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Abstract. A (quadratic) Hubbard tree is an invariant tree connecting
the critical orbit within the Julia set of a postcritically finite (quadratic)
polynomial. It is easy to read of the kneading sequences from a quadratic
Hubbard tree; the result in this paper handles the converse direction.

Not every sequence on two symbols is realized as the kneading se-
quence of a real or complex quadratic polynomial. Milnor and Thurston
classified all real-admissible sequences, and we give a classification of
all complex-admissible sequences in [BS]. In order to do this, we show
here that every periodic or preperiodic sequence is realized by a unique
abstract Hubbard tree. Real or complex admissibility of the sequence
depends on whether this abstract tree can be embedded into the real line
or complex plane so that the dynamics preserves the embedded, and this
can be studied in terms of branch points of the abstract Hubbard tree.

1. Introduction

Many properties of complex dynamics, both of the dynamical plane and

the parameter space, can be described conveniently with symbolic dynamics,

see [D1, M] for general introductions. In fact, one of the chief reasons why

polynomial dynamics is far better understood that rational dynamics is

because we have much better tools available for symbolic dynamics, see [D1,

M] for general introductions. Hubbard trees, external angles and kneading

theory, together with their recodings as internal addresses [LS, S1], are

fundamental concepts within this symbolic description.

• A Hubbard tree is a sketch of the essential topological features of

a polynomial Julia set from which many other topological or com-

binatorial data can be reconstructed quite easily. They were in-

troduced by Douady and Hubbard in their Orsay Notes [DH1] in

order to describe postcritically finite polynomials; this program was

later carried through in [P, BFH] using a fundamental theorem of

Thurston [DH2].
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• External angles and external parameter angles help to organize Julia

sets and the space of quadratic polynomials respectively, see [S4].

– In the dynamical space of a fixed polynomial f : z 7→ z2 + c1

(with c1 in the Mandelbrot set M), the angle doubling map on

the circle S1 = R/Z of external angles factorizes over the dy-

namics on the Julia set of f by identifying angles whose external

rays land at the same point.

– Similarly, every angle in S1 occurs as external parameter angle

for some quadratic polynomial, and it is usually easy to tell if

different angles correspond to the same polynomial (i.e., if their

external parameter rays land at the same c ∈ ∂M. 1)

Thus dynamical and parameter external angles give rise to topolog-

ical models “from the outside” of Julia sets and the Mandelbrot set

respectively, see [S3, T].

• The dynamics of a dendrite quadratic Julia set (or a Hubbard tree)

can be described by itineraries using symbols 0 and 1 for the parts

on either side of the critical point, and ⋆ for the critical point it-

self. The itinerary of the critical value c1 is called the kneading

sequence. Kneading sequences, especially in their human-readable

form of internal addresses [LS, S1], allow to construct a model of the

Mandelbrot set “from the inside”. They describe which polynomials

are topologically conjugate, and which external angles correspond

to rays that land together.

There are many algorithms known to turn one of these three concepts into

another. From a Hubbard tree one can directly read off the associated

kneading sequence and the external angle(s), provided the Hubbard tree

comes (as is traditionally the case) with an embedding into the plane, see

[D2, BKS] and Example 2.7. Similarly, every external angle easily specifies

the associated kneading sequence. It is much harder to find a Hubbard tree

or an external angle from the kneading sequence. This is what we do in the

present paper.

Part of the difficulty of finding a Hubbard tree for a given kneading

sequence comes from the fact that some kneading sequences are not re-

alized by complex polynomials and thus by Hubbard trees embedded in

the plane. Other kneading sequences are realized by several such trees.

It turns out that both difficulties disappear when turning attention to ab-

stract (non-embedded) Hubbard trees. Our main result is the following, see

Theorem 2.5:

1We are only involved with rational angles, so their external parameter rays land.
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Every periodic or preperiodic kneading sequence is realized by

a unique abstract Hubbard tree.

This is a fundamental and long overdue step in a coherent description of

symbolic dynamics of quadratic polynomials. We will specify the precise

meanings of periodic kneading sequence, abstract Hubbard tree and unique-

ness in Definitions 2.4, and 2.2 and the discussions following them. All our

Hubbard trees are abstract non-embedded trees (even though we will usu-

ally omit the article “abstract” from now on); this distinguishes them from

traditional Hubbard trees that come with an embedding into the plane.

Figure 1 gives an example of an abstract Hubbard tree that is not asso-

ciated to any quadratic polynomial. In [BS], we discuss branch points of

these abstract Hubbard trees and show how their properties are determined

explicitly in terms of the kneading sequence alone. (Branch points in pa-

rameter space, i.e., the Mandelbrot set, are closely related to branch points

in Hubbard trees; see [S2].) This allows us to specify an explicit admissibil-

ity condition determining which kneading sequences are realized by complex

quadratic polynomials (the corresponding question for real polynomials has

been answered by Milnor and Thurston [MT] in the late 1970s).
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Figure 1. The abstract Hubbard tree for ν = 10110⋆. The
three branch points form a period 3 orbit, but the third iterate
permutes the arms in a non-cyclic way. As a result, this tree
is not the Hubbard tree of any quadratic Julia set.

Further extensions of the theory (as covered in [BKS]) include (i) explicit

algorithms to convert kneading sequences into Hubbard trees and vice versa,

(ii) further algorithmic relations between various concepts of symbolic dy-

namics, (iii) the construction of abstract Julia sets as limit of backward

iterates of the Hubbard tree, (iv) the construction of Hubbard dendrites,

when ν is non-(pre)periodic, as projective limit of a sequence of Hubbard

trees, (v) the construction of abstract Mandelbrot set as bifurcation dia-

gram of the space of Hubbard trees, (vi) an analysis of biaccessible points

both in Julia sets and the Mandelbrot sets, and the corresponding “biacces-

sible” external angles, and (vii) the proof that the set of complex-admissible

kneading sequences has positive measure in the space of all sequences over

two symbols.
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The paper is organized as follows. In Section 2 we give the definitions

of abstract Hubbard trees and symbolic dynamics, and we give a formal

statement of our Main Theorem 2.5. We also give basic properties of a

Hubbard tree including the existence of the α-fixed point. In Section 3,

we introduce the triod argument which leads easily to the uniqueness of

the abstract Hubbard tree, up to some natural equivalence relation. In

Section 4 we define the ρ-function, which gives precise information about

the relative positions of precritical points in the Hubbard tree. With regard

to the proof of the main theorem, it enables us to show, purely symbolically,

that c1 is indeed an endpoint of T . This is easy to see once T is known to

exist, see Lemma 2.3, but as a priori knowledge, this is a crucial step in the

construction of T . In Section 5, we finally present the full construction of

the tree. We first select its marked points by (i) taking shifts of ν and (ii)

applying triod operations on the former. Gradually the neighbor-relations

of marked points, and the dynamic properties of the tree will be verified.

2. Hubbard Trees

In this section, we define Hubbard trees as abstract trees with dynamics

and show their most fundamental properties. Our trees do not necessarily

come with an embedding into the complex plane.

2.1. Definition (Trees, Arms, Branch Points and Endpoints)

A tree T is a finite connected graph without loops. For a point x ∈ T , the

(global) arms of x are the connected components of T \ {x}. A local arm at

x is an intersection of a global arm with a neighborhood of x in T (where

we use arc-length along the tree as metric). The point x is an endpoint of

T if it has only one arm; it is a branch point if it has at least three arms.

Between any two points x, y in a tree, there exists a unique closed arc

connecting x and y; we denote it by [x, y] and its interior by (x, y).

2.2. Definition (The Hubbard Tree)

A Hubbard tree is a tree T equipped with a map f : T → T and a distin-

guished point, the critical point, satisfying the following conditions:

(1) f : T → T is continuous and surjective;

(2) every point in T has at most two inverse images under f ;

(3) at every point other than the critical point, the map f is a local

homeomorphism onto its image;

(4) all endpoints of T are on the critical orbit;

(5) the critical point is periodic or preperiodic, but not fixed;
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(6) (expansivity) if x and y with x 6= y are branch points or points on the

critical orbit, then there is an n ≥ 0 such that f ◦n([x, y]) contains

the critical point.

We denote the critical point by c0 = 0 and its orbit by orbf (0) =

{0, c1, c2, . . . }. The critical value c1 is the image of the critical point. We

use a standing assumption that c1 6= 0 in order to avoid having to deal with

counterexamples when the entire tree is a single point. The branch points

and the points on the critical orbit (starting with c0) will be called marked

points. Not all marked point need necessarily be endpoints or branchpoints

(some post-critical point ck could lie on the interior of arcs), but the set of

marked points is finite and forward invariant, because the number of arms

at any point can decrease under f only at the critical point.

Two Hubbard trees (T, f) and (T ′, f ′) are equivalent if there is a bijection

between their marked points which is respected by the dynamics, and if the

edges of the tree connect the same marked points. This is weaker than a

topological conjugation. In particular, we do not care about details of the

dynamics between marked points; there may be intervals of periodic points,

attracting periodic points, and so on. (This is related to an equivalence

class of branched covers in the sense of Thurston as in [DH2, HS].)

2.3. Lemma (Basic Properties of the Hubbard Tree)

The critical value c1 is an endpoint, and the critical point 0 divides the tree

into at most two parts. Each branch point is periodic or preperiodic, it never

maps onto the critical point, and the number of arms is constant along the

periodic part of its orbit. Any arc which does not contain the critical point

in its interior maps homeomorphically onto its image.

