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Abstract

For a σ-finite measure preserving dynamical system (X,µ, T ), we formulate nec-
essary and sufficient conditions for a Young tower (∆, ν, F ) to be a (measure the-
oretic) extension of the original system. Because F is pointwise dual ergodic by
construction, one immediate consequence of these conditions is that the Darling
Kac theorem carries over from F to T . One advantage of the Darling Kac theo-
rem in terms of Young towers is that sufficient conditions can be read off from the
tail behaviour and we illustrate this with relevant examples. Furthermore, any two
Young towers with a common factor T , have return time distributions with tails of
the same order.

1 Introduction
If T is a conservative, ergodic measure preserving transformation (c.e.m.p.t.) of
an infinite measure space (X,B, µ), then Birkhoff’s Ergodic Theorem is not very
informative about the asymptotic behavior of the ergodic sums Sn(f) =

∑n−1
k=0 f ◦T k

since, in contrast to the finite measure case, for all f ∈ L1(µ)

Sn(f)
n

→ 0 µ-a.e. as n→∞.

In fact, as proved by Aaronson in [1, Theorem 2.4.2], for an infinite c.e.m.p.t. of
(X,B, µ) there are no constants cn > 0 such that for all f ∈ L1(µ)

Sn(f)
cn

→
∫

X
fdµ µ-a.e. as n→∞.

Still, for certain infinite measure preserving transformations T of (X,B, µ), there
exist constants an such that for all f ∈ L1(µ), a−1

n Sn(f) converges in distribution to
a non-trivial limit (see §3.2− §3.6 in [1] for a description of the general setting and
examples).

Representative systems of this kind have been found within the class of infinite
measure preserving transformations with a finite number of indifferent fixed points
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or orbits (see [1, Chapter 4] and references therein; see also [3, 19, 20, 23, 24, 16,
13, 12, 9]). A standard example is the Pomeau-Manneville (PM) map. For a fixed
α ≥ 0, this map is given by

T : [0, 1] ª, T (x) = x+ x1+α (mod 1),

and it has an indifferent fixed point at 0. It is well known that T admits a unique
absolutely continuous invariant measure (a.c.i.m.) µ¿ m (m is Lebesgue) which is
finite for α < 1 and infinite for α ≥ 1. In the works cited above, it has been shown
that a distributional limit theorem (of Darling Kac type) holds for PM maps for all
α ≥ 1. At the threshold value α = 1 (called the barely infinite measure case in [3])
it gives a weak law. In probabilistic terms this is a weak law of large numbers for
α = 1: for all f ∈ L1(µ) with µ(f) 6= 0 and every ε > 0

lim
n→∞ ν(A ∩ {x : |a−1

n Sn(f)(x)− µ(f)| ≥ ε}) = 0, (1)

where an = n/ logn, ν is any probability measure ν ¿ µ and A ∈ B([0, 1]) with
0 < µ(A) <∞. Distributional limit theorems for transformations similar to the one
above have been generalized to certain infinite measure sets at the threshold value
α = 1 in [3, 16]. Under further conditions, distributional limit theorems for the
occupation times of infinite measure sets associated with transformations similar to
the one above have been obtained in [3, 16, 24].

In this work we model infinite measure preserving transformations via Young
towers, derive a new version of the Darling Kac (DK) theorem and argue for its
efficient application in some particular examples.

Acknowledgement: We would like to thank the referee whose comments have
helped to improve the presentation of this paper considerably. We also like to thank
Omri Sarig and Roland Zweimüller for useful discussions on related topics.

2 Main results and background review
The study of the ergodic properties of dynamical systems by means of induced trans-
formations and tower (sky-scraper) constructions goes back to Renyi, Kakutani and
Rohlin. Originally these were formulated for first return maps TE(x) = TϕE(x)(x)
and first return times ϕE(x) = min{j ≥ 1 : T j(x) ∈ E}, whenever defined. How-
ever, return times R that are not necessarily first return times can be used as well,
and makes the method more widely applicable. Young in [17, 18] gave an axiomatic
approach, introducing conditions on distortion in terms of separation times, see
(YT6) below. It is her approach that we will follow in this paper, see Section 3 for
details. Our main aim in this work is to formulate necessary and sufficient conditions
that ensure that the invariant measure of the tower system projects to the σ-finite
invariant measure of the original system. Building on the results of Zweimüller [21]
we show the following:

Theorem 2.1. Let T be a non-singular, ergodic transformation of (X,B,m) with a
σ-finite invariant measure µ ¿ m. Suppose that T has a Young tower description
(∆,B(∆), F,m′) with base map (∆0, T

R,m0) and
∫
Rdm0 = ∞ and factor map

π : ∆ → X. Furthermore, let ν ¿ m′ be an F -invariant measure.
Then µ = π∗ν (up to a multiplicative constant) if and only if

for every set E ⊆ ∆0, 0 < π∗ν(E) <∞ and for inducing time
τ : E → N given by (TR)E = (TE)τ we have

∫
E τdm <∞.

(2)
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We emphasize that TE and (TR)E are the first return maps to E under T and
TR respectively; if TR happens to be the first return map to ∆0, then τ ≡ 1 and (2)
holds trivially. If a YT satisfying (2) is found, it is immediate that F and hence T
is pointwise dual ergodic and ∆0 is a Darling Kac set for the Young tower (∆, F ),
see Lemma 4.5. To state further consequences of the above theorem, we first recall
some important tools of infinite ergodic theory.

2.1 Prerequisites from infinite ergodic theory

Notation. We write an ∼ bn if an
bn
→ 1 as n → ∞ and an ∝ bn if an

bn
→ c as

n → ∞ for some 0 < c < ∞. In the latter case we call the sequences (an) and
(bn) asymptotically equivalent. Infinite σ-finite measures are only determined up to
a positive multiplicative constant, and this means that some limits are only taken
up to a multiplicative constant, see e.g. Remark 2.2 and Proposition 2.5 below.

A function a : (c0,∞) → (0,∞) (or a sequence interpreted as t 7→ a[t]) is slowly
varying at ∞ if a is Borel measurable and a(ct)

a(t) → 1 as t → ∞. A function b :
(c0,∞) → (0,∞) is regularly varying at ∞ with index γ, denoted as b ∈ Rγ , if
b(t) = tγa(t) with a(t) slowly varying at infinity.

