let b be the midpoint of B. Then b′ and b are nodes of

G (see Remark C.6 for the definition of a node). Since Lp(u) ̸= Lp(v), u and v are also

nodes of G, as well as w and z.

Let a ⊢ σq−g ◦ h−1(b) (note that b is a pg-point, i.e., b is the midpoint of the extended

arc-component Âb such that σq−g ◦ h−1(Âb) ⊆ Aσq−g◦h−1(b) = Aa ⊂ ℓag ∈ Cg). If the

arc-component Aσq−g◦h−1(b′) contains a g-point, let a′ be its midpoint; otherwise let a′
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be any point of Aσq−g◦h−1(b′). Let us consider the arc H = [a′, a], see Figure 2. Let

x′ ⊢ σq−g ◦ h−1(u), y′ ⊢ σq−g ◦ h−1(v), z′ ⊢ σq−g ◦ h−1(z) and m′ ⊢ σq−g ◦ h−1(w). Since

Cp ≺ h(Cg), the arcH is g-link-symmetric and g-points a′, x′,m′, y′, a are some of its nodes.

Note that x′ = σq−g(x) and y′ = σq−g(y), thus the arc [x′, y′] is g-symmetric. Since there

is at least one node in H on either side of [x′, y′], Remark C.6 says that H is contained in

the maximal g-symmetric arc K with midpoint m′. Therefore the arc M = σ−q+g(K) ⊃ A

is q-symmetric with midpoint m.

Let j, k ∈ N, j 6 k, be such that h(∪k
i=jℓ

i
q) ⊆ ℓb

′
p , h(ℓ

j−1
q ) * ℓb

′
p and h(ℓk+1

q ) * ℓb
′
p . Let

N ′ be an arc-component of ∪k
i=jℓ

i
q such that h(N ′) = B′ ⊂ ℓb

′
p . Obviously, N ′ ⊂ M .

Since M is q-link symmetric, there exists an arc-component N of ∪k
i=jℓ

i
q such that the arc

[N ′, N ] ⊂ M is q-symmetric with midpoint m. Then h(N) ⊂ h(M) is an arc-component

of ℓb
′
p . Since [N ′, N ] is q-symmetric, the arc-component h(N ′) contains a p-point if and

only if the arc-component h(N) contains a p-point. Since h(N ′) = B′, the arc-components

h(N ′) and h(N) do not contain any p-point, see Figure 2.

On the other hand, the arc [h(N ′), h(N)] is p-link-symmetric with midpoint w. Recall that

w is also the midpoint of the arc D ⊂ [h(N ′), h(N)], D is not p-symmetric by assumption,

and D ⊂ G, where G is an extended maximal increasing (basic) quasi-p-symmetric arc.

The arc-component h(N) can be contained in the arc [Av, B], as in Figure 2. In this case

h(N) does contain at least one p-point, a contradiction.

The other possibility is that h(N) is not contained in [Av, B], i.e., h(N) is on the right

hand side of B. Since [h(N ′), h(N)] is p-link symmetric and h(N ′) = B′ contains a node

b′ of G, we have that h(N) also contains a node of G, say n. Hence, on the right hand

side of z (which is the p-point with the highest p-level in G), there are at least two nodes,

b and n. Therefore, by Remark C.6, G is contained in a p-symmetric arc with midpoint

z and this arc conatins h(N), implying that h(N) does contain at least one p-point, a

contradiction.

(b) Let us assume now that B = Av. Then z ∈ (u, v). Let a′, x′,m′, z′, y′ and H be defined

as in case (a). Since b′, u, w, z, v are nodes of G, we have that a′, x′,m′, z′, y′ are also nodes

of H. Moreover, since [x′, y′] is g-symmetric with midpoint m′, there is z′′ ∈ [x′,m′] such

that [z′′, z′] is g-symmetric with midpoint m′, and z′′ is a node of H. Thus, the arc

between nodes z′′ and z′ is g-symmetric, and on either side of [z′′, z′] there is at least one

additional node. By Remark C.6, H is contained in the maximal g-symmetric arc K with
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midpoint m′, and the arc M = σ−q+g(K) ⊃ A is q-symmetric with midpoint m. Now the

proof follows in the same way as in case (a).

If D is contained in an extended maximal decreasing (basic) quasi-p-symmetric arc G,

the proof is analogous.

(2) Let us assume that D is contained in a p-symmetric arc G which is concatenation

of two arcs, one of which is a maximal increasing (basic) quasi-p-symmetric arc, and the

other one is a maximal decreasing (basic) quasi-p-symmetric arc. Let B′ and B be the

link-tips of G, thus G = [B′, B]. Then, by Remark C.6, B′ and B do not contain any

p-point and hence B′ ̸= Au and B ̸= Av. If for the midpoint z of G we have z ̸∈ (u, v),

we are in case (1). If z ∈ (u, v) (note z ̸= m since the arc D is not p-symmetric), then

the proof is analogous to the proof of case (1a) (since B ̸= Av). �

Definition 3.3. Let κ ∈ N, κ > 2, be the smallest integer with cκ < c. It is easy to see

that κ is odd. Set

Λκ := N \ {1, 3, 5, . . . , κ− 4}.

Lemma 3.4. Let x, y be q-points of A. Then there exist qp-points x′, z′ and y′ such

that the arc A = [x′, z′] is q-symmetric with midpoint y′, Lq(x
′) = Lq(z

′) = Lq(x) and

Lq(y
′) = Lq(y) if and only if Lq(y)− Lq(x) ∈ Λκ.

This is proven in Lemma 46 of [16] and in Lemmas 3.13 and 3.14 of [22]. Although [16]

deals with the periodic case and [22] with the finite orbit case, the proofs of the mentioned

lemmas work in the general case, as stated above.

Proposition 3.5. Let x, y ∈ EA
q ⊂ A be qp-points and let u ⊢ h(x) and v ⊢ h(y). Then

Lq(x) < Lq(y) implies Lp(u) < Lp(v).

Proof. (1) Let us first assume that Lq(y) − Lq(x) ∈ Λκ. Then, by Lemma 3.4, there

exist qp-points x
′, z′ and y′ such that the arc A = [x′, z′] is q-symmetric with midpoint y′,

Lq(x
′) = Lq(z

′) = Lq(x), Lq(y
′) = Lq(y) and between x′ and z′ there are no qp-points with

q-level Lq(x
′). Let u ⊢ h(x), v ⊢ h(y), u′ ⊢ h(x′), v′ ⊢ h(y′), w′ ⊢ h(z′). By Proposition 3.2

we have Lp(u) = Lp(u
′) = Lp(w

′), Lp(v) = Lp(v
′) and between the points u′ and w′ there

are no p-points with the p-level Lp(u
′). Therefore, the arc [u′, w′] is p-symmetric with

midpoint v′, implying Lp(v) = Lp(v
′) > Lp(u

′) = Lp(u), which proves the proposition in

this case. Note that also we have Lp(v)− Lp(u) ∈ Λκ.
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��rx . . . . . . . . . ��ry

��rx′ ����ry′ ����rz′

-h

��ru . . . . . . . . . ��rv

��ru′ ����rv′ ����rw′

Figure 3. The points x and y, their companion arc A = [x′, z′] and their
images under h. Dots indicate some shape of the arc [x, y] and [u, v]; the
shape of [x, y] can be very different from the shape of [x′, y′] and similar for
the shapes of [u, v] and [u′, v′].

(2) Let us now assume that Λκ ̸= N, Lq(y) − Lq(x) ∈ {1, 3, . . . , κ − 4}, and that for

u ⊢ h(x) and v ⊢ h(y) we have, by contradiction, Lp(u) > Lp(v).

Without loss of generality we suppose that x has the smallest q-level among all qp-points

which satisfy the above assumption and that, for this choice of x, the qp-point y (which

also satisfies the above assumption) is such that Lq(y)−Lq(x) > 0 is the smallest difference

of q-levels.

Claim 1: Lq(y)− Lq(x) = 1.

Let us assume, by contradiction, that Lq(y)−Lq(x) > 1, and let z be a qp-point such that

Lq(y)−Lq(z) = 2. Note first that Lq(z) ̸= Lq(x) since Lq(y)−Lq(x) ̸= 2 by assumption.

Therefore, Lq(z) > Lq(x).

Let w ⊢ h(z) and recall u ⊢ h(x) and v ⊢ h(y). By the choice of qp-points x and y and

since Lq(z)−Lq(x) < Lq(y)−Lq(x), we have Lp(w) > Lp(u) and Lp(u) > Lp(v), implying

Lp(w) > Lp(v).

On the other hand, Lq(y)−Lq(z) ∈ Λκ and by (1) we have Lp(v) > Lp(w), a contradiction.

This proves Claim 1.

Claim 2: Lp(u)− Lp(v) = 1.

Let us assume, by contradiction, that Lp(u) − Lp(v) > 1. For a qp-point z let w denote

the p-point with w ⊢ h(z). We will show that the above assumption implies that there

is no qp-point z such that Lp(w) = Lp(v) + 1. This contradicts assumption that both

arc-components A and h(A) are dense in lim←−([c2, c1], Ts) in both directions.
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By the choice of qp-points x and y, for every qp-point z such that Lq(z) < Lq(x) < Lq(y) =

Lq(x) + 1 we have Lp(w) < Lp(v) and hence Lp(w) ̸= Lp(v) + 1.

Let Lq(z) = Lq(x) + 2. Since Lq(z) − Lq(x) ∈ Λκ, by (1) we have Lp(w) > Lp(u) >

Lp(v) + 1.

Let Lq(z) = Lq(x)+3. Then Lq(z)−Lq(y) ∈ Λκ (recall Lq(y) = Lq(x)+1 by Claim 1) and

again by (1) we have Lp(w) > Lp(v) and Lp(w)−Lp(v) ∈ Λκ. Note that Lp(w)−Lp(v) ̸= 1

since 1 ̸∈ Λκ (recall Λκ ̸= N by assumption). Hence Lp(w) > Lp(v) + 1.

