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Abstract. Graph covers are a way to describe continuous maps (and
homeomorphisms) of a Cantor set, more generally than e.g. Bratteli-
Vershik systems. Every continuous map on a zero-dimensional compact
set can be expressed by a graph cover (e.g. non-minimality or aperiodicty
are no restrictions). We give a survey on the construction, properties and
some special cases of graph covers.

Graph covers were introduced by Gambaudo & Martens [18] as a gen-
eral way to describe minimal Cantor systems, and they used this, among
other things, to construct Cantor systems with unusual Choquet simplices
of invariant measures. Akin, Glasner & Weiss [1] used a similar approach
to construct Cantor systems whose conjugacy class is a dense Gδ-set within
the class of all Cantor systems. Finding such universal systems was also
the motivation of Shimomura [33] to study graph covers, and in a series of
papers, he established many properties of graph covers, including that all
Cantor systems (whether minimal, distal, aperiodic or none of these) can
be represented as a graph cover. In particular, he proved [33, Theorem 3.9]:

Theorem 0.1 (Shimomura). Every continuous map on a zero-dimensional
space is conjugate to some graph cover.

The technique is used in [36, Theorem 1.1] to extend results of Herman et
al. [24] and Medynets [28] to: every homeomorphism on a zero-dimensional
set has a representation as a Bratteli-Vershik system. A variant of this
method was also used by Good & Meddaugh [23] to give a characteriza-
tion of shadowing in terms of inverse limits of shifts of finite type satisfying
the Mittag-Leffler condition. Other applications include characterization of
Cantor systems that can be embedded into real line with vanishing deriva-
tive everywhere [6, 8, 19], the construction of completely scrabled systems
with transitivity [35], and mixing [8], and almost minimal systems [14].
Related graph theoretic approach was used in [3] by Bernardes & Darji
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to characterize when two Cantor systems are conjugate. An application of
graph covers to show that particular infinitely renormalizable Lorenz maps
on the interval are not uniquely ergodic on their Cantor attractor was given
by Martens & Winckler [27]. A generalization of the method to higher di-
mensional systems was proposed in [26].

We aim to give a brief overview of the concept of graph covers and
prove some relations to other constructions of (minimal) Cantor systems. We
present our own proofs, bypassing some of the constructions of Shimomura.
We include questions in some of the sections.

1. Graph Covers

Let (Gn)n≥0 be a sequence of directed graphs (or rather edge-sets of
directed graphs). We call the directed edges γn ∈ Gn arrows. They connect
the vertices γn = (v → v′); we write v = s(γn) and v′ = t(γn) for the source
and target of the arrow. We stipulate that every vertex has at least one
outgoing and at least one incoming arrow. Therefore Gn has no end-points,
only regular vertices (with exactly one outgoing and one incoming arrow)
and branch-points. The graph G0 consists of a single vertex ε from which a
finite number of directed loops γ : (ε→ ε) emerge.

A graph cover is the inverse limit space of directed graphs Gn:

G = lim←−(Gn, πn) = {(γn)n≥0 : πn+1(γn+1) = γn ∈ Gn for all n ≥ 0},

where the πn’s are called the bonding maps.
For each γ ∈ Gn, πn(γ) is a single arrow inGn−1 such that if s(γ) = t(γ′),

then s(πn(γ)) = t(πn(γ
′)). In particular, πn preserves the direction of the

arrows.
We stipulate the following properties of the graphs and bonding maps:

(i) the πn’s are edge surjective:

For each arrow γ′ ∈ Gn−1, there is an arrow γ ∈ Gn such
that πn(γ) = γ′.

(ii) the πn’s are positive directional:

If γ and γ′ are two arrows in Gn starting at the same vertex
s(γ) = s(γ′), then t(πn(γ)) = t(πn(γ′)) is the same vertex in
Gn−1.

Equipped with product topology, G is a compact zero-dimensional set. We
can define a map f : G→ G by “moving one step” on the vertex sets along
the arrows: If γ = (γn)n∈N ∈ G, then

(1.1) f(γ)n = γ′n provided that t(γn) = s(γ′n).
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For a single n this definition is ambiguous, but in connection with the
bonding maps (namely, that the concatenation γnγ

′
n must lie in the im-

age πn+1 ◦ · · · ◦ πn+m(γn+mγ′n+m) for m sufficiently large) this ambiguity is
resolved.

Not part of the required properties, but a graph cover is called negative
directional if the following holds for each n ∈ N:

If γn and γ′ are two arrows in Gn ending at the same vertex
t(γ) = t(γ′), then s(πn(γ)) = s(πn(γ′)) is the same vertex in
Gn−1.

A graph that is both positive and negative directional is called bi-directional.
The following result is [33, Theorem 3.9].

Theorem 1.1 (Shimomura). The graph cover (G, f) is a continuous map
on a compact zero-dimensional space. If (G, f) is bi-directional, then f is a
homeomorphism.

In order to agree with other graph covering constructions, we can speed
up this process by “telescoping” between n’s where there is a bi-special
word. This point of view, which holds for shifts in general and in fact for all
continuous Cantor systems, was introduced by Gambaudo & Martens [18]
and studied by several authors, especially Shimomura, see e.g. [33, 34, 36].

