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Abstract

The purpose of this paper is to establish limit laws for volume preserving almost
Anosov maps of T2 flows on 3-three manifolds having a transversally neutral periodic
orbit of cubic saddle type. In the process, we derive estimates for the Dulac maps for
neutral saddles in planar vector fields.
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1 Introduction

A flow φt : M × R → M on a (in our setting 3-dimensional) compact differentiable
manifoldM is called Anosov if its tangent bundle has a continuous flow-invariant mutually
transversal splitting into a neutral flow direction Ec, a hyperbolically stable direction Es

and a hyperbolically unstable direction Eu. The uniform hyperbolicity of such flows
enables one to show various ergodic and statistical properties, such as ergodicity (if the
flow is topologically mixing) and the Central Limit Theorem (CLT) for Hölder continuous
observables.

We obtain an almost Anosov flow (see Definition 1.1 below) by inserting a neutral
orbit Γ ' {(0, 0)} × S1 near which the flow has the following form in local Euclidean
coordinates: ẋẏ

ż

 = X

xy
z

 =

 x(a0x
2 + a1xy + a2y

2)
−y(b0x

2 + b1xy + b2y
2)

1 + w(x, y)

+O(4) (1)

where the parameters satisfy

a1, b1 ∈ R, a0, a2, b0, b2 ≥ 0 with ∆ := a2b0 − a0b2 6= 0 and a2
1 < 4a0a2, b

2
1 < 4b0b2. (2)

The last two conditions of (2) imply that the first component in (1) is non-negative and
the second non-positive for x, y ≥ 0. The term O(4) indicates terms of order four and
higher, under the condition that they are of the form x2O(2) near the yz-plane and of
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the form y2O(2) near the xz-plane, because otherwise these are not a small perturbation
compared to the leading terms of (1). These leading terms are cubic in the direction
transversal to Γ, but this is the only source of non-hyperbolicity. Finally, w is a linear
combination of homogeneous functions in x and y, vanishing at (0, 0). Thus the period of
Γ is its length.

The original motivation to study such systems was to find a class of natural examples
of non-uniformly hyperbolic invertible maps where operator renewal theory can be applied
to establish precise statistical laws. The map in this context can be the Poincaré map on
a section Σ ⊂ R2 × {0} or the time-1 map fhor = φ1

hor for the horizontal flow where only
the x- and y-coordinates are taken into account:(

ẋ
ẏ

)
= Xhor

(
x
y

)
=

(
x(a0x

2 + a1xy + a2y
2)

−y(b0x
2 + b1xy + b2y

2)

)
+O(4), (3)

with the restrictions (2).
Initially, in [2] for the parameter range β2 := a2+b2

2b2
≤ 1 where fhor preserves an infinite

Sinăı-Bowen-Ruelle (SRB) measure, we gave mixing rates for C1 observables. Later [3],
and more relevant to this paper, in the parameter range β2 > 1 where the flow φt preserves
a finite SRB-measure, we established limit laws (Stable Laws and the CLT with standard
or non-standard scaling, depending on whether β2 ∈ (1, 2), β = 2 or β2 > 2).

All these results were obtained in the absence of mixed terms, i.e., a1 = b1 = 0 in
(1). This is of course not a natural assumption, and to our knowledge there is no change
of coordinates that allows one to remove the mixed terms. In fact, if a2

1 > 4a0a2 or
b21 > 4b0b2, then the dynamics near the saddle is not locally conjugate to the dynamics
under the current condition (2).

The purpose of this paper is to perform the analysis when mixed terms are present,
and also the treatment of the perturbation terms (see Section 3) is substantially different
and more straightforward than in [2, 3]. The crux of the analysis is the existence of a local
first integral (and its explicit form when O(4)-terms are absent in (9)), which allows us
to reduce the ODE to dimension one. We will show in Lemma 2.1 that the first integral
L can be found if

b1
a1

=
b2a0 + a2 + 2b0b2
b2a0 + a2 + 2a0a2

. (4)

This is a co-dimension one condition in parameter space. However, if we also stipulate
that the flow φt is volume preserving, we must assume that divX = 0 in (1), which is
equivalent to divO(4) = 0 together with

3a0 = b0, a2 = 3b2, a1 = b1. (5)

Condition (4) follows automatically from (5), and therefore (1) describes a generic volume
preserving almost Anosov flow with a single neutral periodic orbit of cubic saddle type.
We present the results on limit laws in the volume preserving setting, see Theorem 1.2.

Central to the proof of the main theorem of this paper (as well as precise mixing rates)
is the analysis of the Dulac map near the neutral equilibrium of (3). This means that
we take an incoming and an outgoing transversal to the flow, in our case an unstable
leaf W u(0, η), η ∈ [η0, η1], and a stable leaf W s(ζ0, 0), see Figure 1. The Dulac map
D : W u(0, η) → W s(ζ0, 0) assigns to (ξ, η) the first intersection φThor(ξ, η) of the integral
curve through (ξ, η) with the outgoing transversal W s(ζ0, 0). The corresponding flow-time
is denoted by T . As main technical result of this paper we obtain precise estimates of the
Dulac map when (3) contains mixed terms, but using the assumption (4).
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Figure 1: The Dulac map D : (ξ(η0, T ), η0) 7→ (ζ0, ω(η0, T )) with Dulac time T .

Dulac [5] introduced his map as an ingredient to prove that polynomial vector fields
in the plane have at most finitely many limit cycles, thus making a major contribution
to the solution of Hilbert’s 16th problem. Il’yashenko [7] corrected some weak parts in
Dulac’s arguments, see also the summary in Roussarie’s book [12, Section 3.3]. Further
contributions are due to e.g. Dumortier and more recently Mardešić and collaborators
[4, 8, 9, 13, 10]. Specifically, polycycles (i.e., heteroclinic saddle connections) are not
accumulated upon by limit cycles. Whereas our estimates only concern a single neutral
saddle, it is to our knowledge the first estimation of the Dulac times (and hence the Dulac
map, see (6)), at cubic saddle of this generality.

1.1 Main results

The crucial estimates here are of the Dulac times, i.e., the times that orbits take to pass
from an “incoming” unstable transversal to an “outgoing” unstable transversal to the
flow, see Figure 1.

Theorem 1.1 Consider a C3 vector field of local form (3) with parameters satisfying (2)
and (4). Define

β0 :=
a0 + b0

2a0
, β2 :=

a2 + b2
2b2

Then there constants1 ξ0(η), ω0(η) such that the following asymptotics hold:

ξ(η, T̃ ) = ξ0(η)T̃−β2(1 +O(T̃−
1
2 ))

and
ω(η, T̃ ) = ω0(η)T̃−β0(1 +O(T̃−

1
2 )).

as T →∞.

1The precise values of ξ0(η) and ω0(η) are given in in the proof Proposition 2.1.
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In particular, the functions ξ and ω are regularly varying of order −β2 and −β0 in T ,
respectively. That is: limT→∞

ξ(η,cT )
ξ(η,T ) = cβ2 for every c > 0 and analogous for ω(η, T ).