When T is a c.e.m.p.t. of the (σ-finite) infinite measure space (X,B, µ), distributional
characterizations of T are often given in terms of a reference set Y of finite measure,
for instance Darling Kac type theorems in [1, 16, 23]. Essentially, Y is a candidate
for being a suitable reference set if its wandering rate

wn(Y ) := µ(∪n−1
k=0T

−kY ) =
n−1∑

k=0

µ(Y ∩ {ϕY > k})

belongs to Rγ for some γ ∈ [0, 1] (see for instance [3, 16, 23]).
The wandering rate (wn(Y )) depends on the set Y . However, for some transfor-

mations T of (X,B, µ) there are sets A, 0 < µ(A) <∞ of minimal wandering rate in
the sense that for all B ∈ B, 0 < µ(B) <∞, we have lim infn→∞wn(B)/wn(A) ≥ 1.
In this situation wn(A) is a characteristic of the system (X,T, µ); is called the wan-
dering rate of the system and denoted as wn(T ). One such situation is given by
pointwise dual ergodic (p.d.e.) transformations, see §3 in [1]. A conservative ergodic
measure preserving transformation T of (X,B, µ) is called pointwise dual ergodic if
there is a positive sequence {an(T )}n≥1, called a return sequence, such that for all
f ∈ L1(µ)

1
an(T )

n−1∑

k=0

T̂k(f) →
∫

X
fdµ, µ-a.e. as n→∞. (3)

Here T̂ : L1(µ) ª is the associated dual operator defined by
∫

X
T̂f · gdµ =

∫

X
f · (g ◦ T )dµ

for f ∈ L1(µ) and g ∈ L∞(µ). Many proofs in the literature on pointwise ergodic
duality require that

∫
X fdµ > 0, and we will make this assumption throughout this

paper.

Remark 2.2. As a consequence of [1, Theorem 3.3.1 and Proposition 3.7.1] for
a p.d.e. transformation, the sequence an(T ) in (3) above is uniquely determined
up to asymptotic equivalence, just as the σ-finite measure is determined up to a
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multiplicative constant. Once matching choices of an(T ) and µ are made, (3) holds
for all f ∈ L1(µ).

The set A ∈ B, 0 < µ(A) < ∞ is a Darling Kac set for T if the convergence in
(3) takes place uniformly almost everywhere on A for the indicator function f = 1A.

The Darling-Kac (DK) property is directly linked to pointwise dual ergodicity.
More precisely, according to [1, Proposition 3.7.5], if T is a c.e.m.p.t. of (X,B, µ)
and T has a Darling-Kac set, then T is pointwise dual ergodic.

Both the return sequence and the wandering rate of a p.d.e. transformation can
be obtained directly by estimating these quantities for its corresponding measure
theoretic extensions.

Definition 2.3. Given that (X ′,B′, µ′, T ′) and (X,B, µ, T ) are measure preserving
transformations, T ′ is said to be a measure theoretic extension of T if there exist a
map Θ : X ′ → X and some c > 0 such that

Θ−1B ⊂ B′, Θ ◦ T ′ = T ◦Θ and µ′(Θ−1A) = cµ(A) for all A ∈ B.
In this case the map T is said to be a factor of T ′ with factor map Θ.

According to [1, Proposition 3.7.6] and [15], any factor T of a p.d.e. transforma-
tion T ′ is also p.d.e. Furthermore, wn(T ′) ∝ wn(T ) and an(T ) ∝ an(T ′).

As proved in [1], in some cases an estimate of the wandering rate wn(T ) of a
p.d.e. transformation gives an immediate estimate of its return sequence an(T ).

Lemma 2.4. [1, Proposition 3.8.7] Let T be a p.d.e. transformation and suppose
that A is a Darling-Kac set such that wn(A) ∈ Rγ for some γ ∈ [0, 1]. Then

an(T ) ∝ n

wn(A)
∈ R1−γ .

The sequence (Un)n≥1 on X is said to converge strongly in distribution to a ran-
dom variable U written as Un =⇒L(µ) U , if Un =⇒P U for all probability measures
P ¿ µ.

A DK type theorem for p.d.e. transformations (see also [16] for a different proof
of the same statement) reads as follows

Proposition 2.5 (Corollary 3.7.3, [1]). If T is a pointwise dual ergodic transforma-
tion of (X,B, µ) and the return sequence an(T ) ∈ Rγ for some γ ∈ [0, 1] then for
every f ∈ L1(µ) with µ(f) > 0

1
an(T )

n−1∑

k=0

f ◦ T k =⇒L(µ) Yγ

∫

X
fdµ.

where Yγ the normalized Mittag-Leffler distribution of order γ.

2.2 The Darling-Kac Theorem and tail behavior.
After establishing the p.d.e. property of the Young tower map F (see Lemma 4.4
below and its proof), we show that one consequence of Theorem 2.1 (together with
results recalled in the previous section) is the following version of the DK theorem:

Corollary 2.6. Suppose that (X,B, T,m) and (∆,B(∆), F,m′) satisfy the condi-
tions (2) of Theorem 2.1. Let ν be the F -invariant measure and let µ = π∗ν. If
m0({R > n}) ∈ R−β for some β ∈ [0, 1], then:
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i1) for all f̂ ∈ L1(ν), ν(f̂) 6= 0, we have SF
n (f̂)
an

=⇒L(ν) Yβν(f̂);

i2) for all f ∈ L1(µ), µ(f) 6= 0, we have ST
n (f)
an

=⇒L(µ) Yβµ(f),

where an ∈ Rβ and Yβ is a random variable distributed according to the Mittag-
Leffler distribution.

One interesting consequence of Theorem 2.1 concerns the asymptotic tail be-
havior of the YTs associated with infinite measure preserving transformations that
has no analog in the finite measure case. This result, which provides a version of
[1, Proposition 5.4.5] formulated in terms of renewal sequences for general Markov
towers, states:

Corollary 2.7. Let T be a non-singular, ergodic transformation of (X,B,m) and
assume that T admits an infinite, σ-finite invariant measure µ ¿ m. Suppose that
T admits two Young towers (∆1,B(∆1), F1,m

′
1) with base map (∆01 , T

R1 ,m01) and
(∆2, B(∆2), F2,m

′
2), respectively with base map (∆02 , T

R2 ,m02).
If the base map of each tower satisfies the conditions (2) of Theorem 2.1 and

if m01({R1 > n}) ∈ R−β for some β ∈ [0, 1], then m02({R2 > n}) ∈ R−β. In
particular, if m01({R1 > n}) ∝ n−β for some β ∈ (0, 1], then

m01({R1 > n}) ∝ m02({R2 > n}) ∝ n−β.

Young towers can be found for many σ-finite measure preserving systems in any
dimension, also when no a priori Markov partition is available. Due to the Markov
structure of the YT, pointwise dual ergodicity (which is, in general, hard to check)
of these systems can be immediately established via [1, Propositions 3.7.5 and 3.7.6]
or [2]. Furthermore, as Corollary 2.6 establishes, sufficient conditions for the DK
theorem are read off directly from the tail behavior of the return time sequence.

