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Jan Boroński, Henk Bruin, Przemys law Kucharski

October 31, 2023

Abstract

Graph covers are a way to describe continuous maps (and homeomorphisms) of the
Cantor set, more generally than e.g. Bratteli-Vershik systems. Every continuous map on
a zero-dimensional compact set can be expressed by a graph cover (e.g. non-minimality
or aperiodicty are no restrictions). We give a survey on the construction, properties and
some special cases of graph covers.
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Graph covers were introduced by Gambaudo & Martens [13] as a general way to describe
minimal Cantor systems, and they used this, among other things, to construct Cantor systems
with unusual Choquet simplices of invariant measures. Akin, Glasner & Weiss [1] used a similar
approach to construct Cantor systems whose conjugacy class is a dense Gδ-set within the class
of all Cantor systems. Finding such universal systems was also the motivation of Shimomura
[23] to study graph covers, and in a series of paper, he established many properties of graph
covers, including that all Cantor systems (whether minimal, distal, aperiodic or none of these)
can be represented as a graph cover. In particular, he proved [23, Theorem 3.9]:

Theorem 1 (Shimomura) Every continuous map on a zero-dimensional space is conjugate
to some graph cover.

The technique is used in [26, Theorem 1.1] to extend results of Herman et al. [17] and
Medynets [21] to: every homeomorphism on a zero-dimensional set has a representation as
Bratteli-Vershik system. A variant of this method was also used by Good & Meddaugh [16] to
give a characterization of shadowing in terms of inverse limits of shifts of finite type satisfying the
Mittag-Leffler condition. Other applications include characterization of Cantor systems that can
be embedded into real line with vanishing derivative everywhere [5, 7, 14], the construction of
completely scrabled systems with transitivity [25], and mixing [7], and almost minimal systems
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PPN/BAT/2021/1/00024/U/00001.
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[12]. Related graph theoretic approach was used in [2] by Bernardes & Darji to characterize
when two Cantor systems are conjugate. An application of graph covers to show that particular
infinitely renormalizable Lorenz maps on the interval are not uniquely ergodic on their Cantor
attractor was given by Martens & Winckler [20]. A generalization of the method to higher
dimensional systems was proposed in [19].

We aim to give a brief overview of the concept of graph covers and prove some relations to
other constructions of (minimal) Cantor systems. We present our own proofs, bypassing some
of the constructions of Shimomura. We include questions in some of the sections.

1 Graph Covers

Let (Gn)n≥0 be a sequence of directed graphs (or rather edge-sets of directed graphs). We call
the directed edges γn ∈ Gn arrows. They connect the vertices γn = (v → v′); we write v = s(γn)
and v′ = t(γn) for the source and target of the arrow. We stipulate that every vertex has at
least one outgoing and at least one incoming arrow. Therefore Gn has no end-points, only
regular vertices (with exactly one outgoing and one incoming arrow) and branch-points. The
graph G0 consists of a single vertex ε from which a finite number of directed loops γ : (ε→ ε)
emerge.

A graph cover is the inverse limit space of directed graphs Gn:

G = lim←−(Gn, πn) = {(γn)n≥0 : πn+1(γn+1) = γn ∈ Gn for all n ≥ 0},

where the πn’s are called the bonding maps
For each γ ∈ Gn, πn(γ) is a single arrow in Gn−1 such that if s(γ) = t(γ′), then s(πn(γ)) =

t(πn(γ′)). In particular, πn preserves the direction of the arrows.
We stipulate the following properties of the graphs and bonding maps:

(i) the πn’s are edge surjective:

For each arrow γ′ ∈ Gn−1, there is an arrow γ ∈ Gn such that πn(γ) = γ′.

(ii) the πn’s are positive directional:

If γ and γ′ are two arrows in Gn starting at the same vertex s(γ) = s(γ′), then
t(πn(γ)) = t(πn(γ′)) is the same vertex in Gn−1.

Equipped with product topology, G is a compact zero-dimensional set. We can define a map
f : G → G by “moving one step” on the vertex sets along the arrows: If γ = (γn)n∈N ∈ G,
then

f(γ)n = γ′n provided that t(γn) = s(γ′n). (1)

For a single n this definition is ambiguous, but in connection with the bonding maps (namely,
that the concatenation γnγ

′
n must lie in the image πn+1◦· · ·◦πn+m(γn+mγ

′
n+m) for m sufficiently

large) this ambiguity is resolved.
Not part of the required properties, but a graph cover is called negative directional if the

following holds for each n ∈ N:

If γn and γ′ are two arrows in Gn ending at the same vertex t(γ) = t(γ′), then
s(πn(γ)) = s(πn(γ′)) is the same vertex in Gn−1.
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A graph which is both positively and negatively directional is called bidirectional. The fol-
lowing result is [23, Theorem 3.9].

Theorem 2 (Shimomura) The graph cover (G, f) is a continuous map on a compact zero-
dimensional space. If (G, f) is bidirectional, then f is a homeomorphism.