Moreover, the Dulac map D : W u(0, η)→W s(ζ0, 0) itself has the form (as ξ → 0)

ω = D(ξ) = ω0(η)ξ0(η)
−β0
β2 ξ

β0
β2

(
1 +O(ξ

1
2β2 )

)
. (6)

With assumptions (5) and c2
1 < 4c0c2 in place, we can use the change of coordinates

x̄ =
√
a0x, ȳ =

√
b2y and γ̄ = a1/

√
a0b2 ∈ (−4, 4) to transform (1) into the one-parameter

family  ˙̄x
˙̄y
˙̄x

 =

 x̄(x̄2 + γ̄x̄ȳ + 3ȳ2)
−ȳ(3x̄2 + γ̄x̄ȳ + ȳ2))

1 + w̄(x̄, ȳ)

+O(4), (7)

for some transformed function w̄.
Because of this genericity and reduced number of technicalities that Lebesgue measure

gives as opposed to the SRB-measure, we state our statistical result for volume preserving
flows. Theorem 1.1 is used to estimate the measures of the strips {ϕ = n}, see Figure 2,
which in turn, together with the spectral properties of an induced Poincaré map f̂ , are
crucial ingredients for the analysis required to establish the following stochastic limit
properties of the flow φt.

Theorem 1.2 Consider a volume preserving almost Anosov flow (7) on M with γ̄ ∈
(−4, 4) and an observables v :M→ R that is C1 onM\Γ and has the form v = v0 +o(ρ)
where

∫ τ
0 v0 ◦ φt dt is homogeneous of order ρ > −2 in local coordinates (x, y) near p and

o(ρ) stands for terms of order > ρ.

1. If ρ ∈ (0,∞), then v satisfies the Central Limit Theorem, i.e.,∫ t
0 v ◦ φ

s ds− t
∫
v dV ol

σ
√
t

⇒dist N (0, 1) as t→∞,

where the variance σ2 > 0 unless
∫ τ

0 v ◦ φ
t dt is a coboundary.

2. If ρ = 0, then v satisfies the Central Limit Theorem with non-standard scaling√
t log t, i.e., ∫ t

0 v ◦ φ
s ds− t

∫
v dV ol

σ
√
t log t

⇒dist N (0, 1) as t→∞,

and the variance σ2 > 0 unless
∫ τ

0 v ◦ φ
t dt is a coboundary.

3. If ρ ∈ (−2, 0) then v satisfies a Stable Law of order 4
2−ρ ∈ (1, 2).

Theorem 1.1 also allows us to derive other limit theorems such as in the infinite measure
setting of [2], but with mixed terms. Since we restrict to flows preserving Lebesgue measure
(not just an SRB-measure), we don’t give any further details here.

1.2 Set-up

The set-up here is largely taken over from [3]. Our phase space will be the 3-dimensional
compact manifold M.

4



Definition 1.1 [6, Definition 1] A diffeomorphism f : T2 → T2 is called almost Anosov
if there exists two continuous families of non-trivial cones x→ Cux , Csx such that except for
a finite set S,

i) DfxCux ⊆ Cuf(x) and DfxCsx ⊇ Csf(x);

ii) |Dfxv| > |v| for any 0 6= v ∈ Cux and |Dfxv| < |v| for any 0 6= v ∈ Csx.

For x ∈ S, Dfx is the identity.
A flow f t on 3-torus T3 is called almost Anosov flow if it has a finite set S of neutral

periodic orbits, but everywhere else observes the condition of an Anosov flow in that there
is a continuous splitting of the tangent bundle into a stable, an unstable and a neutral
(flow) direction. For x ∈ S, the derivative at the return time τ is Df τx is the identity.

The time-1 map f of the flow φt of (1) has the form of a skew-product

f

xy
z

 =

x(1 + a0x
2 + a1xy + a2y

2)
y(1− b0x2 − b1xy − b2y2)

z +O(|w(x, y)|)

+O(4), (8)

see [2, Section 2.1]. Restricted to the (x, y)-coordinates, this restriction fhor of f to the first
two coordinates is a smooth almost Anosov map with a single neutral fixed point p = (0, 0).
Let {Pi}ki=0 be the Markov partition for fhor (which we can assume to exist since fhor is
a local perturbation of a Anosov diffeomorphism on T2). We assume that p belongs to
the interior of P0. Clearly, the x- and y-axis are the unstable and stable manifolds of p
respectively. We assume that the Markov partition element P0 ⊂ U is a small rectangle

such that f−1
hor(P0) ∪ P0 ∪ fhor(P0) ⊂ U . Due to the symmetries (x, y) 7→ (±x,±y), it

suffices to do the analysis only in the first quadrant Q = [0, ζ0]× [0, η0] of P0, see Figure 2.
Without loss of generality (see [2, Lemma 2.1]) we can think of [0, ζ0] × {η0} as a local
unstable leaf and {ζ0} × [0, η0] as a local stable leaf of the global diffeomorphism.

xζ0 ζ1

y

η0

η1

{ϕ = n}

Fhor({ϕ = n})

Q

Wu

f−1
hor

(Wu)

Ws

f(Ws)

Figure 2: The first quadrant Q of the rectangle P0, with stable and unstable foliations drawn
vertically and horizontally, respectively.
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We consider an induced map Fhor = fϕhor : Y → Y for Y := T2 \ P0, where

ϕ(z) = min{n ≥ 1 : fnhor(z) /∈ P0}

is the first return time to Y . Note that Fhor is invertible because fhor is. In the first
quadrant of U \ P0, the sets {ϕ = n} := {z ∈ f−1(Q) \Q : ϕ(z) = n}, n ≥ 2, are vertical
strips (see Figure 2) adjacent to the local unstable leaf [0, ζ0] × {η0}, and converging to
{0} × [η0, η1] as n→∞. The images Fhor({ϕ = n}) are horizontal strips, adjacent to the
local stable leaf {ζ0} × [0, η0], and converging to [ζ0, ζ1]× {0} as n→∞.

In contrast to fhor, the induced map Fhor is uniformly hyperbolic, but only piecewise
continuous. Indeed, continuity fails at the boundaries of the strips {ϕ = n}, n ≥ 2 (and
F is undefined on W s(p)), but these boundaries are local stable and unstable leaves, and
it is possible to create a countable Markov partition refining {Pi}ki=1 of Y for F , in which
all the strips {ϕ = n} are partition elements.

2 Regular variation of µ(ϕ > n) with mixed terms

In this section, we allow quadratic mixed terms in (3), but for the moment leave out the
O(4)-terms. That is, we consider{

ẋ = x(a0x
2 + a1xy + a2y

2),

ẏ = −y(b0x
2 + b1xy + b2y

2),
(9)

with the restrictions (2) and (4). The condition c2
1 < 4c0c2 avoids the formation of

invariant lines y = px, but in the below proofs it is used to guarantee that expressions as
c0 + c1M + c2M

2 for M = y/x are positive. Our exposition closely follows [2], but since
the mixed terms require adjustments throughout the proof, we will give it in full.

Set ci := ai + bi, i = 0, 1, 2. The conditions a2
1 < 4a0a2, b

2
1 < 4b0b2 imply that a2

1b
2
1 −

16a0a2b0b2 ≤ 0 ≤ 4(a0b0−a2b2)2, and thus a2
1b

2
1 ≤ 4(a0b2 +a2b0)2. Since a0, b0, a2, b2 ≥ 0,

we also have a1b1 ≤ 2(a0b2 + a2b0), which implies that c2
1 ≤ 4c0c2. Let u, v ∈ R be the

solutions of the linear equations{
(u+ 2)a0 = vb0

(v + 2)b2 = ua2

that is:

u = 2b2c0
∆ ,

v = 2a0c2
∆ .