Previously, Zweimüller proved the p.d.e. property for infinite measure preserving
piecewise monotone interval maps with indifferent fixed points in [20] that are not
Markov. He used a first return map TY to an interval Y that is bounded away
from the neutral fixed points. As TY has no Markov partition, he built a canonical
Markov extension (Hofbauer tower) over (Y, TY ) to establish and analyze the TY -
invariant absolutely continuous measure.1 Alternatively, as observed in [7], well-
chosen first return maps within the canonical Markov extension of an interval map
(I, T ) produce an induced Markov map over (I, T ), for which a Young tower can be
built. From either approach one can conclude that (I, T ) is a pointwise dual ergodic
transformation w.r.t. its σ-finite invariant measure µ.2 In order to establish Darling-
Kac type theorems further specific information about the the map in question is
required. More precisely, one needs to establish the regular variation of the return
sequence an(T ), which is a necessary condition (see e.g. [25]). We notice that for
the class of maps considered in [20], the regular variation of an(T ) can be verified
using particular properties of the original map and not of the extension.

The p.d.e. property in the DK theorem can sometimes be replaced by other easier
to check conditions (see [16, 23]) and in this sense considering a special extension
that establishes this property becomes needless.

We notice that Zweimüller’s version of the DK theorem [23, Theorem 2.1] is more
general and covers cases that cannot be covered by earlier the version [16, Theorem

1Proving finiteness of this measure requires detailed information of the map T .
2However, there are (logistic) maps for which µ(Y ) = ∞ for every nondegenerate interval Y , see [4];

hence Darling-Kac sets, if they exist, must be more complicated than intervals in this case.
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1]. However, in both versions, the regular variation (with some index β ≤ 1) of
the wandering rate of a special reference set seems to be essential. This regularly
varying condition is not always easy to check. In Section 5 we consider an example
based on Example 7.1 in [16], where the regular variation of the wandering rate
of the special reference set Y (as defined in [16]) is nontrivial to establish via the
methods of [16, 23]. As we argue in Section 5, this example can be easily dealt with
via Corollary 2.6.

3 Young towers with non-integrable return time
Let N = {0, 1, 2, 3, 4, . . . } and N∗ = {1, 2, 3, 4, . . . }. A transformation (X,B, T,m)
is non-singular w.r.t. m if T is m-measurable and m(A) = 0 implies m(T−1A) = 0
for all A ∈ B.

Suppose T : X → X is an ergodic non-singular transformation with respect to a
reference measurem (m is not necessarily invariant). A Young Tower for (X,B, T,m)
is a quartet (∆,B(∆), F,m

′
) with the following properties:

(YT1) There exist a set ∆0 ⊆ X with 0 < m(∆0) < ∞ and a countable partition
P0 := {∆0,i}i∈N of ∆0 with m(∆0,i) > 0 for each i. Let m0 := m|∆0 .

(YT2) There is a return time function R : ∆0 → N∗ which is constant on each ∆0,i,
R|∆0,i = Ri and g.c.d.{Ri} = 1. We also assume that TRi(∆0,i) = ∆0 for all i.

(YT3) The tower ∆ over T is the set

∆ := {(y, l) ∈ ∆0 × N : 0 ≤ l < R(y)}

with partition P := {∆l,i} where ∆l,i = {(y, l) : y ∈ ∆0,i, l < R(y)}.
(YT4) The dynamics F : ∆ ª on the tower is given by

F (y, l) =

{
(y, l + 1), if R(y) > l + 1,

(TR(y), 0), otherwise.

The projection
π : ∆ → X, π(y, l) = T ly

defines a semi-conjugacy T ◦ π = π ◦ F .
(YT5) The measure m′ on ∆ is obtained by copying m0 on each level, i.e., m′ :=

m0×dl where dl is a counting measure. Notice thatm′|∆0 = m0 andm′(∆l,i) =
m0(∆0,i).

(YT6) The partition P := {∆l,i} is a generating m′-measurable partition. For x, y ∈
∆0, let

s(x, y) = min{n ≥ 0 : (FR)n(x), (FR)n(y) lie in distinct elements of P}

be the separation time of x and y. There exist constants C > 0 and 0 < θ < 1
such that for all x, y ∈ ∆0,i and all i

∣∣∣ log
dm0

dm|∆0,i ◦ FR
(x)− log

dm0

dm|∆0,i ◦ FR
(y)

∣∣∣ ≤ Cθs(F
R(x),FR(y)).
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This axiomatic structure was introduced by L.-S. Young in [17, 18] to study
statistical properties of a (probability measure preserving) non-uniformly hyperbolic
system, by isolating the uniformly hyperbolic system FR : ∆0 → ∆0 and using the
structure of the tower and the height function R to make statements about the
system T : X → X.

If the return function R is integrable w.r.t. m, then F admits an exact invariant
probability measure ν equivalent to m′ (see the proof of [18, Theorem 1]). The mea-
sure µ = π∗ν is then an invariant probability measure on (T,X) which is absolutely
continuous with respect to m. Note that π∗ν is necessarily a finite a.c.i.m. for T .
Furthermore, statistical properties of T can be inferred from those of F (see for
instance §6 and §7 in [18]).

To study infinite measure preserving transformations (X,T, µ) (in particular, to
obtain distributional limit theorems for T ) using properties of the corresponding
tower (∆, F,m), further clarification about the relationship between the T -invariant
and F -invariant measures is required.

3.1 σ-finite measures for F
In this section we formulate a partial version of [18, Theorem 1] for the case of a
non-integrable R, see [18, §5] for a complete version. A non-singular transformation
(X,T, α), where α is a generating measurable partition, is said to be Markov if
i) T satisfies the Markov property, i.e., m(TA∩B) > 0 ⇒ B ⊆ TA (mod m) for all
A,B ∈ α, and
ii) T is locally invertible, i.e., for all A ∈ α,m(A) > 0, T : A → TA is one-to-one
and T−1 : TA→ A is measurable.
A Markov map (X,B,m, T, α) is aperiodic if for all A,B ∈ α, there exist an N ∈ N
such that m(A ∩ T−nB) > 0 for all n ≥ N .

Proposition 3.1. Let (∆, F,m′) be a YT for some non-singular dynamical system
(X,T,m). Let P = {∆l,i} be the partition of ∆ described above. If

∫
Rdm0 = ∞

then

1. F admits an infinite, but σ-finite invariant measure ν ¿ m′ such that dν
dm′ is

bounded and bounded away from zero.

2. The system (∆,B(∆), F,m′,P) is aperiodic.

Proof. This proof is based on that of [18, Theorem 1].
i) There is a finite FR-invariant measure ν0 ¿ m|∆0 on ∆0 with dν0

dm0
bounded

and bounded away from 0. is obtained, exactly as in the case of integrable R,
i.e., using an argument based on the Arzela-Ascoli Theorem (see the proof of [18,
Theorem 1]).