1.1. Weighted graph covers. We can replace paths γ1 . . . γk in Gn with
only regular interior vertices t(γi), 1 ≤ i < k, by a single arrow γ with
s(γ) = s(γ1), t(γ) = t(γk) and weight w(γ) = k. The rule of πn for such
weighted arrows is that πn(γ) = γ′1 . . . γ

′
` in Gn−1 is only possible if w(γ) =∑`

j=1w(γ
′
j). That is, πn distributes the weight of γ as it were over γ′1, . . . , γ′`.

The map f : G→ G is adapted accordingly, by allowing steps of size 1/w(γ)
inside arrows γ of weight w(γ).

As an example, let Gn consist of a single vertex with two directed loops
γn and γ′n. The weights w(γ0) = w(γ′0) = 1 and assume that

π1(γ
′
1) = γ0, π1(γ1) = γ0 . . . γ0︸ ︷︷ ︸

a1 times
πn+1(γ

′
n+1) = γn, π(γn+1) = γn . . . γn︸ ︷︷ ︸

an+1 times

γ′n if n ≥ 1.

for some sequence (an)n≥1 in N. This implies that

w(γ′n+1) = w(γn), w(γn+1) = anw(γn) + w(γn−1),
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which corresponds to the Ostrowski numeration of rotation (or in fact Stur-
mian shift) of the angle with continued fraction α = [0; a1, a2, a3, . . . ], see
Figure 1. The weight w(γ) are the denominators of the convergents of α.

γ0 γ′0

π1

γ1 γ′1
π2

γ2 γ′2
π3

γ3 γ′3
π4

γ4 γ′4

v0

v v′

v v′

v v′

v v′

Figure 1. Weighted graph cover (left) and ordered Bratteli
diagram (right) for the Ostrowski numeration with an ≡ 3
and πn(γn) = γn−1 · · · γn−1γ′n−1, πn(γ′n) = γn−1.

The action of πn in a weighted graph cover can be captured in a so-called
winding matrix W n which has size #Gn ×#Gn−1 and elements W n

γ,γ′ =

#{appearances of γ′ in πn(γ)}. For instance, if the row vector ~x = (xγ)γ∈Gn

represents a path in Gn and xγ the number of times this path goes through
γ, then ~x′ = (x′γ′)γ′∈Gn−1 = ~xW n denotes the number of times the πn-images
of this path goes through γ′. Conversely, if ~w′ = (w′γ′)γ′∈Gn−1 is the column
vector of weights of the arrows in Gn−1, then ~w = (wγ)γ∈Gn = W n ~w′ is the
vector of weights of the arrows in Gn

The winding matrix of a telescoping between Gm and Gn for n ≥ m

is W = WnWn−1 · · ·Wm+1. Winding matrices are the equivalent of what is
called incidence matrix or associated matrix in other representations (e.g.
S-adic or Bratteli-Vershik) of a Cantor system.
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1.2. Miscellaneous properties.

Theorem 1.2. A graph cover is

(1) chain-transitive if and only if every Gn is connected, i.e., between
every two γ, γ′ ∈ Gn there is a path with γ as first and γ′ as last
edge;

(2) transitive if and only if every Gn is connected and for every m

there exists an n ≥ m, such that for every loop `m in Gm there
exists a loop `n in Gn with `m ⊂ πm,n(`n);

(3) minimal if and only if for every m there is an n ≥ m such that
Gm ⊂ πm,n(`) for every loop ` in Gn;

(4) uniquely ergodic if and only if, for every n ∈ N,
⋂
m≥nR

#Gm

≥0 Wm ·
Wm−1 · · ·W n is a single halfline in R#Gn

≥0 .

Example 1.3. In the left panel of Figure 2, G has a loop of finite weight,
and this precludes minimality. Therefore in minimal (weighted) graph cov-
ers, the minimal weight of loops has to tend to infinity. In the right panel,
of Figure 2, G has an arrow of finite weight, showing that in the theorem
above, “loops” cannot be replaced by “arrows”.

a1

a2

π1

a1

a2

π2

a3

a2a1

a3

a4

π1

a3

a2a1

a3

a4

π2

πn :

{
1→ 1

2→ 1221
πn :


1→ 1

2→ 23142

3→ 1423

4→ 2314

Figure 2. Two examples of graph covers where the
length/weight of arrows in Gn doesn’t tend to infinity.

Proof. (1) The result on chain-transitivity is [34, Proposition 2.8].
(2) ⇒: Take m ∈ N arbitrary and n ≥ m. Let x ∈ G be a point with the

dense orbit such that `m ⊂ {f i(x)m}k−1i=0 and xs = fk(x)s for some
k ∈ N and s ∈ {n,m}. Then the path `n = ((f i(x)n, f

i+1(x)n))
k−1
i=0 ⊂

Gn is a loop with `m ⊂ πm,n(`n).
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⇐: Apply the hypothesis recursively to obtain a sequence of loops
`n with `n ⊂ πn+1(`n+1) such that `n passes through every edge of
Gn. Without loss of generality, assume that πn+1 maps the first edge
γn+1 of `n+1 to the first edge γn of `n. Then γ = (γn)n≥0 ∈ G is a
point with dense orbit in G.