Proof. Suppose that c1 has at least two arms. The points c2, c3, . . . also

have at least two arms as long as f is a local homeomorphism near this

orbit. If this is no longer the case at some point, then the orbit has reached

the critical point, and the next image is c1 again. In any case, all points on

the critical orbit have at least two arms. This contradicts the assumption

that all endpoints of a Hubbard tree are on the critical orbit. Hence c1 has

exactly one arm, and 0 has at most two arms (or its image would not be an

endpoint).

Since near every non-critical point, the dynamics is a local homeomor-

phism onto the image, every branch point maps onto a branch point with

at least as many arms. Since the critical point has at most two arms, it

can never be the image of a branch point. The tree and thus the number of

branch points is finite, so every branch point is preperiodic or periodic and
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its entire orbit consists of branch points; the number of arms is constant

along the periodic part of the orbit.

Let γ be an arc within the tree. Since f cannot be constant on γ and

there is no loop in the tree, the subtree f(γ) has at least two endpoints. If

an endpoint of f(γ) is not the image of an endpoint of γ, then it must be

the image of the critical point since f is a local homeomorphism elsewhere,

and the critical point 0 must be in the interior of γ. 2

We have seen that T \ {0} consists of at most two components. Let us

denote them by T0 and T1 so that c1 ∈ T1 (with c1 6= 0 by definition); T0

may be empty.

2.4. Definition (Itinerary and Kneading Sequence)

The itinerary of a point z ∈ T on a Hubbard tree is the infinite sequence

e(z) = e1(z)e2(z)e3(z) . . . with

ei(z) =







0 if f ◦(i−1)(z) ∈ T0,
⋆ if f ◦(i−1)(z) = 0,
1 if f ◦(i−1)(z) ∈ T1.

The itinerary e(c1) =: ν = ν1ν2ν3 . . . of c1 is called the kneading sequence.

If ei(z) = ⋆, then ei+j(z) = νj for every j ≥ 1. In particular, if there is n

minimal such that νn = ⋆, then ν = ν1 . . . νn−1⋆. Such kneading sequences

are called ⋆-periodic.

We can now state our main theorem precisely.

2.5. Theorem (Existence and Uniqueness of Hubbard Trees)

Every ⋆-periodic or preperiodic kneading sequence is realized by a unique

(up to equivalence) abstract Hubbard tree.

It is sometimes useful to extend a Hubbard tree to include finite set of

(pre)periodic orbits. Such an extended Hubbard tree (T̂ , f̂) satisfies Defini-

tion 2.2, except that f̂ : T̂ → T̂ need not be surjective and part (4) must

be replaced by: all endpoints in T̂ are (pre)periodic. Branch points and

points on the critical orbit are still marked, but also the additional points

with itineraries in V̂ should now be marked.

2.6. Corollary (Existence and Uniqueness of Extended Hubbard

Trees)

Given a ⋆-periodic or preperiodic kneading sequence ν and a set V̂ ⊂ {0, 1}N
∗

\

{0ν, 1ν} such that V̂ ∪{⋆ν, ν, σ(ν), σ◦2(ν), . . . } is shift-invariant, there is an

extended Hubbard tree (T̂ , f̂) such that

• for every v ∈ V̂ , there is p ∈ T̂ with itinerary e(p) = v;

• T̂ is minimal in the sense that every endpoint belongs to the critical

orbit, or is a point with itinerary in V̂ .
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• T̂ is unique up to equivalence.

2.7. Example (Extending Hubbard trees to compute external an-

gles)

By extending a Hubbard tree with the β-fixed point and its preimage −β

(with itineraries e(β) = 0 and e(−β) = 10 respectively), one can reconstruct

the external angle of the ray landing at some point in x ∈ T . The n-

th coordinate in the binary expansion of the external angle of x is 0 if

f ◦n(x) is above the spine [β,−β] and 1 if f ◦n(x) is below the spine. In

Figure 2 we illustrate how this works for the critical value of the Hubbard

tree with kneading sequence ν = 1101. Since several points on the orbit of
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Figure 2. A Hubbard tree for ν = 1101 (in bold lines) and
is extension. The third image of the critical value is the fixed
point α which in this case has three external approaches, so
c1 has three external angles.

the critical value belong to the spine, c1 has multiple (here three) external

angles corresponding to its different external approaches. These angles are

(i) : 0.1101011011011011011 . . . (binary) =
47

56

(ii) : 0.1100110110110110110 . . . (binary) =
45

56

(iii) : 0.1011101101101101101 . . . (binary) =
41

56

Note that this algorithm depends on the fact that T can be properly embed-

ded into the plane. In fact, for ν = 1101, there is also another embedding,

the mirror image of Figure 2, and the corresponding to external angles for

c1 are 15
56

, 11
56

and 9
56

.
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Throughout, we will write N
∗ = {1, 2, 3, . . .} and use the following nota-

tion for our symbol spaces:

Σ1 := {ν ∈ {0, 1}N∗

: the first entry in ν is 1},

Σ⋆ := Σ1 ∪ {all ⋆-periodic sequences},

Σ⋆⋆ := {ν ∈ Σ1 : ν is non-periodic} ∪ {all ⋆-periodic sequences}.

Obviously e ◦ f(z) = σ ◦ e(z) where σ denotes the left shift. The expan-

sivity condition of Definition 2.2 means that no two marked points have the

same itinerary.

2.8. Lemma (Same Itinerary on Connected Subtree)

Suppose that z and z′ are two points on a Hubbard tree such that ei(z) =

ei(z
′) for all i < n (for some n ≤ ∞). Then all w ∈ [z, z′] have ei(w) =

ei(z) = ei(z
′) for i < n.

Proof. We can assume that z 6= z′. Since 0 is the only point whose

itinerary starts with ⋆, z and z′ lie in the same component of T \ {0}.

Therefore [z, z′] is mapped homeomorphically onto f([z, z′]) by f . Since

e2(z) = e2(z
′), the arc f([z, z′]) is contained in a single component of T \{0}.

By induction, we obtain that f ◦i([z, z′]) is contained in a single component

of T \ {0} for each i < n. The claim follows. 2

2.9. Lemma (α-Fixed Point on Hubbard Tree)

There is a unique fixed point in T1; it lies in (0, c1).

Proof. Since c1 is an endpoint, the intersection [0, c1]∩ f([0, c1]) is a non-

degenerate arc [c1, x], i.e., x 6= c1. If x = 0, then f maps [0, c1] over itself

in an orientation reversing way, so there is a fixed point on [0, c1].

We may thus assume that x ∈ (0, c1). If f([0, c1]) ⊂ [0, c1], then as above

we have a fixed point in (c1, x). Otherwise f([0, c1]) branches off from [0, c1]

at x. Let y = f(x). Then y cannot be on (0, x) because the path f([0, c1])

starts at c1 and branches off at x before reaching (0, x). If y ∈ [x, c1], then

f maps [x, c1] over [y, c2], and f has a fixed point in [x, y].

The last possibility is that y ∈ (x, c2], and we show this does not occur.

Let T ′ be the connected component of T \ {x} containing y. The image

f(T ′) 6∋ x, because one of the two inverse images of x is on [0, x], and the

other is separated from x by the critical point. Since x maps into T ′ and

no point in T ′ maps onto x, all of T ′ maps strictly into itself under f . But

this violates the expansivity condition: T ′ has an endpoint x′ other than x,

and the forward orbits of x and the endpoint are never separated by 0.

Now we have a fixed point in T1; call it α. Suppose that it is not unique.

Since f maps T1 homeomorphically onto its image, f must fix a component
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G of T1 \{α}. This is not the component with 0 as boundary point, because

α separates 0 from c1 = f(0). Let z be an endpoint of this fixed component

G. Then α and z both are marked points with the same itinerary 1, and

this contradicts the expansivity condition. 2

Remark. The unique fixed point in T1 is usually called α. The component

T0 can contain more fixed points, but by Lemma 2.8, they are all contained

in a connected subtree of constant itinerary 0. If there is an endpoint with

itinerary 0, it is called β; it exists on the Hubbard tree if and only if the

kneading sequence terminates in an infinite string of symbols 0.

A point z ∈ T is (pre)periodic if f ◦l(z) = f ◦(l+m)(z) for some l ≥ 0, m ≥ 1.

We take l and m minimal with this property. Then m is the (exact) period

of z and l the preperiod.

2.10. Lemma (Preperiod and Period)

The exact preperiod and period of any marked (pre)periodic point are equal

to the exact preperiod and period of its itinerary.

Proof. Suppose z is periodic with period m and let m′ be the period

of e(z) (under the shift). Obviously m′ divides m. If m′ 6= m, then z and

f ◦m′

(z) are different marked points with the same itinerary. This contradicts

expansivity. The same argument works in the preperiodic case. 2

2.11. Lemma (Periodic Points and Itineraries)

If a Hubbard tree contains a point with periodic itinerary τ , then it contains

a periodic point p with itinerary τ such that the exact periods of p and τ

coincide.

Proof. Let T ′ ⊂ T be the set of all points with itinerary τ . By Lemma 2.8,

T ′ is connected, so it is a connected subtree (possibly not closed).