The measure ν(A) :=
∑∞

l=0 ν0(F−lA ∩ {R > l}) is F -invariant, absolutely con-
tinuous with respect to m′ and σ-finite invariant. This measure is not finite since∫
Rdm0 = ∞ and thus ν(∆) = ∞.
ii) It is clear that (∆,B(∆), F,m′,P) is a Markov map. Aperiodicity follows

from g.c.d.{Ri} = 1 by the standard argument, which we recall here for complete-
ness. Since 1∆0(x)R(x) = 1∆0(x)ϕ∆0(x) for all x and g.c.d.{Ri} = 1 we have that
g.c.d.{ϕ∆0(x) : 0 < 1∆0(x)ϕ∆0(x) < ∞} = 1. Thus, for all [A] ∈ P, there exist
an N ∈ N such that [A] ∩ F−n(∆0) 6= ∅ for all n ≥ N . Since we also know that
for all B ∈ P, there exist N ′ ∈ N such that ∆0 ∩ F−N ′([B]) 6= ∅, the aperiodicity
follows.
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If in the setting of this proposition,
∫
Rdm0 <∞, then the resulting F -invariant

measure ν ¿ m′ is finite, and µ = (
∫
R dν
dm′m0)−1π∗ν is an absolutely continuous

T -invariant probability measure.
If

∫
Rdm0 = ∞, then since ν is always σ-finite, the measure π∗ν is still an

absolutely continuous T -invariant measure for T . This is an immediate consequence
of the fact that ν ¿ m is invariant for F; see also [21, Proposition 1.1] for the
relationship between the invariant measures of a general induced transformation TR

and that of the original system. However, it is not always true that π∗ν is a σ-finite
measure for T .

Further conditions are required for a canonical link between the T -invariant mea-
sure and the projection of F -invariant measures.

3.2 σ-finite measures for T

In this section we give conditions under which the σ-finite measure ν on the YT
projects to a σ-finite measure µ = π∗ν on (X,T ). We start with an example showing
that this is not automatic: the YT construction can produce an infinite T -invariant
measure which is not σ-finite, if a non-integrable return time function is suitably
chosen (see also a similar Example 2.2 in [21]).

Example 1. Let T : [0, 1] → [0, 1] be the doubling map T (x) = 2x mod 1.
The countable partition {In}, where In = ( 1

2n+1 ,
1
2n ] is Markov for T . Subdivide

each interval In into 22n intervals of equal length and call them In,j . It follows that
m(In,j) = 1/2n+2n and

∑
jm(In,j) = m(In) = 1/2n.

Let ∆0 = (0, 1] and consider the countable partition {∆0,i} := {In,j}. Define
R : ∆ → N such that R|In,j = n + 2n. This choice gives TR(In,j) = ∆0 and thus
(Y T1) and (Y T2) are verified. Notice that (Y T6) is trivially satisfied for m0 := m
because T is expanding and linear on each branch. Furthermore, it is obvious that
the TR-invariant measure is exactlym. Thus one obtains the exact form of the tower
F by applying (Y T3), (Y T4) and (Y T5). Also, since

∑
jm(In,j) = 1/2n, one has

∫
Rdm =

∑
n

∑

j

R|In,jm(In,j) =
∑
n

(n+ 2n)
∑

j

m(In,j) =
∑
n

n+ 2n

2n
= ∞.

So, we are in the non-integrable case. By Proposition 3.1 we know that F admits
an infinite, but σ-finite invariant measure ν ¿ m given by ν(A) :=

∑∞
l=0m(F−lA∩

{R > l}).
Since F−l ◦ π−1 = π−1 ◦ T−l1 , by projecting back with π we have

π∗ν(E) = ν(π−1E) =
∑

l≥0

m({R > l} ∩ F−lπ−1E)

=
∑

l≥0

m(π−1({R > l}) ∩ T−lE)

=
∑

l≥0

m({R > l} ∩ T−lE) (4)

and thus π∗ν([0, 1]) = ∞. It is always the case that the measure µ := π∗ν is
invariant for T and µ ¿ m. However, in this particular case the measure µ cannot
be σ-finite since already Lebesgue measure m is ergodic and T -invariant, and every
pair of equivalent σ-finite invariant ergodic measures differ by a finite multiplicative
constant.

The example given above shows that when the return function is non-integrable, the
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axiomatic structure of the tower is not enough to guarantee that the measure π∗ν
is σ-finite and thus if one wants to use YT constructions to study infinite measure
preserving transformations, then some further constraints are required.

If R is the first return time of T to ∆0, i.e., TR = Tϕ∆0 , then the measure π∗ν
is always σ-finite as a consequence of [14], see also [1, 20, 21]. Indeed, the explicit
formula

µ(E) :=
∑

n≥0

ν0(T−nE ∩ {ϕ∆0 > n}) (5)

for ν0 = ν|∆0 shows that the sets X \ ∪kT−k(∆0) and Tn({φ∆0) > n}), n ≥ 0,
form a countable partition of X into sets of finite measure. Conversely, if µ¿ m is
T -invariant then ν0 := µ|∆0 is T∆0-invariant.

A standard example of an infinite m.p.t. that can be modeled by a YT by taking
R as the first return time of T to ∆0 is the PM map (with α ≥ 1) mentioned in the
introduction, the construction being identical to the finite case (given by α < 1).

Another well-understood non-integrable R case is given by the class of trans-
formations (T,X,m) for which the base tower map (TR,∆0,m0) can be obtained
by letting R be the first passage time of T to some set A with T (A) = ∆0, i.e.,
τ(x) := 1 + min{n ≥ 0 : Tn(x) ∈ A}. As proved by Schweiger (see e.g. [14, 21, 1])
the map T τ is similar to Tϕ∆0 (that is, they have a common measure theoretic exten-
sion), which implies that if T τ admits a probability invariant measure ν0 ¿ m0 then
Tϕ∆0 admits a probability invariant measure ν̃0 ¿ m0 and there exist Θ : ∆0 → X
and c > 0 such that

Θ−1(∆0 ∩ B(X)) ⊂ B(X),Θ ◦ Tϕ∆0 = T τ ◦Θ and ν̃0(Θ−1A) = cν0(A) (6)

for all A ∈ B(X). As a consequence,

π∗ν(E) = ν(π−1E) =
∑

l≥0

ν0({τ > l} ∩ F−lπ−1E)

=
∑

l≥0

ν0(π−1({τ > l} ∩ (T̃ τ )−lE)

=
∑

l≥0

ν0({τ > l} ∩ (T̃ τ )−lE). (7)

Therefore, the last equation is exactly the σ-finite measure of (5) and thus, π∗ν
is σ-finite.

