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Abstract. For polynomials f on the complex plane with a dendrite
Julia set we study invariant probability measures, obtained from a ref-
erence measure. To do this we follow Keller [K1] in constructing canon-
ical Markov extensions. We discuss ‘liftability’ of measures (both f–
invariant and non–invariant) to the Markov extension, showing that
invariant measures are liftable if and only if they have a positive Lya-
punov exponent. We also show that δ–conformal measure is liftable
if and only if the set of points with positive Lyapunov exponent has
positive measure.

1. Introduction

Ergodic properties for polynomial or rational maps have been looked at for
various measures and various types of Julia sets. One can consider the mea-
sures of maximal entropy, e.g. [FLM, Z], or more generally, equilibrium
states of certain Hölder potentials, see for example [Ly, DPU, Ha]. This
approach is particularly natural when the map is hyperbolic and the poten-
tial is −t log |Df |, where t is the Hausdorff dimension of the Julia set: then
the equilibrium state is equivalent to conformal measure (as obtained by
Sullivan, see [S]). When the Julia set is parabolic, invariant measures equiv-
alent to conformal measure are found in [DU, U1, U2]. In the case where
there are recurrent critical points in the Julia set, the papers [GS, Pr, Re]
focus on invariant probability measures that are absolutely continuous with
respect to conformal measures, using assumptions on the derivatives on the
critical orbits. See [PU, U3] for surveys. The theory has not yet developed
to the same extent as, for example, interval maps, where the availability of
induced maps and tower constructions (cf. Young [Y1, Y2]) allowed the in-
vestigation of several stochastic properties, including the rate of mixing and
Central Limit Theorem [Y2, BLS], return time statistics and related prop-
erties [BSTV, BV, C] and Invariance Principles, see e.g. [MN]. However,
during the preparation of this paper, we learned that some good results in
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this direction have been proved for rational maps satisfying the ‘Topological
Collet–Eckmann’ condition in [PrR-L].

In the 1980s, Hofbauer and Keller constructed so–called canonical Markov
extensions for piecewise monotone maps of the interval [Ho, HK, K1], which
they used to study the topological and measure theoretical behaviour of
these maps. These Markov extensions were considered in an abstract set-
ting in [K1, Bu], where one of the aims was to extend the theory to higher
dimensions. Indeed in [Bu] some higher dimensional examples are given.
That paper focuses on the probability measures given by the symbolic dy-
namics obtained from the tower structure, an approach also used in [N, BuS].
In [BuK] results on transfer operators are proved in this higher dimensional
setting and in [BuPS] conformal measures are found.

Our approach follows the papers of Keller, [K1, K2]. In the first of these pa-
pers, results are proved about the liftability of probability measures on the
original system to the associated Markov extension. In particular, the lifta-
bility of ergodic invariant measures with positive entropy is shown. While
the abstract theory given there applies, in principal, in any dimension, the
applications given are to interval maps. In the second paper it is shown
that, given a smooth interval map, positive pointwise Lyapunov exponents
implies the liftability of Lebesgue measure. The purpose of this paper is to
extend those results to maps on the complex plane. We construct Markov

extensions (Ĵ , f̂) for complex polynomials f and study the liftability prop-
erties of probability measures supported on the Julia set J . (This allows us
to deal with some cases where critical points lie in J .) Given a probability

measure µ on J , we construct a sequence of Cesaro means {µ̂n}n on Ĵ ,
and we say that µ is liftable to the Markov extension if this sequence has a

non–zero vague limit measure µ̂. The limit measure µ̂ is f̂–invariant, even
if the measure µ is not f–invariant. This technique is particularly useful for
finding invariant probability measures that are absolutely continuous with
respect to δ–conformal measure on the Julia set.

Among other things, we prove that an ergodic invariant probability measure
µ is liftable if and only if its Lyapunov exponent is positive (cf. [BK]).
Furthermore, for liftable measures, typical points are conical (i.e. go to
large scale, see Lemma 9) with positive frequency. Similar results hold for
(non–invariant) δ–conformal measure µδ. (The measure µδ is δ–conformal
on J if µδ(J ) = 1 and µ(f(A)) =

∫

A |Df |δ dµδ for all measurable sets A
such that f : A→ f(A) is 1–to–1.) We prove the pointwise lower Lyapunov
exponent λ(z) is strictly greater than 0 for a set of positive µδ–measure if
and only if µδ is liftable, and in this case there is an f–invariant probability
measure equivalent to µδ. We note that this result applies to polynomials
considered in [GS, Pr, Re], when the Julia sets of these polynomials are
dendrites, see below.
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When proving our results on the relation between liftability and positive
Lyapunov exponents, we use the Koebe Lemma: a one–dimensional tool.
Work in progress aims at extending these results to higher dimensions. Our
result on finding invariant probability measure absolutely continuous with
respect to δ-conformal measure again uses the Koebe Lemma and seems a
more difficult type of result to generalise.

Markov extensions (popularly called Hofbauer towers) are less well known
than the Young towers, [Y1, Y2]. We wish to highlight the difference be-
tween these two constructions. In short, for the Young tower case, given
an invariant measure µ and a subset Y of the phase space, a partition
Y = ∪jYj (mod µ) is constructed together with return times Rj such that
F : ∪jYj → Y , F |Yj = fRj |Yj and fRj : Yj → Y is 1–to–1 and has good
distortion and expansion properties. These are then used to study stochas-
tic limit properties (e.g. mixing rates, the Central Limit Theorem, invari-
ance principles) of specific invariant measures. The construction is therefore
linked to the choice of the measure, and may be quite involved in practical
applications. The construction of the Hofbauer tower, on the other hand, is
combinatorial and can be used to study all probability measures. In fact, it
is exactly for the liftable invariant probability measures that Young towers
can be constructed, in a canonical way, as first return maps to appropriate
sets in the Markov extension, see [Br].

The structure of this paper is as follows. The construction of the canonical
Markov extension occupies Section 2. We restrict our attention to poly-
nomials f with locally connected full Julia sets (dendrites), as we need to
find a finite partition P1 of the Julia set J such that f is univalent on each
partition element. Such partitions may exist for the Julia set of many other
rational maps as well, but is hard to give for rational maps in all generality.
In Section 3 we describe the lifting procedure of measures. As remarked
there, in contrast to subsequent sections, Section 3 is largely independent of
the geometry of J , and can be easily extended to Markov extensions in other
settings. In Section 4 we introduce inducing constructions as a tool to prove
that for liftable measures, typical points will ‘go to large scale’ with positive
frequency. Section 5 focuses on (ergodic) invariant probability measures µ
and their Lyapunov exponents λ(µ). It is shown that µ is liftable if and
only if λ(µ) > 0. Section 6 gives a similar result for δ–conformal measure
µδ. It shows that µδ is liftable if and only if the pointwise lower Lyapunov
exponent λ(z) > 0 for all z in a set of positive µδ–measure.

Acknowledgements: We are grateful to J. Hawkins, M. Urbański and J.
Rivera–Letelier for fruitful discussions. Also the referee’s suggestions for
improving clarity of the paper are gratefully acknowledged.
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2. The Markov Extension

Let f : C → C be a polynomial of degree d with a connected, locally
connected and full Julia set J (i.e. C \ J is connected). Consequently all
critical points belong to J . Let Cr denote the critical set. It is easy to see
that J is a dendrite, defined as follows (cf. [Ku]).

Definition. A metric space (X, d) is called a dendrite if it is connected,
locally connected, and for any two points x, y ∈ X there is a unique arc
γ : [0, 1] → X connecting x to y.

The Fatou set F coincides with the basin of ∞. Let the Green function
G : F → R be defined by G(z) = limn→∞

log |fn(z)|
dn , see [Mi] for more

details. The equipotentials (i.e. level sets) of the Green function form a
foliation of F consisting of nested Jordan curves. The orthogonal foliation
is the foliation of external rays. Each external ray is a copy of R embedded
in F , and if γ : R → R is such an embedding such that |γ(t)| is large for large
t, then limt→∞ arg γ(t) is a well–defined number ϑ ∈ S1, called the external
angle of R. Let Rϑ denote the ray with external angle ϑ, and γϑ : R → Rϑ

its parameterisation. It is convenient to parameterise external rays by the
values of the Green function: G(γϑ(t)) = t for each ϑ ∈ S1 and t ∈ R. Note
that f(Rϑ) = Rdϑ mod 1; more precisely: f(γϑ(t)) = γdϑ mod 1(t+ 1).

Lemma 1. There is a finite partition P1 of J \Cr such that f |Z is univalent
for each Z ∈ P1.

