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Abstract. On May 19 2014, Professor Yakov Sinăı (Moscow State University) was
awarded the Abel Prize for his contributions to mathematical physics. We sketch some
of his main achievements.

Receiving the Abel prize entailed for Professor Yakov Sinăı and his wife Elena Vul
(also a mathematician) in a varied program of journeys (Oslo, Stavanger and Stockholm),
lectures, receptions and interviews (with the Press and Martin Raussen & Christian Skau:
the latter traditionally appears in the Notices of the AMS). The highlight was of course
the award ceremony itself, at the hands of Crown Prince Haakon of Norway, on May 20
2014.

Yakov Grigorevich Sinăı was born in 1935 in a family of scientists. His parents were
both microbiologists in Moscow and his grandfather a prominent mathematician, head
of department of the differential geometry at Moscow State University. Sinăı obtained
his first degree in 1957, which was also the year of his first publication. His master
(equivalent to PhD) degree followed in 1960. The academic landscape in Moscow, within
the rapidly developing fields of Ergodic Theory and Statistical Mechanics was truly re-
markable: Chataev, Dynkyn and Kolmogorov were his advisers, and the faculty included
Anosov, Krylov, Dobrushin, Gel’fand and others. The fact that he came from Jewish
family, however, restricted his possibilities in the Russian system, and he was unable to
get a full position at the Mathematics Department. Instead, he accepted a position at the
Landau Institute of Theoretical Physics of the USSR Academy of Sciences. This enabled
him collaborate with physicists as well as mathematicians, and to bridge the two disci-
plines, as he would continue to do in an unparalleled way. He introduced fundamental
concepts of statistical physics into mathematics (Kolmogorov-Sinăı entropy, thermody-
namic formalism, renormalization groups) giving them a rigorous basis.

Sinăı was a crucial figure in spread of ergodic theory. At the time, it was common for
talented mathematicians in Eastern Europe to study in Moscow, and this is how Fritz,
Krámli and Szász from Budapest and Krzyzewski and Szlenk from Warsaw first came in
contact with the emerging field, and in due time founded schools in their home countries.

Sinăı’s work was well-known in the West early on, and in 1962 he was invited to give
plenary lecture at the ICM in Stockholm. Russian mathematicians being allowed to
travel to the West were more the exception than the rule. For example, the support of
the dissident poet-mathematician Esenin, resulted in Sinăı being barred from giving an
address at the ICM in Nice in 1970. He was not alone in this; for example, Novikov was
unable to come to Nice and accept the Fields’ medal in person.
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In 1992, Sinăı joined the faculty of Princeton University, dividing his time between
Moscow and Princeton from that time onwards, in addition to several guest professorships
(such as CalTech in 2005). The Abel Prize is currently the last of a long list of awards:
the Boltzmann Gold Medal (1986); the Heineman Prize (1989); the Markov Prize (1990);
the Dirac Medal (1992); the Wolf Prize in Mathematics (1997); the Brazilian Award of
Merits in Sciences (2000); the Moser Prize (2001); the Nemmers Prize in Mathematics
(2002); the Henri Poincaré Prize (2009); the Dobrushin International Prize (2009).

Sinăı major work lies in Statistical Mechanics. The aim of this area is to derive the
statistical “macroscopic” behaviour of material (which can be gases, liquids, but also fixed
atoms or moving electrons in a grid) from the behaviour of the individual particles it
consists of. This goes back to James Clerk Maxwell (1831 - 1879) and Ludwig Boltzmann
(1844 - 1906), who applied the notions of ergodicity and entropy, although the modern
form of these notions (partly due to Sinăı) is quite different from Boltzmann’s original
approach. The Laws of Thermodynamics predict that a system of particles strives to
minimal energy and maximal entropy (= disorder) and the work of Josiah Willard Gibbs
(1839 - 1903) united this by the introduction of equilibrium states. These are measures
assigning probabilities to configurations of the system, where the weights are inverse
proportional to the exponential of the potential energy of the configuration. The fact
that particular energy levels are achieved by vastly more configurations than other energy
levels creates an equilibrium between energy and entropy. In principle, the system can
move away from the equilibrium, but if the number of particles is large1 this becomes
astronomically unlikely.

In his derivation of the H-Theorem (now called second law of thermodynamics) Boltz-
mann needed the so-called Ergodic Hypothesis:

The trajectory of the point representing the state of the system in phase
space passes through every point on the constant-energy hypersurface of
the phase space.

