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Abstract. Fibonacci unimodal maps can have a wild Cantor attractor, and hence
be Lebesgue dissipative, depending on the order of the critical point. We present
a one-parameter family fλ of countably piecewise linear unimodal Fibonacci maps
in order to study the thermodynamic formalism of dynamics where dissipativity of
Lebesgue (and conformal) measure is responsible for phase transitions. We show
that the pressure is majorised by a non-analytic C∞ curve (with all derivatives
equal to 0) at the emergence of a wild attractor, whereas the phase transition can
be of any finite type for those λ for which fλ is Lebesgue conservative. We also
obtain results on the existence of conformal measure and equilibrium states, as well
as computing the hyperbolic dimension and the dimension of the basin of the wild
attractor.

1. Introduction

The aim of this paper is to understand thermodynamic formalism of unimodal interval
maps f : I → I on the boundary between conservative and dissipative behaviour. For
a ‘geometric’ potential φt = −t log |f ′|, the pressure function is defined by

P (φt) = sup

{
hµ +

∫
φt dµ : µ ∈M,

∫
φtdµ > −∞

}
, (1)

where the supremum is taken over the set M of f -invariant probability measures µ,
and hµ denotes the entropy of the measure. A measure µt ∈ M that assumes this
supremum is called an equilibrium state. Pressure is a convex and non-increasing
function in t and P (φ0) = htop(f) is the topological entropy of f . At most parameters
t, the pressure function t 7→ P (φt) is analytic, and there is a unique equilibrium
state which depends continuously on t. If the pressure function fails to be analytic
at some t, then we speak of a phase transition at t, which hints at a qualitative (and
discontinuous), rather than quantitative, change in equilibrium states. Refining this
further, if the pressure function is Cn−1 at t, but not Cn, we say that there is an n-th
order phase transition at t.
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Given a unimodal map f with critical point c, we say that the critical point is non-flat
if there exists a diffeomorphism φ : R → R with φ(0) = 0 and 1 < ` < ∞ such that
for x close to c, f(x) = f(c)± |φ(x− c)|`. The value of ` = `c is known as the critical
order of c. The metric behaviour of a unimodal map is essentially determined by its
topological/combinatorial properties plus its critical order. We give a brief summary
of what is known for smooth unimodal maps with non-flat critical point. A first result
is due to Ledrappier [L] who proved that a measure µ ∈ M of positive entropy is an
equilibrium state for t = 1 if and only if µ is absolutely continuous w.r.t. Lebesgue
(abbreviate acip). This also shows that t = 1 is the expected first zero of the pressure
function. For simplicity, we assume in the classification below that f is topologically
transitive on its dynamical core [f2(c), f(c)], i.e., there exists a point x0 such that

∪n>0fn(x0) = [f2(c), f(c)]), except in cases (1) and (5).

(1) If the critical point c of f is attracted to an attracting periodic orbit, then the
non-wandering set is hyperbolic on which Bowen’s theory [Bo] applies in its
entirety. In particular, no phase transitions occur.

(2) If f satisfies the Collet-Eckmann condition, i.e., derivatives along the critical
orbit grow exponentially fast, then the pressure is analytic in a neighbourhood
of t = 1, [BK]; and C1 for all t < 1 except when the critical point is preperiodic,
[IT1]. An example of the preperiodic critical point case is the Chebyshev
polynomial x 7→ 4x(1 − x) for which Makarov & Smirnov [MaS] showed the
occurrence a phase transition at t = −1. The pressure function is affine for
t 6= −1 in this case.

(3) If f is non-Collet-Eckmann but possesses an acip, then there is a first order
phase transition at t = 1 (i.e., t 7→ P (φt) is continuous but not C1). More
precisely, P (φt) = 0 if and only if t > 1 and the left derivative lims↑1

d
dsP (φs) <

0, see [IT1, Proposition 1.2].
(4) If f is non-Collet-Eckmann but has an absolutely continuous conservative in-

finite σ-finite measure, then there is still a phase transition at t = 1, but
P (φt) is C1. In fact, P (φt) = 0 if and only if t > 1 and the left derivative
lims↑1

d
dsP (φs) = 0. This follows from the proof of [IT1, Lemma 9.2].

(5) If f is infinitely renormalisable, then the critical omega-limit set ω(c) is a
Lyapunov stable attractor, and its basin Bas = {x : ω(x) ⊂ ω(c)} is a sec-
ond Baire category set of full Lebesgue measure. The best known example is
the Feigenbaum-Coullet-Tresser map ffeig, for which the topological entropy
htop(ffeig) = 0, and so P (φt) ≡ 0 for all t > 0. More complicated renormali-
sation patterns can lead to a more interesting thermodynamic behaviour, see
Avila & Lyubich [AL], Moreira & Smania [MoS] and Dobbs [D]. However,
this thermodynamic behaviour is primarily a topological, rather than a met-
ric, phenomenon, so should be seen as complementary to the results given in
this paper.

(6) If f has a wild attractor, then ω(c) is not Lyapunov stable and attracts a set
of full Lebesgue measure, whereas a second Baire category set of points has
a dense orbit in [f2(c), f(c)]. In [AL, Theorem 10.5] it is asserted that there
exists some t1 < 1 such that P (φt) = 0 for t > t1. In this paper we study this
fact, as well as further thermodynamic properties of wild attractors, in detail.
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A wild attractor occurs for a unimodal map f if it has very large critical order ` as
well as Fibonacci combinatorics, i.e., the cutting times are the Fibonacci numbers.
(The cutting times (Sk)k>0 are the sequence of iterates n at which the image of the
central branch of fn contains the critical point. They satisfy the recursive formula
Sk − Sk−1 = SQ(k) for the so-called kneading map Q : N → N0; so Fibonacci maps
have kneading map Q(k) = max{k − 2, 0}, see Section 2 for more precise details.)

Let us parametrise Fibonacci maps by critical order, say

f` : [0, 1]→ [0, 1], x 7→ a(`)(1− |2x− 1|`),

where a(`) ∈ [0, 1] is chosen such that f` has Fibonacci combinatorics. The picture is
then as follows:

` 6 2 f` has an acip which is super-polynomially mixing, [LM, BLS],

2 < ` < 2 + ε f` has an acip, no mixing rate known, [KN],

`0 < ` < `1 f` has a conservative σ-finite acim,

`1 < ` f` has a wild attractor [BKNS], with dissipative σ-finite
acim, [Ma].

For the logistic family (i.e., ` = 2), Lyubich proved that f cannot have a wild attractor.
In [KN] it was shown that ` = 2 + ε still does not allow for a wild attractor. Wild
attractors were shown to exist [BKNS] for very large `. The value of `1 beyond which
the existence of a wild attractor is rigorously proven in [BKNS] is extremely large1, but
unpublished numerical simulations by Sutherland et al. suggest that `1 = 8 suffices.
The region ` ∈ (`0, `1) is somewhat hypothetical. It can be shown [B1] that f` has
an absolutely continuous σ-finite measure for ` > `0, and it stands to reason that this
happens before f` becomes Lebesgue dissipative, but we have no proof that indeed
`0 < `1, nor that this behaviour occurs on exactly a single interval. The existence of
a dissipative σ-finite acim when there is a wild attractor was shown by Martens [Ma],
see also [BH, Theorem 3.1].

Within interval dynamics, inducing schemes have become a standard tool to study
thermodynamic formalism, [BT1, BT2, PS, S2, BI]. One constructs a full-branched
Gibbs-Markov induced system (Y, F ) whose thermodynamic properties can be under-
stood in terms of a full shift on a countable alphabet. However, precisely in the setting
of wild attractors, the set

Y∞ = {y ∈ Y : Fn(y) is well-defined for all n > 0}

is dense in Y but of zero Lebesgue measure m. For this reason, we prefer to work
with a different induced system, called (Y, F ) again, that has branches of arbitrarily
short length, but for which Y∞ is co-countable. By viewing the dynamics under F
as a random walk, we can show that transience2 of this random walk (w.r.t. Lebesgue
measure) implies the existence of a Cantor attractor.

1For less restrictive Fibonacci-like combinatorics (basically if k − Q(k) is bounded) the existence
of wild attractors was proved in [B2].

2We discuss transience and (null and positive) recurrence in detail in Section 9.
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Proving transience of (Y, F,m) is very technical due to the severe non-linearity of
F for smooth unimodal maps f with large critical order. For this reason, we intro-
duce countably piecewise linear unimodal maps for which induced systems with linear
branches can be constructed. This idea is definitely not new, cf. the maps of Gaspard
& Wang [GW] and Lüroth [Lu, DK2] as countably piecewise linear versions of the
Farey and Gauss map, respectively.3 The explicit construction for unimodal maps
is new, however. Although we are mostly interested in Fibonacci maps, the method
works in far more generality; it definitely suffices if the kneading map Q(k)→∞ and
a technical condition (7) is satisfied. Note that the inducing scheme we will use is
somewhat different from that in [BKNS] which was based on preimages of the fixed
point. Instead, we will use an inducing scheme based on precritical points, used be-
fore in [B1], and we arrive at a two-to-one cover of a countably piecewise interval map
Tλ : (0, 1] → (0, 1] isomorphic to the one defined in Stratmann & Vogt [SV]. For
n > 1, let Vn := (λn, λn−1] and define

Tλ(x) :=


1−x
1−λ if x ∈ V1 := (λ, 1],

λn−1−x
λ(1−λ) if x ∈ Vn := (λn, λn−1], n > 2.

(2)

Both the unimodal map fλ and the induced map Fλ are linear on intervals Wk =
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ẑ4

�
�
�

z4

�
��

D
DD

�
�

D
D

c

Figure 1. The maps Tλ : [0, 1]→ [0, 1] and Fλ : [z0, ẑ0]→ [z0, ẑ0].

[zk−1, zk] and Ŵk = [ẑk, ẑk−1] of length 1−λ
2 λk. Here x̂ = 1−x is the symmetric image

of a point or set, and zk < c < ẑk are the points in f−Sk(c) that are closest to c. We

define Fλ(x) = fSk−1 if x ∈Wk ∪ Ŵk. The induced map Fλ satisfies

[z0, ẑ0]
Fλ−−−−→ [z0, ẑ0]

π

y yπ
[0, 1]

Tλ−−−−→ [0, 1]

π : x 7→


1−2x

2(1−z0) if x 6 1
2 ;

2x−1
2(1−z0) if x > 1

2 .
(3)

3In fact, considering −t log |f ′| for the Gaspard & Wang map is exactly equivalent to the Hofbauer
potential [H1] for the full shift on two symbols.
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The one-parameter system (Y, Fλ) is of interest both for its own sake, see [BT3, SV],
and for the sake of studying (thermodynamic properties of) f itself. Theorem A
replaces the somewhat hypothetical picture of smooth Fibonacci maps with precise
values of critical orders ` = `(λ), where each of the different behaviours occurs. In
this non-differentiable setting, the critical order ` is defined by the property that
1
C |x− c|

` < |f(x)− f(c)| 6 C|x− c|` for some C > 0 and all x ∈ [0, 1].

Theorem A. The above countably piecewise linear unimodal map fλ (i.e., with |Wk| =
|Ŵk| = 1−λ

2 λk and λ ∈ (0, 1)) satisfies the following properties:

a) The critical order ` = 3 + 2 log(1−λ)
log λ .

b) If λ ∈ (1
2 , 1), i.e., ` > 5, then fλ has a wild attractor.

c) If λ ∈
[

2
3+
√

5
, 1

2

]
, i.e., 4 6 ` 6 5, then fλ has no wild attractor, but an infinite

σ-finite acim.

d) If λ ∈ (0, 2
3+
√

5
), i.e., ` ∈ (3, 4), then fλ has an acip.

As above, let φt = −t log |f ′λ| and Φt = −t log |F ′λ| be the geometric potentials for
the unimodal map fλ and its induced version Fλ, respectively. (Note that Φt =∑τ−1

j=0 φt ◦ f
j
λ for inducing time τ = τ(x), justifying the name induced potential.)

In [BT3], the precise form of the pressure function for ((0, 1], Tλ,−t log |T ′λ|) and there-
fore also for the system (Y, Fλ,−t log |F ′λ|), is given. However, this is of lesser concern
to us here, because given ([0, 1], fλ) with potential −t log |f ′λ|, for most results on the
induced system (Y, Fλ) to transfer to back to the original system, the correct induced
potential on Y is − log |F ′λ| − pτ , where the shift pτ is determined by a constant p
(usually the pressure of −t log |f ′λ|) and the inducing time τ where τ(x) = Sk−1 when-

ever x ∈ Wk := Wk ∪ Ŵk. The fact that the shift by pτ depends on the interval Wk

increases the complexity of this problem significantly. Results from [BT3] which apply
directly are contained in the following theorem.

Theorem B. Let Basλ = {x ∈ I : fnλ (x)→ ω(c) as n→∞} be the basin of ω(c), and
let the hyperbolic dimension be the supremum of Hausdorff dimensions of hyperbolic
sets Λ, i.e., Λ is fλ-invariant, compact but bounded away from c. Then

dimhyp(f1−λ) = dimH(Basλ) =

{
− log 4

log[λ(1−λ)] if λ 6 1
2 ;

1 if λ > 1
2 .