It follows now by induction that for every i ∈ N, Lq(z) = Lq(x) + 3 + i implies Lp(w) >

Lp(v) + 1. To see this, for a qp-point z
′ let w′ denote the p-point with w′ ⊢ h(z′). Take

j ∈ N such that Lq(z) = Lq(x) + 3 + i implies Lp(w) > Lp(v) + 1 for every i < j. Let

Lq(z
′) = Lq(x) + 1 + j and Lq(z) = Lq(x) + 3 + j. Then Lq(z)− Lq(z

′) ∈ Λκ and by (1)

we have Lp(w) > Lp(w
′). Since Lp(w

′) > Lp(v) + 1, we have Lp(w) > Lp(v) + 1. This

proves Claim 2.

Claim 3: For a qp-point z let w denote the p-point with w ⊢ h(z). For every i ∈ N,
Lq(z) = Lq(x) + 2i implies Lp(w) = Lp(u) + 2i, and Lq(z) = Lq(y) + 2i implies Lp(w) =

Lp(v) + 2i.

Let Lq(z) = Lq(x) + 2 = Lq(y) + 1. Note first that Lp(w) ̸= Lp(u) + 1, since by (1)

Lq(z) − Lq(x) ∈ Λκ implies Lp(w) − Lp(u) ∈ Λκ. Note also that Lq(z) − Lq(y) ̸∈ Λκ.

Therefore, Lp(w) = Lp(v) + L = Lp(u)− 1 + L, where 1 < L < κ− 2 is odd.

For qp-points z
′ and z′′, let w′ and w′′ denote the p-points with w′ ⊢ h(z′) and w′′ ⊢ h(z′′)

respectively.

Let us assume that Lq(z
′) = Lq(y)+2 and Lp(w

′) ̸= Lp(v)+2 = Lp(u)+1. Then Lp(w
′) >

Lp(v) + 2 and for every qp-point z′′ with Lq(z
′′) > Lq(z

′) we have Lp(w
′′) > Lp(v) + 2.

This implies that there is no qp-point z′′ such that Lp(w
′′) = Lp(v) + 2 = Lp(u) + 1, a

contradiction. Therefore, Lp(w
′) = Lp(v)+2, and by Claims 1 and 2, Lp(w) = Lp(v)+3 =

Lp(u) + 2. The proof of Claim 3 follows by induction in the same way.

Finally, to complete the proof of the proposition, let us consider qp-point z such that

Lq(z)−Lq(x) = κ−2 ∈ Λκ. Then, by Claim 3 (see Figure 4), Lp(w)−Lp(u) = κ−4 ̸∈ Λκ,

a contradiction.

Therefore, Lq(x) < Lq(y) implies Lp(u) < Lp(v), which proves the proposition. �
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Lq(x) Lq(y) = Lq(x) + 1 Lq(x) + 2 Lq(x) + 3 . . . Lq(x) + κ− 3 Lq(z) = Lq(x) + κ− 2

Lq(z)−Lq(x)=κ−2︷ ︸︸ ︷
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Lp(v) Lp(u) = Lp(v) + 1 Lp(v) + 2 Lp(v) + 3 . . . Lp(w) = Lp(v) + κ− 3 Lp(v) + κ− 2︸ ︷︷ ︸
Lp(w)−Lp(u)=κ−4

Figure 4. The configuration of levels that cannot exist.

4. Proof of the main theorems

Consider the arc-component A := h(R) ⊂ lim←−([c2, c1], Ts), and let EA
p = (yi)i∈Z ⊂ A be

the set of all p-points of A such that y0 = h(ρ). Let (ui)i∈Z ⊂ EA
p be the set of all salient

p-points of A, i.e., the set of all A-salient p-points, with u0 = h(ρ). Recall that R is dense

in lim←−([c2, c1], Ts) in both directions. Since h is a homeomorphism, A and in fact hi(R),

i ∈ Z, are also dense in the core lim←−([c2, c1], Ts) in both directions.

We want to prove that A = R. For a p-point y we write y ≈ x if y ∈ Ax.

Lemma 4.1. There exist M,M ′ ∈ Z such that h(ti) ≈ ui+M and h(t−j) ≈ u−j−M ′
, for

every i, j ∈ N with i+M > 0, j +M ′ > 0, if h is order preserving, or h(ti) ≈ u−i−M and

h(t−j) ≈ uj+M ′+1 if h is order reversing.

Proof. If h : R → A is order reversing, then h ◦ σ : R → A is order preserving, and also

if the proposition works for h ◦ σ, it works for h. Therefore we can assume without loss

of generality that h is order preserving.

Let j ∈ N, and let Bj be the maximal q-symmetric arc with midpoint tj. Since s >
√
2,

ρ ∈ Bj. Therefore, for every qp-point x ∈ (ρ, tj) there exists a qp-point y ∈ (tj, tj+1), such

that the arc [x, y] is q-symmetric with midpoint tj and Lq(x) = Lq(y). Let u and v be

p-points such that u ⊢ h(x) and v ⊢ h(y). By Proposition 3.2, we have Lp(u) = Lp(v).

Note that for the midpoint w of the arc [u, v] we also have w ⊢ h(tj). This implies, by

Remark 2.4 (a), that Lp(w) > Lp(z) for every z ∈ (u0, w). Therefore, w is a salient

p-point, i.e., w ∈ (ui)i∈N.

Let k, l ∈ N, k < l, be such that uk ⊢ h(tj) and ul ⊢ h(tj+1). We want to prove that

l = k + 1. Let us assume by contradiction that l > k + 1. Since Lp(u
k+1) > Lp(u

k),
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there exists a qp-point x ∈ (tj, tj+1) such that uk+1 ⊢ h(x). But x ∈ (tj, tj+1) implies

Lq(x) < Lq(t
j), contradicting Proposition 3.5.

In this way we have proved that h(ti) ≈ ui+M for some M ∈ Z and every i ∈ N with

M + i > 0. In an analogous way we can prove that h(t−i) ≈ u−i−M ′
for some M ′ ∈ Z and

for every i ∈ N with M ′ + i > 0. �

Theorem 4.2. Every self-homeomorphism h of lim←−([c2, c1], Ts) preserves R: h(R) = R.

Proof. Let h : R→ A, as before. We want to prove that A = R. Note that h◦σi : R→ A

and σi ◦h : R→ σi(A) are homeomorphisms for every i ∈ Z, and σi(A) = R if and only if

A = R. By using h−1 instead of h if necessary, we can assume that M > 0 (with M as in

Lemma 4.1). Also, instead of studying h, we can study σ1−a◦h : R→ σ1−a(A), where a =

Lp(u
1+M) (recall that h(t1) ≈ u1+M). Therefore, without loss of generality we can assume

that h(t1) ≈ u1 and Lp(u
1) = 1. Recall that Lq(t

1) = 1, Lq(t
−1) = 2 and for every i ∈ N,

Lq(t
−i)− Lq(t

i) = Lq(t
i+1)− Lq(t

−i) = 1. If Lp(u
−i) − Lp(u

i) = Lp(u
i+1)− Lp(u

−i) = 1,

then A = R by Lemma 2.11.

Recall that h(t−1) ≈ u−1−M ′
, where M ′ is as in Lemma 4.1. Since

Lq(t
1) < Lq(t

−1) < Lq(t
2) < Lq(t

−2) < · · · ,

by Proposition 3.5 we have

1 = Lp(u
1) < Lp(u

−1−M ′
) < Lp(u

2) < Lp(u
−2−M ′

) < · · · < Lp(u
n) < Lp(u

−n−M ′
) < · · · .

Let Lp(u
n) = 1+a1+b1+· · ·+an−1+bn−1 and Lp(u

−n−M ′
) = 1+a1+b1+· · ·+an−1+bn−1+an,

for every n ∈ N and some a1, . . . , an, b1, . . . , bn−1 ∈ N. We want to prove that ai = bi = 1

for every i ∈ N.

Assume by contradiction that k ∈ N is the smallest integer with ai = bi = 1 for all

i < k and ak > 1. Then, by Proposition 3.5, there is no salient p-point u ∈ (ui)i∈Z with

Lp(u) = Lp(u
k) + 1. Thus, Proposition 3.2 implies that A does not contain any p-point

with p-level Lp(u
k)+1, contradicting that A is dense in lim←−([c2, c1], Ts) in both directions.

If k ∈ N is the smallest integer with ai = bi = 1 for all i < k, ak = 1 and bk > 1, the proof

follows in an analogous way. �

Remark 4.3. If h is order-preserving, then by proof of Theorem 4.2 we have M ′ = M ,

where M and M ′ are as in Lemma 4.1. Also, by Lemma 2.9, Lemma 4.1 and Theorem 4.2

we have Lp(u
i+M) = 2(i + M) − 1 = (2i − 1) + 2M = Lq(t

i) + 2M for i > 0 and
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Lp(u
i−M) = 2(−i +M) = −2i + 2M = Lq(t

i) + 2M for i < 0. Moreover, by Proposition

3.2, for every qp-point x, and for the p-point u with u ⊢ h(x), we have Lp(u) = Lq(x)+2M .

We finish with the

Proof of Theorem 1. Let 1 ≤ s 6
√
2 < s′ ≤ 2. Then lim←−([c2, c1], Ts) is decomposable,

lim←−([c2, c1], Ts′) is indecomposable, and the proof follows.

Since Lemmas 2.1 and 2.2 of [3] show how to reduce the case 1 ≤ s < s′ ≤
√
2 to the case√

2 < s < s′ ≤ 2, it suffices to prove the latter case.

Let
√
2 < s < s′ ≤ 2. Suppose that there exists a homeomorphism h : lim←−([c2, c1], Ts′)→

lim←−([c2, c1], Ts). Let r
′ := s′

s′+1
be the positive fixed point of Ts′ and ρ′ := (. . . , r′, r′, r′) ∈

Cs′ = lim←−([c2, c1], Ts′). Let R′ denote the arc-component containing ρ′. Let r, ρ and R

be the analogous objects of Cs = lim←−([c2, c1], Ts), as before. Take q, p ∈ N0 such that

h(Cq) ≺ Cp. Let (ti)i∈Z be the sequence of salient q-points of R′ with t0 = ρ′. Let (ui)i∈Z

be the sequence of salient p-points of R.