Let n be the period of τ . Then f ◦n maps T ′ homeomorphically onto its

image in T ′. Since marked points in T have different itineraries, T ′ can

contain at most one branch point of T . If it contains one, then it must be

fixed by f ◦n, so its exact period is n. Otherwise, T ′ is either a single point

(and we are done), or T ′ is homeomorphic to an interval. If f ◦n sends T ′ to

itself reversing the orientation, we get a unique fixed point in the interior

of T ′, and we are done again.

Now suppose that f ◦n preserves the orientation of T ′. If f ◦n : T ′ → T ′ is

not surjective, then for at least one endpoint x, say, f ◦n(x) is in the interior

of T ′. If x is a branch point or an endpoint of T , then it is marked and we

are done. Otherwise, x has a neighborhood in T which is homeomorphic

to an open interval, but only a one-sided neighborhood has itinerary τ .
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This implies that x maps to the critical point after finitely many iterations.

Again T ′ contains a marked point, which must be fixed by f ◦n.

The last case is that f ◦n maps T ′ homeomorphically onto itself, preserving

the orientation and fixing both endpoints. Then the claim is satisfied by

any endpoint of T ′ which does not hit the critical point on its forward orbit.

If both endpoints do, say after k and m iterations with k and m minimal

and k < m, then f ◦(k+1)(T ′) and f ◦(m+1)(T ′) are both intervals with c1 as

endpoints and not containing branch points of T , and m − k < n. Hence

f ◦(m−k) must map T ′ onto itself reversing the orientation, so it fixes some

point in T ′ which must have an itinerary with period dividing n. This is a

contradiction. 2

3. Triods and Uniqueness of Hubbard Trees

In this section we introduce triods and their iteration in order to deter-

mine which marked points are branched and/or adjacent to each other. By

analyzing the triods in T , the uniqueness of Hubbard trees, up to equiva-

lence, follows as well.

3.1. Definition (Triod)

A triod is a connected compact set homeomorphic to a subset of the letter

Y. It is degenerate if it is homeomorphic to an arc or a point.

For a sequence ν ∈ Σ⋆, let ⋆ν be the symbol ⋆ followed by ν and define

S(ν) := {⋆ν, ν, σ(ν), σ◦2(ν), . . . } (the orbit of ⋆ν under the shift). Then

σ(S(ν)) ⊂ S(ν). Note that 0ν ∈ S(ν) or 1ν ∈ S(ν) would imply that ν

was periodic but not ⋆-periodic; thus S(ν)∩{0ν, 1ν} = ∅ for ⋆-periodic and

preperiodic ν.

3.2. Definition (Formal Triod)

Any triple of pairwise different sequences s, t, u ∈ S(ν) ∪ {0, 1}N
∗

is called

a formal triod [s, t, u].

3.3. Definition (The Formal Triod Map)

If {s, t, u} ∩ {0ν, 1ν} = ∅, then we define the formal triod map as follows:

ϕ[s, t, u] :=







[σ(s), σ(t), σ(u)] if s1 = t1 = u1 ∈ {0, 1};
stop if {s1, t1, u1} = {0, 1, ⋆};
[σ(s), σ(t), ν] if s1 = t1 6= u1 ;
[σ(s), ν, σ(u)] if s1 = u1 6= t1 ;
[ν, σ(t), σ(u)] if t1 = u1 6= s1 .

(1)

By construction, the only sequence which starts with ⋆ is ⋆ν, so at most

one of s, t, u can start with ⋆. If one of them does, then the other two

sequences either have first entries which are different from each other (and
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we are in line 2), or the other two first entries are equal and we are in lines

3–5. Therefore, the list covers all possible cases.

In all cases other than the stop case, ϕ[s, t, u] returns three sequences

in S(ν) ∪ {0, 1}N
∗

. These form another formal triod, i.e., all three image

sequences are different: in line 1, this is clear; in the other lines, this follows

because s, t, u are all different from 0ν and 1ν by assumption.

To use ϕ more freely in the rest of this paper, it helps to specify what is

meant by majority and minority votes and chopping of arms of triods.

3.4. Definition (Majority/Minority Vote, Chopped Triods.)

The majority vote of three sequences s, t, u is the symbol that occurs most

frequently among their first symbols {s1, t1, u1}. If two of these symbols are

equal (called a two-to-one majority) then the value of the third symbol is the

minority vote.

Given a triod [s, t, u] with two-to-one majority vote, the chopped off ver-

sion is the triod in which the sequence of the minority vote is replaced by

⋆ν.

Thus, in the last three lines of formula (1), we say that u, t, s (respec-

tively) are chopped off from the triod and replaced by ⋆ν. The image

ϕ[s, t, u] is the shift of this chopped triod. If one of s, t or u equals ⋆ν, then

this sequence is chopped off and replaced by itself, so formally the outcome

is the same as it would be in line 1, but we record the chopping.

3.5. Proposition (Uniqueness of Hubbard Trees)

Any two Hubbard trees with the same ⋆-periodic or preperiodic kneading

sequence are equivalent.

Proof. Given three marked points x, y, z on a Hubbard tree, we denote

the triod that they form by [x, y, z], i.e., [x, y, z] = [x, y]∪ [y, z]∪ [z, x]. For

any two Hubbard trees T and T ′ with the same kneading sequence, we prove

that any pair of triods [ck, cl, cm] and [c′k, c
′

l, c
′

m] are both non-degenerate or

both degenerate in the same way.

We decide whether a triod is degenerate by iterating it. Assume that ck,

cl and cm are pairwise different.

(1) If the triod [ck, cl, cm] does not contain 0 in its interior, then it maps

homeomorphically onto its image; we take the image.

(2) If 0 belongs to the interior of [ck, cl, cm] and 0 /∈ {ck, cl, cm}, then we

take the component of [ck, cl, cm] \ {0} containing two of the three

points ck, cl, cm, and take the closure of its image as new triod (we

chop off the arc from 0 to the isolated endpoint of the triod and map

only the rest).
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(3) If 0 belongs to the interior of [ck, cl, cm], and 0 is equal to one of the

three points, say 0 = ck, then the algorithm terminates. The triod

is degenerate, and ck is an interior point of [ck, cl, cm].

We iterate this procedure. Since the critical orbit is finite, the algorithm

either terminates or eventually reaches a loop. If the algorithm never ter-

minates, then at least two endpoints must be chopped off during the iter-

ation of the triod. Otherwise, at least two endpoints must have identical

itineraries (if ν is ⋆-periodic, then we must exclude the case that the triod

iteration involves a triod with endpoint 0ν or 1ν; but this is clear). If each

of the three points of the triod is chopped off at some step, the triod must

be non-degenerate. If exactly one endpoint of the triod is never chopped

off, then the triod is degenerate with the latter endpoint in the middle.

The key observation is that the type of the triod can be read off from

the itineraries of its endpoints in terms of the form triod map. The triod

[ck, cl, cm] is represented by the triple (σ◦(k−1)(ν), σ◦(l−1)(ν), σ◦(m−1)(ν)), and

the image triod has endpoints ϕ[σ◦(k−1)(ν), σ◦(l−1)(ν), σ◦(m−1)(ν)]:

(1) If the first entries of σ◦(k−1)(ν), σ◦(l−1)(ν), σ◦(m−1)(ν) are the same,

where ⋆ counts as 0 (resp. 1) if the other two first entries are 0 (resp.

1), then the shifted triple represents the image triod [ck+1, cl+1, cm+1].

(2) If the first entries of σ◦(k−1)(ν), σ◦(l−1)(ν), σ◦(m−1)(ν) are 0 (say twice)

and 1 (say once), then we take the shift of the sequences starting

with 0 and replace the remaining sequence by ν. This represents the

chopping off one arm of the triod.

(3) If the first entries of σ◦(k−1)(ν), σ◦(l−1)(ν), σ◦(m−1)(ν) are {0, ⋆, 1},

then we do not define ϕ[σ◦(k−1)(ν), σ◦(l−1)(ν), σ◦(m−1)(ν)]: the iter-

ation terminates, the triod is degenerate and the sequence starting

with ⋆ represents an interior point of the triod.

The kneading sequence fully describes the behavior of ϕ and thus determines

which points on the critical orbit are between which others on the tree, and

which are endpoints.

For any non-degenerate triod, the iteration of ϕ also encodes the itinerary

of the interior branch point: this itinerary is constructed by majority vote

from the first entries of the sequences of the triple at every step. The branch

points have itineraries different from 0ν and 1ν because they are marked

points, and their images are different from the critical value. Therefore, the

argument above can also be applied to triods whose endpoints are arbitrary

marked points (branch points or points on the critical orbit), and this implies

that any two Hubbard trees with the same kneading sequence are equivalent.

2
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An independent proof of the same result is given in [BS]: there we prove

that all endpoints and all branch points can be read off explicitly from the

kneading sequence, and that corresponding points are connected by edges;

and this exactly amounts to uniqueness of the Hubbard tree.

3.6. Corollary (Uniqueness of extended Hubbard trees)

Any extended Hubbard tree is unique up to equivalence.

Proof. This proof is the same as the proof of Proposition 3.5, as long as

we include the points with itinerary in V̂ . Since V̂ 6∋ 0ν, 1ν, triods can be

iterated under ϕ without collapsing their endpoints. 2

4. The ρ-Function and its Properties

Next we introduce the ρ-function on N∗, which depends on ν. It is a

useful tool in revealing the properties of precritical and periodic points of

T , see [BS], but in this paper ρ will be used to derive some fundamental

facts about sequences in Σ⋆. In particular, we show symbolically that c1 is

always an endpoint of T .