(3) The result on minimality is contained in [34, Theorem 3.5]; it is
analogous to the fact that primitive S-adic shifts are minimal. To
prove the “if”-direction, take any neighbourhood U in G; there is m
and a loop in `m ∈ Gm such that the cylinder set given by this loop
is contained in U . Next take (γ)n≥0 ∈ G arbitrary. Take n(m) as in
the condition. Then `m ∈ πm,n(m)(γn), so the (two-sided) f -orbit of
(γn)n≥1 intersects U , proving minimality. (To show that the forward
orbit of (γ)n≥0 also visits U , we can take the successor loop γ′n(m)

under f and use the same argument.)
To prove the “only if”-direction, assume that for every m and

n > m, there are `m ∈ Gm and `n ∈ Gn such that πm,n(`n) 63 `m.
Since Gm is finite, we can find a fixed ` ∈ Gm and a subsequence
nk such that πm,nk

(`nk
) 63 `. In particular ` /∈ πm,n(γn) for every

m < n ≤ nk and γn ∈ πn,nk
(`nk

). Take any accumulation point of
(γn)n≥1 of

⋂
r≥1
⋃
k≥r[`nk

], where [`nk
] indicates the cylinder set, then

the f -orbit of (γn)n≥1 is disjoint from [`], so minimality fails.
The property of minimality allows us to telescope the graph cover

such that the winding matrices become strictly positive.
(4) Unique ergodicity is covered in [34, Corollaries 4.24 and 4.25], but

the proof in terms of the winding matrices is no different from those
for Bratteli-Vershik systems, see [4, 5] and [9, Section 6.3.3].

�

Questions: Does there exist a characterization of shadowing in terms
of graph covers, cf. [18]? How can one derive the spectrum of the Koopman
operator Uf from the shape of the graph cover? How is the dimension group
computed?

1.3. Uniform rigidity. Rigidity, as a measure-theoretic concept, was in-
troduced by Furstenberg & Weiss [17], but its topological version (uniform
rigidity) seems to have developed first in a paper by Glasner & Maon [21]
and used also in [22].
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Definition 1.4. A map f on a compact metric space (X, d) is called uni-
formly rigid if for every ε > 0 there is an iterate k ≥ 1 such that
d(x, fk(x)) < ε for all x ∈ X.

Theorem 1.5. Let (X, g) be a transitive continuous map on a Cantor set.
Let (G, f) be a graph cover representation of (X, g). Then g is uniformly
rigid if and only if for every n ∈ N, there is a loop Cn = (Ci

n)
#C−1
i=0

(i.e., s(C0
n) = t(C#C−1

n ) but self-intersections are allowed) covering ev-
ery edge of Gn, such that for every y ∈ G there is i ∈ N such that
f j(y) ∈ [s(C

i+j (mod #C)
n )] for all j ≥ 0.

It follows that πn+1 : Cn+1 → Cn is a qn-cover of loops or some qn ∈ N, so
(G, f) is a factor of the (qn)-odometer. Factors of odometers are (possibly
degenerate) odometers themselves, so each transitive uniformly rigid map
on a Cantor set is a (possibly degenerate) odometer. This makes the con-
dition in Theorem 1.5 also a criterion for (G, f) to represent an odometer,
and also shows that transitive uniformly recurrent maps on a Cantor set are
odometers.

Proof. ⇐: Choose ε > 0 arbitrary and n such that 2−n < ε; hence all
cylinder sets [γ], γ ∈ Vn, have diameter < ε. Take k = #Cn. Then for
every x ∈ G, fk(x) and x belong to the same cylinder [γ], γ ∈ Vn. Hence
d(fk(x), x) < ε.
⇒: Choose ε > 0 arbitrary and n ∈ N such that x, y ∈ G are ε-close if

and only if they belong to the same cylinder [γ], γ ∈ Vn. Let k ≥ 1 be such
that d(fk(x), x) < ε for all x ∈ G.

Take x ∈ G with a dense orbit. Let Ci
n = (f i(x)n, f

i+1(x)n) for 0 ≤ i < k

and Cn = {Ci
n}k−1i=0 . Since f i(x) ∈ [s(Ci

n)] and f i+mk(x) and x are in the
same cylinder [Ci

n] for all m ≥ 0, we have orbf (x) ⊂
⋃k−1
i=0 [s(C

i
n)]. But

orbf (x) is dense in G, so {Ci
n}k−1i=0 ⊃ En.

Now take y ∈ G and j ≥ 0 arbitrary, and find i ∈ {0, . . . , k − 1} and
sequence (rt)t≥1 such that f i+rtk(x) → y, and hence y ∈ [s(Ci

n)]. For t
sufficiently large, also d(f i+rtk+j(x), f j(y)) < ε, so y ∈ [s(C

i+j (mod k)
n )]. �

Questions: How to characterize graph covers that are rigid from a
measure-theoretical point of view: for every ε > 0 and A ∈ B with µ(A) > 0

there is n such that µ(A4T−n(A)) < ε.