For the properties of pressure presented in Theorem D and the related results in Sec-
tion 7, it is advantageous to use a different approach to pressure, called conformal
pressure PConf(φt), which is the smallest potential shift allowing the existence of a
conformal measure for the potential. We refer Sections 5 and 7 for the precise def-
initions, but in Theorem C we will show that conformal pressure coincides with the
(variational) pressure defined in (1). In [BT3], it is shown that the smallest value at
which the pressure P (Φt) of the induced system (Y, Fλ,Φt) becomes zero is

t1 :=

{
1 if λ ∈ (0, 1/2],

t2 if λ ∈ [1/2, 1),
where t2 := − log 4/ log[λ(1− λ)]. (4)
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This gives the background information for our third main theorem.

Theorem C. The countably piecewise linear Fibonacci map fλ, λ ∈ (0, 1), with po-
tential φt has the following thermodynamical properties.

a) The conformal and variation pressure coincide: PConf(φt) = P (φt);

b) For t < t1, there exists a unique equilibrium state νt for (I, fλ, φt); this is
absolutely continuous w.r.t. the appropriate conformal measure nt. For t > t1, the
unique equilibrium state for (I, fλ, φt) is νω, the measure supported on the critical
omega-limit set ω(c). For t = t1, νω is an equilibrium state, and if λ ∈ (0, 2

3+
√

5
)

then so is the acip, denoted νt1;

c) The map t 7→ P (φt) is real analytic on (−∞, t1). Furthermore P (φt) > 0 for
t < t1 and P (φt) ≡ 0 for t > t1, so there is a phase transition at t = t1.

Let γ+ := 1
2(1 +

√
5) be the golden ratio and Γ := 2 log γ+√

− log[λ(1−λ)]
. More precise

information on the shape of the pressure function is the subject of our fourth main
result.

Theorem D. The pressure function P (φt) of the countably piecewise linear Fibonacci
map fλ, λ ∈ (0, 1), with potential φt has the following shape:

a) On a left neighbourhood of t1, there are τ0 = τ0(λ) > 0 and C̃ = C̃(λ) > 0 such
that

P (φt) >

τ0e
−π Γ√

t1−t if t < t1 6 1 and λ > 1
2 ;

τ0C̃(1− t)
log γ+
logR if t < 1 and 2

3+
√

5
6 λ < 1

2 ,

where R =

(
1+
√

1−4λt(1−λ)t
)2

4λt(1−λ)t and limt→1 logR ∼ 2(1− 2λ) for λ ∼ 1
2 .

b) On a left neighbourhood of t1, there is τ1 = τ1(λ) > 0 such that

P (φt) <

τ1e
− 5

6
Γ√
t1−t if t < t1 6 1 and λ > 1

2 ;

τ1(1− t)
λ log γ+
2t(1−2λ) if t < 1 and 2

3+
√

5
6 λ < 1

2 .

c) If λ ∈ (0, 2
3+
√

5
), then lims↑t1

d
dsP (φs) < 0; otherwise (i.e., if λ ∈ [ 2

3+
√

5
, 1)),

lims↑t1 P (φs) = 0.

To put these results in context, let us discuss the results of Lopes [Lo, Theorem 3]
on the thermodynamic behaviour of the Manneville-Pomeau map g : x 7→ x + x1+α

(mod 1). The pressure function for this family is

P (−t log g′) =


hµ(1− t) +B(1− t)1/α + h.o.t. if t < 1 and α ∈ (1

2 , 1);

C(1− t)α + h.o.t. if t < 1 and α > 1;

0 if t > 1,

where hµ is the entropy of the non-Dirac equilibrium state (i.e., the acip) and B,C > 0
are constants. Note that the transition case α = 1 corresponds to the transition from a
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finite acip (for α < 1) to an infinite acim (for α > 1).4 In the Mannevlle-Pomeau case
there is no transition of Lebesgue measure changing from conservative to dissipative.
The phase transition at t = 1 is said to be of first type if there are two equilibrium
states (here an acip and the Dirac measure δ0); if there is only one equilibrum state,
then the phase transition is of second type. The exponent 1/α is called the critical
exponent of transition.

For Fibonacci maps, instead of a Dirac measure, there is a unique measure νω sup-
ported on the critical ω-limit set; it has zero entropy and Lyapunov exponent. The-
orem D paints a similar picture to Lopes’ result for Manneville-Pomeau maps. In
detail, we have

• a phase transition of first type for λ ∈ (0, 2
3+
√

5
): the pressure is not C1 at

t = t1. This is precisely the region from Theorem A where fλ has an acip µ, in
accordance with the results from [IT1]. According to Ledrappier [L], hµ = λ(µ)

is the Lyapunov exponent, so lims↑1
dP
ds (φs) = −λ(µ). Lebesgue is conservative

here.

• a phase transition of second type for λ ∈ ( 2
3+
√

5
, 1

2): there is some minimal n ∈ N
such that the n-th left derivative Dn

−P (φt)|t=t1 < 0. Thus the pressure function
is Cn−1, but not Cn, at t = t1 and so there is an n-th order phase transition.
Consequently, the critical exponent of transition tends to infinity as λ ↗ 1/2.
Lebesgue is still conservative here, and also for λ = 1/2.

• a phase transition of second type for λ ∈ [1/2, 1): the pressure is C1 with
d
dtP (φt) = 0 at t = t1. By convexity, also d2

dt2
P (φt) = 0 at t = t1. It is unlikely,

but we cannot a priori rule out, that the higher derivatives oscillate rapidly, pre-
venting the pressure function from being C∞ at t = t1. Lebesgue is dissipative
for λ ∈ (1/2, 1).

This paper is organised as follows. In Section 2 we introduce the countably piece-
wise linear unimodal maps and give conditions under which they produce an induced
Markov map that is linear on each of its branches. In Section 3 this is applied to Fi-
bonacci maps, and, using a random walk argument, the existence of an attractor and
hence Theorem A is proved. Rather as an intermezzo, Section 4 shows that for count-
ably piecewise linear unimodal maps with infinite critical order, wild attractors do
exist beyond the Fibonacci-like combinatorics. In Section 5 we explain how conformal
and invariant measures of the induced system relate to conformal and invariant mea-
sures of the original system. In Section 6, we discuss the technicalities that the 2-to-1
factor map from (3) poses for invariant and conformal measures; we also prove The-
orem B. The properties of the conformal pressure functions (existence, upper/lower
bounds and nature of phase transitions) are studied in Section 7, proving the majority

4The asymptotics of P (t) in [Lo, Theorem 3] don’t hold for α = 1 (personal communication with
A.O. Lopes), but since there is no acip, P (t) is differentiable at t = 1 with derivative P ′(t) = 0 as in
[IT1]. We don’t know the higher order terms in this case.

Asymptotics of related systems are obtained in [PFK, BFKP], namely for the Farey map x 7→ x
1−x

if x ∈ [0, 1
2
] and x 7→ 1−x

x
if x ∈ [ 1

2
, 1]. It is expected that their asymptotics also hold for the

Manneville-Pomeau map with α = 1. In [BLL], a Manneville-Pomeau like map with two neutral fixed
points, both with α = 1, is considered, using a Hofbauer-like potential.
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of Theorem D. In Section 8 we prove the existence and properties of invariant mea-
sures that are absolutely continuous w.r.t. the relevant conformal measures. In the
final section we present some general theory on countable Markov shifts due to Sarig.
This leads up to the proof of Theorem C, and also gives the final ingredient of the
proof of Theorem D.

2. The countably piecewise linear model

Let N = {1, 2, 3, 4, . . . } and N0 = N ∪ {0}. Throughout f : I → I stands for a
symmetric unimodal map with unit interval I = [0, 1], critical point c = 1

2 , and
f(0) = f(1) = 0. For x ∈ [0, 1], let x̂ = 1− x be the point with the same f -image as
x. We use the same notation for sets.

Let us start by some combinatorial notation. For n > 1, the central branch of fn is
the restriction of fn to any of the two largest one-sided neighbourhoods of c on which
fn is monotone. Let Dn be the image of this branch; due to symmetry, it is the same
for the left and right central branch. We say that n is a cutting time if c ∈ Dn, and we
enumerate cutting times as 1 = S0 < S1 < S2 < . . . If f has no periodic attractors,
Sk is well-defined for all k, and we will denote the point in the left (resp. right) central
branch of fSk that maps to c by zk (resp. ẑk). These points are called the closest
precritical points and it is easy to see that the domains of the left (resp. right) central
branch of fSk are [zk−1, c] (resp. [c, ẑk−1].

The difference of two consecutive cutting times is again a cutting time. Hence (see
[H1]) we can define the kneading map Q : N→ N0 by

Sk − Sk−1 = SQ(k). (5)

A kneading map Q corresponds to a sequence of cutting times of a unimodal map if
and only if it satisfies

{Q(k + j)}j>1 � {Q(Q2(k) + j)}j>1, (6)

for all k > 1, where � indicates lexicographical order (see [H2]).

We proceed as follows: First fix a kneading map Q such that

Q(k + 1) > Q(Q2(k) + 1) (7)

for every k > 2. This obviously implies (6), but provides a considerable simplification.
The general case should also be possible, but the construction is considerably more
complicated.

By convention, set z−1 = 0 and ẑ−1 = 1. For j > 0, choose points zj ↗ c = 1
2 and

ẑj = 1 − zj ↘ c arbitrarily. The points zj will play the role of the closest precritical
points. Choose εj such that∑

j>0

εj =
1

2
, Wj = (zj−1, zj), Ŵj = (ẑj , ẑj−1) with εj = |Wj | = |Ŵj |. (8)
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Our map f will be affine on each interval Wj and Ŵj . We abbreviate Wj = Wj ∪ Ŵj .
The slopes on these intervals will be determined by the slopes of the induced map5:

F : (z0, ẑ0)→ (z0, ẑ0), F |Wj∪Ŵj
= fSj−1 |Wj for j > 1. (9)

It is easy to see that fSj−1(zj) = fSj−1(ẑj) ∈ {zQ(j), ẑQ(j)}, and therefore

F (Wj) = F (Ŵj) = ∪i>Q(j)Wi or ∪i>Q(j) Ŵi.

In Proposition 1, we will prove that F |Wj and F |Ŵj
are also linear. Let

sj :=
1

εj

∑
i>Q(j)+1

εi, (10)

for j > 1; these will turn out to be the absolute values of the slopes of F |Wj . Let κj
be the slope of f on Wj . As f(z0) = c = 1

2 , we obtain

κ0 :=
1

2ε0
. (11)

For S0 = 1, we have F |W1 = fS0 |W1 = f |W1 . So we get by (10)

κ1 = s1 :=
1

ε1

∑
i>1

εi =
1− 2ε0

2ε1
. (12)

For j > 2 we set inductively

κj :=

{ sj
κ0

κj−1

sj−1
if Q(j − 1) = 0,

sj ·κj−1

sj−1·sQ(j−1)·sQ2(j−1)+1
if Q(j − 1) > 0.

(13)

So let f be the unique continuous map such that f(0) = f(1) = 0, Df |Wj = κj and
Df |Ŵj

= −κj .

We pose two other conditions on the sequence (εj)j∈N, which will be checked later on

for specific examples, in particular the Fibonacci map. Let xf = f(x) for any point
x. For all j > 2:

sj
κj
|cf − zfj | =

sj
κj

∞∑
i=j+1

κiεi 6 εQ(j), (14)

and
sj
κj
|cf − zfj | =

sj
κj

∞∑
i=j+1

κiεi 6
εQ2(j)+1

sQ(j)
whenever Q(j) > 0. (15)

Proposition 1. Let f be the map constructed above, i.e., assume that (7)-(15) hold.
Then Q is the kneading map of f , and the induced map F is linear on each set Wj

and Ŵj, having slope ±sj.

Proof. We argue by induction, using the induction hypothesis, for j > 2,
fSj−1−1|

(cf ,zfj−1)
is linear, with slope

sj
κj
.

fSj−1(zj−1) = c.

fSj−1(c) ∈WQ(j) or ŴQ(j).

(IHj)

5In later sections, the interval on which the induced map is defined will be called Y
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From the first statement, it follows immediately that

fSj−1 |Wj is linear, with slope sj , for j > 1 (16)

which we would naturally expect from the construction of the induced map. (f |W0 is
linear, with slope κ0.) From this and the fact that fSj−1(zj−1) = c, it follows that

fSj−1(zj) = fSj−1(zj−1)± sjεj = c±
∑

i>Q(j)+1

εi = zQ(j) or ẑQ(j). (17)

Let us prove (IHj) for j = 2. It is easily checked that f(z0) = f(ẑ0) = c = 1
2 , and

hence f(c) ∈ Ŵ0. f(z1) = 1
2 + κ1ε1 = 1

2 + 1
2 − ε0 = ẑ0. So fS1(z1) = c and because

cf ∈ Ŵ0, fS1−1|(cf , zf1 ) = f |(cf , ẑ0) is also linear, with slope κ0 = s2
κ2

. Next we check

the position of fS1(c). By the above formula, and the additional assumption (14),

fS1(c) = fS1(z2)− |fS1−1((cf , zf2 ))|

= zQ(2) −
s2

κ2
|cf − zf2 | > zQ(2) − εQ(2) = zQ(2)−1.

Hence fS1(c) ∈WQ(2).

Next assume that (IHi) holds for i < j. Using (17) and (IHQ(j−2)) subsequently, we
get

fSj−1(zj−1) = fSQ(j−1) ◦ fSj−2(zj−1) = fSQ(j−1)(zQ(j−1)) = c.