4.1. Definition (ρ-Function and Internal Address)

For a sequence ν ∈ Σ⋆, define

ρν : N
∗ → N

∗ ∪ {∞}, ρν(n) = inf{k > n : νk 6= νk−n}.

We usually write ρ for ρν . For k ≥ 1, we call

orbρ(k) := k → ρ(k) → ρ◦2(k) → ρ◦3(k) → . . .

the ρ-orbit of k. The case k = 1 is the most important one; we call

orbρ(1) = 1 → ρ(1) → ρ◦2(1) → ρ◦3(1) → . . .

the internal address of ν. For real unimodal maps, the numbers ρ◦k(1) are

known as the cutting times of the map. If ρ◦k+1(1) = ∞, then we say that

the internal address is finite: 1 → ρ(1) → . . . → ρ◦k(1); as a result, the

orbit orbρ is a finite or infinite sequence that never contains ∞.

Remark. The use of the ρ-function is explained by its relation to the closest

precritical points on the Hubbard tree. Let ζ1 := 0 be the closest precritical

point of Step 1, because it takes one iterate to map to the critical value.

Given closest precritical point ζk of Step k, then next closest precritical

point is ζl ∈ (ζk, c1] such that f ◦l(ζl) = c1, and l is the minimal number

with this property. It is not hard to verify, see [BKS], that orbρ(1) finds the

sequence of closest precritical points in [0, c1] while orbρ(ρ(k)− k) finds the

sequence of closest precritical points between the critical value c1 and the

postcritical point ck.
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The following technical lemma on the behavior of ρ-orbits for arbitrary

kneading sequences establishes a combinatorial result which will imply that

the critical value is an endpoint of the Hubbard tree. The lemma can be

interpreted by saying that within the Hubbard tree, the arcs from c1 to the

critical point and to any other postcritical point ck intersect, so c1 is an

endpoint of the tree2.

4.2. Lemma (Critical Value is Endpoint (Combinatorial Version))

Let ν ∈ Σ⋆ be arbitrary. Then for each k ∈ N∗ such that ρ(k) − k < ∞,

there exists an i with ρ◦i(ρ(k)−k) ≤ ρ(k) such that ρ◦i(ρ(k)−k) ∈ orbρ(1).

Proof. If ν is ⋆-periodic, say of period N , then m := ρ(k) − k is either

infinite or at most N (depending on whether or not k is divisible by N).

In the finite case, N ∈ orbρ(m) ∩ orbρ(1) inevitably. Therefore we only

need to consider ν ∈ Σ1. We argue by induction on m, using the induction

hypothesis IH[m]:

IH[m]: For every ν ∈ Σ1 and corresponding ρ-function for

which there exists a k such that ρ(k) − k = m, the orbits

orbρ(1) and orbρ(m) intersect at the latest at ρ(k).

Remark. IH[m] does not imply that orbρ(1) ∩ orbρ(m) contains ρ(k), not

even if k is minimal such that ρ(k) − k = m. For example, if

ν = 1011001101101 . . .

with m = 6 and k = 7, then m ∈ orbρ(1), but ρ(m) > k > m.

The induction hypothesis is trivially true for m = 1. So assume that

IH[m′] holds for all m′ < m. Take ν ∈ Σ1 arbitrary and k minimal such

that ρ(k)−k = m. If no such k exists, then IH[m] is true for this ν by default.

Let m0 ∈ orbρ(m) be maximal such that m0 ≤ ρ(k); thus ρ(m0) > ρ(k).

We distinguish two cases:

Case I: m0 < ρ(k). If m0 ≤ k, then ρ(m0) > ρ(k) implies m0 < k and

ν1 . . . νk−m0+1 . . . νρ(k)−m0
= νm0+1 . . . νk+1 . . . νρ(k) ,

hence ρ(k −m0)− (k−m0) = ρ(k)− k = m, contradicting minimality of k.

Therefore k < m0 < ρ(k). Since ρ(m0) > ρ(k) and

νk+1 . . . νm0+1 . . . νρ(k) = ν1 . . . νm0−k+1 . . . ν ′

m

(where ν ′

m is the opposite symbol of νm), we have ρ(m0 −k) = m. Consider

ν̃ := ν1 . . . νm0−1ν
′

m0
νm0+1 . . . (with arbitrary continuation) with associated

function ρ̃. Then ρ̃(k) = m0.

2By the same token, the number of arms of c1 in the Julia set is the number disjoint
ρ-orbits in N∗.
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(i) If m0 = m, then the fact that ρ(m0 −k) = m implies ρ̃(m0 −k) > m0,

so ρ̃(k) /∈ orbρ̃(m0 − k).

(ii) If m0 > m, then ρ̃(k) = m0 /∈ orbρ̃(m), and ρ̃(m0 − k) = ρ(m0 − k) =

m < m0 again implies ρ̃(k) /∈ orbρ̃(m0 − k).

So in both cases ρ̃(k) /∈ orbρ̃(m0−k). Now ρ̃(k)−k = m0−k < ρ(k)−k =

m, so by the induction hypothesis IH[m0−k], orbρ̃(1) and orbρ̃(m0−k) meet

at or before ρ̃(k); since ρ̃(k) /∈ orbρ̃(m0 − k), they meet before ρ̃(k) = m0.

As a result, also orbρ(1) and orbρ(m0 − k) meet before m0 < ρ(k), and

since ρ(m0 − k) = m, it follows that orbρ(1) and orbρ(m) meet before ρ(k).

Case II: m0 = ρ(k). In this case ρ(k) ∈ orbρ(m). Let n0 ∈ orbρ(1)

be maximal such that n0 ≤ ρ(k), hence ρ(n0) > ρ(k). If n0 = ρ(k) there

is nothing to prove, so assume that n0 < ρ(k) < ρ(n0). As in Case I

(by minimality of k), we only need to consider the case that k < n0 <

ρ(k) < ρ(n0). Since νk+1 . . . νρ(k) = ν1 . . . ν ′

m, we have ρ(n0 − k) = m

(similarly as above). Set ν̃ := ν1 . . . ν ′

n0
. . . with associated function ρ̃.

Then ρ̃(k) = n0 < ρ(k) and by IH[n0 − k], orbρ̃(1) and orbρ̃(n0 − k) meet

at the latest at ρ̃(k) = n0.

(i) If m < n0, then ρ̃(n0 − k) = ρ(n0 − k) = m, so orbρ̃(1) and orbρ̃(m)

meet at the latest at n0. But n0 /∈ orbρ̃(1), so in fact orbρ̃(1) and orbρ̃(m)

meet before n0. But then orbρ(1) and orbρ(m) also meet before n0 < ρ(k).

(ii) If m = n0, then orbρ(1) and orbρ(m) obviously meet at n0 < ρ(k).

(iii) The case m > n0 is impossible: We have ρ(k) − k = m > n0 > k,

so ρ(k) > 2k. Since ρ(n0) > ρ(k) = m + k > n0 + k, we find that

νk+1 . . . νn0+1 . . . νρ(k)−1 = ν1 . . . νn0−k+1 . . . νρ(k)−k−1, hence ρ(n0−k) ≥ ρ(k)−

k > n0. For the sequence ν̃ this means that ρ̃(n0 − k) = n0, while

n0 /∈ orbρ̃(1). Therefore orbρ̃(1) and orbρ̃(n0 − k) do not meet at or be-

fore n0; since ρ̃(k) − k = n0 − k, this contradicts IH[n0 − k].

This completes Case II and proves that orbρ(1) and orbρ(m) intersect at

the latest at ρ(k), where k is minimal with the property that ρ(k)− k = m.

For an arbitrary k with ρ(k) − k = m, let k′ minimal with this property.

Then the two orbits meet at the latest at ρ(k′) = m + k′ ≤ m + k = ρ(k),

so the statement holds for arbitrary k. This proves IH[m].

To prove the lemma for ν ∈ Σ1 and arbitrary k, set m := ρ(k) − k.

Then orbρ(m) and orbρ(1) meet at the latest at ρ(k). This proves the first

statement.

Now for the second statement, assume that k′ is the largest multiple of k

less than ρ(k), so ρ(k′) = ρ(k). Since k failing the admissibility means that

k ∈ orbρ(ρ(k′)− k′) but k /∈ orbρ(1), the second statement is an immediate

consequence. 2
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The following combinatorial lemma will be used to locate the images of

certain closest precritical points in Hubbard trees.

4.3. Lemma (Combinatorics of ρ-Orbits)

Let ν ∈ Σ1 (not containing a ⋆) and let m belong to the internal address of

ν.

(1) If s is such that s < m < ρ(s), then orbρ(ρ(m − s) − (m − s)) ∋ m.

(2) If ρ(m) > 2m, then for every s ∈ {1, . . . , m}, either m or 2m belongs

to orbρ(s).

(3) If ρ(m) = ∞, then m is the exact period of ν.

Proof. Let ν = ν1ν2 . . . be the kneading sequence. Using Lemma 4.2 we

prove two claims.

Claim 1: If k ≥ 1 and l ∈ orbρ(k)∩orbρ(1)\{k}, then l ∈ orbρ(ρ(k)−k).