1.4. Linear recurrence. To any graph cover with G0 consisting of loops
{a1, . . . , ad} of weight 1, we can assign a subshift (X, σ) by taking the
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itinerary ι : γ = (γn)n≥0 7→ (xk)k≥0 where xk = j if fk(γ)0 = aj. Then
X = ι(G) and σ ◦ ι = ι ◦ f .

Definition 1.6. A subshift (X, σ) is linearly recurrent if there is L > 0

such that for every x ∈ X every subword u appearing in x reappears in x
with gap at most L|u|.

Linearly recurrent subshifts have zero entropy (in fact, they have linear
word-complexity) and, if transitive, they are minimal, see [12]. As the gaps
between word u are finite, the following notion becomes useful:

Definition 1.7. Given a word u, we call w a return word for u if

• u is a prefix and suffix of wu but u does not occur elsewhere in wu;
• wu ∈ L(X), the language of the subshift X.

We denote the collection of return words of u by Ru.

In fact, #Ru ≤ L(L+1)2, see [12, Theorem 24]. The next theorem gives
a sufficient condition for linear recurrence in terms of graph covers, and is
inspired by [11]. We will assume that the graph cover (G, f) is weighted
and minimal, and indeed telescoped in such a way that πn+1(γ) covers all
the edges of Gn for all n ≥ 0 and γ ∈ Gn+1.

Theorem 1.8. Given1 γ ∈ G, define its gap-size g(m)(j) = min{i ≥ 1 :

f j(γ)mf
j+1(γ)m = f j+i(γ)mf

j+i+1(γ)m}. If there are only finitely many
different winding matrices and

D := sup{g(m)(j) : j ≥ 1,m ≥ 0} <∞,

then the graph cover (G, f) represents a linearly recurrent subshift.

Proof. First, recall that πn+1(γ) ⊃ Gn for all γ ∈ Gn+1. Let W n, n ≥ 1

denote the winding matrices. Define

K1 := max

{∑
γ∈Gn

W n
γ,γ′ : n ≥ 1, γ′ ∈ Gn−1

}
and

K2 := min

{∑
γ∈Gn

W n
γ,γ′ : n ≥ 1, γ′ ∈ Gn−1

}
> 0.

Write K = K2/K1. Then, for all n ≥ 1 and a, b ∈ Gn:

w(a)

w(b)
=

(1W n · · ·W 1)a
(1W n · · ·W 1)b

≤ K2minc∈Gn(1W
n−1 · · ·W 1)c

K1minc∈Gn(1W
n−1 · · ·W 1)c

≤ K.

1For minimal systems, the gap-size is in fact independent of the choice of γ.
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Let u be a subword of X such that |u| ≥ mina∈GN
w(a) and N ′ > N be

minimal such that |u| ≤ mina∈GN′
w(a). In particular, |u| > mina∈GN′−1

w(a)

and every appearance of u is inside some word ι(π1◦· · ·◦πN ′(ab)), ab ∈ G2
N ′ .

Let v be a return word to u. Since each path ab in GN ′ appears with a gap
at most D, we have

|v| ≤ D max
c∈GN′

w(c) ≤ DK min
c∈GN′

w(c)

≤ DK max
c∈GN′−1

w(c) · min
c∈GN′−1

∑
b∈GN′

WN ′

b,c

≤ DK2 min
c∈GN′−1

w(c) · min
c∈GN′−1

∑
b∈GN′

WN ′

b,c

≤ DK2 |u| min
c∈GN′−1

∑
b∈GN′

WN ′

b,c .

Since the lengths of the return words give the gaps between appearances of
u, linear recurrence follows with constant

L = DK2max
n≥N

min
c∈Gn−1

∑
b∈Gn

W n
b,c.

�

2. Rauzy Graphs

Rauzy graphs were initiated by Gérard Rauzy [30], and later frequently
applied (e.g. [15, 31]) to construct and study subshifts with particular (com-
plexity) properties. Every subshift (X, σ) on the (finite) alphabet A can
be represented by a sequence of Rauzy graphs, which we will denote by
(Gn)n≥0 again. Here G0 consist of a single vertex labeled ε (for the empty
word) and #A loops. For n ≥ 1, the vertex set of Gn is Ln(X), i.e., set of
the words in X of length n, and the arrow set is Ln+1(X), i.e., the set of
words of length n + 1. If γ ∈ Ln+1 we write †γ and γ† for the word γ with
the first and last letter removed, respectively. The source and target of the
arrow γ are s(γ) = γ† and t(γ) = †γ or in other words γ = (γ† → †γ).

It is straightforward to turn this sequence of Rauzy graphs into a graph
cover, namely by the bonding maps πn given by

πn(γ) = γ†.

On the level of vertices, this works by “inclusion”: πn(u) = u†. These bond-
ing maps are automatically edge surjective and positive directional, but in
general not negative directional.
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10000001
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0010 0100

Figure 3. Graph cover for the one-sided full shift on A = {0, 1}.

2.1. On the number of ergodic f-invariant measures. In analogy to
shifts, we call a vertex of a graph left-special if it has at least two incoming
edges, right-special if it has at least two outgoing edges, and bi-special if it
is both left-special and right-special.