In order to agree with other graph covering constructions, we can speed up this process by
“telescoping” between n’s where there is a bispecial word. This point of view, which holds for
shifts in general and in fact for all continuous Cantor systems, was introduced by Gambaudo
& Martens [13] and studied by several authors, especially Shimomura, see e.g. [23, 24, 26].

1.1 Weighted graph covers

We can replace paths γ1 . . . γk in Gn with only regular interior vertices t(γi), 1 ≤ i < k, by a
single arrow γ with s(γ) = s(γ1), t(γ) = t(γk) and weight w(γ) = k. The rule of πn for such
weighted arrows is that πn(γ) = γ′1 . . . γ

′
` in Gn−1 is only possible if w(γ) =

∑`
j=1w(γ′j). That

is, πn distributes the weight of γ as it were over γ′1, . . . , γ
′
`. The map f : G → G is adapted

accordingly, by allowing steps of size 1/w(γ) inside arrows γ of weight w(γ).
As an example, let Gn consist of a single vertex with two directed loops γn and γ′n. The

weights w(γ0) = w(γ′0) = 1 and assume that
π1(γ

′
1) = γ0, π1(γ1) = γ0 . . . γ0︸ ︷︷ ︸

a1 times

πn+1(γ
′
n+1) = γn, π(γn+1) = γn . . . γn︸ ︷︷ ︸

an+1 times

γ′n if n ≥ 1.

for some sequence (an)n≥1 in N. This implies that

w(γ′n+1) = w(γn), w(γn+1) = anw(γn) + w(γn−1),

which corresponds to the Ostrowski numeration of rotation (or in fact Sturmian shift) of the
angle with continued fraction α = [0; a1, a2, a3, . . . ], see Figure 1. The weight w(γ) are the
denominators of the convergents of α.

The action of πn in a weighted graph cover can be captured in a so-called winding matrix
W n which has size #Gn × #Gn−1 and elements W n

γ,γ′ = #{appearances of γ′ in πn(γ)}. For
instance, if the row vector ~x = (xγ)γ∈Gn represents a path in Gn and xγ the number of times
this path goes through γ, then ~x′ = (x′γ′)γ′∈Gn−1 = ~xW n denotes the number of times the
πn-images of this path goes through γ′. Conversely, if ~w′ = (w′γ′)γ′∈Gn−1 is the column vector
of weights of the arrows in Gn−1, then ~w = (wγ)γ∈Gn = W n ~w′ is the vector of weights of the
arrows in Gn

The winding matrix of a telescoping betweenGm andGn for n ≥ m isW = WnWn−1 · · ·Wm+1.
Winding matrices are the equivalent of what is called transition matrix or associated matrix in
other representations (e.g. S-adic or Bratteli-Vershik) of a Cantor system.
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v v′
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Figure 1: Weighted graph cover (left) and ordered Bratteli diagram (right) for the Ostrowski
numeration with an ≡ 3 and πn(γn) = γn−1 · · · γn−1γ′n−1, πn(γ′n) = γn−1.

1.2 Miscellaneous properties

Theorem 3 A graph cover is

1. chain-transitive if and only if every Gn is connected, i.e., between every two γ, γ′ ∈ Gn

there is a path with γ as first and γ′ as last edge.

2. transitive if and only if every Gn is connected and for every m there exists an n ≥ m,
such that for every loop `m in Gm there exists a loop `n in Gn with `m ⊂ πm,n(`n).

3. minimal if and only if for every m there is an n ≥ m such that Gm ⊂ πm,n(`) for every
loop ` in Gn.

4. uniquely ergodic if and only if, for every n ∈ N,
⋂
m≥nR

#Gm

≥0 Wm ·Wm−1 · · ·W n is a

single halfline in R#Gn

≥0 .

Example 4 In the left panel of Figure 2, G has a loop of finite weight, and this precludes
minimality. Therefore in minimal (weighted) graph covers, the minimal weight of loops has to
tend to infinity. In the right panel, of Figure 2, G has an arrow of finite weight, showing that
in the theorem below, “loops” cannot be replaced by “arrows”.

Proof.

1. The result on chain-transitivity is proved in [24, Proposition 2.8].

2. ⇒: Take m ∈ N arbitrary and n ≥ m. Let x ∈ G be a point with the dense orbit such
that `m ⊂ {f i(x)m}k−1i=0 and xs = fk(x)s for some k ∈ N and s ∈ {n,m}. Then the path
`n = ((f i(x)n, f

i+1(x)n))k−1i=0 ⊂ Gn is a loop with `m ⊂ πm,n(`n).

⇐: Apply the hypothesis recursively to obtain a sequence of loops `n with `n ⊂ πn+1(`n+1)
such that `n passes through every edge of Gn. Without loss of generality, assume that
πn+1 maps the first edge γn+1 of `n+1 to the first edge γn of `n. Then γ = (γn)n≥0 ∈ G is
a point with dense orbit in G.
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πn :

{
1→ 1

2→ 1221
πn :


1→ 1

2→ 23142

3→ 1423

4→ 2314

Figure 2: Two examples of graph covers where the length/weight of arrows in Gn doesn’t tend
to infinity.