Proof. Because J is locally connected, each external ray Rϑ lands at a single
point in z ∈ J and each z ∈ J is the landing point of at least one external
ray. For each c ∈ Cr, select κc > 1 rays that land at f(c) (note that Theorems
1.1 and 3.1 of [Ki] imply that there can be at most 2d rays landing here). If
c has degree dc, there are κcdc > 2 preimage rays landing at c. The union of
these rays, together with cj, is a locally compact set, separating the plane
and also J into κcdc ‘segments’. As J is closed, the closure of the segments
of J \ {c} intersect only at c. Repeating the argument for all other critical
points gives the assertion. �

Let P0 = {J } be the trivial partition of J , and P1 be the partition of
Lemma 1. Let Pn =

∨n−1
i=0 f

−i(P1), and for z /∈ ∪n−1
i=0 f

−i(Cr) let Zn[z] be
the element of Pn containing z. Note that each Zn ∈ Pn is connected (in
fact, Zn is a dendrite) and fn|Zn is univalent. We call Zn an n–cylinder.

Definition. The canonical Markov extension Ĵ is a disjoint union of copies
D of subsets of J , subject to an identification discussed below. We call sets
D domains and denote their collection as by D. Let π : Ĵ → J be the
inclusion map. Domains D are defined recursively as follows:
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• The first domain Ĵ0, called the base of the Markov extension, is a
copy of J .

• Given a domain D ∈ D and a nonempty set of the form f(π(D) ∩ Z)

for some Z ∈ P1, we let D′ be a copy of f(π(D) ∩ Z) and add it to
D. Write D → D′ in this case.

• The collection D is such that Ĵ0 ∈ D, and D is closed under the
previous operation.

Each ẑ ∈ D can be represented by a pair (z,D) where ẑ ∈ D and π(ẑ) = z.
Moreover, any pair (z,D) defines a unique ẑ ∈ J whenever z ∈ π(D). This

allows us to define f̂ : Ĵ → Ĵ .

• If ẑ ∈ D, D → D′ and π(ẑ) belongs to the closure of Z ∈ P1 such

that π(D′) = f(π(D) ∩ Z), then we let f̂(ẑ) = (f(z), D′). Clearly

π ◦ f̂ = f ◦ π.

If π(ẑ) ∈ Cr, then f̂ can be multi-valued at ẑ, but a domain D ∈ D

contains at most one of the images of ẑ. In all other cases, f̂(ẑ) is a
single point, belonging to a single domain D.

The next step is to define the cutpoints, their ages and origins, as well as
the level of domains.

• The base Ĵ0 contains no cutpoints.
• If ẑ ∈ D is a cutpoint or π(ẑ) ∈ Cr, then each image f̂(ẑ) is a

cutpoint. Its age is

{

1 if π(ẑ) ∈ Cr and ẑ is not a cutpoint;
a+ 1 if ẑ is a cutpoint of age a.

The set of cutpoints is denoted by Cut.
• An a–cutpoint will be a cutpoint of age a. Each a–cutpoint ẑ satisfies
ẑ = (fa(c), D) for some D ∈ D and c ∈ Cr. This critical point c is
called the origin of ẑ.

• Given a domain D, level(D) is 0 if there are no cutpoints in D, and

is the maximal age of the cutpoints in D otherwise. Let ĴR be the
union of all domains of level(D) 6 R.

The final step is the identification of domains wherever possible.

• Any two domains D and D′ such that π(D) = π(D′), π(D ∩ Cut) =
π(D′ ∩Cut) and whose cutpoints have the same ages and origins are
identified. The canonical Markov extension is the disjoint union of
the domains, factorised over the identification described above.
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The arrow relations D → D′ give the Markov extension the structure of an
(infinite) directed graph. This is the Markov graph, since by construction

(Ĵ , f̂) is Markov with respect to the partition of the domains of Ĵ .

For counting arguments later (see Lemma 2 and the appendix), we must be
aware of the possibility of ‘moving sideways’ in the Markov graph. That is,
it is possible that for some domain D of Ĵ there is an arrow D → D′ where
level(D) = level(D′). This occurs if D is a domain of level n containing one
cutpoint ẑ of age n and a cutpoint ẑ ′ of age n−1. If the arc in D connecting
these two cutpoints intersects π−1(Cr) (recall that since J is a dendrite,
for any z, z′ ∈ J there exists a unique arc in J connecting z to z ′), then

the domain D′ containing f̂(ẑ) will also have level n. So if D → D ′, then
level(D′) can take any value 6 level(D) + 1.

Define P̂1 to be the partition given by D ∨ π−1P1. Let P̂n :=
∨n−1

i=0 f̂
−i(P1)

and P̂R
n := P̂n ∩ ĴR.

Remark 1. The partition in Lemma 1, and hence the construction of the
Markov extension, is not unique, because we have freedom in choosing the
number of the rays κc for each critical value. However, any choice makes
a valid partition. To illustrate this, assume that f(z) = z2 + c for c ∈
(−2,−1

4) such that 0 ∈ J . One is inclined to choose two (complex conjugate)
rays landing at c = f(0), see Figure 1 (left). This will lead to a canonical
Markov extension which is very similar to the standard Markov extension
constructed for interval maps. More precisely, select the domains D ∈ D
such that π(D) ∩ R 6= ∅ and such that if π(D) = f n(Zn), then for each
x ∈ π(D) ∩ R, there is x0 ∈ Zn ∩ R such that x = fn(x0). For each
such D, retain D ∩ π−1(R), and discard the rest of D as well as all other
domains. Then this set with remaining graph structure is exactly the real
Markov extension, see Figure 1 (left, bold lines).

Choosing only one ray is possible as well; in this case, each domain in the
Markov extension will be a copy of the whole Julia set, see Figure 1 (right),
and they will be distinguished only by the fact that they have different (num-
bers of) cutpoints, and consequently different canonical neighbourhoods, see
below.

We summarise some properties of Ĵ in the following lemma.

Lemma 2. (a) for any a > 1, each D ∈ D contains at most #Cr cut-
points of age a (and at most one for each different origin c);

(b) Let D and D′ be domains in Ĵ of the same level, sharing a cutpoint
of maximal age, i.e., p̂ ∈ D and p̂′ ∈ D are cutpoints of age a =
level(D) = level(D′) and π(p̂) = π(p̂′). Suppose also that p̂ and p̂′

have the same origin. Then π(D) = π(D ′) or π(D) ∩ π(D′) = π(p̂);
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Figure 1. Schematic picture of some domains of the Markov extension
of a quadratic map z 7→ z2 + c using (left) two external rays Rϕ and R′

ϕ
for

ϕ′ = 2π − ϕ, landing at ĉ and (right) one external ray Rϕ.

The pictures on the bottom line are Ĵ0 and the rays landing at 0 defining
the partition are shown. The point π(β) > 0 is fixed under f , and π(−β)
is its other preimage.
The middle line gives domains of level 1 and the top line domains of level
2. Cutpoints are denoted by a •
Arrows indicate the edges D → D′ of the Markov graph. For clarity of the
picture, if Z and Z ′ ∈ P1 are symmetric to each other, the arrow from only
one of them is shown.
The bold lines on the left pictures indicate the ‘real Markov extension’.

(c) The number of domains of level l is bounded by #Cr
∏

c κc Conse-

quently, the number of domains in ĴR is at most 1 +R#Cr
∏

c κc.
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Notice that (b) implies that within a given level we can only ‘move sideways’
a uniformly bounded number of times.

Proof. For the proof of (a), note that if p̂ ∈ Cut ∩D has age a, then π(p̂) ∈

fa(Cr). As Ĵ contains no loops, only one such point exists for each c and
a. So there are at most #Cr cutpoints of age a.

To prove (b), let D and D′ be as in the statement, and assume that π(p̂) =
π(p̂′) =: p = fa(c), where a is the age of p and p̂ and c their common
origin. This means that there are dendrites E and E ′ intersecting at f(c)
such that π(D) = f a−1(E), π(D) = fa−1(E′), and fa−1|E and fa−1|E′ are
homeomorphic.

Assume first that E and E ′ have at least an arc in common. If E 6= E ′, say
x ∈ E \ E′, then there is y such that [x, f(c)] ∩ E ′ = [y, f(c)]. Here [a, b]
indicates the unique arc in E connecting a and b. By construction, each set
J \ π(D′) ∩ π(D′) consists of post–critical points, and the same holds for

π(D) \ π(D′) ∩ π(D′). Since fa−1(E′) = π(D′), we have fn(y) ∩ Cr 6= ∅ for
some n ∈ Z. There are two possibilities:

• y ∈ ∪n>2f
n(Cr), but then D′ must have a cutpoint of age > a, con-

tradicting maximality of a.