Proposition 2.1. Let Gn be the Rauzy graph of a subshift over the alpha-
bet {0, 1}, with f -invariant measure µ. Assume that there are ln left-special
vertices, rn right-special vertices and bn bi-special vertices. Then the number
Mn of different values µ(Z) for n-cylinders is at most 3(rn + bn).

Proof. First note that ln = rn, since for the two-letter alphabet, each vertex
has at most two incoming and two outgoing arrows. We can partition Gn

in paths or vertices that are

• paths starting with a left-special vertex and ending in a right-special
vertex (both included);
• paths starting with a left-special vertex (included) to a left-special
vertex (not included);
• paths from a right-special vertex (not inclusive) ending with a right-
special vertex (included);
• bi-special vertices. (There is no change in the result if we pull every
bi-special vertex into a left-special and right-special vertex connected
by a single arrow.)

By invariance of the measure, all the vertices (recall that the vertices of Gn

for the n-cylinder sets) in each of the above paths must have the same mass.
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Simple counting shows that the number of such paths at most 3(rn + bn),
and the proposition follows. �

Special cases are Sturmian shifts, where this result is known as the three-
gap theorem, originally proven by Sós, [37, 38]. For the full shift, every vertex
is bi-special, and Mn = pn is sharp for an n-step memory Markov measure.

Proposition 2.2. Let Gn be the Rauzy graph of a subshift over the al-
phabet {0, 1}. Assume that there are ln left-special vertices, rn right-special
vertices and bn bi-special vertices. Then the number of ergodic invariant
probability measures is bounded by N := lim infn→∞ rn + bn + 1.

This bound is comparable with the bound lim infn#{simple loops in Gn}
from [18], but sometimes an over-estimate. For Sturmian shifts, it would
give at most two ergodic measures, although Sturmian shifts are uniquely
ergodic. However, if each Gn is a vertex with two loops (so bn = 1) and the
winding matrices are

W n =

(
n2 1
1 n2

)
,

then the corresponding graph cover indeed has two measures, see [4].
In [10, Corollary 4.3] the sharper bound is given that translates to

N = lim infn→∞ rn + bn, but their result applies only to subshifts, and that
puts a uniform bound on the entries of the winding matrices.

Proof. As in the proof of Proposition 2.1, we partition the graphs Gn in
paths p. We can replace each bi-special vertex by a left-special vertex and
right-special vertex connected with an arrow. Write s(p) for the special
vertex at the beginning and t(p) for the special vertex at the end of p. If µ
is an f -invariant measure on Gn, then the following equations must hold:{

µ(p) + µ(p′) = µ(p′′) if s(p) = s(p′) = t(p′′),
µ(p) = µ(p′) + µ(p′′) if t(p) = s(p′) = s(p′′).

Writing this as matrix equation, we find µ = Mµ, where we consider µ
as a column vector with µ(p) as entries. The matrix M = (mpp′) has the
following relations:{

mpp = mpp′ = −1, mpp′′ = 1 if s(p) = s(p′) = t(p′′),
mpp = −1, mpp′ = mpp′′ = 1 if t(p) = s(p′) = s(p′′).

Gaussian elimination in the matrix M gives that the null-space has dimen-
sion at most rn + 1, and contains a unit simplex of dimension at most rn.
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Ergodic measures correspond to the extremal points of these simplices, of
which there are at most rn + 1.

Let (nk)k∈N be the subsequence such that rnk
+ bnk

+ 1 = N . Each
ergodic measure µ of the graph cover restricts to a measure µnk

on G0 ←
G0 ← · · · ← Gnk

. Let Fn denote the algebra generated by the n-cylinders.
Hence, the atoms of µnk

are exactly the atoms of Fnk
, and the conditional

expectation E(µnk+1
|Fnk

) = µnk
. Passing to a subsequence if necessary, the

Martingale Theorem gives that limk µnk
= µ, and in fact µ is ergodic. But

for each k, there are only N possibilities for µnk
, so there cannot be more

than N ergodic measures. �

2.2. Rauzy graphs of the Sturmian shift. The Rauzy graph Gn of a
Sturmian subshift X is the word-graph in which the vertices are the words
u ∈ Ln(X) and there is an arrow u→ u′ if ua = bu′ for some a, b ∈ {0, 1}.
Hence Gn has p(n) = n + 1 vertices and p(n + 1) = n + 2 edges; it is
the vertex-labeled transition graph of the n-block shift interpretation of the
Sturmian shift.

101101

011011110110

011010

110101101011

010110

Figure 4. The Rauzy graphG6 based on the Fibonacci Stur-
mian sequence

In the example of Figure 4, the word u = 101101 is bi-special, but
only 0u0, 0u1 and 1u0 ∈ L(X) (i.e., u is a regular bi-special word). Since
p(n + 1) − p(n) = 1 for a Sturmian sequence, every Rauzy graph contains
exactly one left-special and one right-special word, and they may be merged
into a single bi-special word. Hence, there are two types of Rauzy graphs,
see Figure 5.

The transformation from Gn to Gn+1 is as follows:

(a) If Gn is of the first type, then the middle path decreases by one
vertex, and the upper and lower path increase by one vertex. The
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left-special right-special bi-special

Figure 5. The two types of Rauzy graphs for a Sturmian sequence.

left-special vertex of Gn splits into two vertices, with outgoing ar-
rows leading to the previous successor vertex which now becomes
left-special. Similarly, the right-special vertex of Gn is split into two
vertices with incoming arrows emerging from the previous predeces-
sor vertex, which now becomes right-special.