3. The result on minimality is contained in [24, Theorem 3.5]; it is analogous to the fact that
primitive S-adic shifts are minimal. To prove the “if”-direction, take any neighbourhood
U in G; there is m and a loop in `m ∈ Gm such that the cylinder set given by this loop
is contained in U . Next take (γ)n≥0 ∈ G arbitrary. Take n(m) as in the condition. Then
`m ∈ πm,n(m)(γn), so the (two-sided) f -orbit of (γn)n≥1 intersects U , proving minimality.
(To show that the forward orbit of (γ)n≥0 also visits U , we can take the successor loop
γ′n(m) under f and use the same argument.)

To prove the “only if”-direction, assume that for every m and n > m, there are `m ∈ Gm

and `n ∈ Gn such that πm,n(`n) 63 `m. SinceGm is finite, we can find a fixed ` ∈ Gm and a
subsequence nk such that πm,nk(`nk) 63 `. In particular ` /∈ πm,n(γn) for every m < n ≤ nk
and γn ∈ πn,nk(`nk). Take any accumulation point of (γn)n≥1 of

⋂
r≥1
⋃
k≥r[`nk ], where [`nk ]

indicates the cylinder set, then the f -orbit of (γn)n≥1 is disjoint from [`], so minimality
fails.

The property of minimality allows us to telescope the graph cover such that the winding
matrices become strictly positive.

4. Unique ergodicity is covered in [24, Corollaries 4.24 and 4.25], but the proof in terms of
the winding matrices is no different from those for Bratteli-Vershik systems, see [3, 4] and
[8, Section 6.3.3].

�

Questions: Does there exist a characterization of shadowing in terms of graph covers, cf.
[13]? How can one derive the spectrum of the Koopman operator Uf from the shape of the
graph cover? How is the dimension group computed?
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1.3 Uniform rigidity

Definition 5 A map f on a compact metric space (X, d) is called uniformly rigid if for every
ε > 0 there is an iterate k ≥ 1 such that d(x, fk(x)) < ε for all x ∈ X.

Theorem 6 Let (X, g) be a transitive continuous map on the Cantor set. Let (G, f) be a graph
cover representation of (X, g). Then g is uniformly rigid if and only if for every n ∈ N, there
is a loop Cn = (Ci

n)#C−1i=0 (i.e., s(C0
n) = t(C#C−1

n ) but self-intersections are allowed) covering

every edge of Gn, such that for every y ∈ G there is i ∈ N such that f j(y) ∈ [s(C
i+j (mod #C)
n )]

for all j ≥ 0.

It follows that πn+1 : Cn+1 → Cn is a qn-cover of loops or some qn ∈ N, so (G, f) is a factor
of the (qn)-odometer. Factors of odometers are (possibly degenerate) odometers themselves,
so each transitive uniformly rigid map on the Cantor set is a (possibly degenerate) odometer.
This makes the condition in Theorem 6 also a criterion for (G, f) to represent an odometer,
and also shows that transitive uniformly recurrent maps on the Cantor set are odometers.

Proof. ⇐: Choose ε > 0 arbitrary and n such that 2−n < ε; hence all cylinder sets [γ], γ ∈ Vn,
have diameter < ε. Take k = #Cn. Then for every x ∈ G, fk(x) and x belong to the same
cylinder [γ], γ ∈ Vn. Hence d(fk(x), x) < ε.
⇒: Choose ε > 0 arbitrary and n ∈ N such that x, y ∈ G are ε-close if and only if they

belong to the same cylinder [γ], γ ∈ Vn. Let k ≥ 1 be such that d(fk(x), x) < ε for all x ∈ G.
Take x ∈ G with a dense orbit. Let Ci

n = (f i(x)n, f
i+1(x)n) for 0 ≤ i < k and Cn = {Ci

n}k−1i=0 .
Since f i(x) ∈ [s(Ci

n)] and f i+mk(x) and x are in the same cylinder [Ci
n] for all m ≥ 0, we have

orbf (x) ⊂
⋃k−1
i=0 [s(Ci

n)]. But orbf (x) is dense in G, so {Ci
n}k−1i=0 ⊃ En.

Now take y ∈ G and j ≥ 0 arbitrary, and find i ∈ {0, . . . , k − 1} and sequence (rt)t≥1 such
that f i+rtk(x)→ y, and hence y ∈ [s(Ci

n)]. For t sufficiently large, also d(f i+rtk+j(x), f j(y)) < ε,

and hence y ∈ [s(C
i+j (mod k)
n )]. �

Questions: How to characterize graph covers that are rigid from a measure-theoretical
point of view: for every ε > 0 and A ∈ B with µ(A) > 0 there is n such that µ(A4T−n(A)) < ε.

1.4 Linear recurrence

To any graph cover withG0 consisting of loops {a1, . . . , ad} of weight 1, we can assign a subshift
(X, σ) by taking the itinerary ι : γ = (γn)n≥0 7→ (xk)k≥0 where xk = j if fk(γ)0 = aj. Then
X = ι(G) and σ ◦ ι = ι ◦ f .