(10)

Note that u, v and ∆ (recall ∆ 6= 0) all have the same sign and (4) implies that b1
a1

= u+1
v+1 .

Compute that

β0 :=
a0 + b0

2a0
=
u+ v + 2

2v
, β2 :=

a2 + b2
2b2

=
u+ v + 2

2u
,

β0

β2
=
u

v
=
b2c0

a0c2
, (11)

and note that β0, β2 >
1
2 (or = 1

2 if we allow b0 = 0 or a2 = 0 respectively). Under the
extra assumption (5) we obtain β0 = β2 = 2 and u = v = 1.

The first estimates is about the Dulac map of (3).

Proposition 2.1 Consider a vector field on the 2-torus with local form (3) for a0, a2, b0, b2 ≥
0 and ∆ 6= 0. There are functions ξ0(η), ω0(η), ξ1(η), ω1(η) > 0 independent of T (with
exact expressions given in the proof) such that

ξ(η, T ) = ξ0(η)T−β2
(

1− ξ1(η)T−1 +O(T−2, T−2β2)
)

and
ω(η, T ) = ω0(η)T−β0

(
1− ω1(η)T−1 +O(T−2, T−2β0)

)
.
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Lemma 2.1 The function

L(x, y) =

{
xuyv(a0v x2 + a1

v+1xy + b2
u y2) if ∆ > 0,

x−uy−v(a0v x2 + a1
v+1xy

b2
u y2)−1 if ∆ < 0,

(12)

is a first integral of (9).

Proof of Lemma 2.1. First assume ∆ > 0, so u, v > 0 as well. By (10), we can write
L(x, y) as

L(x, y) = xuyv(
b0

u+ 2
x2 +

a1

v + 1
xy +

b2
u
y2) = xuyv(

a0

v
x2 +

b1
u+ 1

xy +
a2

v + 2
y2).

Using these two equivalent expressions we compute the Lie derivative directly

L̇ = 〈∇L,X〉

= xu−1yv
(

b0
u+ 2

(u+ 2)x2 +
a1

v + 1
xy +

b2
u
uxu−1y2

)
x(a0x

2 + a1xy + a2y
2)

−xuyv−1

(
a0

v
x2v +

a1

v + 1
xy +

a2

v + 2
(v + 2)y2

)
y(b0x

2 + b1xy + b2y
2)

= 0.

Any function of a first integral is a first integral; in particular this holds for 1/L. Therefore
the conclusion is immediate for ∆ < 0 too. �

Corollary 2.1 Every (x(y), y) on the integral curve from (ξ, η) to (δ, δ) satisfies

x(y) = U(y)δ
1+

a2
b2 η
−a2
b2 ,

for

U(y) := (c2 +
a1uc2

b2(v + 1)
+ c0)

1
u (c2 +

a1uc2

b2(v + 1)

x

y
+ c0

x2

y2
)−

1
u . (13)

In terms M = y/x, we have

x(M)2 = ξ
2u

u+v+2 η
2v

u+v+2M−
2v

u+v+2

(
c0ξ

2 + c1ξη + c2η
2

c0 + c1M + c2M2

) 2
u+v+2

= ξ
1
β2 η

1
β0M

− 1
β0

(
c0ξ

2 + c1ξη + c2η
2

c0 + c1M + c2M2

)1− 1
2β0
− 1

2β2

. (14)

Proof. We carry out the proof for ∆ > 0, so L(x, y) = xuyv(a0v x2 + a1
v+1xy+ b2

u y2) as in
Lemma 2.1. The case ∆ < 0 goes likewise.

We solve for x from L(x, y) = L(δ, δ) = δu+v+2(a0v + a1
v+1 + b2

u ):

x = x(y) = δ
u+v+2
u y−

v+2
u (1 +

a1u

b1(v + 1)
+
ua0

vb2
)
1
u (1 +

a1u

b1(v + 1)

x

y
+
c0

c2

x2

y2
)−

1
u

= U(y)δ
1+

a2
b2 y
−a2
b2 ,

giving the required expression with U(y) as in (13). Note that limy→δ U(y) = 1 (i.e., the
limit as (x, y) approaches the diagonal), and U(y) is differentiable.
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For the other expression, we use that L(x, y) = L(ξ, η) = ξuηv(a0v ξ
2 + a1

v+1ξη + b2
u η

2),

and solve for x2:

ξuηv(
a0

v
ξ2 +

a1

v + 1
ξη +

b2
u
η2) = xuyv(

a0

v
x2 +

a1

v + 1
xy +

b2
u
y2)

= xu+v+2Mv(
a0

v
+

a1

v + 1
M +

b2
u
M2).

Here we used

ξuηv(
a0

v
ξ2 +

a1

v + 1
ξη +

b2
u
η2) = ξuηv(

a0∆

2a0c2
ξ2 +

a1∆

2a0c2 + ∆
ξη +

b2∆

2b2c0
η2)

=
∆

2c0c2

(
c0ξ

2 +
2a1c0c2

2a0c2 + ∆
ξη + c2η

2

)
=

∆

2c0c2

(
c0ξ

2 + c1ξη + c2η
2
)
, (15)

(where the last step follows from (4)) and a similar computation for the term with x, y.
Use (10) and (11) to obtain{

a0
v + a1

v+1M + b2
uM

2 = ∆
2c0c2

(c0 + c1M + c2M
2),

a0ξ2

v + a1
v+1ξη + b2η2

u = ∆
2c0c2

(c0ξ
2 + c1ξη + c2η

2).

This gives

x2 = ξ
2u

u+v+2 η
2v

u+v+2M−
2v

u+v+2

(
c0ξ

2 + c1ξη + c2η
2

c0 + c1M + c2M2

) 2
u+v+2

= ξ
1
β2 η

1
β0M

− 1
β0

(
c0ξ

2 + c1ξη + c2η
2

c0 + c1M + c2M2

)1− 1
2β0
− 1

2β2

,

where we recall that β0 = u+v+2
2v and β2 = u+v+2

2u from (11), which also gives 2
u+v+2 =

1− 1
2β0
− 1

2β2
. �

Proof of Proposition 2.1. We carry out the proof for ∆ > 0, so L(x, y) = xuyv(a0v x2 +
a1
v+1xy + b2

u y2) as in Lemma 2.1. The case ∆ < 0 goes likewise. Fix η such that

(ξ(η, T ), η) ∈ φ−1(Q) \Q. We use the variable M = y/x, so y = Mx and differenti-
ating gives ẏ = Ṁx+Mẋ. Recalling that ci = ai + bi and inserting the values for ẋ and
ẏ from (9), we get

Ṁ = −M(c0 + c1M + c2M
2)x2. (16)

Combined with (14), this gives

Ṁ = −G(ξ, η)M
1− 1

β0

(
c0 + c1M + c2M

2
) 1

2β0
+ 1

2β2 (17)

with

G(ξ, η) := ξ
1
β2 η

1
β0

(
c0ξ

2 + c1ξη + c2η
2
)1− 1

2β0
− 1

2β2 . (18)

For the exit time T ≥ 0, recall that ξ(η, T ) and ω(η, T ) are such that the solution of
(3) satisfies (x(0), y(0)) = (ξ(η, T ), η) and (x(T ), y(T )) = (ζ0, ω(η, T )). This implies
M(0) = η/ξ(η, T ) and M(T ) = ω(η, T )/ζ0. Inserting this in (17), separating variables,
and integrating we get∫ η/ξ(η,T )