Because (cf , zfj−1) ⊂ (cf , zfj−2), (IHj−1) yields that

fSj−2−1|
(cf ,zfj−1)

is linear with slope
sj−1

κj−1
.

By (17) and (IHj−1), its image is the interval (zQ(j−1), cSj−2) ⊂ WQ(j−1) or ŴQ(j−1).
Now if Q(j − 1) = 0, then

fSj−1−1|
(cf ,zfj−1)

= f ◦ fSj−2−1|
(cf ,zfj−1)

is linear with slope κ0
sj−1

κj−1
.

By the first part of the definition of κj , this slope is equal to
sj
κj

. If Q(j − 1) > 0 then

fSj−1−1|(cf , zfj−1) = f
SQ2(j−1) ◦ fSQ(j−1)−1 ◦ fSj−2−1|

(cf ,zfj−1)
.

By (16), fSQ(j−1)−1 |WQ(j−1)
is linear with slope sQ(j−1). Hence fSQ(j−1)−1◦fSj−2−1|

(cf ,zfj−1)

is linear with slope sQ(j−1)
sj−1

κj−1
. By (17), its image is the interval

(zQ2(j−1), cSj−2+SQ(j−1)−1
) = (zQ2(j−1), cSj−1−SQ2(j−1)

).

By (15), the length of this interval is |cf − zfj−1|sQ(j−1)
sj−1

κj−1
6 εQ2(j−1)+1, so

(zQ2(j−1), cSj−1−SQ2(j−1)
) ⊂WQ2(j−1)+1 or ŴQ2(j−1)+1.

By (16), f
SQ2(j−1) |WQ2(j−1)+1

is also linear, with slope sQ2(j−1)+1. It follows that

f
SQ2(j−1) ◦ fSQ(j−1)−1 ◦ fSj−2−1|

(cf ,zfj−1)
is linear with slope sQ2(j−1)+1sQ(j−1)

sj−1

κj−1
. By

the second part of (13) fSj−1−1|(cf , zfj ) is linear with slope
sj
κj

, as asserted. By (14),
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c ẑj ẑj−1

zQ(j−1)−1 cSj−2 ẑQ(j−1)

c ẑQ2(j−1)+1 cSj−1−SQ2(j−1)
ẑQ2(j−1)

cSQ2(j−1)
zQ(j)−1 cSj−1 zQ(j) c

?

fSj−2

?

fSQ(j−1)−1

?

f
SQ2(j−1)

Figure 2. Position of various precritical points and their images.

the length of the image is |cf − zfj |
sj
κj
6 εQ(j). Formula (17) yields fSj−1(zj) = zQ(j).

Hence we obtain

zQ(j) > fSj−1(c) > zQ(j) − εQ(j)

or

ẑQ(j) < fSj−1(c) 6 ẑQ(j) + εQ(j).

In other words, fSj−1(c) ∈ WQ(j) or ŴQ(j). This concludes the induction. (Notice

that
|cSj−1

−zQ(j)|
|zQ(j)−1−zQ(j)|

= 1
εQ(j)

sj
κj
|cf − zfj−1|.) �

3. The Fibonacci case

In this section we prove Theorem A. Let ϕn(x) = j if Fn(x) ∈ Wj . With respect
to the existence of wild attractors and the random walk generated by F , we are in
particular interested in the conditional expectation (also called drift)

E(ϕn − k | ϕn−1 = k) =

∑
i>Q(k)+1(i− k)εi∑

i>Q(k)+1 εi
=

∑
i>Q(k)+1 iεi∑
i>Q(k)+1 εi

− k. (18)

Remark 1. Since cSk ∈ Wk−1 for every k > 1, we obtain |DfSQ(k+1)(cSk)| =
|DfSk−1(cSk)| =

∣∣DfSk−1 |Wk

∣∣ · ∣∣DfSk−3 |Wk−2

∣∣ = [λ(1 − λ)]−2. Therefore |DfSj (c1| ≈
κj [λ(1 − λ)]2j = λ−10(1 − λ)−5, which is uniformly bounded in j. Therefore the
Nowicki-van Strien summability condition (see [NS]) fails for all λ ∈ (0, 1).

As mentioned before, Fλ is null recurrent w.r.t. Lebesgue when λ = 1
2 ; the proof of

this is given in [BT3, Theorem B].
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Proof of Theorem A. We attempt to solve the problem for εj = |Wj | = |Ŵj | = 1−λ
2 λj ,

so
∑

j>0 εj = 1
2 . By formula (10),

s1 = ± 1

1− λ
and sj = ± 1

λ(1− λ)
for j > 2. (19)

(Note that the slopes sj > 4, with the minimum assumed at λ = 1
2 .) Using (13), we

obtain for the slope κj = f ′(x), x ∈Wj .

κj =



1
1−λ j = 0, 1;
1
λ j = 2;
(1−λ)
λ j = 3;

(1−λ)3

λ j = 4;
λ2j(1−λ)2j

λ10(1−λ)5 j > 5.

(20)

Let us first check (14) and (15) For simplicity, write εj = C1λ
j and κj = C2ω

j where
ω = λ2(1− λ)2. Then

sj
κj

∞∑
i=j+1

κiεi 6 εQ(j) ⇔
∞∑

i=j+1

C1C2(λω)i
1

λ(1− λ)

1

C2ωj
6 C1λ

j−2

⇔ λj+1ωj+1

1− λω
1

λ(1− λ)ωj
6 λj−2

⇔ λ4(1− λ) 6 1− λ3(1− λ)2.

This is true for every λ ∈ (0, 1). Checking (15) for Q(j) > 0, we get

sj
κj

∞∑
i=j+1

κiεi 6
εQ2(j)+1

sQ(j)
⇔ λj+1ωj+1

1− λω
1

λ(1− λ)ωj
6 λj−3λ(1− λ)

⇔ λ4 6 1− λ3(1− λ)2.

Again, this is true for all λ ∈ (0, 1).

Let us compute the order ` of the critical point. Indeed, |Df(x)| = O(λ2j(1 − λ)2j)
and |x− c| = O(λj) if x ∈Wj . On the other hand |Df(x)| = O(|x− c|`−1). Therefore

` = 1 +
logω

log λ
= 3 +

2 log(1− λ)

log λ
.

Consider (18) again. For k > 2, the drift is

Dr(λ) := E(ϕn − k | ϕn−1 = k) =

∑
i>k−1 iεi∑
i>k−1 εi

− k =
λ

(1− λ)
− 1 =

2λ− 1

1− λ
. (21)

Hence E(ϕn − k | ϕn−1 = k) > 0 if λ > 1− λ, i.e., λ > 1
2 . The second moment∑

i>Q(k)+1(i− k)2εi∑
i>Q(k)+1 εi

=
λ2

(1− λ)2
− 2

λ

1− λ
+ 1

is uniformly bounded, and therefore also the variance. So as in the proof of [BT3,
Theorem 1], for λ > 1

2 , i.e., a critical order larger than 5, the Fibonacci map f exhibits
a wild attractor.
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Now we will calculate for what values of λ, f has an infinite σ-finite measure. First take
λ < 1

2 . Then F (considered as a Markov process) is recurrent, and therefore has an
invariant probability measure µ. Let (Ai,j)i,j be the transition matrix corresponding to
F , and let (vi)i be the invariant probability vector, i.e., left eigenvector with eigenvalue
1. As F is a Markov map, and F is linear on each state Wk, we obtain µ(Wk) = vk.
So let us calculate this.

Ai,j =

{
0 if j 6 Q(i),

(1− λ)λj−(Q(i)+1) if j > Q(i),

or in matrix form

(Ai,j)i,j = (1− λ)



1 λ λ2 λ3 λ4 . . . . . .
1 λ λ2 λ3 λ4 . . . . . .
0 1 λ λ2 λ3 λ4 . . .
0 0 1 λ λ2 λ3 . . .
...

... 0 1 λ λ2 . . .
...

...
...

...
...

...
. . .


. (22)

As in [BT3, Theorem 1], this matrix has a unique normalised eigenvector:

vi =
1− 2λ

λ

(
λ

1− λ

)i
for λ <

1

2
. (23)

According to [B2, Theorem 2.6], f has a finite measure if and only if∑
k

Sk−1µ(Wk) <∞. (24)

If (24) fails, then f has an absolutely continuous σ-finite measure. This follows because

f is conservative, and ω(c) is a Cantor set [HK]. In the Fibonacci case Sk−1 ∼ γk−1
+ ,

where γ+ = 1+
√

5
2 is the golden mean. Since µ(Wk) = βiρ

i for βi ≡ λ, as we saw above,

we obtain ρ > 1
γ+

if and only if 1+
√

5
2

λ
1−λ > 1, i.e., λ > 2

3+
√

5
. This corresponds to the

critical order ` = 4. Therefore there exists a σ-finite measure for all 2
3+
√

5
6 λ < 1

2 ,

and a finite measure for 0 < λ < 2
3+
√

5
. �

4. An example of a wild attractor for k −Q(k) unbounded

In [B2] it was shown that smooth unimodal maps for which k − Q(k) is unbounded
cannot have any wild attractors, for any large but finite value of the critical order.
There are very few results known for unimodal maps with flat critical points (i.e.,
` = ∞), although we mention [BM, Z] and [LS], which deal with Lebesgue conserva-
tive Misiurewicz maps and infinitely renormalisable dynamics respectively. The next
example serves as a model for a unimodal map with infinite critical order, suggesting
that [B2, Theorem 8.1] doesn’t hold anymore: There exists countably piecewise linear
maps with kneading map Q(k) = brkc, r ∈ (0, 1) that have a wild attractor.

Example 1. Consider maps with kneading map

Q(k) = brkc
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for some r ∈ (0, 1) and k large. Here bxc indicates the integer value of x. Let α be
such that 1

α−1 + log r > 0. Take εk = Ck−α, where C is the appropriate normalising

constant: C ≈ α − 1. This suffices to compute the expectation from (24), at least
for large values of k. But instead of ϕn, we prefer to look at logϕn. It is clear that
logϕn(x)→∞ if and only if ϕn(x)→∞. So it will have the same consequences. The
advantage is that in this way we can keep the second moment bounded.

We will calculate the expectation for large values of k. Therefore we will write rk for
Q(k) + i = brkc+ i and r2k for Q2(k) + i = brkc+ i, where i ∈ {−1, 0, 1, 2}. We will
also pass to integrals to simplify the calculations.

E(logϕn − log k | ϕn−1 = k) =

∑
i>Q(k)+1 εi log i∑
i>Q(k)+1 εi

− log k

≈
∫∞
rk t
−α log tdt∫∞

rk t
−αdt

− log k

=
1

α− 1
+ log r.

This is positive by the choice of α. For the second moment we get

E((logϕn − log k)2 | ϕn−1 = k) =

∑
i>Q(k)+1(log i− log k)2εi∑

i>Q(k)+2 εi

≈
∫∞
rk t
−α(log t− log k)2dt∫∞

rk t
−αdt

= log2 r +
2

α− 1
log r +

2

(α− 1)2
.

which is uniformly bounded in k. Therefore, the induced map has drift to c, and thus
is Lebesgue dissipative.

For the slopes of the induced map, and the original map we get the following:

sj =
1

εj

∑
i>Q(j)+1

εi ≈ jα
∫ ∞
rj

t−αdt = j
r1−α

α− 1
,

whence

κj ≈
κj−1

sj−1

sj
s[rjcs[r2jc

≈ κj−1
(α− 1)2

r5−2α

1

j2
= O(Bj(j!)−2)

for B = (α−1)2

r5−2α . Next we check conditions (14) and (15). Because
εQ2(j)+1

sQ(j)
6 εQ(j), it

suffices to check (15). For j sufficiently large,

sj
κj

∞∑
i=j+1

κiεi ≈ j
r1−α

α− 1

(j!)2

Bj

(
Bj+1

(j + 1)!2
C(j + 1)−α +

Bj+2

(j + 2)!2
C(j + 2)−α + · · ·

)

6
r1−α

α− 1
CB(j + 1)−α−1 · r2−2α

< C(α− 1)r−α−2j−α−1 ≈
εQ2(j)+1

sQ(j)
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Hence, asymptotically there are no restrictions to build a piecewise linear map for this
kneading map.

The critical order of this map is infinite. Indeed, the slope on (zj−1, zj) is κj ≈ Bj

(j!)2 .

|c− zj−1| =
∑∞

i=j εj ≈ (α− 1)
∫∞
j t−αdt = j1−α. So the critical order ` must satisfy

`j(1−α)(`−1) = O

(
Bj

(j!)2

)
.

This is impossible for finite `.

5. Projecting thermodynamic formalism to the original system

In order to understand the thermodynamic properties of our systems (I, fλ) and
(Y, Fλ) more deeply, we need the definition of conformal measure. Since we want
to use this notion for both of these systems, we define it for general dynamical sys-
tems and potentials which preserve the Borel structure (so we implicitly assume our
phase space is a topological space).

Definition 1. Suppose that g : X → X is a dynamical system and φ : X → [−∞,∞]
is a potential, both preserving the Borel structure. Then a measure m on X is called
φ-conformal if for any measurable set A ⊂ X on which g : A→ g(A) is a bijection,

m(g(A)) =

∫
A
e−φ dm.