(b) If Gn is of the second type, then one of the two paths becomes the
central path in Gn+1, the other path becomes the upper path of
Gn+1, and there is an extra arrow in Gn+1 from the right-special
word to the left-special word. Thus the bi-special vertex of Gn is
split into two vertices, one of which becomes left-special in Gn+1,
and one of the predecessors of the bi-special vertex in Gn becomes
right-special in Gn+1.

We can combine all Rauzy graphs into a single inverse limit space

G = lim←−(Gn, πn) = {(γn)n≥0 : πn+1(γn+1) = γn ∈ Gn for all n ≥ 0},

where G0 has only on vertex ε and one arrow ε→ ε, and πn+1 : Gn+1 → Gn

is the prefix map πn+1(ua) = u for every u ∈ Ln(X), a ∈ A. It is the inverse
of the map described in items (a) and (b) above.

3. Kakutani-Rokhlin partitions

An important tool in the study of dynamical systems (X,T ) are (some-
times called induced maps) TY : Y → Y to subsets Y ⊂ X. These are
defined by

TY (y) = T r(y) for the return time r = r(y) := min{i > 0 : T i(y) ∈ Y }.

The exhaustion of the space (if (X,T ) is minimal) is

(3.1) X = ti≥0T i({y ∈ Y : i < r(y)}),

and the Rokhlin Lemma [32, Theorem 3.10] in the measure-preserving set-
ting are classical techniques associated with first return maps.

For continuous minimal (or at least aperiodic) transformations of a Can-
tor set, this led to a generalization of (3.1), called Kakutani-Rokhlin parti-
tion. The seminal paper is by Herman et al. [24], who coined the name.
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Definition 3.1. Let (X,T ) be a continuous dynamical system on a Cantor
set. A Kakutani-Rokhlin (KR) partition is a partition

P =
{
T j(Bi)

}N,hi−1
i=1,j=0

ofX into clopen sets that are pairwise disjoint and together coverX. We call
B = ∪Ni=1Bi the base of the KR-partition and the integers hi the heights.
Also we assume that T hi(Bi) ⊂ B. (If T is invertible, this is automatic.)

Usually we need a sequence (Pn)n≥0 of KR-partitions, with bases B(n)

and height vectors (hi(n))Nn
i=1, having the following properties:

(KR1) The sequence of bases is nested: B(n+ 1) ⊂ B(n), and
(KR2) Pn+1 � Pn, that is: Pn+1 refines Pn.
(KR3)

⋂
nB(n) is a single point.

(KR4) {A ∈ Pn : n ∈ N} is a basis of the topology.

The following property (KR5) relies crucially on minimality. Property (KR6)
is optional, but ensures that there is a unique smallest path in the context
of Bratteli-Vershik systems and cutting-and-stacking systems.

(KR5) For all n ∈ N, i ≤ N(n) and i′ ≤ N(n − 1), there is 0 ≤ j < hi(n)

such that T j(Bi(n)) ⊂ Bi′(n− 1).
(KR6) B(n) ⊂ B1(n− 1) for all n ∈ N.

The transition from nested sequence of Kakutani-Rokhlin partitions to
graph covering is fairly direct: The vertices of the n-th graph Gn are the
elements of Pn, and there are arrows T j(Bi(n)) → T j+1(Bi(n)) if 0 ≤ j <

hi(n)− 1, and also T hi(n)−1(Bi(n)) → Bi′(n) if T hi(n)(Bi(n)) ∩ Bi′(n) 6= ∅.
As bonding maps πn : Gn → Gn−1 we take the inclusion: πn(A) = A′ for
vertices A of Gn and A′ of Gn−1 if A ⊂ A′. Then inverse limit space

G = lim←−(Gn, πn) = {(γn)n≥0 : πn+1(γn+1) = γn ∈ Gn for all n ≥ 0},

is the graph covering and (KR6) provides the positive directional property.
The dynamics f : G→ G is by following the arrows as in equation (1.1).

4. Bratteli-Vershik systems

An ordered Bratteli diagram (Ei, Vi, <)i≥1 is an infinite graph con-
sisting of

• a sequence of finite non-empty vertex sets Vi, i ≥ 0, and there is an
additional V0 consisting of a single vertex v0;
• a sequence finite non-empty edge sets Ei, i ≥ 1, such that each edge
e ∈ Ei connects a vertex s(e) ∈ Vi−1 to a vertex t(e) ∈ Vi. (Here s
and t stand for source and target.) For every v ∈ Vi−1, there exists
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at least one outgoing edge e ∈ Ei with v = s(e), and for every v ∈ Vi
there exists at least one incoming edge e ∈ Ei with v = t(e);
• for each v ∈ ∪i≥1Vi, a total order < between its incoming edges.

The path space

XBV := {(xi)i≥1 : xi ∈ Ei, t(xi) = s(xi+1) for all i ∈ N}

is the collection of all infinite edge-labeled paths starting from v0, endowed
with product topology. That is, the set of infinite paths with a common
initial n-path is clopen, and all sets of this type form a basis of the topology.