ω(η,T )/ζ0

M
1
β0
−1
dM

(c0 + c1M + c2M2)
1

2β0
+ 1

2β2

= G(ξ(η, T ), η)T. (19)
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In the rest of the proof, we will frequently suppress the dependence on η and T in ξ(η, T )
and ω(η, T ). We know that L(ξ(η, T ), η) = ξuηv(a0v ξ

2 + b2
u η

2) = ζu0ω
v(a0v ζ

2
0 + b2

u ω
2) =

L(η, ω(η, T )), which gives

ξuηv(c0ξ
2 + c1ξη + c2η

2) = ζu0ω
v(c0ζ

2
0 + c1ζ0ω + c2ω

2). (20)

From their definition, ξ(η, T ) and ω(η, T ) are clearly decreasing in T , so their T -derivatives
ξ′(η, T ), ω′(η, T ) ≤ 0. Since c0, c2 > 0 (otherwise ∆ = 0), the integrand of (19) is

O(M
1
β0
−1

) as M → 0 and O(M
− 1
β2
−1

) as M → ∞. Hence the integral is increasing
and bounded in T . But this means that G(ξ(η, T ), η)T is increasing in T and bounded as
well. Let g(η, T ) = ξ(η, T )T β2 . Since

G(ξ(η, T ), η)T = g(η, T )
1
β2 η

1
β0 (c0g(η, T )2T−2β2 + c1g(η, T )T−β2 + c2η

2)
1− 1

2β0
− 1

2β2 ,

and 1− 1
2β0
− 1

2β2
> 0, we find that g(η, T ) converges2:

ξ0(η) := lim
T→∞

g(η, T ) = c
− 1
u

2 η
−a2
b2

(∫ ∞
0

M
1
β0
−1
dM

(c0 + c1M + c2M2)
1

2β0
+ 1

2β2

)β2
, (21)

where we have used −β2(1 − 1
2β0
− 1

2β2
) = − 2β2

u+v+2 = − 1
u for the exponent of c2, and

2
u + β2

β0
= v+2

u = a2
b2

for the exponent of η.
We continue the proof to get higher asymptotics. Differentiating (19) w.r.t. T gives

− η
1
β0 ξ

1
β2
−1
ξ′

(c0ξ2 + c1ξη + c2η2)
1

2β0
+ 1

2β2

− ζ
1
β2
0 ω

1
β0
−1
ω′

(c0ζ2
0 + c1ζ0ω + c2ω2)

1
2β0

+ 1
2β2

=
∂G(ξ, η)

∂ξ
Tξ′ +G(ξ, η),

(22)
where (by differentiating (18))

∂G(ξ, η)

∂ξ
= (2b0ξ

2 + c1(
b0
c0

+
a2

c2
)ξη + b2η

2)ξ
1
β2
−1
η

1
β0 (c0ξ

2 + c1ξη + c2η
2)
− 1

2β0
− 1

2β2 .

Combined with (18), (20) and (22), this gives

−η
1
β0 ξ′ − ζ

1
β2
0

(
ζu0ω

v

ξuηv

) 1
2β0

+ 1
2β2 ω

1
β0
−1

ξ
1
β2
−1
ω′

= (2b0ξ
2 + c1(

b0
c0

+
a2

c2
)ξη + b2η

2)Tη
1
β0 ξ′ + η

1
β0 ξ(c0ξ

2 + c1ξη + c2η
2). (23)

Because 1
2β0

+ 1
2β2
− 1 = − 2

u+v+2 , using (11) and dividing by η
1
β0 , we can simplify (23) to

−ξ′ − ζu0
ηv
ωv−1

ξu−1
ω′ = (2b0ξ

2 + c1(
b0
c0

+
a2

c2
)ξη + b2η

2)Tξ′ + ξ(c0ξ
2 + c1ξη + c2η

2). (24)

Taking the derivative of (20) w.r.t. T and multiplying with ∆/(c0c2) gives

(2b0ξ
2 + c1(

b0
c0

+
a2

c2
)ξη + b2η

2)ηvξu−1ξ′ = (2a0ζ
2
0 + +c1(

b0
c0

+
a2

c2
)ζ0ω + 2a2ω

2)ζu0ω
v−1ω′.

2For the symmetric statement on ω(η, T ), define ĝ(η, T ) = ω(η, T )T β0 . Then limT→∞ ĝ(η, T ) =

limT→∞ g(η, T )β0/β2η1+2/vζ
−b0/a0
0 ( c2c0 )1/v.
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Hence, we can rewrite (24) as

−
(

1+
2b0ξ

2 + c1( b0c0 + a2
c2

)ξη + 2b2η
2

2a0ζ2
0 + c1( b0c0 + a2

c2
)ζ0ω + 2a2ω2

)
ξ′

= (2b0ξ
2 + c1(

b0
c0

+
a2

c2
)ξη + b2η

2)Tξ′ + ξ(c0ξ
2 + c1ξη + c2η

2).

We insert ξ′ = g′(T )T−β2 − β2g(T )T−(1+β2) and multiply with T β2 , which leads to

−
(

1+
2b0ξ

2 + c1( b0c0 + a2
c2

)ξη + 2b2η
2

2a0ζ2
0 + c1( b0c0 + a2

c2
)ζ0ω + 2a2ω2

)
(g′(T )− β2g(T )T−1)

= (2b0ξ
2 + c1(

b0
c0

+
a2

c2
)ξη + 2b2η

2)g′(T ) T − ∆

b2
g(T )3T−2β2 .

Since ξ = O(T−β2) and ω = O(T−β0), we can write this differential equation as

g′

g
=

1

T 2

β2

2

a0ζ20+b2η2+O(T−2β2 )

a0ζ20+O(T−2β0 )
− ∆

b2
g(T )2T

−a2
b2

b2η2 +O(T−2β2) +O(T−1)
.

Keeping the leading terms only (where we use that 2β2, 2β0 > 1), we get the differential
equation

g′

g
= (ξ1(η) +O(max{T−1, T

−a2
b2 })) 1

T 2
for ξ1(η) :=

β2

2

(
1

a0ζ2
0

+
1

b2η2

)
.

Using the limit boundary value ξ0 = ξ0(η) = limT→∞ g(η, T ), we find the solution

g(η, T ) = ξ0e
−(ξ1+O(max{T−1,T

−a2
b2 }))T−1

= ξ0(1− ξ1T
−1 +O(max{T−2, T−2β2}))

as required. The analogous asymptotics for ω and the constants ω0 and ω1 can be derived
by changing the time direction and the roles (a0, a2) ↔ (b2, b0), and also by the relation
ξuηv+2c2 ∼ ζu+2

0 ωvc0 from (20):

ω0(η) = c
− 1
v

0 ζ
− b0
a0

0

(∫ ∞
0

M
1
β2
−1
dM

(c0M2 + c1M + c2)
1

2β0
+ 1

2β2

)β0
, ω1(η) =

β0

2

(
1

b2ζ2
0

+
1

a0η2

)
.

This concludes the proof. �

3 Proof of Theorem 1.1

To prove that the regular variation established in Proposition 2.1 is robust under pertur-
bations of the vector field, we put the O(4) terms back into (3), but since we consider it
as a perturbation of (9), we write X̃ instead:

X̃ =

(
X̃1

X̃2

)
=

(
x(a0x

2 + a1xy + a2y
2)

−y(b0x
2 + b1xy + b2y

2)

)
+O(4), (25)

so that |X̃ −X| = O(4). The quantities ξ(η, T ), ω(η, T ) will be written as ξ̃(η, T ), ω̃(η, T )
etc., and the goal is to show that ξ̃(η, T ) is still regularly varying.