Let f = h−1 ◦ σ ◦ h, and assume by contradiction that h(R′) = A ̸= R. Since R is the

only arc-component in lim←−([c2, c1], Ts) that is fixed by σ, we have σ(A) ̸= A implying

f(R′) ̸= R′. But this contradicts Theorem 4.2. Therefore h(R′) = R.

We want to prove that FP (R′) = FP (R). Without loss of generality we suppose that h

is order-preserving and that M > 0 (with M as in Remark 4.3).

Claim 1: Let l ∈ N and let x be a q-point with Lq(x) = l. Then u := h(x) ∈ ℓu
l+2M

p

and the arc component Au ⊂ ℓu
l+2M

p containing u, also contains a p-point y such that

Lp(y) = l + 2M .

Note that Claim 1 is the same as Proposition 4.2 (1) of [3]. The proof is analogous:

By Remark 4.3, Claim 1 is true for all salient q-points and for all qp-points. Note that

there exists j ∈ N such that every q-point x ∈ [t−j, tj] is also a qp-point. Therefore Claim

1 is true for all q-points x ∈ [t−j, tj], i.e., for every q-point x ∈ [t−j, tj] the arc-component

Ah(x) containing h(x), also contains a p-point y such that Lp(y) = Lq(x) + 2M . Also

h([t−j, tj]) = [a−j, aj], u
−j−2M ∈ Aa−j

and uj+2M ∈ Aaj . Let q-point x1 ∈ [t−j, tj] be

such that the open arc (x1, t
j+1) is q-symmetric with midpoint tj. Such x1 exists since

Lq(t
j+1)−Lq(t

j) = 2 and Lq(t
−j)−Lq(t

j) = 1. Then h((x1, t
j+1)) is p-link-symmetric with

midpoint uj+2M . Since there exists a unique p-point b1 such that the open arc (b1, u
j+1+2M)
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is p-symmetric with midpoint uj+2M , for every q-point x′ ∈ (tj, tj+1) the arc-component

Ah(x′) containing h(x
′), also contains a p-point y′ such that Lp(y

′) = Lp(y) = Lq(x)+2M =

Lq(x
′) + 2M , see Figure 5.

. . . t−j−1 . . . . . . t−j . . . . . . x−1 . . . x1 . . . x . . . tj . . . x′ . . . tj+1 . . .

︷ ︸︸ ︷
︸ ︷︷ ︸

q-symmetric
︸ ︷︷ ︸
q-symmetric

A
A
A
AU

h

. . . u−j−1−2M . . . . . . u−j−2M . . . . . . b−1 . . . b1 . . . y . . . uj+2M . . . y′ . . . uj+1+2M . . .

︷ ︸︸ ︷
︸ ︷︷ ︸

p-symmetric
︸ ︷︷ ︸

p-symmetric

Figure 5. The configuration of symmetric arcs.

Let us consider now the arc h([t−j−1, tj+1]) = [a−j−1, aj+1], u−j−1−2M ∈ Aa−j−1
and

uj+1+2M ∈ Aaj+1
. Let the q-point x−1 ∈ [t−j, tj+1] be such that the open arc (t−j−1, x−1)

is q-symmetric with midpoint t−j. Such x−1 exists since Lq(t
−j−1) − Lq(t

−j) = 2 and

Lq(t
j+1) − Lq(t

−j) = 1. Therefore h((t−j−1, x−1)) is p-link-symmetric with midpoint

u−j−2M . Since there exists a unique p-point b−1 such that the open arc (u−j−1−2M , b−1) is

p-symmetric with midpoint u−j−2M , for every q-point x′′ ∈ (t−j−1, t−j) the arc-component

Ah(x′′) containing h(x′′), also contains a p-point y′′ such that Lp(y
′′) = Lq(x

′′) + 2M , as

before. The proof of Claim 1 follows by induction.

Claim 2: For l ∈ N0 and i ∈ N, the number of q-points in [t−i, ti] with q-level l is the

same as the number of p-points in [u−i−2M , ui+2M ] with p-level l + 2M .

Claim 2 is the same as Proposition 4.2 (2) of [3]. The proof is very similar and we omit

it.

Claims 1 and 2 show that

FPq([t
−i, ti]) = FPp+2M([u−i−2M , ui+2M ]) = FPp([u

−i, ui]),

for every positive integer i, and therefore FP (R′) = FP (R).

This proves the Ingram Conjecture for cores of the Fibonacci-like inverse limit spaces. �
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Appendix A. The Construction of Chains

We turn now to the technical part, i.e., the construction of special chains that will even-

tually allow us to show that symmetric arcs map to symmetric arcs (see Proposition 3.2).

Let β(n) = n − sup{Sk < n} for n ≥ 2 and find recursively the images of the central

branch of T n
s (the levels in the Hofbauer tower, see e.g. [7, 6]) as

D1 = [0, c1] and Dn = [cn, cβ(n)].

It is not hard to see that Dn ⊂ Dβ(n) for each n, see [7], and that if J ⊂ [0, s/2] is a

maximal interval on which T n
s is monotone, then T n

s (J) = Dm for some m 6 n.

If x and y are two adjacent p-points on the same arc-component, then πp([x, y]) = Dn for

some n, so πp(x) = cn and πp(y) = cβ(n) or vice versa. Let us call x and y (or πp(x) and

πp(y)) β-neighbors in this case. Notice, however, that there may be many post-critical

points between πp(x) and πp(y). Obviously, every p-point of C and R has exactly two

β-neighbors, except the endpoint 0̄ of C whose β-neighbor (w.r.t. p) is by convention the

first proper p-point in C, necessarily with p-level 1.

The condition that Q(k)→∞ has consequence on the structure of the critical orbit:

Lemma A.1. If Q(k) → ∞, then |Dn| → 0 as n → ∞, c is recurrent and ω(c) is a

minimal Cantor set.

Proof. See [11, Lemma 2.1.]. �

Remark A.2. As was shown by Hofbauer [14], a kneading map Q belongs to a unimodal

map (with infinitely many cutting times) if and only if

(A.1) {Q(k + j)}j≥1 ≥lex {Q(Q2(k) + j)}j≥1

for all k ≥ 1, where ≥lex indicates lexicographical order. Clearly, Condition (2.2) is

compatible with (and for large k implies) Condition (A.1).

The condition {Q(k + j)}j≥1 ≥lex {Q(l + j)}j≥1 is equivalent to |c − cSk
| < |c − cSl

|.
Therefore, because cSk−1

∈ (ζQ(k)−1, ζQ(k)), we find by taking the T
SQ(k)
s -images, that

cSk
∈ [cSQ2(k)

, c] and (A.1) follows. The other direction, namely that (A.1) is sufficient for

admissibility is much more involved, see [14, 7].

As mentioned before, we will work with the chains which are the π−1
p images of chains

of the interval [0, s/2]. More precisely, we will define a finite collection of points G =
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{g0, g1, . . . , gN} ⊂ [0, s/2] such that |gm − gm+1| ≤ s−pε/2 for all 0 ≤ m < N and |0− g0|
and |s/2− gN | positive but very small. ¿From this one can make a chain C = {ℓn}2Nn=0 by

setting

(A.2)

{
ℓ2m+1 = π−1

p ((gm, gm+1)) 0 ≤ m < N,
ℓ2m = π−1

p ((gm − δ, gm + δ) ∩ [0, s/2]) 0 ≤ m ≤ N,

where min{|0 − g0|, |s/2 − gN |} < δ ≪ minm{|gm − gm+1|}. Any chain of this type has

links of diameter < ε.

Remark A.3. We could have included all the points ∪j≤pT
−j
s (c) in G to ensure that

T p
s |(gm,gm+1) is monotone for each m, but that is not necessary. Naturally, there are chains

of lim←−([0, s/2], Ts) that are not of this form.

For a component A of C ∩ ℓ, we have the following two possibilities:

(i) C goes straight through ℓ at A, i.e., A contains no p-point and πp(∂A) = ∂πp(ℓ); in

this case A enters and exits ℓ from different sides.

(ii) C turns in ℓ: A contains (an odd number of) p-points x0, . . . , x2n of which the middle

one xn has the highest p-level, and πp(∂A) is a single point in ∂πp(ℓ), in this case A enters

and exits ℓ from the same side.

Before giving the details of the p-chains we will use, we need two lemmas.

Lemma A.4. If the kneading map of Ts satisfies (2.2), i.e., Q(k + 1) > Q(Q(k) + 1) for

all k sufficiently large, then

(A.3) |cSk
− c| < |cSQ(k)

− c| and |cSk
− c| < 1

2
|cSQ2(k)

− c|.

for all k sufficiently large.

Proof. For each cutting time Sk, let ζk ∈ ZSk
be the point such that T Sk

s (ζk) = c. Then ζk

together with its symmetric image ζ̂k := 1− ζk are closest precritical points in the sense

that T j
s ((ζk, c)) ̸∋ c for 0 6 j 6 Sk. Consider the points ζk−1, ζk and c, and their images

under T Sk
s , see Figure 6. Note that ZSk

= [ζk−1, c] and T Sk
s ([ζk−1, c]) = DSk

= [cSQ(k)
, cSk

].

Since Sk+1 = Sk + SQ(k+1) is the first cutting time after Sk, the precritical point of lowest

order on [c, cSk
] is ζQ(k+1) or its symmetric image ζ̂Q(k+1). Applying this to cSk

and cQ(k),

and using (2.2), we find

cSk
⊂ (ζQ(k+1)−1, ζ̂Q(k+1)−1) ⊂ (ζQ(Q(k)+1), ζ̂Q(Q(k)+1)) ⊂ (cSQ(k)

, ĉSQ(k)
).
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r
cSQ(k)

r
c

r
cSk

r
cSQ2(k)

rζ̂Q(Q2(k)+1)+1 rζ̂Q(Q2(k)+1)

︸ ︷︷ ︸
DSk

?
TSk
s

r
ζk−1

r
ζk

r
c

Figure 6. The points ζk−1, ζk and c, and their images under T Sk
s .