Assume by contradiction that l /∈ orbρ(ρ(k) − k). Consider ν̃ = ν1 . . . νl

and let ρ̃ be the corresponding ρ-function. Note that ρ(k) = ρ̃(k) because

l ≥ ρ(k). We have l = max orbρ̃(1), but l /∈ orbρ̃(ρ(k)−k). This contradicts

Lemma 4.2.

Claim 2: If k < m < ρ(k) and m′ ∈ orbρ(1) is such that ρ(m′) = m,

then m′ ∈ orbρ(m − k).

Consider ν̃ = ν1 . . . νm′ . Then m′ = max orbρ̃(1) and ρ̃(k) = m (this

follows directly from ρ(k) > m and ρ(m′) = m). Therefore Lemma 4.2

implies that m′ ∈ orbρ̃(m − k), and Claim 2 is proved.

To prove the first assertion, let m′ be as in Claim 2. We have m′ ∈

orbρ(m − s). Hence m = ρ(m′) ≥ ρ(m − s). By Claim 1, m ∈ orbρ(ρ(m −

s) − (m − s)).

Now we prove the second assertion. If m ∈ orbρ(s) there is nothing to

prove. Hence we may assume without loss of generality that s < m < ρ(s).

Assume first that ρ(s) < ∞. Assertion (1) implies ρ(m−s)−(m−s) ≤ m,

hence ρ(m − s) ≤ 2m − s < ρ(m) − s. If ρ(s) ≥ ρ(m), then

ν1 . . . νm−sνm−s+1 . . . νρ(m)−s−1 = νs+1 . . . νmνm+1 . . . νρ(m)−1

= νs+1 . . . νmν1 . . . νρ(m)−m−1 ,

hence ρ(m − s) ≥ ρ(m) − s, a contradiction. Hence ρ(m) > ρ(s) and,

similarly as above,

νs+1 . . . νmν1 . . . νρ(s)−m = νs+1 . . . νmνm+1 . . . νρ(s)

= ν1 . . . νm−sνm−s+1 . . . ν ′

ρ(s)−s ,

where ν ′

j denotes the opposite symbol of νj . Therefore ρ(m− s) = ρ(s)− s.

By Assertion (1), m ∈ orbρ(ρ(m − s) − (m − s)) = orbρ(ρ(s) − m). (Note
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that this implies ρ(s) ≤ 2m.) Since ν = ν1 . . . νmν1 . . . νm . . . , we then have

2m ∈ orbρ(ρ(s)) as claimed (we simply start m entries later).

If ρ(s) = ∞, we first change the entry νk for some k > 2m. Then still

ρ(m) > 2m and ρ(s) = k > 2m, and we can use the above argument.

For the third assertion, consider ν̃ = ν1 . . . νmν1 . . . νmν ′

1 . . . with ρ-function

ρ̃. Then ρ̃(m) = 2m + 1 > 2m. If s < m is the exact period of ν, then

ρ(s) = ∞ and ρ̃(s) = 2m + 1. Hence both m and 2m /∈ orbρ̃(s), contradict-

ing the second assertion. 2

The following lemma is rather trivial, but helpful to refer to in longer

arguments.

4.4. Lemma (Translation Property of ρ)

If ρ(m) > km for k ≥ 2, then ρ(km) = ρ(m).

Proof. Let ν be a kneading sequence associated to ρ. Then ρ(m) > km

says that the first m entries in ν repeat at least k times, and ρ(m) finds the

first position where this pattern is broken. By definition, ρ(km) does the

same, omitting the first k periods. 2

4.5. Lemma (ν is Always Endpoint)

Fix a sequence ν ∈ Σ⋆. If the triod [σ◦k(ν), σ◦l(ν), ν] (with k, l ≥ 1) can be

iterated infinitely often, then the sequence ν will be chopped off eventually.

If the stop case is reached, the initial ⋆ does not occur in the last sequence.

Hence ν cannot be an interior point of such a triod.

Proof. Suppose the triod can be iterated infinitely often but ν is never

chopped off. By the definition of the ρ-function, σ◦k(ν) differs from ν differ

at entry ρ(k), so one of the two is chopped off at Step ρ(k)−k. If the third

sequence is chopped off, then we are done, so we may assume that it is the

first sequence which is chopped off. Therefore,

ϕ◦(ρ(k)−k)
(
[σ◦k(ν), σ◦l(ν), ν]

)
= [ν, ··, σ◦(ρ(k)−k)(ν)].

(The second entry depends on whether or not σ◦l(ν) has been chopped off

in the meantime.) The next time that the first and third sequences differ

is at iterate ρ(ρ(k) − k), and again we may assume the first sequence is

chopped off, yielding

ϕ◦ρ(ρ(k)−k)
(
[σ◦k(ν), σ◦l(ν), ν]

)
= [ν, ··, σ◦ρ(ρ(k)−k)(ν)] ,

and in general the first sequence is chopped off at steps in orbρ(ρ(k) − k).

Similarly, the second sequence is chopped off at iteration steps in orbρ(ρ(l)−

l). By Lemma 4.2, there is an iteration step s ∈ orbρ(ρ(k)−k)∩orbρ(ρ(l)−l).
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Take s minimal with this property. At this step, the first and second se-

quences both differ from the third, so in this step the sequence ν must be

chopped off (or the stop case is reached, but this is excluded by hypothesis).

This settles the first claim.

For the second claim, the stop case can be reached only if ν is ⋆-periodic,

say of period n. We can assume by Lemma 4.4 that 1 ≤ k < l < n. By

Lemma 4.2, orbρ(ρ(k) − k) and orbρ(ρ(l) − l) intersect orbρ(1) at an entry

s ≤ max{ρ(k), ρ(l)}, and since ν is ⋆-periodic, max{ρ(k), ρ(l)} ≤ n. The

above argument implies that ν is chopped off at some iterate s′ ≤ s. If

s′ = n, then ρ(k) = n or ρ(l) = n. If ρ(l) ≥ n, then the stop case is

reached after n − l iterates of ϕ, and the ⋆ is in the second sequence. If

ρ(k) ≥ n, then the stop case is reached after n − k iterates of ϕ, and the

⋆ is in the first sequence. Finally, if s < n, then the triod after s iterates

will be ϕ◦s([σ◦k(ν), σ◦l(ν), ν]) = [σ◦k′

(ν), σ◦l′(ν), ν] for some k′, l′ ≤ n, and

we can repeat the argument. 2

5. Existence of Hubbard Trees

In this section we prove the existence of Hubbard trees for ⋆-periodic

and preperiodic kneading sequences. Starting with the set {⋆ν, ν, σ(ν), . . .}

we use the triod map to find the branch points and therefore all marked

points (represented by itineraries) of the tree. Further triod arguments then

determine how to connect marked points by edges, and allow for verifying

the properties of the dynamics on the tree.

Fix a ⋆-periodic or preperiodic sequence ν and set

S(ν) = {⋆ν, ν, σ(ν), σ◦2(ν), . . . }.

Clearly, σ(S(ν)) ⊂ S(ν) and S(ν) ∩ {0ν, 1ν} = ∅.

In order to introduce the other marked points of the Hubbard tree, we

need to analyze the behavior of the triod map of Definition 3.2 in more

detail.

Branch Points b(s, t, u). Fix a ⋆-periodic or preperiodic ν. Take

s, t, u ∈ S(ν) ∪ {0, 1}N
∗

and consider the triod [s, t, u]. If each of these

sequences is chopped off infinitely often under iteration of ϕ, then [s, t, u] is

called a branched triod, and it has a “branch point” called b(s, t, u): that

is the sequence which is defined by majority vote of the three sequences

in each iteration step. More precisely, the n-th entry of this sequence is

defined by majority vote among the first entries in ϕ◦(n−1)(s, t, u). Clearly,

b(s, t, u) ∈ {0, 1}N∗

. If s, t, u are (pre)periodic, then b(s, t, u) is necessarily

(pre)periodic too. Moreover, b(s, t, u) differs from all sequences s, t, and u:
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otherwise, if say b(s, t, u) = s, then because of the majority construction,

the first sequence in the triod [s, t, u] always coincides with at least one

other sequence, so it is never chopped off, contrary to our assumption.

Types of Triods. Based on equation (1) in Definition 3.3, we can dis-

tinguish five types of triods:

(1) the triod can be iterated indefinitely so that all three sequences are

chopped off infinitely often (this implies all three sequences remain

distinct under iteration and the stop case is never reached); in this

case we call the triod branched. The sequence b(s, t, u) ∈ {0, 1}N∗

obtained by majority vote is the branch point of the triod.

(2) the triod can either be iterated indefinitely and precisely two se-

quences are chopped off infinitely often whereas the remaining se-

quence is never chopped, or the iteration reaches the stop case so

that the sequence that lands on ⋆ at the stop case has never been

chopped off before; in this case we call the triod flat. The sequence

which reaches the ⋆ in the stop case or which is never chopped off

is called the middle point of the flat triod.

(3) not all three sequences remain distinct during the iteration, i.e.,

two or three sequences become identical at some iterate of ϕ; in this

case we say that ϕ has collapsing sequences. Note that collapsing

sequences means that one of these sequences must have been equal

to 0ν or 1ν the iterate before collapsing. Note also that if ϕ can

be iterated indefinitely, but only one sequence ever gets chopped off

infinitely often, then the remaining sequences must collapse.