Definition 7 A subshift (X, σ) is linearly recurrent if there is L > 0 such that for every
x ∈ X every subword u appearing in x reappears in x with gap ≤ L|u|.

Linearly recurrent subshifts have zero entropy (in fact, they have linear word-complexity)
and, if transitive, they are minimal, see [11]. As the gaps between word u are finite, the following
notion becomes useful:

Definition 8 Given a word u, we call w a return word for u if
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• u is a prefix and suffix of wu but u does not occur elsewhere in wu;

• wu ∈ L(X), the language of the subshift X.

We denote the collection of return words of u by Ru.

In fact, #Ru ≤ L(L + 1)2, see [11, Theorem 24]. The next theorem gives a sufficient
condition for linear recurrence in terms of graph covers, and is inspired by [10]. We will assume
that the graph cover (G, f) is weighted and minimal, and indeed telescoped in such a way that
πn+1(γ) covers all the edges of Gn for all n ≥ 0 and γ ∈ Gn+1.

Theorem 9 Given1 γ ∈ G, define its gap-size g(m)(j) = min{i ≥ 1 : f j(γ)mf
j+1(γ)m =

f j+i(γ)mf
j+i+1(γ)m}. If there are only finitely many different winding matrices and

D := sup{g(m)(j) : j ≥ 1,m ≥ 0} <∞,

then the graph cover (G, f) represents a linearly recurrent subshift.

Proof. First, recall that πn+1(γ) ⊃ Gn for all γ ∈ Gn+1. Let W n, n ≥ 1 denote the winding
matrices. Define

K1 := max

{∑
γ∈Gn

W n
γ,γ′ : n ≥ 1, γ′ ∈ Gn−1

}
and

K2 := min

{∑
γ∈Gn

W n
γ,γ′ : n ≥ 1, γ′ ∈ Gn−1

}
> 0.

Write K = K2/K1. Then, for all n ≥ 1 and a, b ∈ Gn:

w(a)

w(b)
=

(1W n · · ·W 1)a
(1W n · · ·W 1)b

≤ K2 minc∈Gn(1W n−1 · · ·W 1)c
K1 minc∈Gn(1W n−1 · · ·W 1)c

≤ K.

Let u be a subword of X such that |u| ≥ mina∈GN
w(a) and N ′ > N be minimal such that

|u| ≤ mina∈GN′
w(a). In particular, |u| > mina∈GN′−1

w(a) and every appearance of u is inside

some word ι(π1 ◦ · · · ◦ πN ′(ab)), ab ∈ G2
N ′ . Let v be a return word to u. Since each path ab in

GN ′ appears with a gap ≤ D, we have

|v| ≤ D max
c∈GN′

w(c) ≤ DK min
c∈GN′

w(c)

≤ DK max
c∈GN′−1

w(c) · min
c∈GN′−1

∑
b∈GN′

WN ′

b,c

≤ DK2 min
c∈GN′−1

w(c) · min
c∈GN′−1

∑
b∈GN′

WN ′

b,c

≤ DK2 |u| min
c∈GN′−1

∑
b∈GN′

WN ′

b,c .

1For minimal systems, the gap-size is in fact independent of the choice of γ.
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Since the lengths of the return words give the gaps between appearances of u, linear recurrence
follows with constant

L = DK2 max
n≥N

min
c∈Gn−1

∑
b∈Gn

W n
b,c.

�

2 Rauzy Graphs

Every subshift (X, σ) on the (finite) alphabet A can be represented by a sequence of Rauzy
graphs, which we will denote by (Gn)n≥0 again. Here G0 consist of a single vertex labeled
ε (for the empty word) and #A loops. For n ≥ 1, the vertex set of Gn is Ln(X), i.e., set
of the words in X of length n, and the arrow set is Ln+1(X), i.e., the set of words of length
n + 1. If γ ∈ Ln+1 we write †γ and γ† for the word γ with the first and last letter removed,
respectively. The source and target of the arrow γ are s(γ) = γ† and t(γ) = †γ or in other
words γ = (γ† → †γ).

It is straightforward to turn this sequence of Rauzy graphs into a graph cover, namely by
the bonding maps πn given by

πn(γ) = γ†.

On the level of vertices, this works by “inclusion”: πn(u) = u†. These bonding maps are
automatically edge surjective and positive directional, but in general not negative directional.

ε

1

0

π1

1

11

0110

0

00 π2

11

01 10

111

010

101

00

000

011

001

110

100

π3

011

1111

11000011

001

0000

0110

1001

101

010

111

000

110

100

01011010

0111 1110

10000001

11011011

0010 0100

Figure 3: Graph cover for the one-sided full shift on A = {0, 1}.
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2.1 On the number of ergodic f-invariant measures

In analogy to shifts, we call a vertex of a graph left-special if it has at least two incoming edges,
right-special if it has at least two outgoing edges, and bi-special if it is both left-special and
right-special.