10



As before, let ξ = ξ(η, T ) be such that for the unperturbed flow, φT (ξ, η) = (ζ0, ω(η, T )).
Proposition 2.1 gives the asymptotics of ξ(η, T ) as T →∞. At the same time, under the

perturbed flow associated to (25), φT̃ (ξ, η) = (ζ0, ω̃(η, T̃ )) for some T̃ . Therefore we can
write ξ(η, T ) = ξ̃(η, T̃ ), and once we estimated T̃ as function of T , we can express ξ̃(η, T̃ )
explicitly as function of T̃ . We follow the argument of the proof of Proposition 2.1, keep-
ing track of the effect of the higher order terms.

The perturbed first integral: To start, we construct a first integral L̃ on Q =
[0, ζ0]× [0, η0] by defining

L̃(φ̃t(δ, δ)) = L(δ, δ) =

{
δu+v+2 (a0v + a1

v+1 + b2
u ) if ∆ > 0,

δ−(u+v+2) (a0v + a1
v+1 + b2

u )−1 if ∆ < 0,

for 0 < δ ≤ min{ζ0, η0} and t ∈ R. (We continue the argument for the case ∆ > 0; the
other case goes analogously.)

By construction, L̃ is constant on integral curves of ż = X̃(z). Because X̃ is C3, the
integral curves are C3 curves, and form a C3 foliation of P0, see e.g. [14, Theorem 2.10].
Note that the coordinate axes consist of the stationary point (0, 0) and its stable and
unstable manifold; we put L̃(x, 0) = L̃(0, y) = 0. Then L̃ is continuous on Q and C3 on
the interior of Q.

Now we compare L̃ with L on a small neighbourhood U of φ−1
hor(Q)∪Q∪φ1

hor(Q). Take
y0 = η0 and x0 = x0(δ) such that the integral curve of ż = X(z) through z0 := (x0, y0)
intersects the diagonal at (δ, δ). Then the integral curve of ż = X̃(z) through z0 intersects
the diagonal at (δ̃, δ̃) for some δ̃ = δ̃(δ), see Figure 3.

For some z1 on this integral curve between z0 and (δ̃, δ̃), the integral curve through z1

of the unperturbed system intersects the diagonal in some point (δ′, δ′) between (δ, δ) and
(δ̃, δ̃). Therefore

L̃(z1) = L̃(δ̃, δ̃) = L(δ̃, δ̃) = L(δ′, δ′)

(
δ̃

δ′

)u+v+2

= L(z1)

(
δ̃

δ′

)u+v+2

. (26)

x

y

•z0

•δ
•δ̃

x̃(δ)

•z1

δ′ x

y

•z0

•δ
•δ̃

x̃(δ)

•z1

δ′

Figure 3: Solutions of (27) and (28), starting from the same point z0 = (x0, y0).
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Estimating |δ̃ − δ|: Parametrise the integral curve of X through z0 as (x(y), y) for
min{δ, δ̃} ≤ y ≤ y0. (So x ≤ y; the case y ≤ x can be dealt with by switching the roles of
x and y.) Then by (9):

x′(y) = F (x, y) := −x(a0x
2 + a1xy + a2y

2)

y(b0x2 + b1xy + b2y2)
. (27)

For the perturbed vector field (25) we parametrise the integral curve through z0 as (x̃(y), y)
and we have the analogue of (27):

x̃′(y) = F̃ (x̃, y) := −
x̃(a0x̃

2 + a1x̃y + a2y
2 +

∑3
j=1 âj x̃

jy3−j)

y(b0x̃2 + b1x̃y + b2y2 +
∑3

j=1 b̂j x̃
jy3−j)

, (28)

where âj , b̂j are bounded functions in x̃ and y. The absence of the terms â0y
3 and b̂0y

3 is
because of the assumption that O(4) = x2O(2) near the yz-plane. For the region x̃ > y
we need to leave out the terms â3x̃

3 and b̂3x̃
3 instead.

Combining (27) and (28) we have

x̃′(y) = − x̃(a0x̃
2 + a1x̃y + a2y

2)

y(b0x̃2 + b1x̃y + b2y2)
(1 + x̃ q0(x̃, y)) (29)

for the bounded function q0 : [0,max{δ, δ̃}]× [δ, y0]→ R, given by

q0(x̃, y) =
1

x̃

(1 +
x̃
∑3

j=1 âj x̃
j−1y3−j

a0x̃2 + a1x̃y + a2y2

) (
1 +

x̃
∑3

j=1 b̂j x̃
j−1y3−j

b0x̃2 + b1x̃y + b2y2

)−1

− 1

 .

From Grönwall’s Lemma, we can bound the speed at which x̃(y) and x(y) diverge from
each other, see [14, Theorem 2.8]:

u(y) := |x̃(y)− x(y)| ≤ |x̃(y0)− x(y0)|e(y0−y) Lip +
V

Lip

(
e(y0−y) Lip − 1

)
, (30)

for y ∈ [δ, y0], where Lip is the Lipschitz constant of F (x, y) in x maximized over y ∈ [δ, y0]
and

V = sup
y∈[δ,y0]

sup
x∈[0,max{δ,δ̃}]

|F (x, y)|q0(x, y)x.

The Lipschitz constant of F is supx,y
∂
∂xF (x, y), which is of order 1/δ. Therefore (30)

gives a very poor estimate if we apply it at once to the whole interval [δ, y0], but we can
improve it by partitioning [δ, y0] into smaller intervals.

Proposition 3.1 Assume the equation x̃′(y) = F (x̃, y)(1 + q0x̃) for some bounded func-
tion q0 = q0(x̃, y) and initial value x̃(y0) = x(y0) = x0. Then there is a constant K for
all y ∈ [δ, y0] we have |x̃(y)− x(y)| ≤ Kδ2.

Proof. We divide the interval [δ, y0] into N interval [yj+1 − yj ] of the same length,

so yj = δ + y0−δ
N (N − j) and set xj = x(yj). The Lipschitz constant [yj+1, yj ] is

supy∈[yj+1,yj ] supx∈[0,δ2]
∂
∂xF (x, y) ≤ 1

y (γ + ε) for γ = a2
b2

. Therefore

Lip(yj)(yj − yj+1) ≤ y0 − δ
N

γ + ε

δ + y0−δ
N (N − j − 1)

=
γ + ε

(N − (j + 1)) + δN/(y0 − δ)

12



Recall from (13) that x(y) = U(y)δ
1+

a2
b2 y
−a2
b2 . Let

C = 2 sup
y∈[yj+1,yj ]

sup
x∈[0,2x(y)]

q0(x, y)
a0x

2 + a1xy + a2y
2

b0x2 + b1xy + b2y2
U(y)2.