(4) the iteration of ϕ reaches the stop case so that the ⋆ is in a sequence

that had been chopped off before.

(5) the iteration of ϕ can be carried on forever without collapsing, and

some sequence is chopped off at least once, but not infinitely often.

For us, the most important cases are the first two because we will show in

Lemma 5.1 that (3)–(5) do not occur when s, t, u are distinct and forward

shifts of the kneading sequence ν.

Note that all five cases are mutually distinct and cover all possible cases:

if two or sequences collapse, then the stop case cannot be reached and at

most one sequence can be chopped off infinitely often, and we are exactly in

case (3). Otherwise, there is no collapsing. If we can iterate forever without

collapsing, then either some sequence is chopped off finitely many times and

we are exactly in case (5); or every sequence is chopped off either infinitely

many times or not at all, and the number of chopped sequences must be 2

or 3, so we are in cases (2) or (1). The last possibility is that the stop case
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is reached; depending on whether the sequence landing on ⋆ had or had not

been chopped off before, we are in case (4) or (2).

5.1. Lemma (If All Three Sequences are Chopped)

Let ν ∈ Σ⋆ be ⋆-periodic or preperiodic. If [σ◦k(ν), σ◦l(ν), σ◦m(ν)] is such

that each of the three sequences is chopped off at least once, then each se-

quence is chopped off infinitely often, and the triod can be iterated forever

without reaching the stop case.

Proof. First note that σ◦s(ν) 6= 0ν or 1ν for all s. Therefore the triod

can be iterated until the stop case is reached, if ever.

Suppose the first chopping occurs after s iterations, and it is the third se-

quence which is chopped off. The resulting triod is [σ◦(k+s)(ν), σ◦(l+s)(ν), ν].

By Lemma 4.5, the stop case is never reached with the ⋆ at the third

position.

By assumption, there are iteration times when the first and second se-

quences are chopped off, and it follows similarly that the stop case can

never be reached with the ⋆ at any position. The triod can thus be iter-

ated infinitely often. Lemma 4.5 again gives that the third sequence will

be chopped off, and repeating this argument, we see that indeed all three

sequences will be chopped off infinitely often. 2

The structure of triods in S(ν): Every triod in S(ν) is either flat

or branched: no triod can collapse, and it follows from Lemma 4.5 that

every sequence which gets chopped off once will never be the center of a flat

triod when the stop case is reached. Therefore if a triod cannot be iterated

forever then it reaches the stop case and is flat. If a triod can be iterated

forever, then at least two sequences get chopped off infinitely often, and if

all three sequences get chopped off at least once, then by Lemma 5.1 the

triod is branched.

5.2. Lemma (Branch Points of Branched Triods)

Fix a ⋆-periodic or preperiodic ν. Suppose that s, t, u ∈ S(ν) ∪ {0, 1}N∗

are

such that [s, t, u] is a branched triod; set v := b(s, t, u). If σ◦k(w) /∈ {0ν, 1ν}

for all w ∈ {s, t, u, v} and all k ≥ 0, then [s, t, v], [s, u, v] and [t, u, v] are

flat with v in the middle.

Proof. By assumption, the triod map can be iterated forever on [s, t, u].

If the iteration stops for [s, t, v] after finitely many steps, then either the

iteration reaches one of the sequences 0ν and 1ν (which is excluded by

hypothesis), or the stop case in (1) is reached; but since v ∈ {0, 1}N∗

is

constructed by majority vote among the sequences s, t, u, this can never

occur. The majority vote also assures that v can never be chopped off along
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the iteration, so [s, t, v] is flat with v in the middle. The reasoning for the

other two sequences [s, u, v] and [t, u, v] is the same. 2

Marked points of the tree: Set

V := S(ν) ∪
⋃

[s,t,u]

{b(s, t, u)},

where the union runs over all branched triods [s, t, u] with endpoints in S(ν),

so their branch points b(s, t, u) are well-defined. The set V is σ-invariant

because S(ν) is and σ(b(s, t, u)) equals b(ϕ[s, t, u]).

The triod map can be iterated: Triods with endpoints in V can be

branched and flat (types (1) and (2)). In order for ϕ to be well-defined, we

need to ensure that types (3)-(5) does not occur. In addition, we want to

know that for s, t, u ∈ V , the triod map can only result in elements of V .

This is the contents of the following lemma.

5.3. Lemma (V is Closed under Taking Triods)

For each triple of different sequences s, t, u ∈ V , b(s, t, v) ∈ V . In particu-

lar, no triod [s, t, u] is of type (3)-(5).

Proof. Take s, t, u ∈ V arbitrary but distinct. Let us first show that

V ∩ {0ν, 1ν} = ∅, so [s, t, u] is not of type (3). To see why this is true,

suppose that 0ν ∈ V (the case 1ν ∈ V is analogous). Since 0ν /∈ S(ν),

this implies that 0ν = b(s, t, u) for a branched triod [s, t, u] with s, t, u ∈

S(ν). We may suppose that s1 = t1 = 0 and u1 ∈ {0, ⋆, 1}. If u1 = 0,

then ϕ[s, t, u] = [σ(s), σ(t), σ(u)] is a triod with endpoints in S(ν) and

σ(b(s, t, u)) = ν in the middle. This contradicts that ν is an endpoint

(Lemma 4.5). If u1 ∈ {⋆, 1}, then ϕ[s, t, u] = [σ(s), σ(t), ν] is a triod with

middle point ν. This contradicts that ν is an endpoint (Lemma 4.5) once

more. As a result, every triod in V can be iterated forever without sequences

collapsing, unless the stop case is reached.

The next step is to find s′, t′, u′ ∈ S(ν) such that b(s′, t′, u′) = b(s, t, u),

showing that b(s, t, u) ∈ V . As s, t, u are taken distinct, at least two of

them are chopped off under iteration of ϕ. Assume that s is chopped off

first and t second. If s ∈ S(ν), then put s′ = s; otherwise, s = b(s1, s2, s3)

for some s1, s2, s3 ∈ S(ν). We iterate the ϕ-map on [s, t, u], and keep track

what happens to [s1, s2, s3].

• As long as [s, t, u] has unanimous vote (i.e., s1 = t1 = u1), we refrain

from making a selection among s1, s2, s3 and take ϕ[s1, s2, s3] for the

next iterate.
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• If s has minority vote (i.e., s1 6= t1 = u1), then select s′ = sk for

any k = 1, 2, 3 such that sk shares vote with s. We have ϕ[s, t, u] =

ϕ[s′, t, u].

We iterate this algorithm until s has reached minority vote, which by the

choice of s must happen eventually. It follows that b(s, t, u) = b(s′, t, u).

Now we repeat the argument with [s′, t, u]. If t ∈ S(ν) then let t′ = t;

otherwise t = b(t1, t2, t3) for some t1, t2, t3 ∈ S(ν).

• As long as [s′, t, u] has unanimous vote, we refrain from making a

selection among t1, t2, t3 and take ϕ[t1, t2, t3] for the next iterate.

• If t has two-to-one majority vote (i.e., s′i 6= ti = ui), disqualify the

tk (if any) with tki = s′i from being selected. As both tk and s′ will

be replaced by ν by the action of ϕ, tk and s′ will take the same vote

ever after, so no other tk
′

can later share minority vote with s′.

• If t has minority vote eventually, then select t′ = tk
′

for an undisqual-

ified k′ = 1, 2, 3 such that t and tk
′

share vote. We have ϕ[s′, t′, u] =

ϕ[s′, t, u].

We iterate this algorithm until t has reached minority vote, which by the

choice of t must happen eventually. It follows that b(s, t, u) = b(s′, t′, u).

Finally we turn to u. If u ∈ S(ν) then take u′ = u. Otherwise u =

b(u1, u2, u3) for some u1, u2, u3 ∈ S(ν). If u is never chopped off, then

[s′, t′, u] is flat with u in the middle, and no new branch point is created. If

u is chopped off eventually, then we follow an algorithm as before.

• As long as [s′, t′, u] has unanimous vote we refrain from making a

selection among u1, u2, u3 and take ϕ[u1, u2, u3] for the next iterate.

• If s′ has minority vote, disqualify the uk (if any) voting with s′ from

being selected. As both uk and s′ will be replaced by ν by the action

of ϕ, uk and s′ will take the same vote ever after, so no other uk′

can later share minority vote with s′.

• If t′ has minority vote, disqualify the uk′

(if any) voting with t′ from

being selected. Note that k 6= k′ because uk shares vote with s′. As

both uk′

and t′ will be replaced by ν by the action of ϕ, tk
′

and t′

will take the same vote ever after.

• If u has minority vote eventually, let u′ be the remaining undisqual-

ified uk′′

which shares vote with u.

In this way we obtain s′, t′, u′ ∈ S(ν) such that b(s, t, u) = b(s′, t′, u′).

Since [s, t, u] behaves as [s′, t′, u′] under ϕ and whenever s, t or u is chopped

off, this sequence is replaced by ν just as s′, t′ or u′ is replaced by ν, it

follows from Lemma 5.1 that if all three sequences s, t, u are chopped off

once, they will be chopped off infinitely often. If one sequence, say s, is
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never chopped off, and another sequence, say t is chopped a finite number

of times only, some iterate ϕ◦k[s, t, u] takes the form [σ◦k, ν, ũ] form some

ũ ∈ V . In this triod, σ◦k and ν are never chopped off, so they are equal.