This was criticised, not just as mathematically unfeasible, but also it was unknown if any
system satisfied this hypothesis, even in a weakened form proposed in the influential survey
paper by Tatiana and Paul Ehrenfest [7]. A rigorous proof for even the simplest systems
of a few colliding particles (mathematical billiards) was beyond the state of mathematics
at the time, and rigorous definitions of ergodicity (and entropy) had yet to be formulated.

In the 1930s, progress was made in the study of geodesic flow on surfaces of negative
curvature. These are non-Euclidean “hyperbolic” surfaces on which initially close trajec-
tories diverge at an exponential rate. This can be considered as a continuous version of
dispersion as opposed to the dispersion at discrete time collisions of the particles in the
billiard system. The first proofs of ergodicity (Hadamard [8], Artin [1]) for certain hyper-
bolic geodesic flows relied on number theoretic properties (continued fractions, the Gauß
map), but in 1939, Eberhard Hopf (1902 - 1983) designed a general method of proving
ergodicity for hyperbolic flows Φt. This became known as Hopf Chains, and relies on the

fact that ergodic averages limT→∞
1
T

∫ T
0
ψ ◦Φtdt are constant on stable and unstable sets

of points in configuration space. However, this method required smoothness, with stable
and unstable sets stretching sufficiently far so as to create net spanning the entire config-
uration space. This condition is fulfilled for many geodesic flows, but not for systems of
colliding particles.

1which is of course the case in practical situations; in fact the sheer number of particles makes the
system completely intractable by deterministic methods
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After about 20 years of no progress, the Russian school started to get involved. Using
methods from measure theory, Andrej Kolmogorov (1903 - 1987) and Sinăı were able to
formalize entropy in a effective way [12, 18]. A measure µ on the a (configuration) space
(X,B) is called flow-invariant if µ(A) = µ(ΦtA) for all sets A ⊂ B and time t ∈ R.
Energy preserving (Hamiltonian) flows have a natural invariant measure, called Liouville
measure, but there are many others.

Given a measure µ and a partition Q of the configuration space, the entropy of this
partition is given by the sum

H(Q, µ) = −
∑
Q∈Q

µ(Q) log µ(Q),

and it takes its maximal value log #Q when µ distributes the mass evenly over all partition
elements Q ∈ Q. This reflects that the entropy becomes largest when the probability of
finding yourself in a particular state is spread the most. Assuming a discrete-time flow
Φn for simplicity, let Qn = ∨n−1k=0Φ−kQ be the n-th joint of the partition; elements in Qn
are those sets of x that visit the same elements of Q in time steps k = 0, . . . , n− 1. The
Kolmogorov-Sinăı-entropy is now computed as the growth rate of H(Qn, µ), and then
maximized over all finite partitions Q. That is:

hµ(Φn) = sup
Q

lim
n→∞

1

n
H(Qn, µ).

Kolmogorov-Sinăı-entropy became a wide-spread tool, also beyond statistical mechanics.
There are parallels to Information Theory developed by Shannon [16] in the 1940s; I would
also like to mention Ornstein’s remarkable theorem [13] that in the context of two-sided
Bernoulli shifts, entropy is a complete isomorphism invariant: two Bernoulli shifts are
isomorphic if and only if they have the same entropy.

In the early 1970s, Sinăı, combined entropy with the potential energy U of Gibbs’
approach to what is known as thermodynamic pressure2:

P (βU) = sup{hµ(Φt)− β
∫
Udµ}.

Here the supremum is taken over all flow-invariant measures µ and the parameter β =
1/kT for Boltzmann’s constant k and absolute temperature T . Those flow-invariant
measures µ that achieve this supremum play the role of equilibrium states in Gibbs’
approach, in the sense that they realize equilibrium between the (maximal) entropy and
(minimal) potential energy. Under some regularity conditions, equilibrium states satisfy
the Gibbs property which means that the mass of sets Q ∈ Qn scales as the exponential
of the ergodic sum of U − P , i.e., µ(Q) ∼ exp(

∑n−1
k=0 U ◦ Φk − P (βU)). As function

of the inverse temperature parameter β, equilibrium states can vary continuously, or
abruptly. The latter case is referred to as phase transition, in analogy between abrupt
chance of equilibrium describing e.g. water in liquid versus frozen form, or a piece of iron
in magnetised versus demagnetised form (cf. the Ising model). With this, Sinăı [21] laid
the foundation for thermodynamic formalism in dynamics. Further contributions come
from Rufus Bowen [2] and David Ruelle3 [14]. A modern text book in ergodic theory with
emphasis on this material was written by G. Keller [11].