Example 2. We consider the Farey map given by T : [0, 1] → [0, 1] with

T (x) :=

{
T1(x) = x

1−x , if x < 1/2
T2(x) = 1−x

x , if x ≥ 1/2

Let m denote Lebesgue measure. There exists a countable Markov partition α =
{An}n≥0, where An = ( 1

n+1 ,
1
n ]. Take A = A1 = (1

2 , 1] and ∆0 = T (A). Then
inducing on A w.r.t. first passage time τ yields the Gauss map G(x) = 1

x − b 1
xc,

see e.g. [11], for which good distortion properties are well known. From here on,
the tower construction is standard. Take ∆0 := (0, 1] and let R(x) := τ(x) for all
x ∈ ∆0. Let {∆0,i} := {A0}n≥0. It is easy to see that (YT1) and (YT2) hold. We
can use standard arguments (see e.g. [11]) to conclude that for all x, y ∈ ∆0,i and
for all i

∣∣∣∣log
(T τ )′(x)
(T τ )′(y)

∣∣∣∣ =
∣∣∣∣log

G′(x)
G′(y)

∣∣∣∣ ≤
C

D
θs(x,y)

9



where θ = 1/2 and s(x, y) is the separation time w.r.t. T τ . Thus, taking m0 := m,
(YT6) is satisfied. The tower construction is completed by applying (YT3), (YT4)
and (YT5), which give the exact form of F . Since τ is the first passage time, (7)
guarantees that π∗ν is σ-finite.

Necessary and sufficient conditions for when a TR-invariant measure corresponds to a
σ-finite T -invariant measure (via formula (8) below) in the case of a general induced
map TR with non-integrable R can be obtained based on results of Zweimüller, [21].
For clarity of exposition, we provide these results below. To avoid confusion later
on, when we apply these results to the context of YTs, we will state them keeping
our notation TR : ∆0 → ∆0 even though in [21], R and ∆0 do not need to be
chosen so that they produce a YT (∆,B(∆), F,m′) for the original transformation
(X,B, T,m). Namely, [21] works with the following general setting:

The setting of [21]. Let (X,B, T,m) be a nonsingular transformation. For an
arbitrary set ∆0 ⊆ X, m(∆0) > 0, the measurable function R : ∆0 → N∗ is a general
inducing time (mod m) for T on ∆0, if it is finite m-a.e. and TRx := TR(x)x ∈ ∆0

for m-a.e. x ∈ ∆0. Hence TR is a nonsingular transformation of (∆0,B(∆0),m0),
where m0 := m|∆0 and B(∆0) = {A ∈ B : A ⊂ ∆0}. (This is now more general
than the YT setting because we do not assume that TR(∆i) = ∆0 or the distortion
constraint of (YT6).) Given any measure ν̃ on ∆0, a new T -invariant measure on
(X,B) can be defined as follows:

R×T ν̃(A) :=
∑

l≥0

ν̃({R > l} ∩ T−lA). (8)

The work of [21] provides an answer for the following two questions:

(i) The original liftability problem, i.e., given that µ is a σ-finite invariant measure
for T , is there a TR-invariant measure ν̃ ¿ µ such that µ = R×T ν̃?

(ii) The inverse liftability problem, i.e., given that ν̃ ¿ m0 is TR-invariant, is the
measure R×T ν̃ a σ-finite invariant measure for T?

We will consider Zweimüller’s results on the inverse liftability problem in the
context of YTs. We recall the following:

Lemma 3.2. [21, Lemma 4.1] Let (X,B, T,m) be a nonsingular transformation.
Let E ⊆ ∆0 ⊆ X, m(E) > 0. Let ρ be an inducing time for T on E, let R be an
inducing time for T on ∆0 and let ψ be an inducing time for TR on E such that
ρ = Rψ :=

∑ψ−1
k=0 R ◦ (TR)k. This implies that T ρ = (TR)ψ. Moreover, let ν̃ ¿ m

be a measure (not necessarily TR-invariant) on (∆0,B(∆0)). Then

ρ×T ν̃ = R×T (ψ ×TR ν̃).

Fact 3.3. As observed in [21], the first return map of TR to some set E ∈ B(∆0),
m(E) > 0, can be represented as T ρ = (TR)E = (TE)τ , where ρ : E → N and
τ : E → N are general inducing times for T and TE, respectively. We notice that
(TR)E = (TR)ϕ

R
E , where ϕRE(x) := min{n ≥ 1 : (TR)n(x) ∈ E}. Also, the inducing

time ρ can be equivalently represented as

ρ =
ϕR

E−1∑

k=0

R ◦ (TR)k and ρ = ϕE,τ :=
τ−1∑

k=0

ϕE ◦ (TE)k.

10



In the context of YTs we have briefly mentioned that the integrability of the
return time is a sufficient condition for the inverse liftability problem. The result
below says that this condition is also sufficient for the original liftability problem
and it is already well known.

Lemma 3.4. ([21, Theorem 1.1]) Let (X,B, T, µ) be an e.m.p.t. and let τ be a
general inducing time for T on E ∈ B, µ(E) > 0. If

∫
E τdµ < ∞, then T τ has an

invariant measure ν satisfying µ = τ ×T ν.
The next two lemmas by Zweimüller lead up to the main result of this section.

Lemma 3.5. ([21, Proposition 4.1]) Let T be c.e.m.p.t. of the σ-finite measure
space (X,B, T, µ). Let R be an inducing time for T on ∆0 ⊆ X, 0 < µ(∆0) < ∞.
Suppose that E ∈ (∆0,B(∆0)), µ(E) > 0 with (TR)E = (TE)τ . Then

ν̃ satisfies µ = R×T ν̃

if and only if
ν̂ satisfies µ|E = τ ×TE

ν̂.

If one of the two measures ν̃ and ν̂ exists (and thus both) then ν̂ = ν̃|E or equivalently
ν̃ = (ϕRE)×TR

ν̂.

Lemma 3.6. [22, Proposition 1] Let T be a measurable transformation (X,B) and
let E ∈ B. Let ρ and τ be inducing times for T and TE on E such that T ρ = (TE)τ .
Moreover, let ν̃ be a measure on E. Then

ρ×T ν̃(E) =
∫

E
τdν̃.