But this contradicts that 0ν, 1ν /∈ V . This proves that [s, t, u] is not of type

(5).

Finally, to prove that [s, t, u] is not of type (4), assume by contradiction

that the first sequence is chopped off, and later on reaches the stop case

with the ⋆ in that sequence. Since [s′, t′, u′] has the same behavior under

ϕ, it would reach stop case with the ⋆ in the first sequence as well. This

contradicts Lemma 4.5. 2

Marked points along arcs: For sequences s, t ∈ V , set

E(s, t) := {u ∈ V : the triod [s, t, u] is flat with u in the middle} ∪ {s, t} .

We call s and t adjacent if E(s, t) = {s, t}. If u, u′ ∈ E(s, t) \ {s} are

different sequences, then at least one of u and u′ must be chopped off the

triod [s, u, u′] under iteration of ϕ. We write u ≻ u′ if u′ is chopped off, and

u′ ≻ u otherwise. If [s, u, u′] reaches the stop case with u in the middle,

then we write u ≻ u′ as well. (It follows from Lemma 5.5 item (1) below that

the sequence u or u′ which is not chopped off, is indeed the middle point of

the flat triod [s, u, u′].) By convention we take s ≻ u for all u ∈ E(s, t)\{s}.

5.4. Lemma (≻ is Transitive and Linear)

The order ≻ is transitive and linear on E(s, t).

Proof. For unity of exposition, we will say that u is chopped off from

[s, u, u′] by ϕ also if [s, t, u] reaches the stop case with another sequence

than u in the middle. As we will not iterate ϕ further in this proof once the

order of sequences in [s, t, u] has been established, this abuse of terminology

is inconsequential.

Suppose that u, u′, u′′ ∈ E(s, t) \ {s} with u ≻ u′ and u′ ≻ u′′, say u′′ is

chopped off from [s, u′, u′′] at iterate l and u′ is chopped off from [s, u, u′]

at iterate k. Iterate ϕ on the triod [s, u, u′′]; as long as the second or third

sequence is not chopped off from [s, u, u′′], the chopping off of the first

sequence happens at exactly the same times as for [s, u, u′] and [s, u′, u′′].

So let us wait until one of u and u′′ is chopped off. Assume by contradiction

that u is chopped off first; by the choice of k, this can only happen at an

iterate ≥ k. Since ui = u′

i for i < k, our assumption implies that also

u′

i = u′′

i . By definition of k, the first entries of the first and second sequence

of ϕ◦k([s, u, u′]) agree, but the first entry of the third sequence (namely u′

k)

is different. Since u′ is the middle point of [s, u′, u′′], u′

k = u′′

k. But this
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means that u′′ is chopped off from [s, u, u′′] at this iterate, and we have a

contradiction.

This shows that u ≻ u′′; hence the order ≻ is indeed transitive. This

shows that the set E(s, t) is linearly ordered by ≻, with maximal sequence

s and minimal sequence t.

Note that E(t, s) is the same set of marked points, but the ordering goes

in the other direction. 2

5.5. Lemma (Properties of ≻)

(1) If u, u′ ∈ E(s, t) are such that s ≻ u ≻ u′, then [s, u, u′] is a flat

triod with u as middle point.

(2) If s, t, u, v are such that u ∈ E(s, v) and t ∈ E(s, u), then t ∈ E(s, v)

and t � u in the E(s, v)-order.

(3) If s, t, u are different sequences in V and E(s, u) and E(t, u) intersect

only in u, then u is the middle point of the flat triod [s, t, u].

(4) For all v ∈ V , there exists s ∈ S(ν) such that v ∈ E(s, ⋆ν).

Proof. In this proof, we will iterate triods [u, u′, u′′] with sequences in

V \ S(ν). We have seen in Lemma 5.3 that such a triod is not of type

(3)-(5). We always have that u, u′, u′′ ∈ E(s, t) for some s, t ∈ S(ν), say

u ≻ u′ ≻ u′′ in the E(s, t)-order. Therefore iterating ϕ on [u, u′, u′′] mimics

iterating ϕ on [s, u′, t], and once u and u′′ are chopped off, the two triods

become identical. Therefore [u, u′, u′′] is flat.

(1) Let k be the first iterate that u′ is chopped off from [s, u, u′]. At this

iterate, ϕ◦k([s, u, u′]) = ϕ◦k([s, u, t]), and because u is the middle point of

[s, u, t], u will never be chopped off neither from [s, u, t] nor from [s, u, u′].

(2) Let l be the first time that u is chopped off from the triod [s, t, u].

The most work goes in proving that t ∈ E(s, v). Suppose by contradiction

that at some iterate k, the second sequence of [s, t, v] is chopped off under

iteration of ϕ. There are three cases:

• If k > l. Then ϕ◦l([s, t, u]) = ϕ◦l([s, t, v]), and since t is the middle

point of [s, t, u], it will not be chopped off at all.

• k = l. Then the first and second sequence of ϕ◦k−1([s, t, u]) start

with the same symbol, the first and second sequence of ϕ◦k−1([s, t, v])

start with different symbols. Yet for both triods, these first symbols

are the same, so we have a contradiction.

• k < l. Then the first and third sequence of ϕ◦k−1([s, t, v]) start

with the same symbol, but the first symbol of the second sequence

is different. Also the first symbols of the second and third sequence

of ϕ◦k−1([s, t, u]) are the same. This implies that the first symbols
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of the first and third sequence of ϕ◦k−1([s, u, v]) agree, but disagree

from the first symbol of the second sequence. But this implies that

u is chopped off from [s, u, v], contradicting our assumption.

This shows that t is never chopped off from [s, t, v], hence t ∈ E(s, v). Since

t is the middle point of [s, t, u], u will be chopped off before t is, so t ≻ u in

the E(s, v) order.

(3) We iterate the triod [s, t, u]. If the triod is branched, then by Lemma 5.2,

the branch point v = b(s, t, u) belongs to both E(s, u) ∩ E(t, u). If [s, t, u]

is flat, with s in the middle, then s ∈ E(s, u) ∩ E(t, u). If [s, t, u] is flat,

with t in the middle, then t ∈ E(s, u) ∩ E(t, u). So in all three cases,

E(s, u) ∩ E(t, u) contains more than one point. The remaining possibility

is that u is the middle point of [s, t, u].

(4) This is trivial if v ∈ S(ν), so assume that v = b(s, t, u) ∈ V \ S(ν)

for some s, t, u ∈ S(ν). By Lemma 5.2, v ∈ E(s, t) ∩ E(t, u) ∩ E(u, s). If

⋆ν equals one of s, t, u, any other sequence of s, t, u fulfills the assertion.

So we can assume that s, t, u have a common first entry. If t ∈ E(s, ⋆ν),

then by item (2) applied to the quadruple s, v, t, ⋆ν, also v ∈ E(s, ⋆ν) and

we are finished. Similarly, if s ∈ E(t, ⋆ν), then v ∈ E(t, ⋆ν) and again we

are finished. The remaining case is that [s, t, ⋆ν] is a branched triod, say

v′ = b(s, t, ⋆ν). If v = v′, then we are finished again. If v � v′ in the E(s, t)-

order, then v ∈ E(s, ⋆ν) by item (2) applied to the quadruple s, v, v′, ⋆ν.

Similarly, if v′ � v, then v ∈ E(t, ⋆ν). This proves item (4). 2

Edges of the tree: For any s ∈ V , let E(⋆ν, s) =: {s0, s1, , . . . , sk−1, sk}

be as above, in decreasing E(⋆ν, s)-order, with s0 = ⋆ν and sk = s. Then

attach edges [si, si+1] to the tree, for i = 0, 1, . . . , k − 1. Take the union of

such edges for all s ∈ V , omitting repetitions (so that every pair of marked

points in V is joined by at most one edge).

5.6. Proposition (The Union of Edges is a Tree)

The union T of edges is a tree, and every endpoint of T belongs to S(ν).

Proof. Since V is finite, T is finite. By construction, each s ∈ S(ν) is

connected to ⋆ν, and hence T connects all s ∈ S(ν). If v ∈ V \ S(ν), then

by Lemma 5.5 item (4), v ∈ E(s, ⋆ν) for some s ∈ S(ν). Therefore T is

connected.

Let us prove that T contains no loops. Since we constructed T by at-

taching strings of edges E(⋆ν, s), T can only have a loop if the following

occurs:

There are s, s′ ∈ S(ν) such that t ∈ E(⋆ν, s) ∩E(⋆ν, s′), but

there is u ∈ E(⋆ν, s) \ E(⋆ν, s′) such that ⋆ν ≻ u ≻ t in the

E(⋆ν, s)-order.
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We show that the above cannot happen. Indeed, by Lemma 5.5 item (1),

u is the middle point in the flat triod [⋆ν, u, t]. Therefore u ∈ E(⋆ν, t).

Next apply Lemma 5.5 item (2) to the quadruple ⋆ν, u, t, s′ to conclude

that u ∈ E(⋆ν, s′), but this contradicts that u ∈ E(⋆ν, s) \E(⋆ν, s′). Hence

T contains no loop.