• y ∈ ∪n61f
n(Cr). In this case there is c̃ ∈ Cr and 0 6 s < a such

that f s−1(y) 3 c̃. Take y such that s is maximal with this property.
Now f s(E) and f s(E′) belong to the same sector defined by the
κc̃ external rays landing at f(c̃). But then f s(E) and f s(E′) both
contain f s(x), a contradiction. Consequently, π(D) = π(D ′).

Otherwise, E andE ′ intersect only at f(c). First assume that orb(c) contains
no further critical points. Then f a−1 is locally univalent at f(c). Thus if
E ∩ E′ = f(c), then (as J is a dendrite, containing no loops) f a−1(E) ∩
fa−1(E) = p. The final case is that there is s and c̃ ∈ Cr such that f s−1(p) =
c̃ and f s(E) ∩ f s(E′) contains more than just f s(p) = f(c̃). Then the
previous argument shows that f s(E) = f s(E′), and we again obtain π(D) =
π(D′).

Now to prove (c), note that for each c ∈ Cr ad domain D, π−1(c) ∩D has

at most κc images under f̂ . Under further iteration of f̂ , this number does
not increase, unless f s(c) = c̃ for some c̃ ∈ Cr, in which case the number of
images can multiply by at most κc̃. The worst case is that there are

∏

c κc

images. In other words, for each l, there can be at most
∏

c κc domains D of
level l for which π(D) pairwise intersect only at f l(c). Using (b), this gives
at most #Cr

∏

c κc domains of level l altogether. �

Lemma 3. Given ẑ, ẑ′ ∈ π−1(z), one of the following three cases occurs:
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(a) There exists n such that f̂n(ẑ) = f̂n(ẑ′);
(b) ∩nZn[z] has positive diameter;
(c) z ∈

⋃

c∈Cr

⋃

n∈Z f
n(c).

In the latter two cases at least one of ẑ, ẑ ′ visits any ĴR only finitely often.

Proof. Assume that z is not precritical, and that neither ẑ nor ẑ ′ is a cut-
point. Let D and D′ be such that ẑ ∈ D and ẑ ′ ∈ D′. If there is n
such that the cylinder Zn[z] is contained in π(D) as well as in π(D ′), then

f̂n(D ∩ π−1(Zn[z])) = f̂n(D′ ∩ π−1(Zn[z])), and f̂n(ẑ) = f̂n(ẑ′) as in case
(a).

If on the other hand there is no such n, then Z := ∩mZm[z] has positive
diameter as in case (b). Furthermore, Z contains no critical point in its
interior (here we mean interior with respect to the relative topology on J ),

and if π(D) 6⊃ Z, then Ẑ := D ∩ π−1Z contains a cutpoint of D. Let p be

such a cutpoint of maximal age, say a. Then f̂k(Ẑ) 3 f̂k(p) which has age

a + k. It follows that all the sets f̂k(Ẑ), k > 0 are disjoint. As a result Ẑ

can remain in ĴR for at most R iterates.

If ẑ (or ẑ′) is a cutpoint of age a then we are in case (c) and the age of ẑ

will increase under iteration of f̂ . So for any R, f̂R+k(ẑ) is outside JR for
any k > 1.

Finally, if z is precritical, then we are in case (c) again. It is possible that

z belongs to the common boundary of several cylinder sets Zn, and f̂n+1 is
multivalued at ẑ and ẑ ′. But each image f̂n+1(ẑ) and f̂n+1(ẑ′) is a cutpoint
of its level, so it will eventually climb in the Markov extension. �

Running assumptions: We will repeatedly invoke the following assump-
tions on measures µ, to almost surely rule out cases (b) and (c) of Lemma 3,
as explained in the next section. Typical cylinders should shrink:

(SC) diam Zn[z] → 0 as n→ ∞ for µ–a.e. z ∈ J .

and the mass on the precritical points is 0:

(Cr0) µ(∪n60f
n(Cr)) = 0.

By Theorem 3.2 of [BL], (SC) automatically follows from our assumption
that f is a polynomial and J is locally connected and full. However, as we
believe Markov extensions can be of use also when J is not locally connected,
(in which case one should think of a different partition P1 than the one based
on external rays landing at Cr), we will refer to this property whenever we
use it.
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Canonical neighbourhoods: let UĴ0
be a copy of the neighbourhood

UJ of J bounded by the equipotential {G(z) = 0}. This is the canonical

neighbourhood of Ĵ0. We will define a canonical neighbourhood UD for each
D ∈ D; they are copies of subsets of C. The inclusion map π is extended
to UD in the natural way. In the proof of Lemma 1 we chose κc external
rays landing at the critical value f(c). The preimage rays landing at critical
points (together with Cr) divide π(UĴ0

) into #P1 regions. The closure of
each such region O contains exactly one element of P1: if Z ∈ P1, let OZ

be the corresponding region. For each D = f(Z), Z ∈ P1, let UD be a
copy of f(OZ)∩UJ . This set is bounded by external rays landing at critical
values and by the equipotential {G(z) = 0}. We call UD the canonical
neighbourhood of D, although it is not a neighbourhood in the strict sense:
D \ UD consists of the cutpoints of D.

We continue recursively. If D → D′ and UD is the canonical neighbourhood
of D, then UD′ is a copy of f(π(UD)∩OZ)∩UJ , where Z ∈ P1 is such that

π(D′) = f(π(D) ∩ Z). It is bounded by external rays landing at cutpoints
in D′ and by {G(z) = 0}.

Let Û be the disjoint union of all canonical neighbourhoods. Then f̂ natu-
rally extends univalently to Û by

f̂(z, UD) = (f(z), UD′)

if z ∈ π(UD) ∩OZ where Z is such that π(D′) = f(Z ∩D).

Lemma 4. The recursive definition of UD is independent of the path Ĵ0 →
· · · → D by which D is reached.

Proof. Since no path leads into Ĵ0, its canonical neighbourhood is uniquely
defined. Now take D ∈ D, D 6= Ĵ0 with at least two arrows leading to
D. (To prove the lemma, we can restrict to domains D with two arrows
rather than two paths leading to it, because when two paths eventually
merge, it suffices to study those domains at which these paths merge.) For
any cutpoint ẑ of age a and origin c ∈ Cr, we can find OZ with boundary
point c such that π(UD)∩Bε(π(ẑ)) intersects f a(OZ ∩Bε(c)) for any ε > 0.
Furthermore, there are rays Rϕ and Rϕ′ (or possibly only one ray) landing
at c and intersecting ∂OZ such that fa(Rϕ) and fa(R′

ϕ) land at π(ẑ) and
intersect ∂π(UD).

There are distinct arrows leading to D only if there is D ′ ∈ D which is
identified with D. But D and D′ are only identified if π(D) = π(D′), and
the cutpoints, their origins and ages coincide. Therefore the boundaries of
π(UD) and π(UD′) are comprised of the same external rays together with
{G(z) = 0}. It follows that π(UD) = π(UD′), proving the lemma. �
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Lemma 5. The system (Û , f̂) is Markov with respect to the partition of

canonical neighbourhoods, in the sense that if f̂(UD)∩UD′ 6= ∅, then f̂(UD) ⊃
UD′.

Proof. This is a direct consequence of the previous proof. �

3. Lifting measures

In the previous section we introduced the Markov extensions and canonical
neighbourhoods for complex polynomials. In this section we will discuss
the ‘liftability’ properties of measures to the Markov extension in the sense
of Keller. Our assumptions are (SC) and (Cr0). We explain how they
replace conditions (2.2) and (2.3) of [K1]. This section gives the abstract
theory which is applicable to more general settings with this type of Markov
extension. In subsequent sections the precise geometry of J , and thus the
domains of Ĵ , play an important role again.

Given a Borel σ–algebra B on J and a Borel probability measure µ on J ,
we will dynamically lift this measure to a Borel probability measure µ̂ on
Ĵ . Our approach follows that of [K1]. We define a method of obtaining µ̂

and then show that it is f̂–invariant and µ̂ ◦ π−1 � µ.

We first introduce some notation. For some space X, we let C0(X) denote
the set of continuous functions ϕ : X → R with compact support. For a set
A ⊂ X, let χA : X → {0, 1} be the characteristic function of A.

Let i be the trivial bijection mapping J to Ĵ0 (note that i−1 = π|Ĵ0
). Let

(1) µ̂0 ◦ i = µ and µ̂n =
1

n

n−1
∑

k=0

µ̂0 ◦ f̂
−k.

We will find some µ̂ to be a limit of a subsequence of these measures. Note
that Ĵ is in general not compact, so the sequence {µ̂n}n may not have
a subsequence with limit in the weak topology. Instead we use the vague
topology, see for example [Bi]. Given a topological space, we say that a
sequence of measures σn converges to a measure σ in the vague topology if
for any function ϕ ∈ C0(X), we have limn→∞ σn(ϕ) = σ(ϕ). The sequence
{µ̂n}n given in (1) has an accumulation point in the vague topology.