Take K = 2C
γ y
−2γ
0 and assume by induction that u(yj) ≤ Kδ2 ≤ 1 (so we assume that δ

is sufficiently small). Clearly this induction hypothesis holds for j = 0 because u(y0) = 0.
Then

V (yj) := sup
y∈[yj+1,yj ]

sup
x∈[0,x(y)(1+Kδ2)]

q0(x, y)xF (x, y)

≤ sup
x,y

a0x
2 + a1xy + a2y

2

b0x2 + b1xy + b2y2
q0(x, y) sup

y∈[yj+1,yj ]

x(y)2(1 +Kδ2)2

y

≤ sup
x,y

a0x
2 + a1xy + a2y

2

b0x2 + b1xy + b2y2
q0(x, y) 2U(y)2 sup

y∈[yj+1,yj ]
δ2(1+γ)y−(1+2γ)

= Cδ2(1+γ)y
−(1+2γ)
j+1 .

The estimate (30) applied to [yj+1, yj ] gives the recursive formula

u(yj+1) ≤ u(yj)e
(γ+ε)

yj−yj+1
yj+1 + Cδ2(1+γ)y

−(1+2γ)
j+1 (yj − yj+1). (31)

Therefore, for 1 ≤M < N ,

u(yM ) ≤ Cδ2(1+γ)
M∑
j=1

y
−(1+2γ)
j (yj−1 − yj)e

(γ+ε)
∑M
k=j

yk−1−yk
yk . (32)

Then (32) gives for N = dδ−1e and M < N ,

u(yM ) ≤ Cδ2(1+γ)y−2γ
0 N2γ

M∑
j=1

e(γ+ε)
∑M
k=j 1/(N−k)

(N − j)1+2γ

≤ Cδ2y−2γ
0

1

(N −M)γ+ε

M∑
j=1

1

(N − j)γ−ε+1
≤ C

γ − ε
δ2y−2γ

0 .

Therefore |x̃(yM )− x(yM )| = u(yM ) ≤ Kδ2 as claimed. �

By (29) for y = δ = x̃(δ) +O(δ2), the derivative x̃′(δ) = a0+a1+a2
b0+b1+b2

+O(δ). Since δ̃ lies
between δ and x̃(δ) (see Figure 3), we have by a Taylor approximation

|x̃(δ)− δ| = |x̃(δ)− δ̃|+ |δ̃ − δ| =
(

1 +
a0 + a1 + a2

b0 + b1 + b2
+O(δ)

)
|δ̃ − δ|

=
c0 + c1 + c2 +O(δ)

b0 + b1 + b2
|δ̃ − δ|. (33)

and therefore |δ̃ − δ| = O(|x̃(δ)− δ|) = O(δ2). Now that we have this relation between δ̃
and δ, we can estimate T̃ in terms of T , and effectively finish of Theorem 1.1.

Proof of Theorem 1.1. Let z0 = (x0, y0) = (ξ(η, T ), η) = (ξ̃(η, T̃ ), η) as in Figure 3 be

the point such that φThor(z0) = (ζ0, ω(η, T )) under the unperturbed flow and φ̃T̃hor(z0) =
(ζ0, ω̃(η, T̃ )) under the perturbed flow. We estimate T̃ in terms of T .
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Combining the estimate for ξ(η, T ) from Proposition 2.1 with L(δ, δ) = L(ξ(η, T ), η),
we can find the relation between δ and T :

δ = δ0T
− 1

2 (1− ξ1

2β2
T−1 +O(T−2, T−2β2)), (34)

for

δ0 = ξ
1

2β2
0 η

1− 1
2β2

c0
ξ2

η2
+ c1

ξ
η + c2

c0 + c1 + c2

 1
u+v+2

.

To estimate T̃ , we divide the trajectory φ̃t(z0) = (x̃(t), ỹ(t)) of z0 for the region x̃ ≤ ỹ
into two parts delimited by points in time:

T̃1 = min{t > 0 : 2x̃(t) = ỹ(t)}, T̃2 = min{t > 0 : x̃(T̃1 + t) = ỹ(T̃1 + t)}, (35)

and symmetric quantities for the region ỹ ≤ x̃. Let T1, T2 be the analogous quantities for
the unperturbed trajectory. For y1 := y(T1) and ỹ1 := y(T̃1), we have |ỹ1 − y1| = O(δ2).
Assume that ỹ1 ≥ y1 (the case ỹ1 < y1 goes likewise). We compute

T1 =

∫ y0

y1

dy

ẏ
=

∫ y0

ỹ1

dy

ẏ
+

∫ ỹ1

y1

dy

ẏ

=

∫ y0

ỹ1

dy

−y(b0x(y)2 + b1x(y)y + b2y2)
+

∫ ỹ1

y1

dy

ẏ
.

The first term is O(δ−2) as δ → 0 and the second is O(1) (and therefore small compared
to the first term) because |ỹ1 − y1| = O(δ2). Hence T1 = O(δ−2). Similarly,

T̃1 − T1 =

∫ y0

ỹ1

dy
˙̃y
−
∫ y0

ỹ1

dy

ẏ
−
∫ ỹ1

y1

dy

ẏ
=

∫ y0

ỹ1

1
˙̃y
− 1

ẏ
dy +O(1). (36)

Using that x̃(y)− x(y) ≤ δ2 and abbreviating Σ =
∑3

j=1 b̂j x̃
jy3−j = O(y3) for x̃ ≤ ỹ, we

compute the last integral of (36) as∫ y0

ỹ1

1

−y(b0x̃(y)2 + b1x̃(y)y + b2y2 + Σ)
− 1

−y(b0x(y)2 + b1x(y)y + b2y2)
dy

=

∫ y0

ỹ1

(x̃− x)(b0(x̃+ x) + b1y) + Σ

y(b0x̃(y)2 + b1x̃(y)y + b2y2 + Σ)(b0x(y)2 + b1x(y)y + b2y2)
dy

≤ δ2

∫ y0

ỹ1

3b0 + 2b1
maxi bi y2

dy +

∫ y0

ỹ1

O(y−1) dy = O(δ−1).

Together with (34) and the fact that
∫ ỹ1
y1

dy
ẏ = O(1), this gives

T̃1 = T1(1 +O(δ)) = T1(1 +O(T−
1
2 )). (37)

For M̃ = y/x̃, computations analogous to (16) show that ˙̃M = −M̃(c0 + c1M̃ +
c2M̃

2 + x̃Ψ)x̃2 for ĉj = âj + b̂j and Ψ :=
∑2

j=0 ĉ3−jM̃
j . For every (x̃, y) = (x̃, x̃M̃) on the

φ̃-trajectory of z0 (which is a level set of L̃), we have

ξuηv(
a0

v
ξ2 +

a1

v + 1
ξη +

b2
u
η2)

δ̃

δ′
= x̃u+v+2M̃v(

a0

v
+

a1

v + 1
M̃ +

b2
u
M̃2),
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with δ′ as in (26). This gives the analogue of [2, formula (32)]:

˙̃M = −G(ξ, η)M̃
1− 1

β0

(
c0 + c1M̃ + c2M̃

2 + x̃Ψ(x̃, M̃)
) 1

2β0
+ 1

2β2

(
δ̃

δ′

)1− 1
2β0
− 1

2β2

, (38)

where G(ξ, η) is as in (18). Because δ′ lies between δ and δ̃, the conclusion |δ̃− δ| = O(δ2)
of (33) gives

δ̃

δ′
≤ 1 +

|δ̃ − δ′|
δ′

≤ 1 +
|δ̃ − δ|
δ

= 1 +O(δ).