Therefore |cSk
− c| < |cSQ(k)

− c|. Since T Sk
s |[ζk−1,c] is affine, also the preimages ζk−1 and

ζk of cSQ(k)
and c satisfy |ζk − c| < |ζk−1 − ζk|. Applying (2.2) twice we obtain

(A.4) Q(k + 1) > Q(Q2(k) + 1) + 1,

for all k sufficiently large. Therefore there are at least two closest precritical points

(ζ̂Q(Q2(k)+1) and ζ̂Q(Q2(k)+1)+1 in Figure 6) between cSk
and cSQ2(k)

. Therefore

(A.5) |cSk
− c| < |ζ̂Q(Q2(k)+1)+1 − c| < 1

2
|ζ̂Q(Q2(k)+1) − c| < 1

2
|cSQ2(k)

− c|,

proving the lemma. �

Lemma A.5. If the kneading map Q of Ts is eventually non-decreasing and satisfies

Condition (A.4), then for all n ∈ N there are arbitrarily small numbers ηn > 0 with the

following property: If n′ > n is such that n ∈ orbβ(n
′), then either |cn′ − cn| > ηn or

|cn′′ − cn| < ηn for all n ≤ n′′ ≤ n′ with n′′ ∈ orbβ(n
′).

To clarify what this lemma says, Figure 7 shows the configuration of levels Dk that should

be avoided, because then ηn cannot be found.

Proof. We will show that the pattern in Figure 7 (namely with cm1 < cm2 < cm3 < . . .

and cmi−1
< cki for each i) does not continue indefinitely. To do this, we redraw the first

few levels from Figure 7, and discuss four positions in Dm1 where the precritical point

T−r
s (c) ∈ Dm1 of lowest order r could be, indicated by points a1, . . . , a4, see Figure 8.

Case a1 ∈ (cm1 , cm2): Take the r+1-th iterate of the picture, which moves Dm1 and Dk1

to levels with lower endpoint c1. then we can repeat the argument, until we arrive in one

of the cases below.

Case a2 ∈ (cm2 , ck1): Take the r-th iterate of the picture, which moves Dm1 , Dk1 , Dm2

and Dk2 all to cutting levels and cr+k2 ∈ (c, cr+k3). But m2 > m1, whence k2 > k1, and

this contradicts that |cSk2
− c| < |cSk1

− c|. (If a2 ∈ (cm3 , ck2), then the same argument

would give that r + k2 < r + k3 are both cutting times, but |c− cr+k2 | < |c− cr+k3 |.)
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��

��

��

��

Dm1 cn

Dk1 ,m1 = β(k1)

Dm2

Dk2 ,m2 = β(k2)

Dm3

Dk3 ,m3 = β(k3)

Dm4

Dk4 ,m4 = β(k4)

. . . . . .
. . .
·

Figure 7. Linking of levels Dmi
with β(m1) = β(m2) = β(m3) = · · · = n.

The semi-circles indicates that two intervals have an endpoint in common.

��

��

��

Dm1

r
cn

r
cm1

rck1Dk1 ,m1 = β(k1)

Dm2

r
cn

r
cm2

rck2Dk2 ,m2 = β(k2)

Dm3

Dk3 ,m3 = β(k3) r
cn

r
cm3

rck3

a1 a2 a3 a4

Figure 8. Linking of levels Dmi
, i = 1, 2, 3 and three possible positions of

the precritical point aj = T−r
s (c) ∈ Dm1 of lowest order r.

Case a3 ∈ (ck1 , cm3): Take the r-th iterate of the picture, which moves Dm1 , Dm2 and

Dk2 to cutting levels, and Dm3 to a non-cutting level Du with u := m3 + r such that

Sj := n+ r = β(u) = β(m2 + r) = β2(k2 + r).

The integer u such that cu is closest to c is for u = Si + Sj where j is minimal such

that Q(i + 1) > i, and in this case, the itineraries of Ts(c) and Ts(cu) agree for at most

SQ2(i+1)+1−1 iterates (if Q(i+1) = j+1) or at most SQ(j+1)−1 iterates (if Q(i+1) > j+1).

Call Sh := k2+r, then j = Q2(h) and the itineraries of Ts(cSh
) and c agree up to SQ(h+1)−1
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iterates. By assumption (A.4), we have

Q(j + 1) ≤ Q2(i+ 1) + 1 = Q(j + 1) + 1 = Q(Q2(h) + 1) + 1 < Q(h+ 1),

but this means that Du and DSh
cannot overlap, a contradiction.

Case a4 ∈ (ck2 , cn): Then take the r + 1-st iterate of the picture, which has the same

structure, with cn replaced by T r+1
s (a1) = c1. Repeating this argument, we will eventually

arrive at Case a2 or a3 above.

Therefore we can find ηn such that cn − ηn separates cn from all levels Dki , β
2(ki) = n

that intersect Dm1 . Indeed, in Case a2, we place cn − ηn just to the right of ck1 and in

Case a3 (and hence ck1 ∈ Dk2), we place cn − ηn just to the right of ck2 . �

Proposition A.6. Under the assumption of Lemma A.5, given ε > 0, there exists p ∈ N
and a chain C = Cp of lim←−([0, s/2], Ts) with the following properties:

(1) The links of C have diameter < ε.

(2) For each n ∈ N, there is exactly one link ℓ ∈ C such that every x ∈ lim←−([0, s/2], Ts)

that p-turns at cn belongs to ℓ.

(3) If y ∈ ℓ is a p-point not having the lowest p-level of p-points in ℓ, then both

β-neighbors of y belong to ℓ.

(4) If y ̸∈ ℓ is a β-neighbor of x above, then the other β-neighbor of y either lies

outside ℓ, or has p-level n as well.

Proof. We will construct the chain C as outlined in the beginning of this section, see

(A.2). So let us specify the collection G by starting with at least ⌈2sp/ε⌉ approximately

equidistant points gm ∈ [0, s/2] so that no gm lies on the critical orbit, and then refining

this collection inductively to satisfy parts 2.-4. of the proposition.

Start the induction with n = 1, i.e., the point c1. Note that c1 /∈ G, so there will be only

one link ℓ ∈ C with c1 ∈ πp(ℓ). Let η1 ∈ (0, s−pε/2) be as in Lemma A.5. Then, since each

k contains 1 in its β-orbit, eachDk intersecting (c1−η1, c1] is either contained in (c1−η1, c1]
or has c1 as lower endpoint (i.e., β(k) = 1). In the latter case, also Dl ∩ (c1 − η1, c1] = ∅
for each l with β(l) = k. Hence by inserting c1 − η1 into G, we can refine the chain C so

that properties 3. and 4. holds for the link ℓ with πp(ℓ) ∋ c1.

Suppose we have refined the chain to accommodate links ℓ such that πp(ℓ) ∋ ci for each

i < n. Then cn does not belong to the set G created so far, so there will be only one link
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ℓ ∈ C with πp(ℓ) ∋ cn. Again, find ηn ∈ (0, s−pε/2) as in Lemma A.5 and extend G with

cn + ηn if cn is a local minimum of T n
s or with cn − ηn if cn is a local minimum of T n

s .

We skip the induction step ifDn already belongs to complementary interval to G extended

with all point ci ± ηi created so far. Since |Dn| → 0, the induction will eventually cease

altogether, and then the required set G is found. �

Appendix B. Symmetric and Quasi-Symmetric Arcs

From now on all chains Cp are as in Proposition A.6. Also, we assume that the slope s is

such that Ts is Fibonacci-like and we abbreviate T := Ts.

Suppose A = [u, v] ⊂ A is a quasi-p-symmetric arc with u, v ∈ ℓ, and let Au and Av be arc-

components of ℓ that contain u and v respectively. We will sometimes say, for simplicity,

that the arc [Au, Av] between Au and Av, including Au and Av, is quasi-p-symmetric.

Definition B.1. A quasi-p-symmetric arc A = [u, v] with midpoint m is called basic

if there is no p-point w ∈ (u, v) such that either [u,w] ⊂ [u,m] or [w, v] ⊂ [m, v] is a

quasi-p-symmetric arc.

Example B.2. Let us consider the Fibonacci map and the corresponding inverse limit

space. Then the arc-component C (as well as an arc-component A) contains the arc

A = [x0, x33] such that the folding pattern of A is as follows (see Figure 9):

(B.1) 27 6

quasi-p-symmetric︷ ︸︸ ︷
12 143 1 6 16︸ ︷︷ ︸

basic

0 3 0 1 0 2 0 1 4 1 9 1 4 1 0 2 0 1 0 3 0 1 6 130︸ ︷︷ ︸
sym

0 3 0

(for easier orientation we write sometimes for example 12 which means that the p-level 1

belongs to the p-point x2). We can choose a chain Cp such that p-points with p-levels 1

and 14 belong to the same link. The arc [x2, x6] with the folding pattern 1 14 1 6 1 is a

basic quasi-p-symmetric arc; the arc [x2, x30] with the folding pattern as in (B.1) under

the wide brace is also a quasi-p-symmetric but not basic, because it contains [x2, x6].

Notice also that the arc [x3, x30] is a quasi-p-symmetric arc for which Proposition B.11

and Proposition B.9 do not work (see the folding patterns to the left of [x3, x30] and to

the right of [x3, x30]).

Lemma B.3. Let Cp be a chain and [x, y] a quasi-p-symmetric arc with respect to this

chain (not contained in a single link) with midpoint m and such that Lp(x) ≥ Lp(m).
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Figure 9. The arc A with folding pattern as in (B.1), with p-points of
p-level 1 and 14 in a single link ℓ.

Let Ax be the link-tip of [x, y] which contains x. Then Lp(m) > Lp(z) for all p-points

z ∈ [x, y] \ ({m} ∪ Ax).