Proposition 10 Let Gn be the Rauzy graph of a subshift over the alphabet {0, 1}, with f -
invariant measure µ. Assume that there are ln left-special vertices, rn right-special vertices
and bn bi-special vertices. Then the number Mn of different values µ(Z) for n-cylinders is
≤ 3(rn + bn).

Proof. First note that ln = rn, since for the two-letter alphabet, each vertex has at most two
incoming and two outgoing arrows. We can partition Gn in paths or vertices that are

• paths starting with a left-special vertex and ending in a right-special vertex (both in-
cluded);

• paths starting with a left-special vertex (included) to a left-special vertex (not included);

• paths from a right-special vertex (not inclusive) ending with a right-special vertex (in-
cluded);

• bi-special vertices. (There is no change in the result if we pull every bispecial vertex into
a left-special and right-special vertex connected by a single arrow.)

By invariance of the measure, all the vertices (recall that the vertices of Gn for the n-cylinder
sets) in each of the above paths must have the same mass. Simple counting shows that the
number of such paths is ≤ 3(rn + bn), and the proposition follows. �

Special cases are Sturmian shifts, where this result is known as the three-gap theorem,
originally proven by Sós, [27, 28]. For the full shift, every vertex is bi-special, and Mn = pn is
sharp for an n-step memory Markov measure.

Proposition 11 Let Gn be the Rauzy graph of a subshift over the alphabet {0, 1}. Assume
that there are ln left-special vertices, rn right-special vertices and bn bi-special vertices. Then
the number of ergodic measures is bounded by N := lim infn→∞ rn + bn + 1.

This bound is comparable with the bound lim infn #{simple loops in Gn} from [13], but
sometimes an over-estimate. For Sturmian shifts, it would give at most two ergodic measures,
although Sturmian shifts are uniquely ergodic. However, if each Gn is a vertex with two loops
(so bn = 1) and the winding matrices are W n =

(
n2 1
1 n2

)
, then the corresponding graph cover

indeed has two measures, see [3].
In [9, Corollary 4.3] the sharper bound is given that translates to N = lim infn→∞ rn + bn,

but their result applies only to subshifts, and that puts a uniform bound on the entries of the
winding matrices.

Proof. As in the proof of Proposition 10, we partition the graphs Gn in paths p. We can
replace each bi-special vertex by a left-special vertex and right-special vertex connected with
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an arrow. Write s(p) for the special vertex at the beginning and t(p) for the special vertex at
the end of p. If µ is an f -invariant measure on Gn, then the following equations must hold:{

µ(p) + µ(p′) = µ(p′′) if s(p) = s(p′) = t(p′′),

µ(p) = µ(p′) + µ(p′′) if t(p) = s(p′) = s(p′′).

Writing this as matrix equation, we find µ = Mµ, where we consider µ as a column vector with
µ(p) as entries. The matrix M = (mpp′) has the following relations:{

mpp = mpp′ = −1, mpp′′ = 1 if s(p) = s(p′) = t(p′′),

mpp = −1, mpp′ = mpp′′ = 1 if t(p) = s(p′) = s(p′′).

Gaussian elimination in the matrix M gives that the null-space has dimension ≤ rn + 1, and
contains a unit simplex of dimension ≤ rn. Ergodic measures correspond to the extremal points
of these simplices, of which there are ≤ rn + 1.

Let (nk)k∈N be the subsequence such that rnk + bnk + 1 = N . Each ergodic measure µ of
the graph cover restricts to a measure µnk on G0 ← G0 ← · · · ← Gnk . Let Fn denote the
algebra generated by the n-cylinders. Hence, the atoms of µnk are exactly the atoms of Fnk ,
and the conditional expectation E(µnk+1

|Fnk) = µnk . Passing to a subsequence if necessary, the
Martingale Theorem, gives that limk µnk = µ, and in fact µ is ergodic. But for each k, there
are only N possibilities for µnk , so there cannot be more than N ergodic measures. �

2.2 Rauzy graphs of the Sturmian shift

The Rauzy graph Gn of a Sturmian subshift X is the word-graph in which the vertices are
the words u ∈ Ln(X) and there is an arrow u→ u′ if ua = bu′ for some a, b ∈ {0, 1}. Hence Gn

has p(n) = n + 1 vertices and p(n + 1) = n + 2 edges; it is the vertex-labeled transition graph
of the n-block shift interpretation of the Sturmian shift.

101101

011011110110

011010

110101101011

010110

Figure 4: The Rauzy graph G6 based on the Fibonacci Sturmian sequence

In the example of Figure 4, the word u = 101101 is bi-special, but only 0u0, 0u1 and
1u0 ∈ L(X) (i.e., u is a regular bi-special word). Since p(n + 1) − p(n) = 1 for a Sturmian
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sequence, every Rauzy graph contains exactly one left-special and one right-special word, and
they may be merged into a single bi-special word. Hence, there are two types of Rauzy graphs,
see Figure 5.

left-special right-special bi-special

Figure 5: The two types of Rauzy graphs for a Sturmian sequence.