Definition. A probability measure µ on J is liftable if a vague limit µ̂
obtained in (1) is not identically 0.

Remark 2. Note that the measure µ◦π on Ĵ is in general σ–finite, and not
f̂–invariant. The lifted measure µ̂ distributes the mass of µ over the domains
of Ĵ so as to become invariant, as we shall see below. Indeed µ is already
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called liftable if part of the mass lifts to Ĵ ; this is to accommodate non-
ergodic measures µ. As in [K1], we generally wish to exclude the possibility of
µ̂ ≡ 0 (where all the mass escapes to infinity). Later we will find conditions
to ensure that this will not happen.

The following theorem extends Theorem 2 of [K1] from ergodic invariant
probability measures to general invariant probability measures.

Theorem 1. Suppose that µ is an invariant probability measure on J sat-
isfying (SC) and (Cr0). If µ̂ is a vague limit point of any subsequence of

measures given by (1) then it is f̂–invariant and there is some measurable
function 0 6 ρ 6 1 such that µ̂ ◦ π−1 = ρ · µ.

We will first state the theorem for ergodic invariant probability measures,
and then use the ergodic decomposition to generalise to all invariant prob-
ability measures.

Proposition 1. Suppose that µ is an ergodic invariant probability measure
satisfying (SC) and (Cr0). If µ̂ is a vague limit point of any subsequence
of measures given by (1) and µ̂ 6≡ 0 then µ̂ is an ergodic invariant measure
and µ̂ ◦ π−1 = µ.

Once we have shown that conditions (2.2) and (2.3) of [K1] can be replaced
by (SC) and (Cr0) then the proposition follows from [K1, Theorem 2].

Theorem 1 of [K1] implies that any ergodic invariant probability measure
µ can be lifted to a finite measure µ̂ by applying (1). The conclusions of
that theorem also hold in our case. Conditions (2.2) and (2.3) of that paper
need to be assumed there in order to show that the lifting process preserves
ergodicity, and thus [K1, Theorem 2] holds. The following lemma, which
takes the role of [K1, Lemma 1], shows that (SC) and (Cr0) are enough in
our case to draw the same conclusion here (i.e. lifting preserves ergodicity
and hence Proposition 1 holds).

Define I :=
{

A ∈ B : f−1(A) = A
}

and Î :=
{

A ∈ B̂ : f̂−1(A) = A
}

Lemma 6. Let µ satisfy (SC) and (Cr0). Suppose that µ̂ is a vague limit

of a subsequence of {µn}n such that µ̂◦π−1 = µ. Then π−1(I) = Î mod µ̂.

Proof. Suppose that A ∈ I. Then f̂−1 ◦ π−1(A) = π−1 ◦ f−1(A) = π−1(A)

and so π−1(I) ⊂ Î.

Conversely, suppose that Â ∈ Î and let A = π(Â). Let B̂ = Â M π−1(A).

We will show that µ̂(B̂) = 0. It follows from (SC) that diam Ẑn[ẑ] → 0
for µ̂–a.e. ẑ. Furthermore, (Cr0) implies that µ̂n(p) = 0 for every n and
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p ∈ Cut. Therefore µ̂(p) = 0 as well. Hence µ̂–a.e. z fulfilling the conditions
of Lemma 3 must be in case (a) of that lemma. 1

Therefore, for µ̂–a.e. z1 ∈ B̂, there exists z2 ∈ Â and n > 1 such that
f̂n(z1) = f̂n(z2). Hence µ̂(B̂) > 0 implies that Â is not invariant; a con-

tradiction, whence µ̂
(

Â M π−1(A)
)

= 0. Thus, Î ⊂ π−1(I) mod µ̂ and the

lemma is proved. �

Remark 3. If µ̂ is an ergodic invariant probability measure on Ĵ such
that µ̂ ◦ π−1 = µ, then µ is liftable. This is because it can be shown that
for µ̂n defined as in (1), µ̂n(ĴR) > µ̂(ĴR) for all n,R ∈ N. Moreover
the lift of µ is absolutely continuous (and therefore equal) to µ̂. Also, it
follows from the proof of Theorem 2 in [K1] that given an ergodic invariant
probability measure µ satisfying (SC) and (Cr0), there is at most one ergodic

f̂–invariant probability measure µ̂ such that µ̂ ◦ π−1 = µ; so µ̂ is unique.

For liftable non–invariant measures, for example those considered in Sec-
tion 6, the measures µ̂ ◦ π−1 and µ are different.

Proof of Theorem 1. Let B the σ-algebra of µ-measurable sets, and let

(2) µ(·) =

∫

Y
µy(·) dν(y)

be the ergodic decomposition of µ. More precisely, the measure space
(Y, C, ν) is used to index the collection of all ergodic invariant probabil-
ity measures for (J ,B) and the probability measure ν satisfies (2). The
diagram

(J ,B, µ)
f

−→ (J ,B, µ)

Π ↓ ↓ Π

(Y, C, ν)
id
−→ (Y, C, ν)

commutes, the map Π is such that Π(z) = Π(z ′) if fn(z) = fm(z′) for some
n,m > 0, and C is the finest σ-algebra such that Π is B-measurable. For
each y ∈ Y , Π−1(y) is called the carrier of µy; it is unique up to sets of
µy–measure 0. For each y ∈ Y , Proposition 1 states that there exists a
lifted measure µ̂y as the vague limit of {µ̂y,n}n constructed as in (1) (note
that the vague limit was independent of the subsequence chosen), and either

µ̂y ≡ 0 or µ̂y(Ĵ ) = 1. Let L = {y ∈ Y : µy is liftable}.

Claim: L ∈ C; more precisely, there exists L′ ∈ B such that Π : L′ → C is
well-defined pointwise, and Π(L′) = L.

To prove this claim, fix a countable C0–dense subset Φ̂ := {ϕ̂k}k of C0(Ĵ )
and a countable collection of open intervals {Ul}l generating the standard

1This is the same as saying that (Ĵ , f̂ , µ̂) satisfies condition (2.3) of [K1].
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topology of R. For each y ∈ L, we can use the set Ty of µy–typical points as

carrier. (Recall that z is called µy–typical if the ergodic average 1
n

∑n−1
i=0 ϕ ◦

f i(z) →
∫

ϕdµy for each continuous function ϕ : J → R.) As µy is liftable,

the lifted measure µ̂y has its set T̂y of µ̂y–typical points. Obviously T̂y ⊂

π−1(Ty) and if ẑ0, ẑ1 ∈ π−1(z) ∩ T̂y, then by Lemma 3, there is n such

that f̂n(ẑ0) = f̂n(ẑ1). Therefore µ̂y(π
−1(Ty) M T̂y) = 0, and a fortiori,

i ◦ π(ẑ) ∈ T̂y for each ẑ ∈ T̂y. Let L′ be the set of points z ∈ J such that
i(z) is typical for µ̂y for some y ∈ Y . This is exactly the set of points z ∈ J

such that the ergodic averages 1
n

∑n−1
j=0 ϕ̂k ◦ f̂

j(i(z)) converge for each k ∈ N,

and at least one of the limits 6= 0 (otherwise z could only be typical for a
non–liftable measure µy ∈ C). Let

Xn,k,l :=







z ∈ J :
1

n

n−1
∑

j=0

ϕ̂k ◦ f̂ j(i(z)) ∈ Ul







,

then

L′ =





⋂

l∈N

⋂

k∈N

⋃

N∈N

⋂

n>N

Xn,k,l



 ∩





⋃

{l∈N : 0/∈Ul}

⋃

k∈N

⋃

N∈N

⋂

n>N

Xn,k,l



 .

This set is obtained using countable operations on B-measurable sets Xn,k,j,
so it belongs to the σ-algebra B. This proves the claim.

Let ρ be the indicator function of L′. Define

µ̂(Â) :=

∫

Y
µ̂y dν(y) =

∫

Y

∫

A
ρ ◦ π(ẑ) dµy(ẑ) dν(y),

whence µ̂ ◦ π−1 = ρ · µ. It remains to show that µ̂ is the vague limit of the
measures {µ̂n}n constructed in (1).

Given ε > 0, ϕ̂ ∈ C0(Ĵ ), for each y ∈ Y we can find N = N(ε, ϕ̂, y) such
that

|µ̂y,n(ϕ̂) − µ̂y(ϕ̂)| < ε for all n > N.

If µy is non–liftable, then µ̂y ≡ 0; in this case |µ̂y,n(ϕ̂)| < ε for n > N .