Proof. Let A = [a, b] ∋ m be the smallest arc with p-points a, b of higher p-level than

Lp(m), say m ∈ [a, b] and Lp(m) ≤ Lp(a) ≤ Lp(b). By part (a) of Remark 2.4 we obtain

L := Lp(m) < Lp(a) < Lp(b). Since Lp(x) ≥ Lp(m), [x,m] contains one endpoint of A.

We can assume that [x,m]\A is contained in a single link, because otherwise [x, y]\ℓ-tips
is not p-symmetric. If [y,m] does not contain the other endpoint of A, then the statement

is proved.

Let us now assume by contradiction that A ⊂ [x, y]. Again, we can assume that [y,m]\A
is contained in a single link, because otherwise [x, y] \ ℓ-tips is not p-symmetric. By part

(a) of Remark 2.4 once more we have πp+L([a, b]) = [cSl
, cSk

] ∋ c = πp+L(m) for some k

and l = Q(k), and |πp+L(a)− c| > |πp+L(b)− c|, see the top line of Figure 10. It follows

that [a, b] contains a symmetric open arc (b′, b) where b′ ∈ (a, b) is the unique point such

that T (πp+L(b
′)) = T (πp+L(b)). Since [x, y] \ ℓ-tips is p-symmetric, Lp(b) > Lp(m) implies

b, b′ ∈ ℓ-tips. Moreover, the arc [a, b′] is contained in the same link ℓ as b.

If k and l are relatively small, then π−1
p (cSl

) and π−1
p (cSk

) belong to different links of Cp, so
we can assume that they are so large that we can apply Condition (2.2). Let r = Q(k+1)

and r′ = Q(l+1) be the lowest indices such that the closest precritical points ζ̂r′ ∈ [cSl
, c]
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πp+L(a) = cSl
cSk

= πp+L(b)c = πp+L(m)

ζ̂r′

πp+L(b
′)

ζ̂r ζr = πp+L(n)

?

T Sr′ = T SQ(l+1)

cSl+1

cSQ(l+1)
= πp+L−Sr′ (m)

c ζt ��cSk+Sr′

?

T St = T Sr−Sr′

��cSQ(Q(k+1))
= cSt cSQ(k+1)

= πp+L−Sr(m)
c ��cSk+1

?

T

��c1+St c1 = πp+L−Sr−1(n)
����c1+SQ(k+1)

= πp+L−Sr−1(m) ��c1�
c1+Sk+1

πp+L−Sr(b
′)

Figure 10. The image of πp+L([x, y]) ∋ c = πp+L(m) under appropriate
iterates of T .

and ζr ∈ [c, cSk
]. By (2.2), r′ = Q(l + 1) = Q(Q(k) + 1) < Q(k + 1) = r. Consider the

image of [cSl
, cSk

] first under T Sr′ and then under T Sr (second and third level in Figure 10).

By the choice of r, we obtain πp+L−Sr([m, b]) = [cSk+1
, cSQ(k+1)

], and πp+L−Sr([a, b
′]) ∋ cSt

for t = Q(Q(k+1)). As in (A.5), |cSt−c| > |cSQ(k+1)
−c| > |cSk+1

−c|, and taking one more

iterate, we see that [c1+Sk+1
, c1] ⊂ [c1+SQ(k+1)

, c1] ⊂ [1 + cSt , c1] (last level in Figure 10).

Let n ∈ [m, b] be such that πp+L(n) = ζr, see the first level in Figure 10. Since [a, b′]

belongs to a single link ℓ ∈ Cp, m ∈ ℓ as well. Suppose that [a,m] is not contained in

ℓ. Then there is a maximal symmetric arc [d′, d] with midpoint n such that the points

d, d′ /∈ ℓ. Then the arcs [d′, a] and [d,m] both enter the same link ℓ but they have different

‘first’ turning levels in ℓ, contradicting the properties of Cp from Proposition A.6.

This shows that [a,m] ⊂ ℓ. In the beginning of the proof we argued that the components

of [x, y] \ A belong to the same link, so that means that the entire arc [x, y] is contained

in a single link, contradicting the assumptions of the proposition. This concludes the

proof. �
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Remark B.4. In fact, this proof shows that the p-point b ∈ ∂A of the highest p-level

belongs to [m,x]. Indeed, if a ∈ [m,x], then because [m, b] has shorter arc-length than

[m, a], either a and b, and therefore x and y do not belong to the same link ℓ (whence

[x, y] is not quasi-p-symmetric), or the arc [a, b] itself is quasi-p-symmetric and contradicts

Lemma B.3.

Corollary B.5. Let A = [x, y] ⊂ A be a quasi-p-symmetric arc with midpoint m. Let Ax,

Ay be the link-tips of A containing x and y respectively. If x is the midpoint of Ax, and

y is the midpoint of Ay, then either Lp(x) > Lp(m) > Lp(y), or Lp(x) < Lp(m) < Lp(y).

Remark B.6. Note that in general there are quasi-p-symmetric arcs [x, y] with midpoint

m such that Lp(x) > Lp(y) > Lp(m). For example, if a tent map Ts has a preperiodic

critical point, then for every quasi-p-symmetric arcs [x, y] with midpoint m either Lp(x) >

Lp(y) > Lp(m), or Lp(y) > Lp(x) > Lp(m).

Corollary B.7. Let [x, y] ⊂ A be a quasi-p-symmetric arc with midpoint m, not con-

tained in a single link, such that Lp(x) > Lp(m) > Lp(y). If [m,x] is longer than [y,m]

measured in arc-length, then there exists a p-point y′ ∈ Ax such that [y, y′] is p-symmetric.

Proof. As in the previous proof, b ∈ [x,m] and y ∈ [m, b′] and take y′ ∈ [m, b] such that

πp+L(y
′) = πp+L(y). �

Remark B.8. If Ax ∋ x and Ay ∋ y are maximal arc-components of A ∩ ℓ (with still

Lp(x) > Lp(m) > Lp(y)), and my is the midpoint of Ay, then there is y′ ∈ Ax such that

[y′,my] is p-symmetric.

In other words, when A enters and turns in a link ℓ, then it folds in a symmetric pattern,

say with levels L1, L2, . . . , Lm−1, Lm, Lm−1, . . . , L2, L1. The nature of the chain Cp is such

that L1 depends only on ℓ. The Corollary B.7 does not say that the rest of the pattern

is the same also, but only that if A ⊂ A is such that A \ ℓ-tips is p-symmetric, then the

folding pattern at the one link-tip is a subpattern (stopping at a lower center level) of the

folding pattern at the other link-tip.

Proposition B.9 (Extending a quasi-p-symmetric arc at its higher level endpoint). Let

A = [x, y] ⊂ A be a basic quasi-p-symmetric arc, not contained in a single link, such

that the p-points x, y ∈ ℓ are the midpoints of the link-tips of A and Lp(x) > Lp(y).

Let m be the midpoint of A. Then there exists a p-point m′ such that the arc [m,m′] is

(quasi-)p-symmetric with x as its midpoint.
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Figure 11. The configuration in Proposition B.9 where the existence of p-
point m′ is proved. v is the first p-point ’beyond’ x such that Lp(v) > Lp(x)
and u is such that [u, y] is p-symmetric with midpoint m.

Remark B.10. The conditions are all crucial in this lemma:

(a) It is important that y is a p-point. Otherwise, if A goes straight through ℓ at y,

then it is possible that x is the single p-point in Ax (where Ax is the arc-component

of A ∩ ℓ containing x) and [v, x] is shorter than [x,m], and the lemma would fail.

(b) Without the assumption that [x, y] is basic the lemma can fail. If Figure 9 the

quasi-p-symmetric arc [x, y] = [x3, x30] is not basic, and indeed there is no p-point

m′ ∈ [x, v] = [x3, x0] with Lp(m
′) = Lp(m) = Lp(x

17) = 9.

Proof. Since [u, y] is p-symmetric, Lp(u) = Lp(y) < Lp(m) and x ̸= u. Let w be the

first p-point ‘beyond’ y such that Lp(w) > Lp(x). Take L = Lp(x); Figure 12 shows the

configuration of the relevant points on [w, v] and their images under πp ◦ σ−L denoted by

˜-accents. Clearly x̃ = c.

Case I: |w̃ − c| < |ṽ − c|. Then by Remark 2.4 (b), w̃ = cSl
and ṽ = cSk

with k = Q(l).

The points ỹ, m̃, ũ have symmetric copies ỹ′, m̃′, ũ′ (i.e., T (ỹ) = T (ỹ′), etc.) in reverse

order on [c, ṽ], and the pre-image under σL ◦ π−1
p of the copy of m̃′ yields the required

point m′.

Case II: |w̃ − c| > |ṽ − c|, so in this case, l = Q(k). We can in fact assume that

|m̃ − c| > |ṽ − c| because otherwise we can find m′ precisely as in Case I. Now take the

p-point a′ ∈ (x, v) of maximal p-level, and let a ∈ [m,x] be such that their πp◦σ−L-images

ã and ã′ are each other symmetric copies. Let r be such that T r(ã) = c; the bottom part

of Figure 12 shows the image of [m̃, ṽ] under T r. The point T r(x̃) and T r(v) are each
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rw ry rm ru rx ru′ rvra′

?
πp ◦ σ−L

rw̃ rỹ rm̃ rũ rx̃ = c rũ′ rṽrã′rãrũ′′

?
T r

HHHHHHHHHHHj ��rrc rT r(ũ)rT r(ũ′′)rT r(m̃) r
T r(ṽ)

r T r(x̃)

Figure 12. The configuration of points on [w, v] and their images under
πp ◦ σ−L and an additional T r.

others β-neighbors, and since Lp(v) > Lp(x), and by (2.2), |T r(x̃) − c| > |T r(v) − c|.
Therefore [T r+j(x̃), T r+j(ã′)] ⊃ [T r+j(ṽ), T r+j(ã′)] for all j ≥ 1.