The transformation from Gn to Gn+1 is as follows:

(a) If Gn is of the first type, then the middle path decreases by one vertex, and the upper and
lower path increase by one vertex. The left-special vertex of Gn splits into two vertices,
with outgoing arrows leading to the previous successor vertex which now becomes left-
special. Similarly, the right-special vertex of Gn is split into two vertices with incoming
arrows emerging from the previous predecessor vertex, which now becomes right-special.

(b) If Gn is of the second type, then one of the two paths becomes the central path in Gn+1,
the other path becomes the upper path of Gn+1, and there is an extra arrow in Gn+1 from
the right-special word to the left-special word. Thus the bi-special vertex of Gn is split
into two vertices, one of which becomes left-special in Gn+1, and one of the predecessors
of the bi-special vertex in Gn becomes right-special in Gn+1.

We can combine all Rauzy graphs into a single inverse limit space

G = lim←−(Gn, πn) = {(γn)n≥0 : πn+1(γn+1) = γn ∈ Gn for all n ≥ 0},

where G0 has only on vertex ε and one arrow ε→ ε, and πn+1 : Gn+1 → Gn is the prefix map
πn+1(ua) = u for every u ∈ Ln(X), a ∈ A. It is the inverse of the map described in items (a)
and (b) above.

3 Kakutani-Rokhlin partitions

An important tool in the study of dynamical systems (X,T ) are (sometimes called induced
maps) TY : Y → Y to subsets Y ⊂ X. These are defined by

TY (y) = T r(y) for the return time r = r(y) := min{i > 0 : T i(y) ∈ Y }.

The exhaustion of the space (if (X,T ) is minimal) is

X = ti≥0T i({y ∈ Y : i < r(y)}), (2)

and the Rokhlin Lemma [22, Theorem 3.10] in the measure-preserving setting are classical
techniques associated with first return maps.

For continuous minimal (or at least aperiodic) transformations of the Cantor set, this led
to a generalization of (2), called Kakutani-Rokhlin partition. The seminal paper is by Herman
et al. [17], who coined the name.
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Definition 12 Let (X,T ) be a continuous dynamical system on a Cantor set. A Kakutani-
Rokhlin (KR) partition is a partition

P =
{
T j(Bi)

}N,hi−1
i=1,j=0

of X into clopen sets that are pairwise disjoint and together cover X. We call B = ∪Ni=1Bi the
base of the KR-partition and the integers hi the heights. Also we assume that T hi(Bi) ⊂ B.
(If T is invertible, this is automatic.)

Usually we need a sequence (Pn)n≥0 of KR-partitions, with bases B(n) and height vectors
(hi(n))Nni=1, having the following properties:

(KR1) The sequence of bases is nested: B(n+ 1) ⊂ B(n), and

(KR2) Pn+1 � Pn, that is: Pn+1 refines Pn.

(KR3)
⋂
nB(n) is a single point.

(KR4) {A ∈ Pn : n ∈ N} is a basis of the topology.

The following property (KR5) relies crucially on minimality. Property (KR6) is optional, but
ensures that there is a unique smallest path in the context of Bratteli-Vershik systems and
cutting-and-stacking systems.

(KR5) For all n ∈ N, i ≤ N(n) and i′ ≤ N(n− 1), there is 0 ≤ j < hi(n) such that T j(Bi(n)) ⊂
Bi′(n− 1).

(KR6) B(n) ⊂ B1(n− 1) for all n ∈ N.

The transition from nested sequence of Kakutani-Rokhlin partitions to graph covering is
fairly direct: The vertices of the n-th graph Gn are the elements of Pn, and there are ar-
rows T j(Bi(n)) → T j+1(Bi(n)) if 0 ≤ j < hi(n) − 1, and also T hi(n)−1(Bi(n)) → Bi′(n)
if T hi(n)(Bi(n)) ∩ Bi′(n) 6= ∅. As bonding maps πn : Gn → Gn−1 we take the inclusion:
πn(A) = A′ for vertices A of Gn and A′ of Gn−1 if A ⊂ A′. Then inverse limit space

G = lim←−(Gn, πn) = {(γn)n≥0 : πn+1(γn+1) = γn ∈ Gn for all n ≥ 0},

is the graph covering and (KR6) provides the positive directional property. The dynamics
f : G→ G is by following the arrows as in equation (1).

4 Bratteli-Vershik systems

An ordered Bratteli diagram (Ei, Vi, <)i≥1 is an infinite graph consisting of

• a sequence of finite non-empty vertex sets Vi, i ≥ 0, and there is an additional V0 consisting
of a single vertex v0;
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• a sequence finite non-empty edge sets Ei, i ≥ 1, such that each edge e ∈ Ei connects a
vertex s(e) ∈ Vi−1 to a vertex t(e) ∈ Vi. (Here s and t stand for source and target.)
For every v ∈ Vi−1, there exists at least one outgoing edge e ∈ Ei with v = s(e), and for
every v ∈ Vi there exists at least one incoming edge e ∈ Ei with v = t(e);

• for each v ∈ ∪i≥1Vi, a total order < between its incoming edges.