For the geometric potential φt = −t log |Dfλ| of the original system (I, fλ), we want
to determine for which potential shift there is a (φt − p)-conformal measure, and
potentially an invariant measure equivalent to it. For a general potential φ for (I, fλ),
the induced potential is defined as

Φ(x) =

τ(x)−1∑
j=0

φ ◦ fλ(x),

and hence it contains the inducing time in a fundamental way. Even if φ is constant
(or shifted by a constant amount p), the induced potential is no longer constant
(and shifted by τp). More concretely, for potential φt − p, the induced potential is
−t log |F ′λ| − τp, where τp is the shift by the scaled inducing time τi = Si−1 on Wi.
In Lemma 1 below we prove the connection between a (φt− p)-conformal measure for
(I, fλ) and a (Φt − pτ)-conformal measure for (Y, Fλ).

As usual, the original system (I, f) can be connected to the induced system (Y, F ) via
an intermediate tower construction, say (∆, f∆), defined as follows: The space is the
disjoint union

∆ =
⊔
i

τi−1⊔
l=0

∆i,l,



16 HENK BRUIN AND MIKE TODD

where ∆i,l are copies of Wi and Ŵi, and the inducing time τi = τ |Wi∪Ŵi
= Si−1.

Points in ∆i,l are of the form (x, l) where x ∈ Wi ∪ Ŵi. The map f∆ : ∆ → ∆ is
defined at (x, l) ∈ ∆i,l as

f∆(x, l) =

{
(x, l + 1) ∈ ∆i,l+1 if l < τi − 1;
(F (x), 0) = (0, fSi−1(x)) ∈ ti∆i,0 if l = τi − 1.

The projection π : ∆ → I, defined by π(x, l) = f l(x) for (x, l) ∈ ∆i,l, semiconjugates
this map to the original system: π ◦ f∆ = f ◦π. Furthermore, the induced map (Y, F )
is isomorphic to the first return map to the base ∆0 = ti∆i,0.

Lemma 1. Let Φt be the induced potential of φt, and p be a potential shift.

a) A (φt, p)-conformal measure nt for (I, f) yields a (Φt, τp)-conformal measure
mt for (Y, F ) by restricting and normalising:

mt(A) =
1

nt(Y )
nt(A) for every A ⊂ Y := ∪i>1(Wi ∪ Ŵi).

b) A (Φt, τp)-conformal measure mt for (Y, F ) projects to a (φt, p)-conformal mea-

sure nt for (I, f): for every i, l and A ⊂Wi ∪ Ŵi,

nt(π(A, l)) =
1

M

∫
A

exp

lp+

l−1∑
j=0

φt ◦ f j
 dmt,

see Figure 3, with normalising constant

M := 1 + ep
∑
i>2

∫
Wi

e−φtdmt + e2p
∑
i>3

∫
Wi

e−φt◦f−φtdmt > 1

is (φt, p)-conformal.

c2 z0 c ẑ0 c1

f2(∪i>3(Wi))︷ ︸︸ ︷ mt([zo,ẑ0])=1︷ ︸︸ ︷ f(∪i>2(Wi))︷ ︸︸ ︷

Figure 3. Distribution of the conformal mass nt on [c2, c1]

In the case that φt = −t log |f ′|, then the formula for the normalising constant
simplifies to M = 1 + ep

∑
i>2w

t
iκ
t
i + e2p

∑
i>3w

t
iκ
t
iκ
t
0 which is finite for all λ ∈

(0, 1), t > 0 and p ∈ R.

c) The invariant measure µt for (Y, F,Φt) projects to an invariant measure νt
provided

∑
i τiµt(Wi) <∞ (where in fact τi = Si−1), using the formula

νt =
1

Λ

∑
i

τi−1∑
j=0

f j∗µt for Λ =
∑
i

τiµt(Wi).

Moreover,

h(νt) =
h(µt)

Λ
and

∫
ψ dνt =

∫
Ψ dµt
Λ

,
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for any measurable potential ψ on I and its induced version Ψ on Y .

Note that the last part of this lemma is just the Abramov formula.

Proof. a) If nt is (φt, p)-conformal for (I, f), it means, as stated in Definition 1, that
nt(f(A)) =

∫
A e
−φt+pdnt whenever f : A → f(A) is one-to-one. Taking A ⊂ Wi (or

⊂ Ŵi), and applying the above τi = Si−1 times gives that nt(F (A)) =
∫
A e
−Φt+τipdnt,

so the normalised restriction mt = 1
nt(Y )nt is indeed (Φt, τp)-conformal.

b) For the second statement, it is straightforward from the definition that if A ⊂ Wi

or A ⊂ Ŵi and 0 6 l < τi − 1, then for B = π(A, l),

nt(f(B)) = nt(π(A, l + 1))

=
1

M

∫
A

exp

(l + 1)p−
l∑

j=0

φt ◦ f j
 dmt

=
1

M

∫
A
eφt◦f

l+p exp

lp− l−1∑
j=0

φt ◦ f j
 dmt

=

∫
B
e−φt+pdnt.

Similarly, if l = τi − 1, then

nt(f(B)) = n(F (A)) =
1

Λ

∫
A

exp (τip− Φt) dmt

=
1

M

∫
A

exp

τi−1∑
j=0

(−φt ◦ f j + p)

 dmt

=
1

M

∫
A
eφt◦f

l+p exp

lp− l−1∑
j=0

φt ◦ f j
 dmt

=

∫
B
e−φt+pdnt

This proves the (φt, p)-conformality. The tricky part is to show that nt is actually
well-defined. Assume that B = π(A, l) = π(A′, l′) for two different sets A ⊂ Wi and
A′ ⊂Wi′ . So we must show that the procedure above gives nt(π(A, l)) = nt(π(A′, l′)).
Assume also that τi − l 6 τi′ − l′; then we might as well take B maximal with this
property: B = π(Wi′ , l

′))

Now C := f τi−l(B) ⊂ F (Wi) = (zQ(i), c) or (c, ẑQ(i)). It is important to note that the

induced map F is not a first return map to a certain region, but F |Wi = fSi−1 |Wi is
the first return map to (zQ(i), ẑQ(i)). Since f τi′−τi maps C to F (Wi′) = (zQ(i′), c) or

(c, ẑQ(i′)), the iterate f τi′−τi |C can be decomposed into an integer number, say k > 0,
of applications of F , and C is in fact a k-cylinder for the induced map. Since mt is
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(Φt, τp)-conformal,

mt(C) =

∫
Fk(C)

exp

k−1∑
j=0

(Φt − τp) ◦ F−j
 dmt.

Taking an extra τi − l steps backward, we get

nt(B) =
1

M

∫
C

exp

τi−l∑
j=1

(φt − p) ◦ f j−(τi−l)

 dmt

=
1

M

∫
Fk(C)

exp

k−1∑
j=0

(Φt − τp) ◦ F−j
 exp

τi−l∑
j=1

(φt − p) ◦ f j−(τi−l)◦F−k

 dmt

=
1

M

∫
F (Wi′ )

exp

− τi′−l′∑
j=1

(φt − p) ◦ f j−(τi′−l′)

 dmt,

so computing nt(B) using τi − l or τi′ − l′ both give the same answer.

Now for the normalising constant, since our method of projecting conformal measure
only takes the measure of one of the preimages of π in ∆ of any set A ⊂ I, we do not
sum over all levels of the tower, but just enough so that the image by π covers I, up
to a zero measure set. However, modulo a countable set, the core [c2, c1] is disjointly
covered by

⋃
i>1Wi ∪

⋃
i>2 f(Wi) ∪

⋃
i>2 f

2(Wi). This gives

M =
∑
i>1

mt(Wi ∪Wi) +
∑
i>2

∫
Wi

ep−φtdmt +
∑
i>3

∫
Wi

e2p−φt−φt◦fdmt

= 1 +
∑
i>2

ep
∫
Wi

e−φtdmt + e2p
∑
i>3

∫
Wi

e−φt−φt◦fdmt.

for an arbitrary potential. Using the formulas for the slope κi = f ′|Wi from (20) and
the expressing for 1

2wi = mt(Wi) from (25), we obtain for φt = −t log |f ′|:

M = 1 +
ep

2

∑
i>2

wtiκ
t
i +

e2p

2

∑
i>3

wiκ
t
iκ
t
0

= 1 +
ep(1− λt)

2

(
1 + (1− λ)tλt + (1− λ)3tλ2t +

∑
i>5

λ3ti(1− λ)2ti

λ11t(1− λ)5t

)

+
e2p(1− λt)
2(1− λ)t

(
(1− λ)tλt + (1− λ)3tλ2t +

∑
i>5

λ3ti(1− λ)2ti

λ11t(1− λ)5t

)

= 1 +
ep(1− λt)

2

(
1 + (1− λ)tλt + (1− λ)3tλ2t +

λ4t(1− λ)5t

1− λ3t(1− λ)3t

)
+
e2p(1− λt)λt

2

(
1 + (1− λ)2tλt +

λ3t(1− λ)4t

1− λ3t(1− λ)3t

)
<∞.

c) The third statement is entirely standard, see for example [PS, Theorem 2.3]. �
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6. The conformal measure and equilibrium state for (Y, Fλ,Φt)

In this section we adapt the results for the map Tλ studied in [BT3] to the map Fλ.
This also allows us to prove Theorem B.

Proposition 2. For each λ ∈ (0, 1), t > 0 and p = P (Φt), the map Fλ has a (Φt−p)-
conformal measure m̃t with

m̃t(Wk) = m̃t(Ŵk) =

{
1−λt

2 λt(k−1) if λt 6 1
2 ,[

(k − 1) + λ−t(1− k
2 )
]

(1
2)k+1 if λt > 1

2 .
(25)

If in addition λt < 1
2 , then Fλ preserves a probability measure µ̃t � m̃t with

µ̃t(Wk) = ζt
1− 2λt

λt

(
λt

1− λt

)k
and µ̃t(Ŵk) = (1− ζt)

1− 2λt

λt

(
λt

1− λt

)k
(26)

for some ζt ∈ (0, 1). Moreover, µ̃t is an equilibrium state for potential Φt.

Proof. Recall from (3) that Tλ ◦ π = π ◦ Fλ for the two-to-one factor map π with
π−1(Vj) = Wj . In [BT3, Theorem 2] it is shown that Tλ has a (Φt − p)-conformal
measure such that

mt,p(Vk) =

{
(1− λt)λt(k−1) if p = logψ(t) and λt 6 1

2 ,[
(k − 1) + λ−t(1− k

2 )
]

(1
2)k if p = log 4[λ(1− λ)]t and λt > 1

2 .

and an invariant measure (provided λt < 1
2) with µt,p(Vk) = 1−2λt

λt

(
λt

1−λt

)k
. To

obtain m̃t and µ̃t we lift these measures by π, distributing the mass to Wj and Ŵj

appropriately. Since Fλ(Wj) = Fλ(Ŵj) = ∪k>j−1Wk ór ∪k>j−1Ŵk, we can distribute
the conformal mass evenly. This gives (25).

To obtain (26), abbreviate vtj = 1−2λt

λt

(
λt

1−λt

)j
and define

ζt =
∑
j>1

cSj−1
<c

vtj ,

i.e., the proportion of the invariant mass that maps under Fλ to the left of c. Next
define µt on cylinders by

µt(Ce0...en−1) = ζtv
t
e0

n−1∏
i=1

ψ(t)−1Atei−1ei
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and similarly µt(Ĉe0...en−1) = ζ̂tv
t
e0

∏n−1
i=1 ψ(t)−1Atei−1ei . Since ψ(t)−1At is a probability

matrix with Atke0 = 0 if k > e0 + 1, we get for every cylinder set

µ̃t(F
−1
λ (Ce0...en−1)) =

∑
k6e0+1
cSk−1

<c

µ̃t(C ∪ Ĉ)ke0...en−1

= ζt
∑

k6e0+1

vtkψ(t)−1Atke0

n−1∏
i=1

ψ(t)−1Atei−1ei

= ζtv
t
i0

n−1∏
i=1

ψ(t)−1Atei−1ei = µ̃t(Ce0...en−1)

and similarly for F−1
λ (Ĉe0...en−1). This proves Fλ-invariance of µ̃t.

The Tλ-invariant measure above is the unique equilibrium state for −t log |T ′λ| provided

λt < 1
2 . Since the factor map π does not affect entropy, and because for any Fλ-

invariant measure ν̃ we have
∫

log |F ′λ|dν̃ =
∫

log |T ′λ|d(ν̃ ◦ π−1), it follows that µ̃t is
indeed the unique equilibrium state for (Y, Fλ,−t log |F ′λ|). �

Proof of Theorem B. Let x ∈ [z0, ẑ0] \ ∪n>0f
−n(c) be arbitrary. Since zk is a closest

precritical point, f j(Wk) ∩ [zk, ẑk] = ∅ if 0 < j < Sk. Therefore, if c ∈ ω(x) then
F i(x) → 0 along a subsequence. From this we see that hyperbolic sets for F coin-
cide with intersections of hyperbolic sets for f with [z0, ẑ0], implying that hyperbolic
dimension are the same for F and f .

Now for the escaping set, first observe that the intervals f j([zk, c]) = f j([c, ẑk]) for
0 < j 6 Sk have f j(c) as boundary point and lengths tending to 0 as k → ∞.
Therefore F i(x) → c implies that fn(x) → ω(c) which implies that ω(x) = ω(c). We
next show that F i(x)→ c if and only if ω(x) = ω(c).