If a, a′ ∈ ℓ, then since [x, a] ⊂ ℓ, this would imply that [a′, v] ⊂ ℓ as well, contrary to the

fact that x is the midpoint of Ax.

If on the other hand a, a′ /∈ ℓ, then there is a point u′′ ∈ [m, a] such that T r(ũ′′) and

T r(ũ) are each other symmetric copies. It follows that [u′′, x] is a quasi-p-symmetric arc

properly contained in [x, y], contradicting that [x, y] is basic. �

Proposition B.11 (Extending a quasi-p-symmetric arc at its lower level endpoint). Let

A = [x, y] ⊂ A be a basic quasi-p-symmetric arc, not contained in a single link, such that

x and y are the midpoints of the link-tips of A and Lp(x) > Lp(y). Let m be the midpoint

of A. Then there exists a point a such that [m, a] is a quasi-p-symmetric arc with y as

the midpoint.

Remark B.12. The assumption that [x, y] is basic is essential. Without it, we would have

a counter-example in [x, y] = [x3, x30] in Figure 9. The quasi-p-symmetric arc [x3, x30] is

indeed not basic, because [x3, x6] is a shorter quasi-p-symmetric arc in the figure. There

is a point n = x32 beyond y with Lp(n) = Lp(x
32) = 3 > 1 = Lp(y), making it impossible

that y is the midpoint of a quasi-p-symmetric arc stretching unto m.

Proof. A quasi-p-symmetric arc is not contained in a single link, so [x,m] ̸⊂ ℓ. Let

H = [x, n] ⊃ A be the smallest arc containing a point n ‘beyond’ y with Lp(n) > Lp(y).
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Figure 13. The arcs A and B and the relevant points for Proposition B.11,
which is meant to show that the point n does not exist in B.

Corollary B.7 implies that the arc [x,m] contains a p-point y′ with Lp(y
′) = Lp(y). Let b

and b′ be the p-points having the highest p-level on the arcs [y,m) and [y′,m) respectively.

By symmetry, Lp(b) = Lp(b
′), and possibly b = y, b′ = y′. Let z ∈ [x, y′] be the point

closest to y′ such that Lp(z) > Lp(b); possibly z = x. Since b′ ∈ [y′,m), we have

Lp(y) = Lp(y
′) 6 Lp(b) = Lp(b

′) < Lp(m).

Take L := Lp(b) and let H̃ = πp◦σ−L(H). Since y is the midpoint of its link-tip, [y, n] ̸⊂ ℓ.

Therefore π−1
p (c)∩σ−L(H) ⊃ {σ−L(b), σ−L(b′)}, and z̃ = πp ◦σ−L(z) and ñ = πp ◦σ−L(n)

have m̃ = πp ◦ σ−L(m) as common β-neighbor, see Figure 14. Since Lp(z) > Lp(b) there

�tx̃��tz̃ = cSk ��t m̃ = cSjt
cSl

= ñ
t̃
a c = πp ◦ σ−L(b)ỹ

ỹ′ ũ
H̃

6

T
Sj
s

�
�

�
�
���

T
Sj
s

HHHHHHHHHHHHHHY

T
Sj
s

t
cSl−1

t
cSk−1

c

Figure 14. The arc H̃ drawn as multiple curve, its preimage under T
Sj
s

and the relevant points on them.

is k such that z̃ = cSk
. Also take l such that ñ = cSl

and j such that m̃ = cSj
. Let

ỹ = πp ◦ σ−L(y) and ỹ′ = πp ◦ σ−L(y′).

We claim that there is a point a ∈ [n,m] such that

ã := πp ◦ σ−L(a) ∈ [cSl
, ỹ] and Ts(ã) = Ts(m̃).



32 H. BRUIN AND S. ŠTIMAC

Since cSj
is β-neighbor to both cSl

and cSk
, we have three cases:

(1) j = Q(k) and l = Q(j), so l = Q2(k). In this case, Equation (2.2) and Remark 2.2

imply that |c − cSl
| > |c − cSQ(k)

|, so [cSl
, c] contains the required point ã with

Ts(ã) = Ts(m̃). By the same token, |cSk
− c| < |cSj

− c| = 1
2
|ã − m̃|. Since

|ỹ − c| = |ỹ′ − c| < |cSk
− c|, we indeed obtain that ã ∈ [cSl

, ỹ].

(2) j = Q(l) and k = Q(j), so k = Q2(l). Then Remark A.2 implies that |c − cSk
| >

|c − cSl
|. But this would mean that the arc [n,m] is shorter than [z,m] and in

particular that [y, n] ⊂ ℓ, contradicting that y is the midpoint of its link-tip.

(3) j = Q(k) = Q(l). In this case, we pull H̃ back for another Sj iterates, or more

precisely, we look at the arc πp ◦ σ−Sj−L(H). The endpoints of this arc are cSk−1

and cSl−1
which are therefore β-neighbors. If l − 1 = Q(k − 1), then we find

Q(k) = Q(l) = Q(Q(k − 1) + 1)

which contradicts Condition (2.2) with k replaced by k − 1. If k − 1 = Q(l − 1),

then we find

Q(l) = Q(k) = Q(Q(l − 1) + 1)

which contradicts Condition (2.2) with k replaced by l − 1.

This proves the claim.

Suppose now that ỹ ̸= c (i.e., y ̸= b). Then b, b′ /∈ ℓ because y has the largest p-

level in its link-tip. Since |cSk
− c| < |c − m̃|, there is a point u ∈ [z,m] such that

ũ = πp ◦σ−L(u) ∈ [c, m̃] and Ts(ũ) = Ts(ỹ). This means that [x, u] is a quasi-p-symmetric

arc properly contained in [x,m], contradicting the assumption that [x, y] is a basic quasi-

symmetric arc.

Therefore y = b, so there are no p-points between y and m of level higher than Lp(y).

Instead, the arc [a,m] has midpoint y, and is the required quasi-p-symmetric arc, proving

the lemma. �

Remark B.13. Let A = [x, y] be a basic quasi-p-symmetric arc such that x and y are

the midpoints of the link-tips of A and Lp(x) > Lp(y). Let ℓ
m be the link which contains

the midpoint m of A, and let Am be the arc-component of ℓm containing m. Then, by

the lemma above, A \ (ℓ-tips ∪ Am) does not contain any p-point z with Lp(z) > Lp(y).



FIBONACCI-LIKE UNIMODAL INVERSE LIMITS AND THE CORE INGRAM CONJECTURE 33

Appendix C. Link-Symmetric Arcs

Definition C.1. We say that an arc [x, y] is decreasing (basic) quasi-p-symmetric if it is

the concatenation of (basic) quasi-p-symmetric arcs where the p-levels of the midpoints

decrease, i.e., if there are p-points x = x0, x1, x2, . . . , xn−1 and xn = y can be a p-point or

not, such that the following hold:

(i) [xi−1, xi+1] is a (basic) quasi-p-symmetric arc with midpoint xi, for i = 1, . . . , n−1.
(By definition of a (basic) quasi-p-symmetric arc, the points x2i all belong to a

single link, and the points x2i−1 belong to a single link as well.)

(ii) Lp(x
i) > Lp(x

i+1), for i = 1, . . . , n− 1 (and if y is a p-point then also Lp(x
n−1) >

Lp(y)).

Similarly, we say that the arc [x, y] is increasing (basic) quasi-p-symmetric if it is the con-

catenation of (basic) quasi-p-symmetric arcs where the p-levels of the midpoints increase.

�� �� �s
x = x1

� �� �� �s
x2

� �� �� �sx3

� �

� �s
x5

sx6 = ysx4

�

�

�

�

�

�

�

�
ℓ̂

ℓ

Figure 15. Illustration of a basic decreasing quasi-p-symmetric arc. The
point y is not a p-point here; instead, the arc A goes straight through ℓ̂ at
y.

Example C.2. Consider the Fibonacci inverse limit space, and let our chain Cp be such

that p-points with p-levels 1 and 14 belong to the same link ℓ, but p-points with p-level 9

are not contained in ℓ. Since p-points with p-level 14 belong to the same link ℓ as p-points

with p-level 1, also p-points with p-levels 22, 35, 56 and 77 belong to ℓ. Let p-points with

p-level 43 belong to the same link as p-points with p-level 9.
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(1) Example of a basic decreasing quasi-p-symmetric arc. Let A = [y0, y12] be

an arc with the following folding pattern (where the subscripts count important

p-points):

1 22 772 22 1 9 436 9 1︸ ︷︷ ︸
basic

basic︷ ︸︸ ︷
229 1 911 112

Let xi be as in the above definition. Then x1 = y2, x2 = y6, x3 = y9, x4 = y11, and

x5 = y12. So [y2, y9] is basic quasi-p-symmetric with midpoint y6, [y6, y11] is basic

quasi-p-symmetric with midpoint y9, and [y9, y12] is basic quasi-p-symmetric with

the midpoint y11. Also Lp(y
2) = 77 > Lp(y

6) = 43 > Lp(y
9) = 22 > Lp(y

11) =

9 > Lp(y
12) = 1.

(2) Example of a non-basic decreasing quasi-p-symmetric arc. Let [y0, y72] be

an arc with the following folding pattern:

quasi-p-symmetric︷ ︸︸ ︷
1 22 1 563 1 22 1 9 1︸ ︷︷ ︸

basic

4 1 0 2 0 1 0 3 0 1 6 1 14 1 35231 14 1 6 1 0 3 0 1 0 2 0 1 4 1 9 1︸ ︷︷ ︸
basic︷ ︸︸ ︷

22411 9 1 4 1 0 2 0 1 0 3 0 1 6 1 14571 6 1 0 3 0 1 0 2 0 1 4

sym︷ ︸︸ ︷
1 9 172︸ ︷︷ ︸

quasi-p-symmetric

Let xi be again as in the above definition. Then x1 = y3, x2 = y23, x3 = y41, x4 =

y57, and x5 = y72. So, arcs [y3, y41], [y23, y57] and [y41, y72] are quasi-p-symmetric,

and Lp(y
3) = 56 > Lp(y

23) = 35 > Lp(y
41) = 22 > Lp(y

57) = 14 > Lp(y
72) = 1.