Equipped with the above, we can proceed to the

Proof of Theorem 2.1. First, we observe that by Proposition 3.1 the F -invariant
measure ν ¿ m′ is σ-finite. Then, under the assumptions of the proposition, equa-
tion (4) holds and thus, π∗ν = R ×T ν0. By the same assumptions, (TR,∆0, ν0) is
an ergodic transformation preserving the probability measure ν0 ¿ m.
Let E ⊆ ∆0 and consider the first return time of TR to E. By Fact 3.3 we may write
T ρ = (TR)E = (TE)τ for some measurable functions ρ : E → N and τ : E → N. Let
ν̃E = ν0|E be a finite measure on E.
By Lemma 3.2 applied to T ρ = (TR)E we have

ρ×T ν̃E(A) = R×T (ϕRE ×TR ν̃E)(A). (9)

On the other hand, another application of Lemma 3.2 to T ρ = (TE)τ gives

ρ×T ν̃E(A) = ϕE ×T (τ ×TE
ν̃E)(A). (10)

Since µ ¿ m (by assumption) and ν0 ¿ m (whence ν̃E ¿ m), Lemma 3.5 implies
that

ν0 is a solution for µ = R×T ν0

if and only if
ν̃E is a solution for µ|E = τ ×TE

ν̃E .

In this case, ν0 = (ϕRE)×TR
ν̃E , which further implies that

11



µ = R×T ν0 = R×T (ϕRE ×TR ν̃E). (11)

Therefore, if ν̃E is a solution for µ|E = τ ×TE
ν̃E (or equivalently if ν0 is a solution

for µ = R×T ν0), then (9), (10) and (11) imply that

µ = R×T ν0 = R×T (ϕRE ×TR ν̃E) = ρ×T ν̃E = ϕE ×T (τ ×TE
ν̃E) (12)

We now take a look at the finite e.m.p.t. (TE , E, µ|E) (the ergodicity of TE follows
from our assumption that T is ergodic). Recall that τ is an inducing time for TE on
E. Therefore, if

∫
E τdm <∞, then by Lemma 3.4, ν̃E satisfies µ|E = τ ×TE

ν̃E and
(TE)τ has a (unique) finite invariant measure ν̃E ¿ m. By our discussion above,
this further implies that ν0 satisfies µ = R ×T ν0, which proves the “if” part of the
proposition.

Conversely, assume that there exist E and τ as above such that
∫
E τdm = ∞.

By Lemma 3.6 we have

ρ×T ν̃E(E) =
∫

E
τdν̃E =

∫

E
τdm = ∞.

Suppose that ν̃E is a solution for µ|E = τ ×TE
ν̃E . But then the above equation

together with (12) implies

π∗ν(E) = R×T ν0 =
∫

E
τdm = ∞

which contradicts the hypothesis and we are done.

Remark 3.7. As µ is σ-finite, there is E ∈ B such that 0 < µ(E) < ∞ and by
the proof of the proposition above, we know 0 < π∗ν(E) < ∞. Thus the above
proposition implies that if µ = π∗ν then there exists a set E ⊆ ∆0, m(E) > 0 with
τ : E → N given by (TR)E = (TE)τ such that

∫
E τdm < ∞. This would become a

sufficient condition as well if we also assume that the inducing time ρ is defined and
finite π∗ν-a.e., since this would guarantee that

⋃
n≥0 T

−nE = X mod π∗ν and thus
that π∗ν is σ-finite.

4 Pointwise dual ergodicity
To prove Corollary 2.6 we only need to establish the p.d.e. property for the tower
map F . Then the result follows immediately from Theorem 2.1, an estimate of the
wandering rate wn(F ) together with Proposition 3.7.5 in [1] and Proposition 2.5.
Corollary 2.7 follows by a similar argument together with the following standard
results on regularly varying functions (sequences).

Proposition 4.1 (Karamata’s Theorem [5]). The function a(t) is slowly varying
and locally bounded if and only if for any constant c:

• ∫ x
c t

γa(t)dt ∼ xγ+1

γ+1 a(x), if γ > −1

• ∫∞
x tγa(t)dt ∼ xγ+1

|γ+1| a(x), if γ < −1

Furthermore, the following theorem gives an exact characterization of functions
(sequences) that produce regularly varying functions (sequences):

12



Proposition 4.2 (Monotone Density Theorem [5]). Let U(x) =
∫ x
0 u(y)dy and

suppose U(x) ∼ xγa(x) for some γ ∈ R and function a ∈ R0. If u is monotone,
then

u(x) ∼ γxγ−1a(x).

4.1 Pointwise dual ergodicity for F

In the following we show that a YT is p.d.e. under a less restrictive condition than
(YT2) formulated in Section 3. That is, we replace the previous YT2 with:

(YT2’) There is a return time functionR : ∆0 → N∗ which is constant on each ∆0,i. We
also assume that TRi(∆0,i) is a union of ∆0,k’s and infi∈Nm0(TRi(∆0,i)) > 0.

In order to obtain good properties of the F -invariant measure, under the weaker
(YT2’) above, we need the following extra-assumption, (see also [8] for obtaining
estimates of the correlation decay on towers via cone techniques under (YT2’)):

(YT7) (∆,B(∆), F,m′) is aperiodic.

We first recall the following concepts and results. Let (X,B,m, T ) be a Markov
map with Markov partition α and for a0, . . . , an−1 ∈ α let [a0, . . . , an−1] = ∩n−1

i=0 T
−iai

denote an n-cylinder. Let αn−1
0 =

∨n−1
k=0 T

−k(α) and α+ = {a ∈ ∪n∈N∗αn−1
0 : m(a) >

0}. A collection of cylinders ζ ⊆ α+ is said to be a Schweiger collection for T if
i) for every b ∈ ζ and a ∈ α+ if the concatenation [a, b] 6= ∅ then [a, b] ∈ ζ;
ii) ∪b∈ζb = X (mod m);
iii) if there exist r ∈ (0, 1) and C > 1 such that for every n-cylinder b ∈ ζ and
m×m-a.e. (x, y) ∈ b× b

∣∣∣ log
dm

dm ◦ Tn |b(x)− log
dm

dm ◦ Tn |b(y)
∣∣∣ ≤ Crs(x,y) (13)

where
s(x, y) := min{n ≥ 1 : x, y lie in distinct cylinders of ζ}.

The existence of a Schweiger collection for a c.m.p.t. and aperiodicity have the
following consequences:

Lemma 4.3 (Theorem 3.1 and Theorem 3.2, [2]). Let (X,B,m, T, α) be a conser-
vative, aperiodic Markov map and suppose that ζ ⊆ α+ is a Schweiger collection for
T . Then T admits a σ-finite invariant measure µ ∼ m such that

log
dµ

dm
∈ L∞(b) for all b ∈ ζ

and µ is exact under T . Moreover, any A ∈ α+ is a Darling Kac set whose return
time process is continued fraction mixing.