The Vershik adic transformation (Vershik map) τ : XBV → XBV

is defined as follows [39]: For x ∈ XBV, let i be minimal such that xi ∈ Ei
is not the maximal incoming edge. Then put

τ(x)j = xj for j > i,

τ(x)i is the successor of xi among all incoming edges at this level,
τ(x)1 . . . τ(x)i−1 is the minimal path connecting v0 with s(τ(x)i).

If no such i exists, then x ∈ Xmax
BV , and we need to choose y ∈ Xmin

BV to define
τ(x) = y. Whether τ extends continuously to Xmax

BV depends on how well we
can make this choice. Medynets [28] gave an example of a Bratteli diagram
that doesn’t allow any ordering by which τ is continuously extendable, even
if #Xmin

BV = #Xmax
BV . For this diagram the only incoming edges to u ∈ Vn

come from u ∈ Vn−1, and therefore there is a minimal and a maximal path
going through vertices u only. By the same token, there is a minimal and
a maximal path going through vertices w only. No matter how τ is defined
on these two maximal paths, there is no way of putting an order on the
incoming edges to v ∈ Vn such that this definition makes τ continuous at
these maximal paths.

A graph covering map f : G→ G on the weighted graph cover

G = lim←−(Gn, πn) = {(γn)n≥0 : πn+1(γn+1) = γn ∈ Gn for all n ≥ 0}

(where G0 is a single loop from a single vertex) can be turned in a Bratteli-
Vershik system as follows. The edges a ∈ Gn correspond bijectively to the
vertices v = Vn of an ordered Bratteli diagram. We call the bijection Pn.
If the bonding map πn maps a to the concatenation πn(a) = a1 · · · ak of
edges in Gn−1, then we draw k incoming edges ei ∈ En to v = Pn(a) from
the vertices Pn−1(ai) = s(ei) ∈ Vn−1, i = 1, 2, . . . , k in this order. The map
f : G→ G will then lift to the Vershik map τ on the path space XBV .

Remark 4.1. This construction doesn’t guarantee that the emerging Brat-
teli diagram allows a unique (or useful) definition of the Vershik map. For
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example, if we start with the graph cover of Figure 3, then we obtain the
full binary tree as Bratteli diagram. Every path in it is both minimal and
maximal, and there is no sensible way of defining τ on it that represents in
any way the one-sided shift.

Conversely, when given an ordered Bratteli diagram (En, Vn)n≥1, the ver-
tices v ∈ Vn correspond bijectively to edges a = P−1n (v) in Gn. The ordered
set of incoming edges ei ∈ En to v determine the bonding map πn by the
concatenation πn(a) = a1 . . . ak if Pn−1(ai) = s(ei). The Vershik map τ then
translates to the graph covering map f . The more involved step of how to
connect the edges of Gn, i.e., how to determine the vertices of Gn, follows
from the following lemma.

Lemma 4.2. Given v, w ∈ Vn, let [vmin] indicate the cylinder set given by
the minimal path from v to v0, and [wmax] indicates the cylinder set given
by the minimal path from w to v0.

(1) For v, v′ ∈ Vn, if there is w ∈ Vn such that

(4.1) τ([wmax]) ∩ [vmin] 6= ∅ 6= τ([wmax]) ∩ [v′
min

],

then s(P−1(v)) = s(P−1(v′)).
(2) For w,w′ ∈ Vn, if there is v ∈ Vn such that

(4.2) τ([wmax]) ∩ [vmin] 6= ∅ 6= τ([w′
max

]) ∩ [vmin],

then t(P−1(v)) = t(P−1(v′)).

Proof. If τ([wmax])∩[vmin] 6= ∅, then there must be somem > n and u ∈ Vm
such that there are paths w → u and successor path v → u. Keeping in mind
that vertices in Vn correspond to edges in Gn, this translates into: There is
m > n and γ ∈ Gm such that P−1(w)P−1(v) is a subpath of πn+1◦· · ·◦πm(γ)
and in particular s(P−1(v)) = t(P−1(w)).

If the same holds for w and v′, so P−1(w)P−1(v′) is a subpath of πn+1 ◦
· · · ◦ πm′(γ′), then s(P−1(v)) = s(P−1(v′)) = t(P−1(w)).

This proves (i). The proof for (ii) is analogous. �

If we write v ∼s v
′ if (4.1) holds, the ∼s is a reflexive, symmetric relation,

but not necessarily transitive, as the next example shows. Therefore we need
to take the transitive hull. Shimomura [36]2 calls the equivalence classes of
∼ clusters. Edges γ, γ′ ∈ Gn have s(γ) = s(γ′) if and only they are in
the same cluster. The analogous statement can be made as a necessary and
sufficient condition for t(γ) = t(γ′).

2although he fails to take the transitive hull.
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Example 4.3. Figure 6 shows the graph cover and Bratteli-Vershik repre-
sentation of the stationary substitution shift based on the substitution

χ :


1→ 12,

2→ 13,

3→ 123.

Each graph Gn has only one vertex, even though 1 6∼s 2. This shows that
taking the transitive hull of ∼s is essential to get an equivalence relation.