(3) Example of an arc that is the concatenation of two quasi-p-symmetric

arcs (one of them is basic), but is not decreasing quasi-p-symmetric. Let

[y0, y40] be an arc with the following folding pattern:

1 22 772 22 1 9 436 9 1︸ ︷︷ ︸
basic

229 1 9111124 1 0 2 0 1 0 3 0 1 6 1 14251 6 1 0 3 0 1 0 2 0 1 4 1 9 140︸ ︷︷ ︸
quasi-p-symmetric

Then [y2, y9] is basic quasi-p-symmetric with midpoint y6, [y6, y11] is basic quasi-p-

symmetric with midpoint y9, and [y9, y12] is basic quasi-p-symmetric with the mid-

point y11. However, [y9, y40] is quasi-p-symmetric with midpoint y25 and [y6, y25]

is neither basic quasi-p-symmetric, nor quasi-p-symmetric. So A = [y0, y40] is not

a decreasingly quasi-p-symmetric arc. Note that [y0, y12] is a decreasing quasi-p-

symmetric arc.
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Proposition C.3. LetA be a non-basic quasi-p-symmetric arc. Then there are k, n,m, d ∈
N, d < k, such that

A ∩ Ep = {x0, . . . , xk, . . . , xk+n, . . . , xk+n+m},

[x0, xk] is a basic quasi-p-symmetric arc with midpoint xk−d and [xk, xk+n] is p-symmetric.

Moreover,

(i) If [xk+n, xk+n+m] is p-symmetric, then [x−k+m/2, xk+n+3m/2] is not p-link-symmetric.

(ii) If [xk+n, xk+n+m] is a basic quasi-p-symmetric arc, then A is contained in a decreas-

ing quasi-p-symmetric arc consisting of at least two quasi-p-symmetric arcs. More

precisely, [x−k−n/2, xk+n/2] and [xk+n/2, xk+2m+3n/2] are the quasi-p-symmetric arcs

contained in the decreasing quasi-p-symmetric arc [x−k−n/2, xk+2m+3n/2] containing

A.

Proof. Since A is a non-basic quasi-p-symmetric arc, there is a basic quasi-p-symmetric arc

which we can label [x0, xk]. The arc [xk, xk+n] in the middle is p-symmetric by definition

of quasi-p-symmetry, and it has the same midpoint xk+n/2 as A. The arc [xk+n, xk+n+m]

could be either p-symmetric or basic quasi-p-symmetric.

(i) Assume that [xk+n, xk+n+m] is p-symmetric. Without loss of generality we can suppose

that x0 and xk+n+m are the midpoints of the link-tips of A, and also that xk and xk+n are

the midpoints of their arc-components. Since the point xk+n+m/2 is the midpoint of the

p-symmetric arc [xk+n, xk+n+m], and the symmetry of the arc [xk, xk+n] can be extended to

the midpoints of its neighboring (quasi-)symmetric arcs, we obtain that d = m/2 and the

point xk−m/2 is the midpoint of the basic quasi-p-symmetric arc [x0, xk]. Proposition B.9

implies that we can extend [x0, xk−m/2] beyond x0 to obtain the arc [x−k+m/2, xk−m/2]

which is either p-symmetric, or quasi-p-symmetric, and hence p-link-symmetric.

First, let us assume that Lp(x
k+n+m) = 1. Let us consider the arc [xk+n+m/2, xk+n+3m/2].

Its midpoint xk+n+m has p-level 1. If Lp(x
k+n+m−1) = Lp(x

k+n+m+1), then Lp(x
k+n+m−1) =

0. Furthermore xk+n+m−1 ̸= xk+n+m/2 since a midpoint cannot have p-level zero. It fol-

lows that xk+n+m−2 and xk+n+m+2 have different p-levels, and are not in the same link,

since by Lemma B.3 there is no quasi-p-symmetric arc whose both boundary points are

p-points and whose midpoint has p-level 1.

If Lp(x
k+n+m−1) ̸= Lp(x

k+n+m+1) then again xk+n+m−1 and xk+n+m+1 are not in the same

link (by Lemma B.3 there is no quasi-p-symmetric arc whose both boundary points are
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p-points and whose midpoint has p-level 1). In either case, [xk+n+m/2, xk+n+3m/2] is not

p-link-symmetric and hence [x−m/2, xk+n+3m/2] is not p-link-symmetric. This proves state-

ment (i) in the case that Lp(x
k+n+m) = 1.

Now for the general case, let L := Lp(x
k+n+m). The basic idea is to shift [x0, xk+n+m]

back by L − 1 iterates, and use the above argument. Note that the arcs [xk, xk+n] and

[xk+n, xk+n+m] are p-symmetric and hence Lp(x
k+n/2) > Lp(x

k+n) = Lp(x
k+n+m) = L.

Then σ−L+1(A) is also a quasi-p-symmetric arc which is not basic, the arc σ−L+1([x0, xk])

is a basic quasi-p-symmetric arc and Lp(σ
−L+1(xk+n+m)) = 1. Let

σ−L+1(A) ∩ Ep = {u0, . . . , uk̂, . . . , uk̂+n̂, . . . , uk̂+n̂+m̂},

where uî = σ−L+1(xi). (Note that k̂ 6 k, n̂ 6 n and m̂ 6 m, since not every σ−L+1(xi)

needs to be a p-point.) Then G = [u−k̂+m̂/2, uk̂+n̂+3m̂/2] is an arc with ‘boundary arcs’

[u−k̂+m̂/2, uk̂−m̂/2] and [uk+n+m̂/2, uk+n+3m̂/2] and the midpoint of the latter has p-level 1.

The above argument shows that this arc cannot be p-link-symmetric, and therefore the

whole arc G is not p-link-symmetric with midpoint u = σ−L+1(xk+n/2).

We want to prove that σj(G) is also not p-link-symmetric with the midpoint σj(u) for

j = L− 1.

Let us assume by contradiction that σj(G) is p-link-symmetric. Since [x−k+m/2, xk−m/2] is

p-symmetric, also σj([uk̂+n̂+m̂/2, uk̂+n̂+3m̂/2]) is p-link-symmetric. But [uk̂+n̂+m̂/2, uk̂+n̂+3m̂/2]

has its midpoint at p-level 1, and hence is not p-link-symmetric. Therefore, there exists l <

j such that σl([uk̂+n̂+m̂/2, uk̂+n̂+3m̂/2]) is not p-link-symmetric and σl+1([uk̂+n̂+m̂/2, uk̂+n̂+3m̂/2])

is p-link-symmetric. By Proposition A.6, and since Lp(σ
l(uk̂+n̂+m̂)) = l+1 ̸= 0, there exist

v ∈ σl([uk̂+n̂+m̂/2, uk̂+n̂+m̂]) and w ∈ σl([uk̂+n̂+m̂, uk̂+n̂+3m̂/2]) such that Lp(v) = Lp(w) = 0,

see Figure 16.

Since σl+1(uk̂+n̂+m̂/2) and σl+1(uk̂+n̂+3m̂/2) belong to the same link and Lp(σ
l+1(uk̂+n̂+m̂/2)) ̸=

Lp(σ
l+1(uk̂+n̂+3m̂/2)), Proposition A.6 implies that σl+1(uk̂+n̂+m̂/2) and σl+1(uk̂+n̂+3m̂/2) be-

long to the same link as σ(v) and σ(w). But then σl(uk̂+n̂+m̂/2) and σl(uk̂+n̂+3m̂/2) belong

to the same link as v and w, contradicting the choice of l.

(ii) The rough idea of this proof is as follows: Whenever [xk+n, xk+n+m] is not p-symmetric,

there exists N ∈ N such that σ−N(A) is a basic quasi-p-symmetric arc and we can apply

Propositions B.9 and B.11 to obtain the arc B ⊃ σ−N(A) which is decreasing basic quasi-

p-symmetric. Then σN(B) ⊃ A is the required decreasing quasi-p-symmetric arc.
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Figure 16. The configuration of p-levels that does not exist. Here x =

σl(uk̂+n̂+m̂/2), y = σl(uk̂+n̂+m̂) and z = σl(uk̂+n̂+3m̂/2).

Let us assume now that [xk+n, xk+n+m] is basic quasi-p-symmetric. Let us denote by ℓ

the link which contains x0. Then xk, xk+n, xk+n+m ∈ ℓ. We can assume without loss of

generality that xk and xk+n are the p-points in the link-tips of [xk, xk+n] furthest away

from the midpoint xk+n/2 and, similarly, x0 and xk+n+m are the p-points in the link-tips

of [x0, xk+n+m] furthest away from the midpoint xk+n/2. Then from the properties of the

chain in Proposition A.6 we conclude that Lp(x
0) = Lp(x

k) = Lp(x
k+n) = Lp(x

k+n+m).

Let us denote by xa and xb the midpoints of arc-components which contains x0 and xk+n+m

respectively. Then xa, xb ∈ ℓ and xb ̸= xk+n+m. Without loss of generality we can assume

that Lp(x
a) > Lp(x

b).

Since xk−d is the midpoint of [x0, xk] and A is quasi-p-symmetric, xk+n+d is the midpoint

of [xk+n, xk+n+m].

By Proposition B.9, Lp(x
−d) = Lp(x

k−d) and Lp(x
k+n+d) = Lp(x

k+n+m+d), see Figure 17.

Let us denote by ℓd the link which contains x−d, and by Ad the arc-component of ℓd which

contains x−d.

Claim x−d is the midpoint of its arc-component Ad.

Consider the arc σ−L+1(A), where L := Lp(x
b). Since Lp(x

a) > Lp(x
k+n/2) > Lp(x

b) = L,
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the preimage σ−L+1(A) contains the points σ−L+1(xb) with Lp(σ
−L+1(xb)) = 1, σ−L+1(xa)

and σ−L+1(xk+n/2) is the midpoint of σ−L+1(A).