2The connections with pressure from Newtonian physics is all but lost here.
3See [15] and [24] for some mutual 65th birthday wishes between the two.
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Figure 1. Collision rule (left) and the billiard flow with one spherical
scatterer on the two-torus (right).

Coming back to the billiard systems and the Hopf argument, which, as we mentioned
breaks down for billiard systems. Colliding participles can create singularities in the
flow when they collide tangentially (grazing collisions) or in three or more at exactly the
same time. Such singularities create discontinuities in configuration space and prevent
the proper construction of stable and unstable sets, making it impossible to carry out
Hopf’s argument. It was Sinăı who forced the breakthrough by showing that in sense
of Liouville measure, stable and unstable sets can be defined and are sufficiently long at
“most” points of configuration space.

The basic setup of a billiard flow is a particle (or several particles) moving with constant
speed in some region Q (the billiard table) and reflecting elastically against the boundary
∂Q so that no kinetic energy is lost in collisions and the angle of incidence is the angle
of reflection, see Figure 1. In formula, the velocity v′ after collision is identified with the
velocity before collision via

v′ = v − 2〈v, n(q)〉n(q), q ∈ ∂Q, (0.1)

where n(q) is the inward pointing normal vector at the collision point q of the boundary of
the table, see [25]. The phase space M is the unit tangent bundle of Q, with identifications
at the boundary according to (0.1). The billiard flow Φt preserves Liouville measure dqdωq,
where ωq is uniform measure on the sphere of unit tangent vectors at q ∈ Q. Rather than
the flow Φt, we can look at the collision map F : ∂Q×S → ∂Q×S, where S is the “half-
sphere” obtained from the unit sphere by the identification (0.1). The map F preserves a
measure sin θdθdr, for r ∈ ∂Q and angle θ ∈ S with the normal vector n(q). For this, ∂Q
has to be piecewise smooth; corners of the billiard table, but also grazing collisions with
the boundary, give rise to singularities. Usually, the particles are treated as hard spherical
objects: the collision of two particles becomes just part of the regular boundary of the
billiard table, but simultaneous collisions of three or more particles become “corners” of
the billiard.

The first model that Sinăı managed to solve this way is a two-particle system on a
two-dimensional torus, or equivalently a single particle colliding with a spherical scatterer
in the two-dimensional torus, see Figure 1. The general version of this result is known as
the Boltzmann-Sinăı postulate [19]:

The system ofN spherical particles with elastic collisions on the d-dimensional
torus is ergodic.

In trying to extend this result to more particles and higher dimensions, addition techni-
calities come into play: finite versus infinite horizons, semi-dispersing versus fully dispers-
ing billiard, cusps and other intricacies of the geometry. Together with Leonid Bunimovich
[4] and later Nikolai Chernov, new techniques were introduced, [5, 4]. Gradually the Hun-
garian school (Szász, Krámli, Simányi, Bálint, ...) got more involved, also with the help of
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another Sinăı student Dolgopyat. This finally led to the full proof of the Sinăı-Boltzmann
postulate by Nándor Simányi in 2013 [17]. Current directions in this field try to address
the question of (rates of) mixing and further statistical properties of billiard flows. With-
out doubt, Sinăı’s work, insights and encouragement over the span of sixty years have
carved the landscape of billiard flows like nothing else.

In have restricted my discussion to areas that I am familiar with, leaving out Sinăı’s
further work on renormalization groups [23], Schrödinger operators [6], fluid mechanics,
Navier-Stokes equations (with K. Khanin, J. Mattingly and D. Li), in fact countless topics
in mathematical physics, but also number theory and stochastics (e.g. random walks in
random environment [22]. His further contributions to dynamical systems include work
on Markov partitions for hyperbolic systems (billiards [5, 3]), SRB-measures for (non-
uniformly hyperbolic) systems, and their is his expository work of numerous text books,
survey articles, and lecture series. Let me finally mention his prominent role in the
mathematics community as a whole, and the impressive list of students that he supervised
over the years. These include the already mentioned Bunimovich, Chernov, Mattingly and
Dolgopyat, but also Bufetov, Gurevich, Jitomirskaya, Katok, Kornfeld, Margulis, Ratner
and Ulcigrai.
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