We now show

Lemma 4.4. Let (∆,B(∆), F,m′) be a YT that satisfies (YT2’) and (YT7) above.3

Then the following hold:

1. F admits an infinite, but σ-finite invariant measure ν equivalent to m′ such
that dν

dm′ is bounded and bounded away from zero. Furthermore, ν is exact
under F .

3so the original condition (YT2) of Section 3 need not be satisfied
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2. For any n ∈ N, every n-cylinder is a Darling-Kac set whose return time process
is continued fraction mixing.

3. F is pointwise dual ergodic w.r.t. ν.

Proof. Let P be the generating partition of ∆ and let [A0, . . . , An−1] =
⋂n−1
i=0 F

−iAi
for A0, . . . , An−1 ∈ P denote an n-cylinder. It is clear that (∆,B(∆), F,m′,P)
is a conservative Markov map. By (YT1), m(∆0,i) > 0 for each i and hence
m(A) > 0 for all A ∈ P and and thus m′ is positive on all n-cylinders. Also, it
is clear that (∆0,B(∆), FR,m0) is a conservative Markov map w.r.t. the count-
able partition P0 = {∆0,i}; let R := {TR(∆0,i)} be the image partition and
R̃+ := {a ∈ ∪k∈N

∨k−1
0 (FR)−kR}.

It follows from (YT6) that there exist C > 1 and 0 < θ < 1 such that for all
x, y ∈ b, for all b ∈ R+, and for all k ∈ N and k-cylinders b

∣∣∣
k−1∑

j=0

log
dm0

dmb ◦ (FR)j
(x)−

k−1∑

j=0

log
dm0

dmb ◦ (FR)j
(y)

∣∣∣ ≤ Cθs(x,y) (14)

and thus R+ is a Schweiger collection for FR w.r.t. the measure m0. By [2, Lemma
2.1] (which requires condition (YT2’)), there exist an FR-invariant probability mea-
sure ν0 ¿ m0 such that dν0

dm0
is bounded and bounded away from zero.

By aperiodicity and (YT2’), there exist N ∈ N and b ∈ P0 such that (FR)N (b) =
∆0. Therefore for all a ∈ P0 and x ∈ a we can find x′ ∈ b such that (FR)N (x′) = x,
and we have

dν0

dm0
(x) ≥ dm0

dmb ◦ (FR)N
· ν0

m0
(x′) > 0

uniformly over all a ∈ P and x ∈ a. This also implies that ν0 ∼ m0.
Fix some arbitrary ∆l,i and let

P∆l,i
= {[A0, . . . , An−1] : A0, . . . , An−1 ∈ P, n ∈ N∗, An−1 = ∆l,i}

be the collection of cylinders that land on ∆l,i after some number of iterates. Notice
that P∆l,i

⊂ P+ := {A ∈ ∪k∈N
∨k−1

0 F−kP}.
For all x′, y′ ∈ ∆l,i there exist unique x, y ∈ ∆0,i such that F l(x′) = x, F l(y′) = y;

let us extend the definition of separation time to ∆l,i by setting s(x, y) = s(x′, y′). It
follows from (14) that there exist C > 1 and 0 < θ < 1 such that for all x′, y′ ∈ ∆l,i

and for t = R− l

∣∣∣
t−1∑

k=0

log
dm′

dm′|∆l,i
◦ F k (x′)−

t−1∑

k=0

log
dm′

dm′|∆l,i
◦ F k (y′)

∣∣∣ ≤ Cθs(x
′,y′)

which further implies for all B ∈ P∆l,i
and for all x, y ∈ B we have

∣∣∣
t−1∑

k=0

log
dm′

dm′|B ◦ F k (x)−
t−1∑

k=0

log
dm′

dm′|B ◦ F k (y)
∣∣∣ ≤ Cθs(x,y).

Also, for every B ∈ P∆l,i
and A ∈ P+ if [A,B] 6= ∅ then [A,B] ∈ P∆l,i

. Furthermore,
by aperiodicity for all A ∈ P there exist N = N(A) ∈ N such that for all j ≥ N ,
m′(F−jA ∩ (∪B∈P∆l,i

B)) > 0. As a consequence, ∪B∈P∆l,i
B = ∆ (mod m′) and

thus, P∆l,i
is a Schweiger collection for F w.r.t. m′. Therefore, by Lemma 4.3, F

admits an exact, σ-finite invariant measure ν ∼ m′ and dν
dm′ is bounded away from

0 and ∞ uniformly on ∆l,i.
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The same lemma implies that each element of P∆l,i
is a Darling-Kac set for F

w.r.t. ν. Thus, by Theorem 3.8.3 in [1], F is pointwise dual ergodic w.r.t. ν. That
is, there exist a positive sequence {an(F )}n≥1 such that for all f ∈ L1(ν) with∫
X fdν > 0

1
an(F )

n−1∑

k=0

F̂k(f) →
∫

∆
fdν, ν − a.e. as n→∞ (15)

where F̂ : L1(ν) → L1(ν) is the dual operator of F .
Since ν ∼ m′ is exact, it follows that this measure is unique and thus ν is

independent of ∆l,i. In fact ν|∆0 = ν0 and we saw already that dν0
dm0

is bounded
away from zero and ∞, so dν

dm′ is bounded away from zero and ∞ uniformly on ∆.
Similarly, all elements of ∪l,iP∆l,i

are Darling-Kac sets for F w.r.t. µ. This concludes
the proof.

4.2 Pointwise dual ergodicity for T .
Pointwise dual ergodicity for T can be immediately derived from that of F :

Lemma 4.5. Suppose that (X,B, T,m) and (∆,B(∆), F,m′) satisfy the conditions
of Theorem 2.1. Then T is pointwise dual ergodic w.r.t. its invariant measure µ =
π∗ν and the return sequence an(F ) from (15) coincides, up to asymptotic equivalence,
with the return sequence for T .

Proof. We first observe that Theorem 2.1 ensures that F is indeed a measure theo-
retic extension of T , or equivalently T is a factor of F . By Proposition 3.7.6 in [1],
we know that any factor of a p.d.e. transformation is also p.d.e. This together with
(3) of Lemma 4.4 implies that T is indeed pointwise dual ergodic. Furthermore, ac-
cording to Proposition 3.7.6 in [1], an(F ) is a return sequence for T , which is unique
up to asymptotic equivalence.

Next we will estimate the return sequence an(F ).

Lemma 4.6. Let (∆,B(∆), F,m′) be a Young tower with base ∆0 (for some non-
singular dynamical system (X,B,m, T )) and suppose that m0({R > n}) ∝ n−β for
some 0 < β ≤ 1. Then wn(F ) ∈ R−β and an(F ) ∈ Rβ.