Take N0 so large that if Y0 = {y ∈ Y : N(ε, ϕ̂, y) > N0} then ν(Y0) < ε.
Then for n > N0,

|µ̂n(ϕ̂) − µ̂(ϕ̂)| 6

∫

Y \Y0

|µ̂y,n(ϕ̂) − µ̂(ϕ̂)| dν(y)

+

∫

Y0

|µ̂y,n(ϕ̂) − µ̂(ϕ̂)| dν(y)

6

∫

Y \Y0

ε dν(y) + 2 sup ϕ̂ ν(Y0)

6 (1 + 2 sup ϕ̂)ε.

Since ε is arbitrary, µ̂n(ϕ̂) → µ̂(ϕ̂) as required. �
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We will use the following lemma often in the forthcoming sections.

Lemma 7. Suppose that µ̂ is some measure on Ĵ obtained from applying
(1) to the probability measure µ on J . If µ̂ 6≡ 0 and µ̂ ◦ π−1 � µ then

ν̂ := µ̂

µ̂(Ĵ )
is an invariant probability measure on Ĵ .

Note that the property µ̂ ◦ π−1 � µ is immediate if µ is invariant. Indeed,
in this case µ̂n ◦ π−1 = µ for all n. So the lemma is useful when µ is not
invariant.

Proof. Let ϕ̂ ∈ C0(Ĵ ). Define ν̂0 := ν ◦ i−1. Then for any R,n > 1,

ν̂n(ϕ̂ ◦ f̂ · χĴR
) =

1

n

n−1
∑

j=0

∫

ĴR

ϕ̂ ◦ f̂ d(ν̂0 ◦ f̂
j) =

1

n

n−1
∑

j=0

∫

ĴR

ϕ̂ ◦ f̂ j+1 dν̂0

=
1

n





n−1
∑

j=0

∫

ĴR

ϕ̂ ◦ f̂ j dν̂0 +

∫

ĴR

ϕ̂ ◦ f̂n dν̂0 −
∫

ĴR

ϕ̂ dν̂0





Therefore,
∣

∣

∣ν̂n(ϕ̂ ◦ f̂ · χĴR
) − ν̂n(ϕ̂ · χĴR

)
∣

∣

∣ <
2 sup |ϕ̂|

n
.

Letting n,R→ ∞ we have proved the lemma. �

A dynamical system (X,T, µ) is said to be dissipative if there is a wandering
set of positive measure, i.e. a set A ⊂ X with µ(A) > 0 such that µ(T −n(A)∩
A) = 0 all n > 0. Otherwise the system is conservative. The system is totally
dissipative if there is no set Y with µ(Y ) > 0 and µ(T −1(Y ) M Y ) = 0 such
that (Y, T, µ|Y ) is conservative.

In [AL], the dissipativity/conservativity of various quadratic polynomials
with Feigenbaum combinatorics is investigated. For a lifted measure, we only
see a conservative part of the dynamics. This can be seen in the following
lemma.

Lemma 8. Suppose that (J , f, µ) is totally dissipative and µ̂ is a measure
obtained by applying (1) to the probability measure µ. If µ̂ ◦ π−1 � µ then
µ̂ ≡ 0.

Proof. We start with the following claim: no measure µ̂ obtained by ap-
plying (1) to a probability measure µ can have wandering sets of positive

µ̂–measure. Indeed, suppose that Â ⊂ Ĵ has f̂−n(Â) ∩ Â = ∅ for all n > 1.

Suppose that µ̂ is a vague limit of {µ̂nk
}k. We will show that µ̂(Â) = 0. Note

that
∑n−1

i=0 µ̂0

(

f̂−i(Â)
)

6 1 since the domains f̂−i(Â) are disjoint. Thus

µ̂(Â) = lim
k→∞

1

nk

nk−1
∑

i=0

µ̂0

(

f̂−i(Â)
)

= 0.
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This proves the claim, and hence µ̂ is conservative.

Now suppose that µ̂ 6≡ 0, then µ̂ ◦ π−1 is an f–invariant measure which can
be normalised, say µ0 := 1

µ̂(Ĵ )
µ̂ ◦ π−1. Let Y be the carrier of µ0 (or more

precisely, the union of the carriers of all liftable ergodic measures present in
the ergodic decomposition of µ0), then since µ̂ ◦ π−1 � µ, µ(Y ) > 0 and
µ(f−1(Y ) M Y ) = 0. Since µ is totally dissipative, there must be a wandering
set A ⊂ Y , and hence π−1(A) is wandering for µ̂. This contradiction proves
the lemma. �

4. Inducing

A particularly useful property of Markov extensions is that they easily en-
able one to construct uniformly expanding induced systems with bounded
distortion, provided the measure µ is liftable. In fact, any first return map
on the Markov extension corresponds to an induced (jump) transforma-
tion of the original system, and under mild conditions, the reverse is true
as well, cf. [Br]. If Ŵ ⊂ Ĵ , let us write F̂Ŵ for the first return map

to Ŵ , i.e. F̂ (z) = f̂ τ(z)(z) where τ = τŴ : Ŵ → N is the first return

time to Ŵ . Let τn(z) denote the n–th return time, i.e. τ 1(z) = τ(z) and

τn(z) = τn−1(z) + τ(F̂ n−1(z)). For our purposes, we are most interested in

subsets Ŵ of some domain D ∈ D that are bounded away from the cutpoints
of D. As a result, any such set Ŵ is compactly contained in the canoni-
cal neighbourhood UD of D, and by the Markov property of (tDUD, f̂),

any branch of F̂ n
Ŵ

= f̂ τn(Ŵ0) : Ŵ0 → Ŵ for any n ∈ N is extendible to a

univalent onto map f̂ τn
: V0 → UD.

Given δ > 0 andM > 0 we say that z reaches large scale at time j if there are
neighbourhoods C ⊃ V0 ⊃ V1 3 z such that f j : V0 → f j(V0) is univalent,
f j(V1) contains a round ball of radius δ (measured in Euclidean distance)
and mod(V0, V1) > M , see [Mi] for definitions. It follows from the Koebe
distortion theorem, see [Po, Theorem 1.3], that there exists K = K(M) such
that the distortion

dist(f j|V1) := sup
z,z′∈V1

|Df j(z)|

|Df j(z′)|
6 K.

Lemma 9. Let µ be an ergodic f–invariant probability measure satisfying
(SC) and (Cr0). Then µ is liftable if and only if there exist δ > 0, v > 0 and
M > 0 such that for µ–a.e. z ∈ J

(3) lim inf
n→∞

1

n
#{0 6 j < n : z reaches large scale for δ,M at time j} > v.

In this case µ̂ ◦ π−1 = µ.
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Proof. First assume that µ is liftable and let µ̂ be the lifted measure. Let
D ∈ D and let Ŵ ⊂ UD be an open set bounded away from the cutpoints
of D such that (using (Cr0)) v := µ̂(Ŵ ) > 0. Take δ such that UD and Ŵ

contain round balls of radius δ. Also Ŵ is compactly contained in UD, so
M := mod(UD, Ŵ ) > 0. Let z be a typical point for µ and let ẑ = i(z). By
Birkhoff’s Ergodic Theorem,

lim
n→∞

1

n
#{0 6 j < n : f̂ j(ẑ) ∈ Ŵ} = µ̂(Ŵ ).

By the Markov property, z reaches large scale for δ,M at time j if f̂ j(ẑ) ∈ Ŵ .
It follows that π(ẑ) has reached large scale at time i as well and so the first
implication follows.

Conversely, suppose that µ–a.e. z satisfies (3). We say that z ∈ HR if, given
ẑ such that π(ẑ) = z and Bδ(ẑ) has mod(UD, Bδ) > M , then π−1(ZR[z])
contains no cutpoint of D. By assumptions (SC) and (Cr0), µ(HR) → 1 as
R→ ∞, say µ(HR) > 1 − η(R) where limR→∞ η(R) = 0.

If z reaches large scale for δ > 0 and M > 0, at iterate j, then for ẑ = i(z)

and the domain D 3 f̂ j(ẑ), ẐR[f̂ j(ẑ)] contains no cutpoint of D. It follows

that f̂ j+R(ẑ) ∈ ĴR. Therefore, given ε > 0 and a µ–typical point z, there
exists n0(z) such that for n > n0(z)

(i)
1

n
#{0 6 j < n : f j(z) ∈ HR} > 1 − 2η(R),

(ii)
1

n
#{0 6 j < n : f̂ j(ẑ) ∈ ĴR} >

v

1 + ε
.