By Corollary B.7 the arc-component containing xa also contains p-points x′ and x′′ with

the property that [x′, x′′] is p-symmetric with midpoint xa and Lp(x
′) = Lp(x

′′) =

Lp(x
b), Assume also that x′ and x′′ are furthest away from xa with these properties.

Therefore, σ−L+1(A) ∩ Ep ⊇ {u0, uâ, u2â, u2â+n̂, u2â+2n̂}, where uâ = σ−L+1(xa), u2â+n̂ =

σ−L+1(xk+n/2), u2â+2n̂ = σ−L+1(xb), u0 = σ−L+1(x′), u2â = σ−L+1(x′′) and Lp(u
0) =

Lp(u
2â) = 1.

Let us suppose that σ−L+1(A) is not contained in a single link. Since σ−L+1(xa) and

σ−L+1(xb) are contained in the same link, σ−L+1(A) is a basic quasi-p-symmetric arc. Let

ℓn be the link containing u2â+n̂, and let A2a+n be the arc component of ℓn containing

u2â+n̂. Since Lp(u
2â+2n̂) = 1, by Remark B.13, (u2â+n̂, u2â+2n̂)\A2a+n can contain at most

one p-point and its p-level is 0. Therefore (u2â, u2â+n̂)\A2a+n can also contain at most one

p-point and its p-level is 0. By Proposition B.9, [u−n̂, u2â+n̂] is either a p-symmetric arc,

or a basic quasi-p-symmetric arc, see Figure 17. Let us denote by An the arc-component

of ℓn containing u−n̂. Then (u−n̂, u0)\An also does not contain any p-point with non-zero

p-level.

rx rx−d

Ad

r
x0

r
xa

rxk−2d rxk−dr
xk

rxk+n/2 r
xk+n

rxk+n+drxk+n+2dr
xb

r
xk+n+m

rxk+n+m+d

?

σ−L+1

ru−n̂ Anr
u

r
u0

r
uâ

Aa r
u2â

r
u2â+n̂

r
u2â+2n̂

ru2â+3n̂

Figure 17. The configuration of points on [x−d, xk+n+m+2d] and their
images under σ−L+1 as in (ii).

Assume by contradiction that x−d is not the midpoint of its arc-component Ad. Let

us denote the midpoint of Ad by x, and let u := σ−L+1(x). Since Lp(x) > Lp(x
a),

also Lp(u) > Lp(u
â). Let ℓa be the link which contains uâ, and let Aa be the arc-

component of ℓa containing uâ. Then u ∈ An and [u−n̂, u2â+n̂] is basic quasi-p-symmetric.

But, since u2â+n̂ ∈ ℓn and σL−1(u2â+n̂) = xk+n/2, xk+n/2 ∈ ℓd. Since the arc [x, xk−d] is
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quasi-p-symmetric, [xk−d, xk+n/2] is also quasi-p-symmetric and Lp(x
a) > Lp(x

k−d) implies

Lp(x
k−d) > Lp(x

k+n/2), a contradiction.

Let us assume now that σ−L+1(A) is contained in a single link. Since Lp(u) > Lp(u
â)

and Lp(u
0) = 1, we have πp([u, u

0]) ⊂ πp([u
â, u0]). Then σL−1([uâ, u0]) ⊂ ℓ implies

σL−1([u, uâ]) ⊂ ℓ and hence [x−d, xk−d] ⊂ ℓ, a contradiction.

These two contradictions prove the claim.

In the same way we can prove that xk+n+m+d is the midpoint of its arc-component, and

by Proposition B.11 the arc [u2â+n̂, u2â+3n̂] is either p-symmetric, or quasi-p-symmetric.

So we have proved that the arcs [u−n̂, u2â+n̂] and [u2â+n̂, u2â+3n̂] are both either p-symmetric,

or quasi-p-symmetric. Since [xa, xb] = σL−1([uâ, u2â+2n̂]) is quasi-p-symmetric, the arcs

σL−1([u−n̂, u2â+n̂]) and σL−1([u2â+n̂, u2â+3n̂]) are both either p-symmetric, or quasi-p-symmetric.

This implies that [x−2d−n/2, xk+n/2] and [xk+n/2, xk+n+m+2d+n/2] are contained in the de-

creasing quasi-p-symmetric arc [x−2d−n/2, xk+n+m+2d+n/2] containing A. �

Example C.4. (Example for (ii) of Proposition C.3.) Let us consider the Fibonacci

map and the corresponding inverse limit space. The arc-component C contains an arc

A = [x0, x77] with the following folding pattern:

1 91 12 22 1 56 1 22 1 9 1︸ ︷︷ ︸
basic

4 1 0 2 0 1 0 3 0 1 6

quasi-p-symmetric︷ ︸︸ ︷
12214 1 35 1 14 1 6 1︸ ︷︷ ︸

basic

0 3 0 1 0 2 0 1 4 1 9 1 22 1 9 1 4 1 0 2 0 1 0 3 0 1 6 1 14 160︸ ︷︷ ︸
basic

6 1 0 3 0 1 0 2 0 1 4 1 9 174︸ ︷︷ ︸
sym

4751 0

We can choose a chain Cp such that p-points with p-levels 1, 14, 22, 35 and 56 belong to

the same link. Then the arc [x22, x60] is quasi-p-symmetric, and it is not basic. The arc

σ−13([x22, x60]) is basic quasi-p-symmetric with the folding pattern 1 22 1 9 1. So we can

apply Propositions B.9 and B.11 as in the above proof. The arc [x2, x74] is decreasing

quasi-p-symmetric. Note that the arc [x1, x75] is not p-link-symmetric.

Definition C.5. An arc A = [x, y] is called maximal decreasing (basic) quasi-p-symmetric

if it is decreasing (basic) quasi-p-symmetric and there is no decreasing (basic) quasi-p-

symmetric arc B ⊃ A that consists of more (basic) quasi-p-symmetric arcs than A.
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Similarly we define a maximal increasing (basic) quasi-p-symmetric arc.

Remark C.6. (a) Propositions B.9 and B.11 imply that A = [x, y] is a maximal decreas-

ing basic quasi-p-symmetric arc if and only if A is a decreasing basic quasi-p-symmetric

and for x = x0, x1, . . . , xn−1, xn = y which satisfy (i) of Definition C.1, there exists a point

x−1 such that [x−1, x1] is p-symmetric with midpoint x0 and xn is not a p-point. The

arc [x−1, xn] we call the extended maximal decreasing basic quasi-p-symmetric arc. The

points x−1, x = x0, x1, . . . , xn−1, xn = y we call the nodes of [x−1, xn].

The analogous statement holds if A is a maximal increasing basic quasi-p-symmetric arc:

If A = [x0, xn+1] is an extended maximal increasing basic quasi-p symmetric arc, then x0 is

not a p-point, Lp(x
n) > Lp(z) for every p-point z ∈ A, z ̸= xn, and Lp(x

n−1) = Lp(x
n+1).

(b) Let A = [x0, xn+1] be an extended maximal increasing basic quasi-p symmetric arc.

If there exists an additional p-point xn+2 such that the arc [xn, xn+2] is quasi-p sym-

metric with midpoint xn+1, Propositions B.9 and B.11 imply that A is contained in an

p-symmetric arc B = [x0, x2n] where the arc [xn−1, x2n] is an extended maximal decreasing

basic quasi-p-symmetric arc.

The analogous statement holds if A is a maximal decreasing basic quasi-p-symmetric arc.

Lemma C.7. Every (basic) quasi-p-symmetric arc A can be extended to a maximal

decreasing/increasing (basic) quasi-p-symmetric arc B ⊃ A.

Proof. We take the largest decreasing (basic) quasi-p-symmetric arc B containing A. The

only thing to prove is that there really is a largest B. If this were not the case, then there

would be an infinite sequence (xi)i>0 with x0 ∈ ∂A, Lp(xi) < Lp(xi+1) and [xi, xi+2] is a

(basic) quasi-p-symmetric arc for all i > 0. By the definition of (basic) quasi-p-symmetric

arc, there are two links ℓ and ℓ̂ containing xi for all even i and odd i respectively. (Note

that ℓ = ℓ̂ is possible.) By Lemma B.3 for the basic case, the p-points in
∪

i>0[x0, xi] \
(ℓ ∪ ℓ̂) can only have finitely many different p-levels. By the construction in the proof

of Proposition C.3 (ii), the same conclusion is true for the non-basic case as well. But∪
i>0[x0, xi] is a ray, and contains p-points of all (sufficiently high) p-levels. Since the

closure of πp({x : Lp(x) > N}) contains ω(c) for all N , this set is not contained in the

πp-images of the two links ℓ and ℓ̂ only. So we have a contradiction. �

Proposition C.8. Let A be a p-link-symmetric arc with midpoint m and ∂A = {x, y} ⊂
Ep. Then A is p-symmetric, or is contained in an extended maximal decreasing/increasing
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(basic) quasi-p-symmetric arc, or is contained in a p-symmetric arc which is the concate-

nation of two arcs, one of which is a maximal increasing (basic) quasi-p-symmetric arc,

and the other one is a maximal decreasing (basic) quasi-p-symmetric arc.

Proof. Let A∩Ep = {x−k′ , . . . , x−1, x0, x1, . . . xk} and x0 = m. Without loss of generality

we assume that x−k′ and xk are the midpoints of the link-tips of A. If Lp(x
−i) = Lp(x

i), for

i = 1, . . . ,min{k′, k}, then the arc A is either p-symmetric, or (basic) quasi-p-symmetric.

Hence in this case the theorem is true.

Let us assume that there exists j < min{k′, k} such that Lp(x
−i) = Lp(x

i), for i =

1, . . . , j − 1, and Lp(x
−j) ̸= Lp(x

j). The arc [x−j, xj] is (basic) quasi-p-symmetric and

by Lemma C.7 and Remark C.6, there exists an extended maximal decreasing/increasing

(basic) quasi-p-symmetric arc which contains [x−j, xj]. Hence in this case the theorem is

also true. �
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