π1

1
2 3

π2

1
2 3

v0

1 2 3

1 2 3

1 2 3

Figure 6. The graph cover and Bratteli-Vershik representa-
tion of a substitution shift.

5. S-adic transformations

Instead of using a single substitution to create an infinite word ρ ∈ AN,
we can use a sequence of substitutions χn : An → A∗n−1 (whereA∗n−1 denotes
the set of non-empty finite words in the alphabet An−1), potentially between
different alphabets An. Thus

(5.1) ρ = lim
n→∞

χ1 ◦ χ2 ◦ · · · ◦ χn(an), an ∈ An.

A priori, the limit need not exist, or can depend on the choice of letters
an ∈ An, but if ρ exists and is an infinite sequence, then we have the
following definition. Ferenczi [13] was the first to call such systems S-adic,
and they gave e.g. handy tool to describe rotations on the circle [29], [16,
Section 6.3] and the torus [2], and their renormalizations.

Definition 5.1. Let S be a collection3 of substitutions χ and choose χn ∈ S
such that alphabets match: χn : An → A∗n−1. Assume that the sequence ρ
defined in (5.1) exists and is infinite, and let Xρ = orbσ(ρ). Then (Xρ, σ) is
called an S-adic shift.

3Some, but not all, authors require S to be finite.
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For S-adic transformation given by substitutions χn : An → A∗n−1 for
n ≥ 1, the graph cover is given by graphs Gn consisting of a single vertex
and #A edges labeled by the letters of A. The bonding maps πn = χn, i.e.,
the πn-image of the loop a ∈ Gn is the concatenation of loops in Gn−1 in
the order given by χn(a). The winding matrix Wn is exactly the associated
matrix of the substitution χn.

Conversely, if all Gn’s consist of a single vertex with some loops, the
substitutions χn can be read off the way πn acts on these loops. For differ-
ent structures of directed graphs, it is not so easy (and most of the time
impossible) to associate S-adic transformations to them.

5.1. Interval exchange transformations. An interval exchange transfor-
mation is based on a partition of [0, 1) into d ∈ N intervals Ij = [qj−1, qj) for
0 = q0 < q1 < · · · < qd = 1, with lengths λj = qj−qj−1, so λ1+ · · ·+λd = 1.
It rearranges these intervals according to a permutation ζ of {1, . . . , d}, i.e.,

T (x) = x− qj + qζ(j) if x ∈ Ij.

One can analyse T using first return maps to subintervals J that are the
union of adjacent intervals, taken either from {Ij}dj=1 or from {T (Ij)}dj=1.
Keane [25] showed that in this case the first return map T ′ : J → J has
at most d intervals of continuity I ′j; in fact, if the so-called Keane condition
“T n(qj) 6= qk for all 1 ≤ j ≤ k < d and n ∈ Z \ {0}” holds, then T ′ has
exactly d intervals I ′j of continuity. Moreover, Keane’s condition implies that
T is minimal.

Symbolically, taking the first return map can be described using a sub-
stitution χ on the alphabet A = {1, . . . , d}:

χ(a) = a0a2 . . . ar(a)−1 ∈ A∗,

T j(I ′a) ⊂ Iaj for 0 ≤ j < r(a) := inf{n ≥ 1 : T n(Ia) ⊂ J}.

Recursively, we can obtain a sequence of interval exchange transformations
T0 = T : J0 → J0 := [0, 1) and Tn : Jn → Jn ⊂ Jn−1, with substitutions
ζn, and having {Inj }dj=1 as intervals of continuity. We have corresponding
substitutions (χn)n≥1 on A and the infinite sequence ρ as in (5.1), where
the symbols an are such that Inan ⊂ Jn+1 for all n ≥ 1, expresses the itinerary
of x ∈

⋂
Jn w.r.t. the original partition {Ij}.

As such, in the corresponding weighted graph cover, every graph Gn is a
single vertex with d loops, and πn wraps γa ∈ Gn around Gn−1 in the order
prescribed by the substitution χn.
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Example 5.2. A special case is the Rauzy induction, see [40] or [9, Section
4.4]. In this case,

Type 0:

Jn = Jn−1 \ Tn−1(In−1e ),
χn :


a 7→ a a ≤ e

(e+ 1)→ ed

a 7→ (a− 1) a > e+ 1

if |In−1d | > |In−1e |,

Type 1:

Jn = Jn−1 \ In−1d ,
χn :

{
a 7→ a a 6= e

e 7→ ed
if |In−1d | < |In−1e |,

where e = ζ−1n−1(d) is such that the interval Tn(In−1e ) is adjacent to the right
endpoint of Jn.

The other direction, i.e., recognizing which graph covers represent inter-
val exchange transformations, is complicated, because which sequences of
substitutions (χn)n≥1 (and of permutations (ζn)n≥1 ) are allowed is not easy
to track. If Rauzy induction is used, then at least the allowed sequences of
permutations are given by paths in the so-called Rauzy classes [40, Section
6], but Rauzy induction provides only one class of representations. For exam-
ple, Gjerde & Johansen [20] used a representation in which Jn = Jn−1 \In−1d

for all n ≥ 1.
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