Take M so large that n0(z) 6 M for all z in a set of µ–measure > 1 − ε.
Then

µ̂n(ĴR) =
1

n

n−1
∑

j=1

µ̂0 ◦ f̂
−j(ĴR) > v

(

r − 1

r

)(

1 − ε

1 + ε

)

(1 − 2η(R)),

for all n > rM . As r ∈ N and ε > 0 are arbitrary, any vague limit point
of {µ̂n}n satisfies µ̂(ĴR) > v(1 − 2η(R)), which is positive for R sufficiently
large. By Proposition 1 this means that the ergodic measure µ is liftable
and µ̂ ◦ π−1 = µ. �

Remark 4. Our notion of ‘reaching large scale’ with positive frequency is
stronger than the notion of induced hyperbolicity in [GS]. Note also that in
fact the proof above shows that given δ,M > 0, if

lim inf
n→∞

1

n
#{0 6 j < n : z reaches large scale for δ,M at time j} > 0.

on a positive measure set for any probability measure µ then the measure µ̂
obtained from (1) is non–zero.
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If a point ẑ visits a compact part ĴR of the Markov extension with positive
frequency, then the majority of these visits are at a certain distance away
from cutpoints in ĴR. This is made precise in the following lemma. As a
consequence, z = π(ẑ) will go to large scale (with bounded distortion) with
positive frequency.

Lemma 10. Suppose that (Cr0) is satisfied. For each domain D ∈ D and

ε > 0, there exists δ > 0 such that if X̂ =
⋃

p∈Cut∩D Bδ(p), then for every

invariant probability measure µ̂ on Ĵ , µ̂(X̂) < ε.

Proof. Suppose that D ∈ D has level(D) = n and p ∈ CutD := Cut ∩ D.

Then p has age m 6 n. Since the domain containing f̂n−m+j(p) must have

level at least j + n, p can return to D under iteration by f̂ a maximum of
n−m times. Therefore, there exists n0 > 1 such that fn0+k(CutD) /∈ D for

all k > 1. So for any j0, there exists δ > 0 such that f̂ j+n0(Bδ(p)) ∩D = ∅

for 1 6 j 6 j0. Take X̂ :=
⋃

p∈CutD Bδ(p). If k ∈ {0, . . . , j0} and l > k

is such that f̂−k(X̂) ∩ f−l(X̂) 6= ∅, then f̂ l−k(X̂) ∩ D 6= ∅. Therefore

there are at most 2n0 numbers l ∈ {0, . . . , n0 + j0} such that f̂−k(X̂) ∩

f−l(X̂) 6= ∅. Furthermore µ̂(f̂−k(X̂)) = µ̂(X̂). It follows by Lemma 7 that

1 > µ̂(∪j0
k=0f̂

−k(X̂)) >
j0

2n0+1 µ̂(X̂). To complete the proof, take j0 > 2n0/ε
and get δ > 0 accordingly. �

5. Liftability and positive Lyapunov exponents

Given a dynamical system (X, g, ν), let ϕg = log |Dg| wherever this is defined
and λg(ν) =

∫

ϕg dν be the Lyapunov exponent of ν. The pointwise (upper
and lower) Lyapunov exponents at a point x ∈ X are denoted as λg(x) (and

λg(x) and λg(x) respectively) wherever these are well-defined.

Proposition 2. Suppose that (Cr0) holds. If µ is an ergodic invariant
liftable probability measure, with lifted measure µ̂, then

(a) ϕf is integrable with respect to µ;
(b) λf (µ) = λf̂ (µ̂) > 0.

Proof. Note that µ̂ is an invariant measure: for example see Lemma 7. By
Lemma 10, we may take domain D ∈ D and Ŵ ∈ D ∩ P̂n such that Ŵ
is compactly contained in UD and µ̂(Ŵ ) > 0. By the Poincaré Recurrence

Theorem, F̂Ŵ :
⋃

j Ŵj → Ŵ , the first return map to Ŵ , is defined µ̂–

a.e. Given z ∈ Ŵj \ ∂Ŵj there is an open neighbourhood U of x such

that F̂Ŵ extends to this neighbourhood. In particular DF̂Ŵ is defined for

all z ∈
⋃

j Ŵj \ ∂Ŵj. In particular, since µ̂(∂Ŵj) = 0 (otherwise (Cr0) is

contradicted), the derivative is defined for µ̂ a.e. z ∈ Ŵ . Each branch of F̂ n
Ŵ
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is extendible to UD, so by the Koebe distortion theorem, κ := inf{|DF̂ (z)| :

F̂ (z) is well–defined} > 0. In fact, there is N such that inf{|DF̂N (z)| :

F̂N (z) is well–defined} > 2 (one consequence of this is given in Remark 5
below).

The measure µ̂Ŵ := 1
µ̂(Ŵ )

µ̂|Ŵ is an F̂Ŵ –invariant probability measure, and

Kac’s Lemma implies that

∫

τ dµ̂Ŵ =
1

µ̂(Ŵ )
<∞,

where τ = τŴ is the first return time by f̂ to Ŵ . Moreover DF̂ n(ẑ) =

Df̂ τn(z)(z) and if ẑ is typical for τ , then denoting Lf = supz∈J |Df(z)|,

0 < µ̂(Ŵ ) lim inf
n→∞

1

n
log |DF̂ n(ẑ)|

= µ̂(Ŵ ) lim
n→∞

τn(ẑ)

n
lim inf
n→∞

1

τn(ẑ)
log |Df̂ τn(ẑ)(ẑ)|

6 λf̂ (ẑ) 6 logLf <∞.

For L <∞, take Φ̂L = min{L, log |DF̂ (z)|}. Then Φ̂L is bounded and hence
µ̂Ŵ–integrable, and for µ̂Ŵ–a.e. ẑ

0 <

∫

Ŵ
Φ̂L dµ̂Ŵ = lim

n→∞

n−1
∑

k=0

Φ̂L(F̂ k(ẑ))

6 lim
n→∞

n−1
∑

k=0

log |DF̂ (F̂ k(ẑ))| = lim
n→∞

1

n
log |DF̂ n(ẑ)|

6
1

µ̂(Ŵ )
logLf <∞.

The Monotone Convergence Theorem gives that log |DF̂ | = limL→∞ Φ̂L is
µ̂Ŵ–integrable and

∫

Ŵ
log |DF̂ | dµ̂Ŵ = lim

n→∞

1

n
log |DF̂ n(z)| µ̂Ŵ–a.e.
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We can apply the same argument to ϕU := max{−U, log |Df |}, which is

µ–integrable: for µ–a.e. z ∈W := π(Ŵ ) and ẑ ∈ Ŵ such that π(ẑ) = z

logLf >

∫

ϕU dµ = lim
n→∞

1

τn(ẑ)

τn(ẑ)−1
∑

k=0

ϕU (fk(z))

= lim
n→∞

n

τn(ẑ)
lim

n→∞

1

n

n−1
∑

k=0

τk+1(ẑ)−1
∑

j=τk(ẑ)

ϕU (f j(z))

> µ̂(Ŵ ) lim
n→∞

1

n

n−1
∑

k=0

log |DF̂ (F̂ k(ẑ))|

= µ̂(Ŵ )

∫

Ŵ
log |DF̂ | dµ̂Ŵ > 0.

The Monotone Convergence Theorem implies that log |Df | = limU→∞ ϕU is
µ–integrable. Hence λf (z) = λf (z) = λf (z) for µ̂–a.e. z and

λf (z) = λf̂ (z) = µ̂(Ŵ )λF̂ (z) > µ̂(Ŵ )
log 2

N
.

�

Remark 5. Our set-up of dendrite Julia sets necessarily excludes the exis-
tence of neutral periodic cycles, but also when the construction is extended to
more general Julia sets, for example with Siegel disks or Leau–Fatou petals
(cf. [Mi]), the proof of this proposition shows that Dirac measures on para-
bolic periodic points are not liftable to the Markov extension.

In the next result, let Ŵ and F̂ be as in the proof of Proposition 2.

Proposition 3. If (SC) and (Cr0) hold and µ is invariant, ergodic and
liftable, then

hµ(f) = hµ̂(f̂) = µ̂(Ŵ )hµ̂
Ŵ

(F̂ ).

Proof. The first equality can be shown in the same way as Theorem 3 from
[K1]. Note that (SC) by itself does not imply that the partition P1 generates
the Borel σ-algebra; the condition used by Keller. But Keller’s proof relies on
the Shannon–McMillan–Breiman Theorem, which only uses that Zn[z] → 0
µ-a.e., which is indeed condition (SC). Otherwise this equality follows from
the fact that a countable–to–one factor map preserves entropy, provided the
Borel sets are preserved by lifting, see [DS].