Note also on the time interval [T̃1, T̃1 + T̃2], we have x̃(y) ≤ y ≤ 2x̃(y) ≤ 2 max{δ, δ̃} and
therefore

c0 + c1M̃ + c2M̃
2 + x̃Ψ(x̃, M̃) = c0(1 +O(x̃)) + c1M̃(1 +O(y)) + c2M̃

2

= (c0 + c1M̃ + c2M̃
2)(1 +O(δ)).

This combined with (38) we find

˙̃M = −G(ξ, η)M̃
1− 1

β0

(
c0 + c1M̃ + c2M̃

2
) 1

2β0
+ 1

2β2 (1 +O(δ)).

The choice of T̃1 and T1 ensures that M̃(T̃1) = M(T1) = 2 and similarly M̃(T̃1 + T̃2) =
M(T1 + T2) = 1. Therefore

T̃2 =

∫ T̃1+T̃2

T̃1

dt =

∫ M̃(T̃1)

M̃(T̃1+T̃2)

˙̃M−1 dM̃

=

∫ 2

1

M̃
1
β0
−1

(1 +O(δ))−1

G(ξ, η)(c0 + c1M̃ + c2M̃2)
1

2β0
+ 1

2β2

dM̃

=

∫ M(T1)

M(T1+T2)

M
1
β0
−1

(1 +O(δ))−1

G(ξ, η)(c0 + c1M + c2M2)
1

2β0
+ 1

2β2

dM

= T2(1 +O(δ))−1 = T2(1 +O(T−
1
2 )).

Combining this with (37) gives T̃ = T (1 +O(T−
1
2 )). The estimate of Proposition 2.1 now

gives ξ̃(η, T̃ ) = ξ0(η)T̃−β2(1 +O(T̃−
1
2 )) as claimed.

Reversing the roles (a0, a2) ↔ (b2, b0) as in the end of the proof of Proposition 2.1

gives ω̃(η, T̃ ) = ω0(η)T̃−β0(1 +O(T̃−
1
2 )). �

The formula (6) for the Dulac maps follows directly from Theorem 1.1 by inverting
T 7→ ξ(η, T ) and inserting this in the formula for ω(η, T ). In the special case that β0 = β2,
formula (6) reduces to

ω = D(ξ) =

(
b2
a0

) 1
β2−1

(
η

ζ0

)2β2−1

ξ
(

1 +O(ξ
1

2β2 )
)
.

Reducing further by assuming (5) (i.e., in the volume preserving setting), we get

ω = D(ξ) =
b2
a0

(
η

ζ0

)3

ξ
(

1 +O(ξ
1
4 )
)
.

This coefficient b2
a0

(
η
ζ0

)3
= ‖Xhor(0,η)‖
‖Xhor(ζ0,0)‖ agrees with the fact that for ω = D(ξ), the flow-

boxes ∪t∈[0,ε]φ
t
hor([0, ξ]× {η}) and ∪t∈[0,ε]φ

t
hor({ζ0} × [0, ω]) must have the same volume.

If the neutral saddle p is part of a heteroclinic cycle, then it is accumulated by periodic
solutions, but these are not limit cycles of course.
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4 Time-1 map versus Poincaré map

First we give an estimate of observables integrated over the flow-lines of Xhor of (9).

Proposition 4.1 Let r =
√
x2 + y2, ρ > 0 and W (T ) be the integral curve for (9)

connecting (ξ(η0, T ), η0)) to (ζ0, ω(η0, T )), see Figure 1. Then there is a constant C =
C(ρ) > 0 such that

Θ = Θ(T ) :=

∫
W (T )

r(t)ρ dt =


CT 1− ρ

2 (1 + o(1)) if ρ < 2,

C log(T )(1 + o(1)) if ρ = 2,

C(1 + o(1)) if ρ > 2.

(39)

Proof. We build on the proof of Proposition 2.1 (or in fact Theorem 1.1), and in the
integral Θ we change coordinates M = y/x. That is, rρ = (x2 + y2)ρ/2 = xρ(1 +M2)ρ/2.
Use (14) to get

x = G(T )
1
2M−

v
u+v+2 (c0 + c1M + c2M

2)
−1

u+v+2 ,

with G(T ) := G(ξ(η0, T )), η0) as in (18). Abbreviate ξ(η0, T ) = ξ(T ) and ω(η0, T ) = ω(T ).
Inserting the above in the integral of (19), we obtain

Θ = G(T )
ρ
2
−1

∫ η/ξ(T )

ω(T )/ζ0

M−
ρv

u+v+2 (c0 + c1M + c2M
2)

−ρ
u+v+2 (1 +M2)

ρ
2

M
1− 1

β0 (c0 + c1M + c2M2)
1

2β0
+ 1

2β2

dM. (40)

For M → 0, the leading term in the integrand is

c
−1+(1− ρ

2
) 1
β0

0 M
1
β0
−1−ρ v

u+v+2 = c
−1+(1− ρ

2
) 1
β0

0 M
(1− ρ

2
) 1
β0
−1
,

i.e., the exponent is > −1 for ρ < 2. For M →∞, the leading term in the integrand is

c
−1+(1− ρ

2
) 1
β0

2 M
− 1
β2
−1−ρ( v

u+v+2
+ 2
u+v+2

−1)
= c
−1+(1− ρ

2
) 1
β0

0 M
−(1− ρ

2
) 1
β2
−1
,

i.e., the exponent is < −1 for ρ < 2. This means that the integral in (40) converges
to some constant C0 = C0(ρ) as T → ∞, and Θ ∼ C0G(T )

ρ
2
−1 ∼ CT 1− ρ

2 for C =

C0

(
c

1− 1
2β0
− 1

2β2
2 ξ

1
β0
0 η

1− 1
β2

0

)1− ρ
2

. This finishes the proof for ρ < 2.

If ρ > 2, then the value of Θ based on the leading terms of the integrand only, is

Θ = G(T )
ρ
2
−1 c

−1+(1− ρ
2

) 1
β0

0
ρ
2 − 1

(
β2

(
η0

ξ(T )

)−(1− ρ
2

) 1
β2

− β0

(
ω(T )

ζ0

)(1− ρ
2

) 1
β0

)
.

Insert the values of ξ(T ) and ω(T ) from Proposition 2.1 as well as the leading term of
G(T ):

Θ =

(
c

1− 1
2β0
− 1

2β2
2 ξ

1
β0
0 η

1− 1
β2

0

)1− ρ
2

T 1− ρ
2
c
−1+(1− ρ

2
) 1
β0

0
ρ
2 − 1

(
β2η0

( ρ
2
−1) 1

β2 − β0ζ
( ρ
2
−1) 1

β0
0

)
T
ρ
2
−1.

The powers of T cancel in this expression, proving the case ρ > 2. Finally, if ρ = 2, then
the factor G(T )

ρ
2
−1 in (40) disappears and the leading terms in the integrand (both as

M → 0 and M →∞), are c−1
0 M−1. This gives, due to Proposition 2.1,

Θ ∼ 1

c0

(
log

η0

ξ(T )
− log

ω(T )

ζ0

)
∼ β2 + β0

c0
log T.
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The 3-dimensional time-1 map φ1 preserves no 2-dimensional submanifold of M. Yet
in order to model φt as a suspension flow over a 2-dimensional map, we need a genuine
Poincaré map. For this we choose a section Σ transversal to Γ and containing a neigh-
bourhood U of p. As an example, Σ could be T2×{0}, and the Poincaré map to T2×{0}
could be (a local perturbation of) Arnol’d’s cat map; in this case (and most cases) M is
not homeomorphic to T3 because the homology is more complicated, see [1, 11].