The path space

XBV := {(xi)i≥1 : xi ∈ Ei, t(xi) = s(xi+1) for all i ∈ N}

is the collection of all infinite edge-labeled paths starting from v0, endowed with product topol-
ogy. That is, the set of infinite paths with a common initial n-path is clopen, and all sets of
this type form a basis of the topology.

The Vershik adic transformation (Vershik map) τ : XBV → XBV is defined as follows
[29]: For x ∈ XBV, let i be minimal such that xi ∈ Ei is not the maximal incoming edge. Then
put 

τ(x)j = xj for j > i,

τ(x)i is the successor of xi among all incoming edges at this level,

τ(x)1 . . . τ(x)i−1 is the minimal path connecting v0 with s(τ(x)i).

If no such i exists, then x ∈ Xmax
BV , and we need to choose y ∈ Xmin

BV to define τ(x) = y. Whether
τ extends continuously to Xmax

BV depends on how well we can make this choice. Medynets [21]
gave an example of a Bratteli diagram that doesn’t allow any ordering by which τ is continuously
extendable, even if #Xmin

BV = #Xmax
BV . For this diagram the only incoming edges to u ∈ Vn come

from u ∈ Vn−1, and therefore there is a minimal and a maximal path going through vertices
u only. By the same token, there is a minimal and a maximal path going through vertices w
only. No matter how τ is defined on these two maximal paths, there is no way of putting an
order on the incoming edges to v ∈ Vn such that this definition makes τ continuous at these
maximal paths.

A graph covering map f : G→ G on the weighted graph cover

G = lim←−(Gn, πn) = {(γn)n≥0 : πn+1(γn+1) = γn ∈ Gn for all n ≥ 0}

(where G0 is a single loop from a single vertex) can be turned in a Bratteli-Vershik system
as follows. The edges a ∈ Gn correspond bijectively to the vertices v = Vn of an ordered
Bratteli diagram. We call the bijection Pn. If the bonding map πn maps a to the concatenation
πn(a) = a1 · · · ak of edges in Gn−1, then we draw k incoming edges ei ∈ En to v = Pn(a) from
the vertices Pn−1(ai) = s(ei) ∈ Vn−1, i = 1, 2, . . . , k in this order. The map f : G → G will
then lift to the Vershik map τ on the path space XBV .

Remark 13 This construction doesn’t guarantee that the emerging Bratteli diagram allows a
unique (or useful) definition of the Vershik map. For example, if we start with the graph cover
of Figure 3, then we obtain the full binary tree as Bratteli diagram. Every path in it is both
minimal and maximal, and there is no sensible way of defining τ on it that represents in any
way the one-sided shift.
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Conversely, when given an ordered Bratteli diagram (En, Vn)n≥1, the vertices v ∈ Vn corre-
spond bijectively to edges a = P−1n (v) in Gn. The ordered set of incoming edges ei ∈ En to v
determine the bonding map πn by the concatenation πn(a) = a1 . . . ak if Pn−1(ai) = s(ei). The
Vershik map τ then translates to the graph covering map f . The more involved step of how to
connect the edges of Gn, i.e., how to determine the vertices of Gn, follows from the following
lemma.

Lemma 14 Given v, w ∈ Vn, let [vmin] indicate the cylinder set given by the minimal path from
v to v0, and [wmax] indicates the cylinder set given by the minimal path from w to v0.

1. For v, v′ ∈ Vn, if there is w ∈ Vn such that

τ([wmax]) ∩ [vmin] 6= ∅ 6= τ([wmax]) ∩ [v′
min

], (3)

then s(P−1(v)) = s(P−1(v′)).

2. For w,w′ ∈ Vn, if there is v ∈ Vn such that

τ([wmax]) ∩ [vmin] 6= ∅ 6= τ([w′
max

]) ∩ [vmin], (4)

then t(P−1(v)) = t(P−1(v′)).

Proof. If τ([wmax]) ∩ [vmin] 6= ∅, then there must be some m > n and u ∈ Vm such that there
are paths w → u and successor path v → u. Keeping in mind that vertices in Vn correspond
to edges in Gn, this translates into: There is m > n and γ ∈ Gm such that P−1(w)P−1(v) is a
subpath of πn+1 ◦ · · · ◦ πm(γ) and in particular s(P−1(v)) = t(P−1(w)).

If the same holds for w and v′, so P−1(w)P−1(v′) is a subpath of πn+1 ◦ · · · ◦ πm′(γ′), then
s(P−1(v)) = s(P−1(v′)) = t(P−1(w)).

This proves (i). The proof for (ii) is analogous. �

If we write v ∼s v
′ if (3) holds, the ∼s is a reflexive, symmetric relation, but not necessarily

transitive, as the next example shows. Therefore we need to take the transitive hull. Shimomura
[26]2 calls the equivalence classes of ∼ clusters. Edges γ, γ′ ∈ Gn have s(γ) = s(γ′) if and
only they are in the same cluster. The analogous statement can be made as a necessary and
sufficient condition for t(γ) = t(γ′).