The second equality is Abramov’s formula, see [Ab]. �

Given an invariant probability measure µ on (J , f), let (J̃ , f̃ , µ̃) be the

natural extension. Each z̃ ∈ J̃ is represented as a sequence (z̃0, z̃1, . . . )

such that z̃j = f j(z̃) ∈ J , and f̃(z̃0, z̃1, . . . ) = (f(z̃0), z̃0, z̃1 . . . ). Define
π̃k(z̃) := z̃k ∈ J .
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The motivation for the following lemma, and the idea for the next theorem
are based on a result of [L1]. For the remainder of this section, we will
always consider subsets of J , and we will use the relative topology on J .

Lemma 11. Suppose that µ is an invariant probability measure satisfying
(SC). Given z̃ ∈ J̃ , let W (z̃) = ∩k>1f

kZk[z̃k] and r(z̃) = sup{ρ > 0 :
Bρ(z̃0) ⊂W (z̃)}. If r(z̃) > 0 for µ̃–a.e. z̃, then applying (1) to µ gives rise

to an invariant probability measure µ̂ on Ĵ .

Proof. Let ε > 0 be arbitrary and r0 > 0 be such that µ̃(A) > 1 − ε for

A = {z̃ ∈ J̃ : r(z̃) > r0}. Then for each k > 0, Ak := π̃k(A) satisfies
1 − ε 6 µ(Ak) 6 µ ◦ f−k(A0), and for each z ∈ Ak, Br0(f

k(z)) ⊂ fk(Zk[z]).

Given ẑ ∈ Ĵ , define Dẑ ∈ D to be the domain containing ẑ. Take R so large
that if ẑ ∈ Ĵ and Br0(ẑ) contains no cutpoints of Dẑ then ẐR[ẑ] ⊂ Br0(ẑ).

Define KR := {ẑ ∈ Ĵ : ẐR[ẑ] contains no cutpoint of Dẑ}. Note that if

ẑ ∈ KR then f̂R(ẑ) ∈ ĴR. If z ∈ Ak, then fk(Zk[z]) ⊃ Br0(f
k(z)) and

by the Markov property of (Ĵ , f̂), letting ẑ := i(z) we have f̂k(Ẑk[ẑ]) =

Df̂k(ẑ) ⊃ Br0(f̂
k(ẑ)) ⊃ ẐR[f̂k(ẑ)]. It follows that f̂k(ẑ) ∈ KR, and therefore

f̂k+R(ẑ) ∈ ĴR. This shows that

µ̂0 ◦ f̂
−(k+R)(ĴR) > µ̂0 ◦ f̂

−k(KR) > µ̂0 ◦ i(Ak) = µ(Ak) > 1 − ε

for all k > 0. Therefore any vague limit point µ̂ of {µ̂n}n satisfies µ̂(ĴR) >

1 − ε, and because ε > 0 was arbitrary, µ̂ 6≡ 0 and in fact µ̂(Ĵ ) = 1. �

Theorem 2. Let µ be an f–invariant probability measure satisfying (SC)
and (Cr0), such that λf (z) > 0 µ–a.e. Then µ is liftable and µ̂ ◦ π−1 � µ.

Proof. We can apply [EL, Theorem 3.17], which says that in this setting

there exists a partition η of J̃ into open sets (recall we are using the relative

topology on J̃ here) such that for µ̃–a.e. z̃, f̃ has bounded distortion on the
element η(z̃) of η containing z̃. More precisely, there is constant K(z̃) > 1
such that

K(z̃)−1
6

|Dfn(x̃n)|

|Dfn(ỹn)|
6 K(z̃)

for all n > 0 and components x̃n, ỹn of x̃, ỹ ∈ η(x̃). Define r(z̃) := sup{ρ >

0 : Bρ(z̃0) ⊂ π(η(z̃))}. This is a µ̃–measurable function which is strictly
positive µ̃–a.e.

The general idea behind this result is from Ruelle, see [Ru], and is usually
presented as a ‘local unstable manifold theorem’. It is given in the complex
setting in [L2] and is discussed in [EL]. An alternative proof is presented in
Section 9 of [PU].

Now notice that for any z̃ ∈ J̃ , η(z̃) ⊂ W (z̃) (as defined in Lemma 11),
otherwise η(z̃) ∩ ∂f kZk[z̃k] 6= ∅ for some k, which implies that distortion is
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unbounded; a contradiction. Let r′(z̃) := sup{ρ > 0 : Bρ(z̃0) ⊂W (z̃)}, then
r′(z̃) > r(z̃) > 0, µ̃–a.e. By Lemma 11, applying (1) to µ gives a measure
µ̂ 6≡ 0. It follows from Theorem 1 that µ̂ ◦ π−1 � µ and µ̂ is invariant. �

Corollary 1. Let µ be an invariant probability measure satisfying (SC) and
(Cr0). If the measure theoretic entropy hµ(f) > 0, then µ is liftable.

Proof. It follows from the Ruelle inequality [PU] that for ergodic invariant
measures, ν, hν(f) 6 2λ(ν). Therefore, if we consider the ergodic decom-
position, our assumption implies that there is a positive µ–measure set of z
with λf (z) > 0. Thus Theorem 2 implies that µ is liftable. (In the interval
case, Keller [K1] gave a proof based on a counting argument of paths high
up in the tower. This type of proof can be used here too; see the appendix
for our counting argument, which is to be used in the next section.) �

6. Conformal measure

In this section we discuss the liftability properties of conformal measure.
Sullivan [S] showed that all rational maps on the Riemann sphere have a
conformal measure for at least one minimal δ ∈ (0, 2]. We would like to
emphasise that µδ is not invariant, but when µδ is liftable, then µ̂δ (nor-
malised) projects to an invariant probability measure, say ν = α · µ̂δ ◦ π

−1,
where α > 1 is the normalising constant.

Our first lemma is that ν is absolutely continuous, generalising Proposition 1
to δ-conformal measure. It can be expected that this lemma generalises to
other non–invariant probability measures too, provided there is distortion
control.

Lemma 12. Suppose that a conformal measure µδ on J satisfies (Cr0). Let

µ̂ be a measure on Ĵ obtained as a vague limit of (1). Then µ̂ ◦ π−1 � µδ.

Proof. We suppose that µ̂δ 6≡ 0, otherwise there is nothing to prove. Suppose
that µ̂nk

→ µ̂δ as k → ∞.

If the lemma is not satisfied then there exists ε > 0 and a set Â ⊂ Ĵ which
has µ̂δ(Â) > ε, but µδ(A) = 0 for A = π(Â). We may assume that Â is
contained in some domain D ∈ D.

Due to (Cr0), we can assume that Â is compactly contained inside UD.

Therefore µ̂δ (UD) > 0. Choose some B̂ compactly contained in UD with

µδ(B) > 0 where B = π(B̂). We take some neighbourhood U containing
both A and B which is compactly contained in UD. There is some C > 0
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such that for any x, y ∈ U , for each branch of the inverse map we have
∣

∣

∣

∣

∣

Df̂−n(x)

Df̂−n(y)

∣

∣

∣

∣

∣

< C for all n > 1.

Supposing that δ > 0 is the exponent of the conformal measure, we have

µ̂δ(Â)

µ̂δ(B̂)
=

limk→∞
1

nk

∑nk−1
j=0 µ̂0(f̂

−j(Â))

limk→∞
1

nk

∑nk−1
j=0 µ̂0(f̂−j(B̂))

6 C2δ µδ(A)

µδ(B)
.

But while the left hand side is positive, the right hand side is 0, so we have
a contradiction. Thus we obtain absolute continuity as required. �

Combining Remark 4 and Lemmas 7 and 12, we get the following corollary.

Corollary 2. Suppose that µδ is conformal measure satisfying (SC) and
(Cr0). If for given δ′,M > 0, the set of z such that

lim inf
n→∞

1

n
#{0 6 j < n : z reaches large scale for δ ′,M at time j} > 0,

has positive µδ measure, then µδ is liftable to some non–zero µ̂δ. Moreover,
µ̂δ ◦ π

−1 � µδ.

The following lemma and theorem are similar to part of the statement of
Theorem B in [L2]. We supply a proof for completeness.

Lemma 13. Assume that conformal measure µδ satisfies (SC) and (Cr0).
If µδ is liftable, and ν = µ̂δ ◦ π

−1, then µδ and ν are equivalent. Moreover,
µδ and ν are ergodic.

Proof. It was shown in Lemma 12 that ν � µδ. Let us prove that ψ := dν
dµδ

is a positive density.