Denote by Un the largest neighbourhood of x on which fn is monotone, and let RN be
the largest distance between fn(x) and ∂fn(Un). If there is k such that F i(x) /∈ [zk, ẑk]
infinitely often, then by the Markov property of F , fn(Un) ⊃ [zk, c] or [c, ẑk] along a
subsequence. This means Rn 6→ 0. By [B2], this implies that ω(x) 6⊂ ω(c).

Therefore ω(x) = ω(c) if and only if F i(x)→ c, and hence the escaping set Ωλ coincides
with Basλ ∩ [z0, ẑ0]. Theorem B therefore follows from [BT3, Theorem C]. �

7. Conformal pressure for (I, f, φt)

In this section we prove the main part of Theorem D, with the components about
existence of conformal measure and upper and lower bounds on conformal pressure
in various lemmas. We start by giving the definition of conformal pressure, presented
for general dynamical systems.

Definition 2. For a dynamical system g : X → X and a potential φ : X → [−∞,∞],
the conformal pressure for (X, g, φ) is

PConf(φ) := inf {p ∈ R : there exists a (φ− p)-conformal measure} . (27)
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The results on the pressure in this section are obtained using PConf(φt); in Section 9 we
show that the conformal pressure PConf(φt) coincides with the (variational) pressure
P (φt) from (1). Thus our statements in Theorem D should be read as applying to
‘both’ quantities. For PConf(Φt), we start by quoting the conclusion of Theorems 2
and B of [BT3]: PConf(Φt) and P (Φt) coincide, and

PConf(Φt) =

{
logψ(t) if λt 6 1

2 ;

log[4λt(1− λ)t] if λt > 1
2 .

(28)

Recall from (4) that t2 = − log 4/ log[λ(1−λ)] is the value of t such that [λ(1−λ)]t = 1
4 .

Hence t2 = t1 if λ > 1
2 and t2 < t1 = 1 otherwise. We can interpret t1 as the smallest

t such that the pressure of the induced system PConf(Φt) = 0.

Any (Φt − pτ)-conformal measure must observe the relations

w̃t1 = (1− λ)te−pS0

w̃t2 = λt(1− λ)te−pS1

w̃t3 = λt(1− λ)te−pS2(1− w̃t1) (29)

...
...

...

w̃tj = λt(1− λ)te−pSj−1

1−
∑
k<j−1

w̃tk

 .

Recurrence relations of a similar form were used in [BT3] to prove [BT3, Theorem 2],
but our situation here is more complicated since in that setting in the place of each
e−pSj term was simply the constant term ψ(t). The idea now is to find a solution
p = p(t) of (29) such that also H(p, t) :=

∑
j w̃

t
j is equal to 1. Note that in Lemma 3

and Proposition 4 below, we give necessary lower and upper bounds on p(t), without
assuming its existence. Along the way, we will also need to check that w̃tk > 0 for all
k > 1.

Write

β := t log[λ(1− λ)] and β′ := (t− t2) log[λ(1− λ)], (30)

so that eβ = 1
4 for t = t2 and eβ = 1

4e
β′ > 1

4 for t < t2.

7.1. Lower bounds on PConf(φt). Let us now compute the asymptotics of w̃tk to
show that in this case p(t) has to be positive for t < t1.

Lemma 2. Fixing p = 0, there is a unique solution to (29), denoted by (w̄tk)k∈N It
satisfies {

w̄tk > 0 and
∑

k w̄
t
k = 1 if t > t1;

there exists k0 such that w̄tk0
< 0 if t < t1.
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Moreover, for r± = 1
2(1±

√
1− 4eβ),

k0 =

⌈
log

r+(r+−λ
t)

r−(r−−λt)

log
r+
r−

⌉
+ 1 if t2 < t < t1 = 1 (i.e., λ ∈ (0, 1

2)),

k0 ≈ 2(1−λt)
1−2λt if t . t2 6 t1 = 1 for λ ∈ (0, 1

2 ],

k0 ≈ 2π√
β′

if t . t1 6 1 for λ ∈ [1
2 , 1).

Proof. Subtracting two successive equations in (29), we find that the w̄tk satisfy recur-
sive relation

w̄tk+1 = w̄tk − eβw̄kk−1. (31)

The roots of the corresponding generating equation r2−r+eβ = 0 are r± =
1±
√

1−4eβ

2 .
It is straightforward to check that

(i) r− < λt, 1− λt < r+ if t > 1;

(ii) r± ∈ {λ, 1− λ} if t = 1;

(iii) λt < r− < r+ < 1− λt if t2 < t < 1 and λt < 1
2 ;

(iv) 1− λt < r− < r+ < λt if t1 < t < 1 and λt > 1
2 ;

(v) r− = r+ = 1
2 if

{
t = t1 < 1 for λt > 1

2 ,

t = t2 for λt 6 1
2 ,

(vi) r± are complex conjugate if

{
t < t1 < 1 for λt > 1

2 ,

t < t2 6 t1 = 1 for λt 6 1
2 .

(i)-(iv) In the first four cases, i.e., r± are real and distinct, the recursion combined
with the initial values w̄t1 = (1− λ)t and w̄t2 = λt(1− λ)t, give the solution

w̄tk =
(1− λ)t√
1− 4eβ

[
(λt − r−)rk−1

+ + (r+ − λt)rk−1
−

]
. (32)

If t > 1, then the coefficients are non-negative, and also if t1 < t < 1. If t2 < t < t1 = 1,
then the coefficient λt− r− < 0, so there is k0 such that w̄tk < 0 for all k > k0, namely

r2
+

r2
−

r+ − λt

r− − λt
>

(
r+

r−

)k0

>
r+

r−

r+ − λt

r− − λt
, (33)

which results in k0 =

 log
r+(r+−λ

t)

r−(r−−λt)

log
r+
r−

+ 1.

(v) If t = t1 < 1, or when t = t2, then r− = r+ = 1
2 , and the general solution is

w̄tk =
(1− λ)t

2k
(
4(1− λt) + 2k(2λt − 1)

)
.

If λt > 1
2 (i.e., t = t1 6 1), then the coefficient 4(1− λt) + 2k(2λt − 1) > 0 and hence

w̄tk > 0 for all k. If λt < 1
2 , then the coefficient 4(1 − λt) + 2k(2λt − 1) < 0 for all

k > k0 =
⌈
2(1− λt)/(1− 2λt)

⌉
+ 1.
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(vi) Finally, if t < t1 < 1, or in general when t < t2, then the roots are complex.
Together with the initial values w̄t1 = (1 − λ)t and w̄t2 = λt(1 − λ)t, we find the
solution

w̄tk =
(1− λ)t

2k

[(
4 cos

√
β′

2
− 4λt

)
cos

(√
β′k

2

)
+(

4λt cos

(√
β′

2

)
− 2 cos

(√
β′
))(sin

√
β′k
2

sin
√
β′

2

)]

=
2(1− λ)t

2k

[
(2 cos θ − 2λt) cos θk + (2λt cos θ − 2 cos2 θ + 1)

sin θk

sin θ

]
, (34)

for θ = 1
2

√
β′ = 1

2

√
(t− t2) log[λ(1− λ)]. This is an oscillatory function in k, with an

exponential decreasing coefficient 2−k. Recall that w̄t2 = λtw̄t1 > 0. First assume that
λ > 1

2 , whence λt > 1
2 . Therefore

0 < 2 cos θ − 2λt � 2λt cos θ − cos2 θ + 1

sin θ
,

so the expression in the square brackets becomes negative when k0 ≈ 2π√
β′

.

Now set λ < 1
2 , and λt < 1

2 and moreover assume t − t2 is small. Then 2λt cos θ −
2 cos2 θ + 1 < 0, so approximating sin θk/ sin θ = k for small values of θ, we find the

expression in the square brackets becomes negative when k0 > 2 cos θ−2λt

2 cos2 θ−1−2λt cos θ
≈

2(1−λt)
1−2λt .

Note also that in all cases w̄tk → 0, and therefore (29) gives that 1−
∑

k<j−1 w̄
t
k → 0

as j →∞. This shows that
∑

k w̄
t
k = 1. �

We can now use Lemma 2 to address directly the problem set up in (29): finding a
solution p = p(t) to H(p, t) = 1 with all summands non-negative.

Lemma 3. If λ > 1
2 and t < t1 6 1 is close to t1, or if λ < 1

2 and λt is sufficiently

close to 1
2 , then there is τ0 = τ0(λ) > 0 such that p(t) > τ0

Sk0
.

Proof. Let w̄tk be the solution of (29) for p = 0 as computed in Lemma 2, while we
write w̃tk = w̃tk(p) for the case p > 0. We start by showing that, under the assumptions

of the lemma, w̄tk+1/w̄
t
k ≈

1
2 for 1 6 k 6 k0 − 10.

• Case 1: λ > 1
2 and t < t1 6 1 is close to t1. In this case, 2λt cos θ − 2 cos2 θ + 1 =

(2λt− 1) cos θ+ (1 + 2 cos θ)(1− cos θ) > 0 for 0 6 θ = 1
2

√
β′ 6 π/2. With w̄tk as given

by (34) and using standard trigonometric formulas, we derive that

w̄tk+1

w̄tk
=

1

2

(
cos θ − sin θ

(2 cos θ − 2λt) sin θk − 2λt cos θ−2 cos2 θ+1
sin θ cos θk

(2 cos θ − 2λt) cos θk + 2λt cos θ−2 cos2 θ+1
sin θ sin θk

)

∼ 1

2

(
cos θ +

sin θ

tan θk

)
as θ → 0. (35)
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If 10 6 k 6 k0 − 10, this reduces to

11

20
>
w̄tk+1

w̄tk
=

1

2

(
cos θ − sin θ

tan θk

)
>

9

20
for small θ. (36)

• Case 2: λ < 1
2 and λt is sufficiently close to 1

2 . In this case w̄tk is given by (32), so

w̄tk+1

w̄tk
=

(λt − r−)rk+ + (r+ − λt)rk−
(λt − r−)rk−1

+ + (r+ − λt)rk−1
−

= r+ ·
1 + r+−λt

λt−r−

(
r−
r+

)k
1 + r+−λt

λt−r−

(
r−
r+

)k−1
= r+ ·

1 + r+−λt
λt−r−

(
r−
r+

)k0
(
r+
r−

)k0−k

1 + r+−λt
λt−r−

(
r−
r+

)k0
(
r+
r−

)k0−k−1
.

Using (33), we obtain

r+ 6
w̄tk+1

w̄tk
6 r+ ·

1 +
(
r+
r−

)k0−k+2

1 +
(
r+
r−

)k0−k 6 r+

(
r+

r−

)2

.

Since r+, r− → 1
2 as λt → 1

2 , we obtain that
w̄tk+1

w̄tk
≈ 1

2 uniformly in k in this case.

The difference between w̄tk and w̃tk is εk = εk(p) = w̃tk(p) − w̄tk. We claim that if
p < 1/Sk0 , then there is K such that

|w̃tk − w̄tk| =: |εk| 6 Kτ0(1− e−pSk−1)w̄tk for all k 6 k0 − 10. (37)

Since w̄t1(e−p − 1) = ε1 6 −pS0w̄
t
1 and w̄t2(e−2p − 1) = ε2 6 −pS1w̄

t
2, this claim holds

for k = 1, 2.

Subtracting two successive equations in (29) gives the recursive relations

w̃tk+1 = e−pSk−2w̃tk − eβ−pSkw̃tk−1, (38)

so for p = 0 this is w̄tk+1 = w̄tk − eβw̄tk−1. For εk we obtain

εk+1 = w̃tk+1 − w̄tk+1

= e−pSk−2εk − eβe−pSkεk−1 + eβ(1− e−pSk)w̄tk−1 − (1− e−pSk−2)w̄tk.

Write εk = uk(1 − e−pSk−1)w̄tk, so u1 = u2 = −1 and u3 ∈ (−1, 0). Then we can
rewrite the above as

uk+1 = e−pSk−2
1− e−pSk−1

1− e−pSk
w̄tk
w̄tk+1

uk − eβe−pSk
1− e−pSk−2

1− e−pSk
w̄tk−1

w̄tk+1

uk−1

+
w̄tk
w̄tk+1

(
eβ
w̄tk−1

w̄tk
− 1− e−pSk−2

1− e−pSk

)
:= auk − buk−1 + c.

The numbers a, b, c depend on k, but since
w̄tk+1

w̄tk
≈ w̄tk

w̄tk−1
∈ [0.45, 0.55] for all 10 6

k 6 k0 − 10, and eβ ≈ 1
4 , we have c ∈ [0.1, 0.5] and 0 < a − b < 0.99. Therefore

the orbit (uk)k>1 is bounded, say |uk| 6 K for all k, and in fact positive from the
moment that two consecutive terms are positive. In particular, −1 6 uk 6 K for
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all k, and |εk| 6 K(1 − e−pSk−1)w̄tk for all k 6 k0 − 10, proving Claim (37). If

we now take p 6 τ0/Sk0 , then |εk| 6 Kτ0γ
−11
+ w̄tk for k = k0 − 10. Propagating

this tiny error (provided τ0 is small) for another eleven iterates, i.e., eleven recursive
steps w̃tk+1 = e−pSk−2w̃tk − eβ−pSkw̃tk−1, we find that w̃tk0+1 < 0. This shows that
p(t) > τ0/Sk0 . �

Recall that γ+ = 1
2(1 +

√
5) and Γ = 2 log γ+√

− log[λ(1−λ]
.