Example 15 Figure 6 shows the graph cover and Bratteli-Vershik representation of the sta-
tionary substitution shift based on the substitution

χ :


1→ 12,

2→ 13,

3→ 123.

Each graph Gn has only one vertex, even though 1 6∼s 2. This shows that taking the transitive
hull of ∼s is essential to get a equivalence relation.

2although he fails to take the transitive hull.
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Figure 6: The graph-cover and Bratteli-Vershik representation of a substitution shift.

5 S-adic transformations

Instead of using a single substitution to create an infinite word ρ ∈ AN, we can use a sequence
of substitutions χn : An → A∗n−1, potentially between different alphabets An. Thus

ρ = lim
n→∞

χ1 ◦ χ2 ◦ · · · ◦ χn(an), an ∈ An. (5)

A priori, the limit need not exist, or can depend on the choice of letters an ∈ An, but if ρ exists
and is an infinite sequence, then we have the following definition.

Definition 16 Let S be a collection3 of substitutions χ and choose χn ∈ S such that alphabets
match: χn : An → A∗n−1. Assume that the sequence ρ defined in (5) exists and is infinite, and

let Xρ = orbσ(ρ). Then (Xρ, σ) is called an S-adic shift.

For S-adic transformation given by substitutions χn : An → An−1 for n ≥ 1, the graph cover
is given by graphs Gn consisting of a single vertex and #A edges labeled by the letters of A.
The bonding maps πn = χn, i.e., the πn-image of the loop a ∈ Gn is the concatenation of loops
in Gn−1 in the order given by χn(a). The winding matrix Wn is exactly the associated matrix
of the substitution χn.

Conversely, if all Gn’s consist of a single vertex with some loops, the substitutions χn can
be read off the way πn acts on these loops. For different structures of directed graphs, it is not
so easy (and most of the time impossible) to associate S-adic transformations to them.

5.1 Interval exchange transformations

An interval exchange transformation is based on a partition of [0, 1) into d ∈ N intervals
Ij = [qj−1, qj) for 0 = q0 < q1 < · · · < qd = 1, with lengths λj = qj − qj−1, so λ1 + · · ·+ λd = 1.
It rearranges these intervals according to a permutation ζ of {1, . . . , d}, i.e.,

T (x) = x− qj + qζ(j) if x ∈ Ij.
3Some, but not all, authors require S to be finite.
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One can analyse T using first return maps to subintervals J that are the union of adjacent
intervals, taken either from {Ij}dj=1 or from {T (Ij)}dj=1. Keane [18] showed that in this case
the first return map T ′ : J → J has at most d intervals of continuity I ′j; in fact, if the so-called
Keane condition “T n(qj) 6= qk for all 1 ≤ j ≤ k < d and n ∈ Z\{0}” holds, then T ′ has exactly
d intervals I ′j of continuity. Moreover, Keane’s condition implies that T is minimal.

Symbolically, taking the first return map can be described using a substitution χ on the
alphabet A = {1, . . . , d}:

χ(a) = a0a2 . . . ar(a)−1 ∈ A∗ T j(I ′a) ⊂ Iaj for 0 ≤ j < r(a) := inf{n ≥ 1 : T n(Ia) ⊂ J}.

Recursively, we can obtain a sequence of interval exchange transformations T0 = T : J0 →
J0 := [0, 1) and Tn : Jn → Jn ⊂ Jn−1, with substitutions ζn, and having {Inj }dj=1 as intervals of
continuity. We have corresponding substitutions (χn)n≥1 on A and the infinite sequence ρ as
in (5), where the symbols an are such that Inan ⊂ Jn+1 for all n ≥ 1, expresses the itinerary of
x ∈

⋂
Jn w.r.t. the original partition {Ij}.

As such, in the corresponding weighted graph cover, every graph Gn is a single vertex with
d loops, and πn wraps γa ∈ Gn around Gn−1 in the order prescribed by the substitution χn.

Example 17 A special case is the Rauzy induction, see [30] or [8, Section 4.4]. In this case,

Type 0: Jn = Jn−1 \ Tn−1(In−1e ), χn :


a 7→ a a ≤ e

(e+ 1)→ ed

a 7→ (a− 1) a > e+ 1

if |In−1d | > |In−1e |,

Type 1: Jn = Jn−1 \ In−1d , χn :

{
a 7→ a a 6= e

e 7→ ed
if |In−1d | < |In−1e |,

where e = ζ−1n−1(d) is such that the interval Tn(In−1e ) is adjacent to the right endpoint of Jn.

The other direction, i.e., recognizing which graph covers represent interval exchange transfor-
mations, is complicated, because which sequences of substitutions (χn)n≥1 (and of permutations
(ζn)n≥1 ) are allowed is not easy to track. If Rauzy induction is used, then at least the allowed
sequences of permutations are given by paths in the so-called Rauzy classes [30, Section 6], but
Rauzy induction provides only one class of representations. For example, Gjerde & Johansen
[15] used a representation in which Jn = Jn−1 \ In−1d for all n ≥ 1.
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