Finally, each v ∈ V \ S(ν) is obtained as a branch point of a branched

triod, and therefore cannot be an endpoint. Hence all the endpoints of T

belong to S(ν). 2

5.7. Lemma (Components of the Tree)

There are at most two edges in T with ⋆ν as endpoint, and T \ {⋆ν} consist

of at most two trees: the sequences starting with 0 form one tree, and the

sequences starting with 1 form the other.

Proof. If ⋆ν has the endpoint of at least three edges, then there are

s, t, u ∈ S(ν) such that E(⋆ν, s), E(⋆ν, t) and E(⋆ν, u) are pairwise disjoint,

except for the common endpoint ⋆ν. At least two, say s and t, share the

first symbol. Therefore ϕ[s, t, u] = [σ(s), σ(t), σ(u)] or [σ(s), σ(t), ν]. Fur-

thermore, σ(E(⋆ν, s)) = E(ν, σ(s)) is disjoint from σ(E(⋆ν, t)) = E(ν, σ(t)),

except for the common endpoint ν. Lemma 5.5 item (4) states that ν is the

middle point of [σ(s), σ(t), ν], but this contradicts Lemma 4.5. Therefore

⋆ν has at most two arms, and T \{⋆ν} consists of at most two components,

each of which is connected and contain no loops.

For the last statement, recall that E(⋆ν, s)\{⋆ν, s} contains all sequences

in v ∈ V that are the middle point of a flat triod [⋆ν, v, s]. Applying ϕ

to it does not result in the stop case, so s and v share the first symbol.

Therefore the components of T \ {⋆ν} are ∪s∈S(ν),s1=0E(⋆ν, s} \ {⋆ν} and

∪s∈S(ν),s1=1E(⋆ν, s}\{⋆ν}, and all the sequences in one component have the

same the first symbol. 2

Dynamics of the tree: In order to define a map f : T → T , set f(s) :=

σ(s) for s ∈ V . For any edge [s, t] between marked points s, t ∈ V , define

the map f |[s,t] : [s, t] → [f(s), f(t)] ⊂ T to be an orientation preserving

homeomorphism. Since T is a tree, the map f |[s,t] is unique up to homotopy.

5.8. Lemma (Dynamics Locally Injective)

For every connected subtree T ′ ⊂ T such that ⋆ν does not disconnect T ′, the

restriction of f to T ′ is injective.

Proof. Since T and T ′ are connected trees, the fact that f(x) = f(y) for

x, y ∈ T ′ would imply that f was not locally injective on every point in

[x, y] ⊂ T ′. It therefore suffices to prove that f is locally injective for every

x ∈ T ′ \ {⋆ν}.
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By construction, f is locally injective on every interior point of every

edge. It thus suffices to show that f is locally injective at every marked

point s 6= ⋆ν. If this was not the case, then there would be marked points

t, u ∈ T ′ such that [s, t] and [s, u] were disjoint except for the common

endpoint s, while [f(s), f(t)] and [f(s), f(u)] had more points in common

than f(s). But Lemma 5.5 item (3) implies that the triod [s, t, u] is flat

with s in the middle, and the triod [f(s), f(t), f(u)] = ϕ[s, t, u] is flat with

f(s) in the middle, so f(s) ∈ [f(t), f(u)]. This is a contradiction. 2

We are now ready to prove Theorem 2.5.

Proof. We start with the existence proof. Set c0 := ⋆ν (the critical point)

and ck := σ◦k(⋆ν) (the critical orbit). Construct a tree T with dynamics as

in Proposition 5.6. We check the six properties of a Hubbard tree:

(1) The map f is clearly continuous on T , and it is surjective on S(ν) \

{⋆ν}. If ν = 1k⋆ for some k, then f permutes (and hence is surjective on)

S(ν), whereas if ν = 1k0 . . . , then ⋆ν is obviously the middle point of the

triod (ν, ⋆ν, σ◦k(ν)), and hence not an endpoint. By Proposition 5.6, this

means that f is surjective on the set of endpoints of T , hence surjective

onto all of T .

(2) In T \ {c0}, any two marked points whose itineraries start with the

same entry are in the same connected component by construction of T .

Therefore, T \ {c0} consists of at most two connected components, and f is

injective on each of the by Lemma 5.8. Therefore, each point in T has at

most two preimages.

(3) It follows from Lemma 5.8 that f is locally injective at every s ∈

T \ {c0}. It is continuous by definition, hence a local homeomorphism

everywhere except at the critical point.

(4) It has been shown in Proposition 5.6 that every endpoint of T is in

S(ν), i.e., on the critical orbit.

(5) The critical point is obviously periodic or preperiodic because ν is.

Before proving that the last condition, it is worthwhile to interpret the

sequences in V as itineraries. By Lemma 5.7, T \ {c0} consists of at most

two connected components such that two sequences s, t ∈ V \{⋆ν} are in the

same component if and only if their initial entries coincide. Therefore, every

marked point s ∈ V (which is a sequence in {0, 1, ⋆}) encodes the itinerary

of its own dynamics with respect to the usual partition of T induced by

removing ⋆ν.

(6) Expansivity is now trivial: marked points are in V , and these are

distinguished by their itineraries. If the itineraries of s and t first differ in

the k-th position, then the arc [f ◦k(s), f ◦k(t)] contains the critical point ⋆ν.

Uniqueness has already been proved in Proposition 3.5. 2
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Proof of Corollary 2.6. The uniqueness is proven in Corollary 3.6. For

the existence, we start by building the Hubbard tree (T, f) for ν, and then

add points from V̂ and arcs where necessary in an inductive procedure. We

describe this procedure in detail, using points on the tree and their symbolic

itinerary interchangeably.

For w ∈ V̂ , we iterate the triod map ϕ on [w, s, t] for all marked points

s, t ∈ V , to decide how to attach w to the tree. Recall that marked points

s, t ∈ V are adjacent if the arc E(s, t) = {s, t}. There are three possibilities:

(a) There are adjacent s, t ∈ T such that [w, s, t] is flat with w in the

middle. Put w as a new marked point on the arc [s, t].

(b) We can find s ∈ V such that for all t ∈ V adjacent to s, the triod

[w, s, t] is flat with s in the middle. In this case, attach an arc [w, s]

to s. (The points w and s are adjacent, as long as we don’t have to

add new marked point on the open arc (w, s) later in the process.)

(c) If neither (a) nor (b) hold, then there is at least one pair of adjacent

marked points s, t ∈ V such that [w, s, t] is a branched triod. Let

b := b(w, s, t). Note that Lemma 4.5 no longer holds for V ∪ V̂ , and

it can indeed happen that b = b1b2 . . . bk0ν or b1b2 . . . bk1ν for some

(possibly empty) word b1b2 . . . bk ∈ {0, 1}k. In this case, recode b to

b1b2 . . . bk⋆ν and attach an arc [w, b1b2 . . . bk⋆ν] to b1b2 . . . bk⋆ν. Put

b on the arc [s, t] and attach an arc [w, b] to b. (The points w and b

are adjacent, as long as we don’t have to add new marked point on

the open arc (w, b) later in the process.)

Choose the next w′ ∈ V̂ and repeat the whole process with the tree with

dynamics and marked points created so far. After all of V̂ is treated, we

check that the resulting graph is indeed a proper extended Hubbard tree.

(i) (T̂ , f̂) is closed under taking triods, i.e., for any choice of marked

points s, t, u ∈ T̂ , the branch point b(s, t, u) already exists in T̂ . This is

the same proof as in Lemma 5.3, but without the burden to verify that

the sequences 0ν and 1ν do not appear among the marked points. This is

because in the construction of extended Hubbard trees, we replace 0ν and

1ν with ⋆ν as under case (c) above. Note also that if b = b(s, t, u) for some

s, t, u ∈ V ∪ V̂ , then σ(b) = b(ϕ[s, t, u]), and the three sequence of ϕ[s, t, u]

belong to V ∪ V̂ as well. Therefore the set of marked points is σ-invariant.

(ii) T̂ has no loops. This is immediate because T has no loops, and only

arcs are attached to T in the process of creating T̂ . As each of these attached

arcs has a point in V̂ as endpoint, each endpoint of T̂ belongs to V ∪ V̂ .

(iii) We define the dynamics of f̂ on the (σ-invariant set of) marked points

by σ. This shows that f̂ is at most two-to-one on the marked points, and

(since 0ν, 1ν and ⋆ν are identified in case (c)) also that f̂ is expansive. An
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arc [s, t] between two adjacent marked points will be mapped homeomor-

phically onto the arc [σ(s), σ(t)], precise as explained above Lemma 5.8.

Lemma 5.8 itself then shows that f̂ is locally injective, and in fact that

every point in T̂ has at most two preimages. This verifies all the conditions

of an extended Hubbard tree. 2

Remark. Note that if ν is ⋆-periodic, then c0 can get any number of

arms. For example, if ν = 10⋆, then T = [c1, c2] is an arc and when

V̂ = {σ◦i(w) : i ≥ 0} for

w = 110110110 . . . 110
︸ ︷︷ ︸

110 repeated n times

0⋆ν,

then in the extended tree (T̂ , f̂), the critical point c0 has n + 2 arms and c1

and c2 both have n + 1 arms, see Figure 3.
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Figure 3. The extended Hubbard tree for ν = 10⋆ and V̂ =
{σ◦i(w) : i ≥ 0} with w = (110)n0⋆ν for n = 5. The Hubbard
tree is in bold lines.
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