Proposition 3. There are τ0 = τ0(λ) and C̃ = C̃(λ) > 0 such that

p(t) >
τ0

Sk0

>

{
τ0e
−πΓ/

√
t1−t if t < t1 6 1 close to t1 and λ > 1

2 ;

τ0C̃(1− t)
log(γ+)

logR if t < 1 close to 1 and λ < 1
2 ,

where logR = 2 log(1 +
√

1− 4λt(1− λ)t)− log[4λt(1−λ)t] ∼ 2(1− 2λ) as t→ 1 and

λ→ 1
2 .

Proof. Lemma 3 gives p(t) > τ0
Sk0

. For the second inequality, first assume that

λ > 1
2 and t < t1 6 1. Using the estimate of k0 from Lemma 2, and β′ =√

− log[λ(1− λ)](t1 − t), we find

p(t) >
τ0

Sk0

≈ τ0e
−k0 log γ+ > τ0e

− πΓ√
t1−t . (39)

Now for the case λ < 1
2 and t < 1, recall from (33) that

τ0

Sk0

> τ0

(
r+

r−

)−k0
log(γ+)

log(
r+
r−

)
>

(
r2

+

r2
−
· r+ − λt

r− − λt

)− log(γ+)

log(
r+
r−

)

.

We work out the asymptotics for fixed λ < 1
2 and first order Taylor expansions for

t ≈ 1.

4eβ = 4λ(1− λ) (1 + log[λ(1− λ)](t− 1)) + h.o.t.√
1− 4eβ = (1− 2λ)

√
1− 4λ(1− λ)

(1− 2λ)2
log[λ(1− λ)](t− 1) + h.o.t.

= (1− 2λ)

(
1− 2λ(1− λ)

(1− 2λ)2
log[λ(1− λ)](t− 1)

)
+ h.o.t.

R :=
r+

r−
=

(1 +
√

1− 4eβ)2

4eβ
= 1 + 2(1− 2λ) + h.o.t.

r+ − λt = 1− 2λ+ h.o.t.

r− − λt =

(
2λ(1− λ)

1− 2λ
log[λ(1− λ)]− 2λ log λ

)
(t− 1) + h.o.t.

This gives exponent log(γ+)/ log(R) (which is ∼ log(γ+)/(2(1− 2λ)) as λ→ 1
2) and

r2
+

r2
−
· r+ − λt

r− − λt
=

(1 + 4(1− 2λ))
(

1−2λ
−λ(1−λ) log[λ(1−λ)]+2λ(1−2λ) log λ

)
1− t

+ h.o.t.
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Hence the estimate holds for 0 < C̃ ∼
(
−λ(1−λ) log[λ(1−λ)]+2λ(1−2λ) log λ

(1+4(1−2λ))(1−2λ)

) log γ+
2 log(1−2λ)

as

λ→ 1
2 . �

Lemma 4. If p > 0, then w̃tk → 0 super-exponentially:

w̃tk = e−pSk−1+αk . (40)

where (αk)k>1 is a convergent sequence depending on p and t.

Proof. First note that if
∑

k w̃
t
k 6= 1, then the factor e−pSk−1 is the only factor in (29)

that tends to zero. Hence the final statement of the lemma is immediate. So assume
now that

∑
k w̃

t
k = 1, and w̃tk decreases faster than eβ−pSk−1 .

Taking a linear combination of two consecutive equations in (29), we obtain

epSkw̃tk+1 = epSk−1w̃tk − eβw̃tk−1. (41)

By setting w̃tk = e−pSk−1+αk , for some αk ∈ R, we rewrite (41) as

eαk+1−αk = 1− eβ−pSk−2+αk−αk−1 .

In fact, α1 = t log λ and α2 = t log λ(1− λ). Abbreviating εk = αk − αk−1, we have

eεk+1 = 1− eβ−pSk−2−εk . (42)

This means that εk → 0 exponentially and hence αk converges to some limit α∞ =
α∞(p, t), exponentially fast in k. Therefore, w̃tk → 0 super-exponentially in k, when-
ever p > 0. �

7.2. Upper bounds on PConf(φt). We define upper bounds on p(t) using a non-
autonomous dynamical system. The following lemma will be applied to this.

Lemma 5. The map η : r 7→ 1− ξ
4r has

one fixed point 1
2 if ξ = 1;

two fixed points A± = 1
2(1±

√
1− ξ) if ξ < 1;

no fixed points if ξ > 1.

If ξ < 1, then the largest fixed point 1
2(1 +

√
1− ξ) is attracting; if ξ 6 0, then the

interval [1,∞) is invariant. If ξ > 1, and δ =
√

2(ξ−1)

3(
√
ξ+1)

then it takes an orbit at least√
3(
√
ξ+1)

2(ξ−1) iterates to pass through the interval [
√
ξ

2 − δ,
√
ξ

2 + δ].

Proof. The first statements follow from straightforward calculus. For the last state-

ment, observe that η′(r) = 1 for r =
√
ξ

2 and the vertical distance r − η(r) =
√
ξ − 1.

Furthermore (r+ δ)− η(r+ δ) 6 (
√
ξ− 1) + 2√

ξ
δ2. and (r− δ)− η(r− δ) 6 (

√
ξ− 1) +

2√
ξ
δ2+O(δ3). Hence for ξ sufficiently close to 1, we have x−η(x) 6 (

√
ξ−1)+(3/2)2δ2
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for all x ∈ [
√
ξ

2 − δ,
√
ξ

2 + δ], so it takes an orbit at least 2δ/[(
√
ξ−1) + (3δ/2)2] iterates

to pass through this interval. This quantity is maximised for

δ =

√
2(
√
ξ − 1)

3
=

√
2(ξ − 1)

3(
√
ξ + 1)

, (43)

in which case (r + δ) − η(r + δ) 6 (1 + 4
3
√
ξ
)(
√
ξ − 1). In this case, it takes at least√

3(
√
ξ+1)

2(ξ−1) iterates to pass through the interval. �

Lemma 6. Let (uk) be given by

u1 = λt and uk+1 = ηk(uk) := 1− eβ
′−pSk−2

4uk
.

There is a constant τ1 = τ1(λ) (with precise value given in the proof) such that if

p >

τ1e
− 5Γ

6
√
t1−t if λ > 1

2 , t < t1 close to t1, Γ = 2 log γ+√
− log[λ(1−λ)]

τ1(1− t)
λ log γ+
2t(1−2λ) if λ < 1

2 , t < 1 close to 1,

then uk >
1
3 for all k and uk → 1 exponentially.

Proof. Let ξk = eβ
′−pSk−2 . The dynamics of the map ηk : r 7→ r− ξk

4r depend crucially

on whether ξk > 1 or ξk 6 1. These cases are roughly parallel to λ > 1
2 , t <

t1 close to t1 and λ < 1
2 , t < 1 close to 1. However, if pSk−2 is sufficiently large, the

factor e−pSk−2 turns the first case into the second.

By Lemma 5, if ξk 6 1, then ηk has an attracting fixed point, tending to 1 as ξk → 0.
Therefore, once β′ − pSk−2 6 0, and assuming that uk ≥ Ak where Ak 6

1
2 is the

repelling fixed point of ηk, the orbit of uk will tend to the attracting fixed point which
itself moves to 1 at an exponential rate as k →∞.

However, if ξk > 1, i.e., ξk is “before” the saddle node bifurcation that produces the
fixed point 1

2 , then uk will decrease and eventually become negative. The crux of the
proof is therefore to show that the “tunnel” between the graph of ηk and the diagonal
closes up before the orbit (uk)k>0 has moved through this tunnel, see Figure 4 (left).

We fix ξ = eβ
′

and δ as in (43), and we will choose p so that the repelling fixed point
Ak is to the left of the tunnel (of width 2δ and centred around the point x =

√
ξ/2 at

which η′(x) = 1), i.e.,

Ak =
1

2

(
1−

√
1− ξe−pSk−2

)
6

1

2

√
ξ − δ =

1

2

(√
ξ −G

√
ξ − 1

)
,

where we abbreviated G =
√

8
3(
√
ξ+1)

< 6
5 . Assuming that equality holds, and solving

for e−pSk−2 , we obtain

1− ξe−pSk−2 = (
√
ξ − 1)

(√
ξ − 1− 2G

√
ξ − 1 + (

√
ξ + 1)G2

)
,

which can be reduced to pSk−2 = 2(1 +G2)(
√
ξ − 1) + o(

√
ξ − 1).
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m

m’

Figure 4. The graphs of η1 and ηk for ξ1 6 1 (left) and ξ1 > 1 (right)
with the line m (parallel to tangent line m′ to ηk at A−−

√
ε drawn in.

The orbit of u1 under η1 is depicted, but the actual (non-autonomous)
orbit (uj)j>1 we always have ηk−1(u1) 6 uk.

Lemma 5 states that the passage through the tunnel takes at least

k =

√
3(
√
ξ + 1)

2(ξ − 1)
=

2

G
√
ξ − 1

6
5

6

2√
− log[λ(1− λ)](t2 − t)

iterates. Note that 2(1 +G2) = 14/3 < 5. Choose τ1 = 5γ2
+(
√
eβ′ − 1) = 5γ2

+(
√
ξ − 1)

and p > τ1e
− 5Γ

6
√
t2−t . Then

p > τ1e
− 5

6
Γ√
t2−t > τ1e

−k log γ+ = 5γ2
+(
√
ξ − 1)γ−k+ >

2(1 +G2)(
√
ξ − 1)

Sk−2
.

Hence pSk−2 > (1 +G2)(
√
ξ − 1) + o(

√
ξ − 1) and we conclude that the tunnel closes

with fixed point to the left of the tunnel, before uk passes through it. At (or before)
this iterate, uk starts to increase again, and eventually converge to 1 at an exponential
rate.

Now let us assume that ξ < 1, so there is a (left) fixed point A− = 1
2(1−

√
1− ξ) which

for t = 1 coincides with u1 = λt. For t < 1, we have u1 < A−, say A1− u1 = ε = ε(t),
and Taylor expansion shows that

ε(t) =
1

2

(
1− 2λt −

√
1− 4eβ

)
= C(1− t) +O((1− t)2)

for C = λ log λ − λ(1 − λ) log[λ(1−λ)]
1−2λ . Assume that j is the first iterate such that

u1 −
√
ε > uj . Let K = η′(u1 −

√
ε) 6 eβ

(u1−
√
ε)2 ≈ eβ

u2
1

= (1−λ)t

λt . By taking a line with

slope K through the point (A−, A−) to approximate the graph of ηj (and this line lies
below the graph of ηk on the interval [u1−

√
ε,A−]), we can estimate uj > u1−Kj−1ε,

so Kj−1 > 1/
√
ε, see Figure 4 (right).
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Due to the inequality logK 6 t log
(

1−λ
λ

)
6 t
(

1−2λ
λ

)
, and taking τ1 = (log 5)C

λ log γ+
2t(1−2λ) ,

the condition p > τ1(1− t)
λ log γ+
2t(1−2λ) implies

p > log 5 · (C(1− t))
log γ+
2 logK > (log 4)(

√
ε)

log γ+
logK >

log 4

K
(j−1)

log γ+
logK

=
log 4

γj−1
+

≈ log 4

Sj−1
.

Let Aj be the left fixed point of ηj . Thus, given that p > (log 4)/Sj−1, we find that

Aj = 1
2(1 −

√
1− eβ′−pSj−1) > λt/4 for t close to 1. Therefore Aj < uj , and uj

will converge to the attracting fixed point A+, which itself converges exponentially to
1. �

Proposition 4. For the constants τ1 from Lemma 6 we have the following upper
bounds for the pressure:

p(t) 6

τ1e
− 5

6
Γ√
t1−t if λ > 1

2 , t < t1 close to t1;

τ1(1− t)
λ log γ+
2t(1−2λ) if λ < 1

2 , t < 1 close to 1.

Proof. Let uk =
w̃tk+1

w̃tk
epSk−2 , so u1 = λtep(S−1+S0−S1) = λt > 1

2 (where we set S−1 = 1

by default). From (38) we have

uk+1 = 1− eβ
′−pSk−2

4uk
. (44)

For p > τ1e
− 5

6
Γ√
t1−t or p > τ1(1 − t)

λ log γ+
2t(1−2λ) as given in Lemma 6, the iterates uk are

bounded away from zero and uk → 1 exponentially. Therefore

u∞ :=
∏
j>1

uj = u1 ·
∏
j>2

(
1− eβ

′−pSj−1

4uj−1

)

> r2 ·
∏
j>3

(
1− 3eβ

′−pSj−1

8

)
> 0

because
∑

j>2 3eβ
′−pSj−1/8 < ∞ and all terms eβ

′−pSj−1/8 are uniformly bounded
away from 1. Since

w̃tk+1 = e−p(Sk−2+Sk−1+···+S−1) · w̃t1 ·
k∏
j=1

uj ,

it follows that all w̃k are positive, and as w̃tk = eβ−pSj−1

(
1−

∑
j<k−1 w̃

t
j

)
, also

Hk−1(p) =
∑

j<k−1 w̃
t
k 6 1 for all k.