Proof. Let ϕ∆0(x) := min{n ≥ 1 : Fn(x) ∈ ∆0} be the first return time function
of F to ∆0 and observe that ϕ∆0(x) = R(x) for all x ∈ ∆0. From Lemma 4.4 we
know that F admits an invariant measure ν with ν|∆0 = ν0 where ν0 ∼ m0 is the
invariant for measure for Fϕ∆0 . Thus,there exist c > 0 such that,

wn(∆0) = ν(∪n−1
k=0F

−k∆0) =
n−1∑

k=0

ν(∆0 ∩ {ϕ∆0 > k})

= c
n−1∑

k=0

ν0({R > k}) ∝
n−1∑

k=0

m0({R > k}) ∈ R1−β,

where
∑n−1

k=0 m0({R > k}) ∈ R1−β by Karamata’s Theorem (part 1) if 0 < β < 1
and

∑n−1
k=0 m0({R > k}) = (logn)l(n) if β = 1, where l(n) ∈ R0.

From Lemma 4.4 we know that ∆0 is a Darling-Kac set for F . Therefore, wn(F ) ∈
R−β by Theorem 3.8.3 in [1]. Furthermore, an(F ) ∈ Rβ by Lemma 2.4.

We can now conclude
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Proof of Corollary 2.6. Since an(F ) ∈ Rβ with β ∈ [0, 1], i1) follows by Proposi-
tion 2.5.

i2) follows by the same argument since an(F ) is also a return sequence for T .

Proof of Corollary 2.7. The conditions of Theorem 2.1 together with Lemma 4.5
and Lemma 4.6 implies that wn(T ) ∝ wn(F1) ∈ R−β as n → ∞. By the same
argument for F2, wn(T ) ∝ wn(F2) =

∑n−1
k=0 m02({R2 > k}). Thus,

n−1∑

k=0

m02({R2 > k}) ∝
n−1∑

k=0

m01({R1 > k})

and the conclusion follows immediately by Proposition 4.1 and Proposition 4.2.

Remark 4.7. We notice that from the above proof we have that

wn(T ) ∝
∑

k>n

m01({R1 > k}) ∝
∑

k>n

m02({R2 > k})

independently of the assumption of the regular variation of the tail sequences. The
fact that

∑
k>nm01({R1 > k}) ∝ ∑

k>nm02({R2 > k}) trivially holds in the proba-
bility case β > 1, γ > 1, since the two tail sequences are summable. However, as it is
obvious from the proof, in this case, the conclusion m01({R1 > k}) ∝ m02({R2 > k})
does not follow.

5 Infinite oscillation at one of the indifferent
fixed points
As mentioned in Section 2.2, we conclude with one example that illustrates the use
of Corollary 2.6 and as such, the usefulness of modelling infinite measure preserving
transformations via YTs. Darling Kac-like theorems were proved for increasingly
general systems. The version in Aaronson’s book [1, Theorem 3.6.4. and Corollary
3.7.3] requires that T is p.d.e. and the return sequence (an) is regularly varying,
which is in general difficult to check. In [20], the p.d.e. property was established for
non-uniformly expanding interval maps with indifferent fixed points (AFN-maps).
Thaler and Zweimüller [16, Theorem 1] then replaced the regular variation of the
return sequence by that of the wandering rate wn(T ) (which is easier to check)
together with the requirement that

hN :=
1

wN (Y )

N−1∑

n=0

T̂1{x∈X\Y :R(x)=n}

be convergent4 uniformly on the Darling Kac set Y . In [23, Theorem 2.1] finally,
Zweimüller weakened the convergence requirement to (hN )N∈N being precompact in
L∞(µ). This enabled him to treat maps with multiple indifferent fixed points where
the strength of the one mutually majorizes and minorizes the strength of another,
depending on the distance to these fixed points.

The example we consider below is a particular case of the somewhat abstract
Example 7.1 in [23] which Zweimüller gave to show the advantage of [23] over [16].
The regular variation of the wandering rate wn(T ) with some index β ∈ [0, 1] in
Example 7.1 of [23] is explicitly given, which allows an immediate application of [23,

4with a uniformly sweeping limit
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Theorem 2.1]. In contrast, the example below does not provide an explicit form of
wn(T ). By considering an appropriate YT extension for T , we simultaneously obtain
the p.d.e. property, regular variation of the return sequence an, and our DK version
Corollary 2.6.

Let T : [0, 1] → [0, 1] be a map with two indifferent fixed points at 0 and 1 with
T ([0, 1/2)) = (0, 1), T ([1/2, 1)) = (0, 1) such that for p > 1,

T (x) =
{
x+ x1+pl(1/x) + o(x1+pl(1/x)) as x→ 0,
x+ (1− x)1+p + o((1− x)1+p) as x→ 1,

(16)

where l(t) = exp[(log t)1/3 cos(log t)1/3], t > 0, is in R0 with infinite oscillation, i.e.,

lim
t→∞ inf l(t) = 0 and lim

t→∞ sup l(t) = ∞.

Take 0 < · · · < x2 < x1 < x0 = 1/2 = x′0 < x′1 < x′2 < · · · < 1 such that
T (xn) = xn−1 and T (x′n) = x′n−1 for all n ≥ 1. Let In = (xn+1, xn), I ′n = (x′n, x′n+1)
for n ≥ 0 and let R|In∪I′n := n + 1. By (16), the asymptotic of {xn}, {xn}′ are as
follows:

xn ∼ n−1/pl(n) and 1− x′n ∼ n−1/p.

Thus the tail of the inducing scheme is

m({R > n}) =
∑

k≥n
m(Ik ∪ I ′k) ∼ n−p(l(n) + 1).

Construct a Young tower with ∆0 = (0, 1), partition {∆0,i} = {Ii}∪{I ′i} and return
time R as indicated. Then TR(In) = (1

2 , 1) and TR(I ′n) = (0, 1
2) for each n, so

(YT2’) of Section 4.1 is satisfied.
The distortion condition (YT6) follows by the argument of Lemma 5 in [17].

Also, notice that g.c.d(Ri) = 1, (so (YT7) holds) and thus, the good properties for
F follow immediately by Lemma 4.4.

To check the conditions of Theorem 2.1, we just need to observe that inducing
w.r.t. first returns on any ∆0,i gives rise to a finite (TR)

ϕR
∆0,i -invariant measure,

which proves the integrability of ϕ∆R
0,i

on ∆0,i. Thus, if τ and ρ are given by

T ρ = (TR)∆0,i = (T∆0,i)
τ , the integrability of τ follows immediately since {τ >

n} = {ρ > ϕ∆R
0,i
} by Fact 3.3 (see also [21] for details). Because we also have

m({R > n}) ∈ R−1/p, Corollary 2.6 immediately applies. In particular, Lemma 2.4
gives the exact form of an(T ).
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