Let h : Σ → R+, h(q) = min{t > 0 : φt(q) ∈ Σ} be the first return time. Assuming
that supΣ |w(x, y)| < 1, the first return time h is bounded and bounded away from zero,
say 0 < infΣ h < supΣ h.

The Poincaré map f := φh : Σ → Σ has a neutral saddle point p at the origin. Its
local stable/unstable manifolds are W s

loc(p) = {0} × (−ε, ε) and W u
loc(p) = (−ε, ε)× {0}.

Because the flow φt is a perturbation of an Anosov flow, and f is a Poincaré map, it has
a finite Markov partition {Pi}i≥0 and we can assume that p is in the interior of P0. In the
sequel, let U be a neighbourhood of p that is small enough that (1) is valid on U × [0, 1]
but also that f(U) ⊃ P̂0 ∪ P0.

In order to regain the hyperbolicity lacking in f , let

r(q) := min{n ≥ 1 : fn(q) ∈ Y } (41)

be the first return time to Y := Σ \ P0. Then the Poincaré map F = f r = φτ of φt to
Y × {0} is hyperbolic, where

τ(q) = min{t > 0 : φt((q, 0)) ∈ Y × {0}} =

r−1∑
j=0

h ◦ f j

is the corresponding first return time.
Consequently, the flow φt : M× R → M can be modeled as a suspension flow on

Y τ =
(⋃

q∈Y {q} × [0, τ(q))
)
/(q, τ(q)) ∼ (F (q), 0). Since the flow and section Y ×{0} are

C1 smooth, τ is C1 on each piece {r = k}.

Lemma 4.1 Let τ̂(q) = min{t > 0 : φthor((q, η)) ∈ W s(ζ0, 0)} be the time the horizontal
flow needs to reach ∂Q. Then τ(q) = τ̂(q) + O(1) and r = τ̂(q) + Θ(τ̂(q)) + O(1), where
Θ is as in Proposition 4.1

Proof. By the definition of τ̂ we have φτ̂hor(q) ∈ Ŵ s. Therefore it takes a bounded
amount of time (positive or negative) for φτ̂ (q, 0) to hit Y × {0}, so |τ(q)− τ̂(q)| = O(1).

The function w in the vertical component of the local vector field X of (1) is a linear
combination of homogeneous functions Ci · (x2 + y2)ρi/2. It suffices to take the leading
term, i.e., the one with the smallest ρi =: ρ. Using this term in (39), we obtain that
τ̂(q) + Θ(τ̂(q)) indicates the vertical displacement by the flow φt. In particular, it gives
the number of times the flow-line intersects Σ, and hence r = τ̂(q) + Θ(τ̂(q)) +O(1). �

Assume that φt and f̂ preserve Lebesgue measure.

Proposition 4.2 Recall that β2 = a2+b2
2b2
∈ (1

2 ,∞). There exists C∗ > 0 such that

Leb({τ > t}) = C∗t−β2(1 + o(1)) (42)

for the F -invariant SRB-measure µφ̄.
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y2

{r = k}

F ({r = k})

P0

Wu

f−1(Wu)

Ws

f(Ws)

Figure 4: The first quadrant of the rectangle P0, with stable and unstable foliations of Poincaré
map f = φh drawn vertically and horizontally, respectively. Also one of the integral curves is
drawn.

Proof. The function τ is defined on Σ\P0 and τ ≥ h2 = h+h◦f on Y{r≥2} := f−1(P0)\P0.
The set Y{r≥2} is a rectangle with boundaries consisting of two stable and two unstable
leaves of the Poincaré map f . Let W u(y) denote the unstable leaf of f inside Y{r≥2} with
(0, y) as (left) boundary point. Let y1 < y2 be such that W u(y1) and W u(y2) are the
unstable boundary leaves of Y{r≥2}.

The unstable foliation of f̂ = φ1
hor does not entirely coincide with the unstable foliation

of f . Let Ŵ u(y) denote the unstable leaf of f̂ with (0, y) as (left) boundary point. Both
Ŵ u(y) and W u(y) are C1 curves emanating from (0, y); let γ(y) denote the angle between
them. Then the lengths

Leb(W u(y) ∩ {τ > t}) = | cos γ(y)| Leb(Ŵ u(y) ∩ {τ > t})(1 + o(1))

= | cos γ(y)| ξ0(y) t−β2(1 + o(1))

as t → ∞, where the last equality and the notation ξ0(y) and β2 = (a2 + b2)/(2b2) come
from Theorem 1.1

We decompose Lebesgue on Y{r≥2} as

∫
Y{r≥2}

v dµφ̄ =

∫ y2

y1

(∫
Wu(y)

v dµsWu(y)

)
dνu(y).

The conditional measures µWu(y) on W u(y) equals 1-dimensional Lebesgue mWu(y) on
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W u(y) Therefore, as t→∞,

µφ̄(τ > t) =

∫ y2

y1

µWu(y)(W
u(y) ∩ {τ > t}) dνu(y)

=

∫ y2

y1

mWu(y)(W
u(y) ∩ {τ > t}) dνu(y)

=

∫ y2

y1

| cos γ(y)| mŴu(y)(Ŵ
u(y) ∩ {τ > t})(1 + o(1)) dνu(y)

=

∫ y2

y1

| cos γ(y)| ξ0(y) t−β2(1 + o(1)) dνu(y) = C∗t−β2(1 + o(1)),

for C∗ =
∫ y2
y1
| cos γ(y)| ξ0(y) dνu(y). This proves the result. �

5 The proof of Theorem 1.2

Proof. The proof of Theorem 1.2 is a direct application of Theorem 2.7 in [3], where
v̄ =

∫ τ
0 v ◦φ

t dt takes the role of ψ̄ in [3, Theorem 2.7], but the condition that ψ̄ = C −ψ0

for some positive ψ0 is only important for the results on the shape of the pressure function
in [3]. For us, only the tail of v̄ matters and since v is C1 on M \ Γ, v̄ is C1 on each
partition element {φ = n} of the Markov map F . Since Proposition 4.1 applies to v we
get v̄(x, y) ∼ CpT

1− ρ
2 if the Dulac time of (x, y) is T . Since our invariant measure is

Lebesgue, and β2 = 2, Theorem 1.1 can be immediately used to estimate

Leb(v̄ > t) ∼
∫ η1
η0
ξ0(η) dη

Vol (Σ \ P0)

(
t

Cp

) −4
2−ρ

, (43)

where Σ is the Poincaré section and Vol (Σ \P0) is the normalizing constant for Lebesgue
restricted to the domain Σ \ P0 of F . If ρ ≥ 2, this asymptotic formula should be
interpreted as Leb(v̄ > t) = 0 for t large, that is: v̄ is bounded.

The exponent of the tail (43) is −2 if and only if ρ = 0, and in this case [3, Theorem
2.7(a)(ii)] gives the non-Gaussian CLT.

If −2 < ρ < 0, [3, Theorem 2.7(a)(i)] gives a Stable Law of order 4/(2− ρ) ∈ (1, 2).
Finally, if 0 < ρ < 2 (or ρ ≥ 2 when v̄ is bounded), then we obtain the CLT provided

the variance σ2 > 0, and this follows from v̄ not being a coboundary. In other words,
v̄ 6= h − h ◦ F for any h ∈ B, the Banach space used in the proofs of [3], and this we
assumed explicitly. �
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