To prove that Hk(p, t) < 1 for p > τ1e
− 5

6
Γ√
t1−t or p > τ1(1−t)

λ log γ+
2t(1−2λ) , we will show that

∂Hk(p)
∂p < 0 for these values of p. Observe that ∂H(p, t)/∂p satisfy the the recursive
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relation:

H1 = (1− λ)te−p ∂H1
∂p = −(1− λ)te−p < 0.

H2 = (1− λ)te−p + eβe−2p ∂H2
∂p = −(1− λ)te−p − 2eβ−2p < ∂H1

∂p .

...
...

Hj = Hj−1 + eβ−pSj−1(1−Hj−2)
∂Hj
∂p =

∂Hj−1

∂p − eβ−pSj−1
∂Hj−2

∂p

− Sj−1e
β−pSj−1(1−Hj−2).

Writing Uj :=
∂Hj
∂p and vj+1 := Uj−1/Uj−2, we find v3 = 1 + 2eβ−p > 1 and

vj+1 =
Uj−1

Uj−2
= ηj(vj) := 1− eβ

′−pSj−2

4vj

(
1 + Sj−2

1−Hj−3

Uj−3

)
> 1− eβ

′−pSj−2

4vj−2
,

where the final inequality relies on Uj−3 being negative. This follows by induction,
combined with Lemma 6. THis implies that vk >

1
3 and vk → 1 exponentially fast, so∏

i>4 vi > 0. It follows that

∂H

∂p
= lim

j→∞
Uj = U1 · lim

j→∞

j∏
i=3

vi < 0,

and hence H(p) < 1. �

Remark 2. The techniques in this proof give no explicit formula for ∂H
∂p and ∂H

∂t as

t↗ t1, so they don’t answer the question whether dp
dt → 0 as t↗ t1.

7.3. Existence and uniqueness of PConf(φt).

Lemma 7. For all t < t1 there exists pu > p` > 0 such that H(p`, t) = 1 and
w̃ti(p`) > 0 for all i, and H(p, t) < 1 for all p > pu.

We will show in this section that in fact pu = p` for t close to t1; and then in Section 9
that this is actually true for all t.

Proof. For any p > 0, since w̃ti(p) 6 eβ−pSk−1 , we have H(p, t) < ∞. This fact also
implies that H(p, t) < 1 for all large p, thus proving the existence of pu.

For each (p, t), define the partial sums Hj = Hj(p, t) :=
∑

i6j w̃
t
i(p). Recall from

Lemma 2 that there is some minimal k0 ∈ N such that w̃tk0
(0) < 0. By the recurrence

relations defining w̃tk(0), this means that Hk0−2(0, t) > 1. Now we prove the existence
of a solution to the equation H(p, t) = 1 with all w̃tj(p) > 0 by continuity. For k ∈ N,
let

pk := inf
{
p > 0 : Hj(p

′, t) < 1 for each j 6 k and p′ > p
}
.

We collect some facts:

• supk pk ∈ (0,∞). Since Hk0−2(0, t) > 1 for some k0 ∈ N as shown before,
combined with the fact that (pk)k>1 is a non-decreasing (which follows imme-
diately from the definition of pj) gives that supk pk > 0. The finiteness follows
from the bound w̃ti(p) 6 e

−pSk−1 .
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• If pk > 0 then Hk(pk, t) = 1. This follows since each map p 7→ Hk(p, t) is
continuous in p, so by the definition of pk as an infimum, there must exist a
minimal j 6 k such thatHj(pk, t) = 1. But our recurrence relation (41) implies

that Hj+1(pk, t) = Hj(pk, t) + eβ−pkSk(1 −Hj−1(pk, t)) > Hj(pk, t) = 1. This
must also hold for all p sufficiently close to pk, so if j < k then this contradicts
the definition of pk.
• w̃tj(p′) > 0 for all j 6 k and p′ > pk. If this fails, take the minimum such k

and note that (41) implies that Hj−2(p′, t) > 1, a contradiction.

Now define p∞ := supk pk. It follows immediately from this definition that for any
j ∈ N, Hj(p∞, t) < 1 so H(p∞, t) 6 1. Note that this also implies that w̃tj(p∞) > 0
for all j ∈ N.

To show that H(p∞, t) = 1, notice that for p > 0 and any j ∈ N,

H(p, t) = Hj(p, t) +
∑
k>j

w̃tk(p) > Hj(p, t)− eβ
∑
k>j

e−pSk .

So defining j0 ∈ N such that pj0 > 0, let s(j) := eβ
∑

k>j e
−pj0Sk . Then for pj > pj0 ,

H(pj , t) > Hj(pj , t)− s(j) = 1− s(j).

So since s(j) → 0 as j → ∞, we have H(pj , t) → 1 as j → ∞. Therefore, the
continuity of p 7→ H(p, t) on the domain where the sums are bounded implies that
H(p∞, t) = 1. �

Proposition 5. There is at most one solution p = p(t) to H(p, t) = 1 with all w̃tk > 0.

Moreover, ∂H
∂p < 0, ∂H

∂t < 0, and the map t 7→ p(t) is analytic with dp
dt < 0 on (t1−ε, t1).

Proof. The previous proof shows that positivity of all w̃tk is equivalent to positivity
of the sequence (uk)k in (44). Therefore, if p = p(t) is a solution to the problem
w̃tk > 0 and H(p, t) = 1, then the corresponding sequence (uk)k is positive. Positivity

of ∂H(p,t)
∂p is equivalent to positivity of an orbit (vk)k for a slightly different but larger

map, and with an initial value v4 > 1 > u1. Therefore, as (uk)k is positive, so is (vk)k,

and 0 <
∏
k>1 uk 6

∏
k vk>4 = v∞, whence ∂H(p,t)

∂p = v∞ · ∂H1(p,t)
∂p < 0. This shows

that there can be at most one solution to H(p, t) = 1.

We can use the same technique to estimate ∂H(p,t)
∂t for t < t1:

H1 = (1− λ)te−p ∂H1
∂t = log(1− λ)(1− λ)te−p < 0.

H2 = (1− λ)te−p + eβe−2p ∂H2
∂t = log(1− λ)(1− λ)te−p

+ log[λ(1− λ)]eβ−2p < ∂H1
∂t .

...
...

Hj = Hj−1 + eβ−pSj−1(1−Hj−2)
∂Hj
∂t =

∂Hj−1

∂t − eβ−pSj−1
∂Hj−2

∂t

+ log[λ(1− λ)]eβ−pSj−1(1−Hj−2).
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If we now write Uj =
∂Hj
∂t and vj+1 := Uj−1/Uj−2, we find v4 = 1 + log[λ(1−λ)]eβ−p

log(1−λ)(1−λ)t > 1

and

vj+1 =
Uj−1

Uj−2
= 1− eβ

′−pSj−2

4vj

(
1− log[λ(1− λ)]

1−Hj−3

Uj−3

)
> 1− eβ

′−pSj−2

4vj−2
,

where the final inequality relies on Uj−3 being negative. The same argument shows

that ∂H
∂t < 0 as well. Furthermore, since H is analytic in both p and t, the Implicit

Function Theorem implies that t 7→ p(t) is analytic on (t1 − ε, t1) and dp
dt < 0. �

8. Invariant measures

Now we look at the invariant measure µt,p � mt,p for t < t1.

Theorem 1. Suppose t < t1 and p > 0 satisfies H(p, t) = 1 with all summands
non-negative. Then we have the following:

a) There is an Fλ-invariant measure µt = µt,p � mt,p;

b) The Radon-Nikodym derivative dµt
dmt

is bounded and bounded away from zero;

c) µt projects to an fλ-invariant probability measure νt � nt.

Proof. The solution w̃t to (29) and H(p, t) = 1 gives rise to a probability transition
matrix

Gt =



w̃t1 w̃t2 w̃t3 w̃t4 . . . . . .

w̃t1 w̃t2 w̃t3 w̃t4 . . . . . .

0
w̃t2∑
i>2 w̃

t
i

w̃t3∑
i>2 w̃

t
i

w̃t4∑
i>2 w̃

t
i

. . .

0 0
w̃t3∑
i>3 w̃

t
i

w̃t4∑
i>3 w̃

t
i

0 0 0
. . .

. . .
...

. . .
. . .


. (45)

The left eigenvector ṽt = (ṽt1, ṽ
t
2, . . . ) for eigenvalue 1 represents the invariant measure:

µt,p(Wk) = ṽtk. To find it, we start with v(0) := (1, 0, 0, . . . ) and iterate v(n) =

v(n−1)Gt. Since Gt is a stochastic matrix (i.e., nonnegative and with row-sums 1),

each v(n) is non-negative and has ‖v(n)‖1 = 1 as well. We prove by induction in n

that v
(n)
j decreases super-exponentially in j. We will show that there is K ∈ N such

that for all n > 0,

v
(n)
k 6

w̃tk−1

w̃tk−2

for all k > K. (46)

Since w̃tk = e−pSk−1+αk decrease super-exponentially in k as described in (40) we can

find K such that
w̃tk
w̃tk−1

6 1
2

w̃tk−1

w̃tk−2
for k > K. Clearly (46) holds for v(0). For the
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inductive step, assume (46) holds for n− 1. Then for k > K arbitrary,

v
(n)
k = w̃tk

v(n−1)
1 + v

(n−1)
2 +

k+1∑
j=3

v
(n−1)
j∑
i>j−1 w̃

t
i

 (47)

= w̃tk

v(n−1)
1 + v

(n−1)
2 +

k∑
j=3

v
(n−1)
j∑
i>j−1 w̃

t
i

+ v
(n−1)
k+1

(
1−

∑
i>k+1 w̃

t
i∑

i>k w̃
t
i

)

6
(
v

(n−1)
1 + · · ·+ v

(n−1)
k−1 + v

(n−1)
k

) w̃tk
w̃tk−1

+ v
(n−1)
k+1

6
w̃tk
w̃tk−1

+
w̃tk
w̃tk−1

6
w̃tk−1

w̃tk−2

,

where in the last line we used that ‖v(n−1)‖ = 1 as well the choice of K. This shows

that although the unit ball in l1 is not compact, the sequence (v(n))n>0 is tight, and
hence must have a convergent subsequence. Since Gt is clearly an irreducible aperiodic
matrix, (v(n))n>0 converges; let ṽt be the limit. Then ṽt is positive and ‖ṽt‖1 = 1.

The measure µt defined by the piecewise constant Radon-Nikodym derivative hk :=

h|Wk
= µt(Wk)

mt(Wk) =
ṽtk
w̃tk

is now easily seen to be invariant. By taking the limit n → ∞
in (47), we find

ṽtk = w̃tk

ṽt1 + ṽt2 +
k+1∑
j=3

ṽtj∑
i>j−1 w̃

t
i

 =
w̃tk
w̃tk−1

ṽtk−1 +
w̃tk∑

i>j−1 w̃
t
i

ṽtk+1,

and dividing this by w̃tk shows that (hk)k∈N is increasing, and hence bounded away
from 0. Now for the upper bound, taking the limit n→∞ in (46) shows that ṽtk → 0
super-exponentially fast. Take K ∈ N such that∑

k>K

w̃tk
w̃tk−1

<
1

4

Then by (47):

hk =
ṽtk
w̃tk
6 ṽt1 + ṽt2 +

K∑
j=1

ṽtj
w̃tj−1︸ ︷︷ ︸

C

+

k−1∑
j=K+1

w̃tj
w̃tj−1

hj +
w̃tk
w̃tk−1

hk +
ṽtk+1

ṽtk
hk.

This gives

hk 6
C + (supj<k hj) ·

∑k−1
j=K+1

w̃tj
w̃tj−1

1− w̃tk
w̃tk−1

− ṽtk+1

ṽtk

. (48)

If
ṽtk+1

ṽtk
6 1

4 , then as long as k is sufficiently large, (48) yields hk 6 2C + 1
2 supj<k hj .

Since hk is an increasing sequence, we conclude that hk 6 4C and moreover, hj 6 4C
for all j 6 k. The fact that ṽtk → 0 super-exponentially implies that there are infinitely

many k satisfying
ṽtk+1

ṽtk
6 1

4 , so hj 6 4C for all j ∈ N, concluding the upper bound.
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Since µt(Wk) = ṽtk decreases super-exponentially, Λ :=
∑

j Sj−1µt(Wj) < ∞ for t <
t1, so by Lemma 1, µt pulls back to an fλ-invariant probability measure νt � nt. �

9. Thermodynamic formalism for countable Markov shifts

9.1. Countable Markov shifts. In previous sections we have computed quantities
such as pressure rather directly, which gives a fuller understanding of the underlying
properties of our class of dynamical systems. In this section we use the theory of
countable Markov shifts, as developed by Sarig, to prove stronger results more indi-
rectly. In particular, we can obtain information about the pressure and equilibrium
states for φt for all t ∈ R.

Let σ : Σ → Σ be a one-sided Markov shift with a countable alphabet N. That is,
there exists a matrix (tij)N×N of zeros and ones (with no row and no column made
entirely of zeros) such that

Σ = {x ∈ NN0 : txixi+1 = 1 for every i ∈ N0},

and the shift map is defined by σ(x0x1 · · · ) = (x1x2 · · · ). We say that (Σ, σ) is a
countable Markov shift. We equip Σ with the topology generated by the cylinder sets

[e0 · · · en−1] = {x ∈ Σ : xj = ej for 0 6 j < n}.

Given a function φ : Σ→ R, for each n > 1 we define the variation on n-cylinders

Vn(φ) = sup {|φ(x)− φ(y)| : x, y ∈ Σ, xi = yi for 0 6 i < n} .

We say that φ has summable variations if
∑∞

n=2 Vn(φ) < ∞; clearly summability
implies continuity of φ. In what follows we assume (Σ, σ) to be topologically mixing
(see [S2, Section 2] for a precise definition).

Based on work of Gurevich [Gu1, Gu2], Sarig [S2] introduced a notion of pressure
for countable Markov shifts which does not depend upon the metric of the space and
which satisfies a Variational Principle. Let (Σ, σ) be a topologically mixing countable
Markov shift, fix a symbol e0 in the alphabet N and let φ : Σ → R be a potential of
summable variations. We let the local partition function at [e0] be

Zn(φ, [e0]) :=
∑

x:σnx=x

eSnφ(x)χ[e0](x) (49)

and

Z∗n(φ, [e0]) :=
∑

x:σnx=x,

x:σkx/∈[e0] for 0<k<n

eSnφ(x)χ[e0](x),

where χ[e0] is the characteristic function of the 1-cylinder [e0] ⊂ Σ, and Snφ(x) is

φ(x) + · · · + φ ◦ σn−1(x). The so-called Gurevich pressure of φ is defined by the
exponential growth rate

PG(φ) := lim
n→∞

1

n
logZn(φ, [e0]).
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Since σ is topologically mixing, one can show that PG(φ) does not depend on e0. If
(Σ, σ) is the full-shift on a countable alphabet then the Gurevich pressure coincides
with the notion of pressure introduced by Mauldin & Urbański [MU].

The following can be shown using the proof of [S2, Theorem 3].

Proposition 6 (Variational Principle). If (Σ, σ) is topologically mixing, φ : Σ → R
has summable variations and φ <∞, then

PG(φ) = P (φ).

Definition 3. The potential φ is said to be recurrent if 6∑
n

e−nPG(φ)Zn(φ) =∞. (50)

Otherwise φ is transient. Moreover, φ is called positive recurrent if it is recurrent
and ∑

n

ne−nPG(φ)Z∗n(φ) <∞.

If φ is recurrent but not positive recurrent, then it is called null recurrent.

We use the standard transfer operator (Lφv)(x) =
∑

σy=x e
φ(y)v(y), with dual operator

L∗φ. Notice that a measure m is φ-conformal if and only if L∗φm = m.

The following theorem is [S1, Theorem 1]. Note that the next two theorems were
originally proved under stronger regularity conditions (i.e., weak Hölderness) on the
potential, but subsequently it was found that these could be relaxed, see for example
[S3].

Theorem 2. Suppose that (Σ, σ) is topologically mixing, φ : Σ → R has summable
variations and PG(φ) < ∞. Then φ is recurrent if and only if there exists λ > 0
and a conservative sigma-finite measure mφ finite and positive on cylinders, and a
positive continuous function hφ such that L∗φmφ = λmφ and Lφhφ = λhφ. In this case

λ = ePG(φ). Moreover,

(1) if φ is positive recurrent then
∫
hφ dmφ <∞;

(2) if φ is null recurrent then
∫
hφ dmφ =∞.

Moreover the next theorem follows by [S2, Corollary 2]:

Theorem 3. Suppose that (Σ, σ) is topologically mixing and φ : Σ→ R has summable
variations and is positive recurrent. Then for the measure dµ = hφdmφ given by
Theorem 2, if −

∫
φ dµ <∞, then µ is the unique equilibrium state for φ.

We are now ready to apply this theory to our class of dynamical systems. The following
proposition contains the main ideas for the proof of Theorem C, but we state and prove
it separately to highlight the connection with the results in Section 7.

6The convergence of this series is independent of the cylinder set [e0], so we suppress it in the
notation.
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Proposition 7. For each λ ∈ (0, 1) and any t 6 t1,

a) there is a unique p such that H(p, t) = 1 with all summands non-negative;

b) this p is the unique value such that there is a (Φt − p)-conformal measure.

Proof. We first prove the proposition for the case t < t1, in which case, any p satisfying
H(p, t) = 1 with all summands non-negative, must be strictly positive. The existence
of such a p follows by Lemma 7. By Theorems 1 and 2, for p as in a) of the proposition,
the potential Φt − τp is (positive) recurrent. Theorems 1 also implies that PG(Φt −
τp) = 0. Since τ > 1, for ε > 0 we always have PG(Φt−τ(p−ε)) > PG(Φt−τp)+ε: this
means that any such p is unique. To summarise, there is one and only one p such that
H(p, t) = 1 with all non-negative summands and for this p, we have PG(Φt− τp) = 0.
It is easy to see that such a p yields a (Φt − τp)-conformal measure.

For the case t = t1, by [BT3, Theorem B], PG(Φt) = 0. Theorem B of that paper
guarantees that p = 0 is a solution to H(p, t) = 1 with all summands positive. The
above argument also shows in this case that if there is a solution p > 0 to H(p, t) = 1
with all summands non-negative, then PG(Φt− τp) = 0 and again this can only occur
if p = 0. To show that there is no negative solution, observe

wtj = eβe−pSj−1

1−
∑
k<j−1

wtk

 > eβe−pSj−1wj .

Therefore we must have p = 0 as the only solution to H(p, t) = 1 with all summands
positive. �

9.2. Proof of Theorem C.

Proof of Theorem C. We prove parts a) and b) simultaneously. First suppose that
t < t1. As in the proof of Proposition 7, Φt − τPConf(φt) is positive recurrent. By
Theorem 3, µt from Theorem 1 is an equilibrium state for Φt − τPConf(φt) and hence
satisfies

h(µt) +

∫
(Φt − τPConf(φt))dµt = 0.

Thus the Abramov formula implies that the projected measure νt has h(νt)+
∫
φt dνt =

PConf(φt), so P (φt) > PConf(φt). If P (φt) > PConf(φt) then there exists a measure
ν (with positive entropy) for which h(ν) +

∫
φt − PConf(φt) dν > 0. Since any such

measure must lift to (Y, Fλ), the Abramov formula and Proposition 6 lead to a contra-
diction. Hence P (φt) = PConf(φt). This also implies that νt is the unique equilibrium
state for φt.

For the case t = t1, Proposition 7 implies that PConf(φt) = 0. This is clearly the
same as P (φt), as follows continuity of the pressure. The existence/absence of an
equilibrium state here follows as in Theorem A.

Now let t > t1. For each λ ∈ (0, 1), [BT3, Theorem A] implies that the Φt-conformal
measure mt, if it exists, is dissipative. Hence no finite µt � mt exists. However, just
as for smooth Fibonacci maps, ω(c) supports a unique probability measure νω, which
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has zero entropy. For each x ∈ ω(c) not eventually mapping to c, Dfnλ (x) exists for

all n. Moreover, F kλ (x) → c so that if nk ∈ N is such that F kλ (x) = fnk(x), then
k/nk → 0. The Lyapunov exponent of x under Fλ is − log[λ(1− λ)], hence by part c)
of Lemma 1, the Lyapunov exponent of x under fλ is limk→∞− k

nk
log[λ(1− λ)] = 0.

Therefore νω is an equilibrium state in this case (and in fact also for t = t1). This
concludes the proof of a) and b).

Now for part c), Lemma 2 implies that PConf(φt) > 0 for t < t1. Now if t > t1, then
p = 0 still gives a conformal measure, see (32). This is the smallest (and only) value
of p to do so, because if p < 0, then H(p, t) no longer converges. Indeed, by taking
the linear combinations in (29), we get

w̃tj+1 = e−pSj
(
w̃tje

pSj−1 − eβw̃tj−1

)
.

If p < 0, we can no longer assert that w̃tj is decreasing in j, but if H(p, t) converges,

then there must be (infinitely many) js such that w̃tj 6 w̃
t
j−1. If also j is so large that

e−pSj−1 > [λ(1 − λ)]−t, then the equation gives that w̃tj+1 < 0, which is not allowed.

(The only other way of creating a conformal measure for f , is by putting Dirac masses
on the critical point and its backward orbit. Since f ′(c) = 0, this enforces no mass on
the forward critical orbit. But f ′ is not defined at f−1(c) = {z0, ẑ0}, so this gives no
solution.) Therefore PConf(φt) = 0 for t > t1.

Now we turn to analyticity. As in for example [IT1], the existence of a unique equi-
librium state of positive entropy implies that p(t) : t 7→ P (φt) is C1. (We can also use
the fact that p′(t) = −

∫
log |Dfλ| dνt, which is easily shown to be continuous in t.) It

is easy to see that Dp(t) < 0 for t < t1. Therefore we have, as in Proposition 5, that
p(t) is real analytic on (−∞, t1). �

9.3. Proof of Theorem D. The following proposition, which should be compared
to [IT1, Proposition 1.2], will tell us the shape of the pressure function at t1. This
also gives part (d) of Theorem A.

Proposition 8. The following are equivalent.

a) The left derivative D−p(t1) < 0;

b) There exists K > 0, δ > 0 so that for all t ∈ (t1 − δ, t1) there is an equilibrium
state νt for −t log |Df | and for the induced version µt,∫

τ dµt =
∑
k

Sk−1µt(Wk) 6 K.

Indeed, when the above holds, there is an equilibrium state νt1 for φt1 and
∫
τ dµt1 6

K.

Proof of Proposition 8. First assume that K < ∞ as in item b) exists. Since p′(t) =
−
∫

log |f ′λ| dνt, the Abramov formula implies∫
log |f ′λ| dνt =

∫
log |F ′λ| dµt∫
τ dµt

> − log λ

K
,
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uniformly in t, i.e., D−p(t1) 6 log λ
K < 0.

Now let us suppose that D−p(t1) < 0. As in [IT1, Lemma 4.2], there exists η > 0
such that any measure ν ∈M with h(ν)− tλ(ν) sufficiently close to p(t) has h(ν) > η.
Suppose that (νn)n is a sequence of measures such that h(νn)−tλ(νn)→ p(t). For each
n, we denote the induced version of νn by µn. Now applying the Abramov formula
and since htop(Fλ) = log 4, we obtain for all large n,

η 6 h(νn) =
h(µn)∫
τ dµn

6
log 4∫
τ dµn

,

so
∫
τ dµn 6 (log 4)/η.

Since
∫
τ dµn 6 (log 4)/η for all large n, for any η′ > 0, there must be some N ∈ N

such that µn
(
∪Nk=1Wk

)
> 1 − η′ for all large n. Notice that the choice of (νn)n, the

Abramov formula and the uniform bound on the integral of inducing times implies
that

h(µn)−
∫

(Φt − τp(t)) dµn → 0 as n→∞.

The proof now concludes by a tightness argument. Let µ∞ be a vague limit of (µn)n,
see for example [Bi]. This measure is non-zero since µn

(
∪Nk=1Wk

)
> 1 − η′ for all

n ∈ N. We may assume that it is a probability measure. The Monotone Convergence
Theorem implies that

∫
τ dµ∞ 6 (log 4)/η. Moreover, the continuity of Φt and the

upper semi-continuity of −τ implies that µ∞ is an equilibrium state for Φt − τp(t).
The fact that the integral of the inducing time is finite implies that we can project
µ∞ to an equilibrium state νt for φt, as required. �

Proof of Theorem D. The lower and upper bounds for the pressure on a left neighbour-
hood of t1 stated in a) and b) follow from Propostion 3 and Propostion 4 respectively.
Finally, part c) follows from Proposition 8. �

9.4. Recurrence and transience. We finish the paper with a brief discussion of
recurrence/transience in the context of our examples using the definitions given above.
Since we can view (Y, Fλ) as a countable Markov shift, by Theorem 2, Proposition 7
and Theorem 1 we have the following results for the system (Y, Fλ,Φt−τp): note that
the precise behaviour at t = t1 is governed by the case p = 0 which is discussed in
Section 4, see also [BT3]:

• If λ ∈ (1/2, 1) then (Y, Fλ,Φt−τp) is recurrent iff t < t1 < 1 and p = PConf(φt).
Whenever the system is recurrent, it is positive recurrent .
• If λ ∈ (0, 1/2) then (Y, Fλ,Φt−τp) is recurrent iff t 6 t1 = 1 and p = PConf(φt).

Whenever the system is recurrent, it is positive recurrent.
• If λ = 1/2 then (Y, Fλ,Φt − τp) is recurrent iff t 6 t1 = 1 and p = PConf(φt).

It is null recurrent for t = 1 and positive recurrent if t < 1.

For the original system, the Markov shift model is less easy to handle, so we prefer an
alternative definition of recurrence. In [IT2] a system (X, f, φ) was called recurrent
whenever there was a conservative φ-conformal measure mφ and transient otherwise.
A recurrent system was defined as being positive recurrent if there was an f -invariant



WILD ATTRACTORS AND THERMODYNAMIC FORMALISM 39

probability measure µφ � mφ, and null-recurrent otherwise. With this in mind, the
results of this paper allow use to state:

• If λ ∈ (1/2, 1) then (I, fλ, φt − p) is recurrent iff t < t1 < 1 and p = PConf(φt).
Whenever the system is recurrent, it is positive recurrent.
• If λ ∈ (0, 1/2] then (I, fλ, φt − p) is recurrent iff t 6 t1 = 1 and p = PConf(φt).

When the system is recurrent and p = PConf(φt), it is positive recurrent iff
λ ∈ (0, 2

3+
√

5
).
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