Let A ⊂ J be an open set such that ν(A) > 0. Let ν̂ be the measure
obtained from applying (1) to ν. As ν = ν̂ ◦π−1, there must be some D ∈ D
such that ν̂(D ∩ π−1(A)) > 0. By replacing A by an appropriate cylinder

set Z ∈ Pn, we can assume (using (SC) and (Cr0)) that Ẑ := π−1(Z)∩D is

bounded away from the cutpoints of D and such that ν̂(Ẑ) > 0. Moreover,

as Ẑ ∈ P̂n, no boundary point of Ẑ (relative to D) returns to Ẑ.

Let F̂ be the first return map to Ẑ. We will show that we may apply the
Folklore Theorem to this map. First note that if Ẑ is chosen sufficiently
small, then all the branches of F̂ are expanding and the Koebe Lemma
implies that they have bounded distortion. Let B̂ ⊂ Ẑ be the set of points
in Ẑ which never return to Ẑ. We now wish to check that µδ ◦π(B̂) = 0. We
use the same technique as in the proof of Lemma 12. By Poincaré recurrence
we know that µ̂δ(B̂) = 0. We let B := π(B̂) and suppose that µδ(B) > 0,
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and will show this leads to a contradiction. As in the proof of Lemma 12,
we can use a distortion argument to show that

0 =
µ̂δ(B̂)

µ̂δ(Ẑ)
=

limk→∞
1

nk

∑nk−1
j=0 µ̂0(f̂

−j(B̂))

limk→∞
1

nk

∑nk−1
j=0 µ̂0(f̂−j(Ẑ))

>
1

C2δ

µδ(B)

µδ(Z)
.

But since the right hand side is bounded away from zero, we have a contra-
diction.

We can now apply the Folklore Theorem to 1
µδ(π(Ẑ))

µδ ◦ π|Ẑ , which yields

an ergodic F̂–invariant probability measure ν̂Ẑ , with density ψ̂ =
dν̂

Ẑ
dµδ◦π|Ẑ

bounded above and bounded away from zero. Since µδ is liftable and, by
Lemma 12, the lifted measure ν̂ satisfies ν̂◦π−1 � µδ we have 1

ν̂(Ẑ)
ν̂|Ẑ � ν̂Ẑ .

Since ν̂Ẑ is ergodic and both ν̂Ẑ and 1
ν̂(Ẑ)

ν̂|Ẑ are F̂–invariant probability

measures, ν̂Ẑ = 1
ν̂(Ẑ)

ν̂|Ẑ .

Recall that ψ := dν
dµδ

. By projecting ν̂Ẑ down to the Julia set, we find that

ψ > ψ̂◦π−1 > 0 on Z. Let ψ0 = inf{ψ(z) : z ∈ Z}. Since Z = U∩J for some
open set U in C, we can find M such that fM(U) ⊃ J . Let us now prove
that ψ > 0 for other points as well, let z ∈ J \∪M

i=1f
i(Cr) be arbitrary, and

let B 3 z be a neighbourhood of z such that diam(B) 6 d(B,∪M
i=1f

i(Cr)).
There there is a subset B0 ⊂ U such that fM : B0 → B is univalent. It
follows that

ν(B) > ν(B0) > ψ0µδ(B0) > ψ0 inf{|DfM(z)|−δ : z ∈ Z}µδ(B).

This implies that ψ(z) > ψ0 inf{|DfM (z)|−δ : z ∈ Z} > 0. �

The following result clarifies some properties of δ and µδ. The uniqueness
part is due to [DMNU] and parts (a) and (b) are due to [BMO, Lemma 4.2].
We let

L(f) :=
⋃

M>0

⋃

δ>0

{z ∈ J goes to large scale for δ,M > 0 infinitely often}.

Points in this set are often referred to as conical points. For a system
(X,T, µ) we say that A is lim sup full if lim supn µ(T nA) = 1. We say that
T is lim sup full if this property holds for all sets of positive measure.

Theorem 3. Suppose that µδ is a δ–conformal measure with µδ(L(f)) > 0.
The µδ is the unique measure with this property and

(a) f is lim sup full, exact, ergodic, conservative, µ is non–atomic,
supp(µ) = J and ω(z) = J for µ–a.e. z ∈ C;

(b) δ is the minimal exponent for which a conformal measure with sup-
port on J exists.
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Note that (b) implies the well-known fact that for any f and δ > 0 satisfying
the conditions of the theorem, µδ′(L(f)) = 0 for each δ′ > δ. Mayer [Ma]
gives an example of a polynomial f such that µδ(L(f)) = 0 for all δ such
that δ-conformal measure µδ exists.

We next make an alternative assumption on the behaviour of points under
iteration by f which guarantees that there is some lifted measure.

Theorem 4. Suppose that (Cr0) is satisfied. Let µδ be a δ–conformal mea-
sure on J , then the following are equivalent.

(a) There exists λ > 0 such that λ(z) > λ for all z in a set of positive
µδ–measure;

(b) The measure µδ is liftable.

All of the situations considered in [GS, Pr, Re] give invariant probability
measures µ� µδ for some δ–conformal measure with λf (µ) > 0. Therefore,
all of those cases fit into our setting. The closest result to ours that we know
of is [GS] where the measure µ was obtained whenever the rational function
f satisfied a summability condition on the derivatives of critical orbits.

Corollary 3. If there is a liftable probability measure µ � µδ, then δ =
dimH(µ) (where dimH stands for Hausdorff dimension).

Proof. Since µ is liftable, so is µδ. By Lemma 13, µ is ergodic and by
Theorem 4, µ must have positive Lyapunov exponent. Pesin’s formula in
[PU, Chapter 10] implies that δ = dimH(µ). �

To prove Theorem 4, we will need the following results. Define sR(n,D)
to be the maximal number of n–paths originating from an element D ∈
D, level(D) = R and not re–entering ĴR. Let

sR(n) := max{sR(n,D) : level(D) = R}.

Lemma 14. Let N := #P1 6
∑

c κcdc. For each R, there exists a C > 0
such that for all 0 6 j < R,

sR(nR+ j) 6 C(2RN)n+1.

The proof of this lemma is in the appendix.

Proof of Theorem 4 assuming Lemma 14. First assume that (b) holds, and
let µ̂δ be the lifted measure. By Lemma 7, µ̂δ is invariant and by Lemma 12,
µ̂δ ◦ π

−1 � µ. Therefore Proposition 2 implies that (a) holds.

Now assume that (a) holds. We will use a counting argument to prove

that a positive measure set of points must return to some ĴR with positive
frequency, from which liftability follows.
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For 1 < λ0 < λ, R,n > 1 and ε > 0 we consider the set

Bλ0,R,n(ε) :=

{

z : |Dfn(z)| > λn
0 and

1

n
#
{

0 6 j < n : f̂ j(i(z)) ∈ ĴR

}

6 ε

}

.

We let PB,n denote the collection of cylinder sets of Pn which intersect
Bλ0,R,n. Since µδ is δ–conformal, we can compute that µδ(Bλ0,R,n(ε)) 6

λ−δn
0 #PB,n. We will prove that by taking R0 > 1 and ε > 0 appropriately,

this is arbitrarily small in n, which leads us to conclude that a positive
measure set must visit ĴR0 with positive frequency.

Notice that any Z ∈ Pn uniquely determines a path D0(Ẑ) → · · · →

Dn−1(Ẑ) in Ĵ given by Ẑ = i(Z), f̂ j(Ẑ) ⊂ Dj(Ẑ) ∈ D, and vice versa.

In our case, given P ∈ PB,n, we let P̂ = i(P ), we have a path defined in Ĵ .

Moreover, Dj(P̂ )∩ ĴR = ∅ for at most εn of the times j = 0, . . . , n− 1. We
will estimate #PB,n in terms of these paths. Define

S(ε, n) := {M ⊂ {0, . . . , n− 1} : #M 6 εn} .

The following well-known result estimates the cardinality of this set . For
x ∈ (0, 1), define l(x) := −x log x− (1 − x) log(1 − x).

Lemma 15. Let S(ε, n) := {M ⊂ {0, . . . , n− 1} : #M 6 εn}. Then for n

large, #S(ε, n) 6 en(ε+l(ε)).

Observe that for M ∈ S(ε, n), the set {0, . . . , n− 1} \M consists of at most

1 + #M integer–intervals. The number of 1–paths in ĴR is bounded by the
number of domains in ĴR+1. By Lemma 2(c), this is bounded above by
1 + (R+ 1)#Cr

∏

c κc. Then choosing some large n > 1,

#PB,n 6
∑

M∈S(ε,n)

#{Z ∈ Pn : j /∈M ⇒ Dj(i(Z)) ∩ ĴR = ∅}

6
∑

M∈S(ε,n)

(

1 + (R+ 1)#Cr
∏

c

κc

)#M

sR(n− #M)

6 #S(ε, n)

(

1 + (R + 1)#Cr
∏

c

κc

)εn

sR(n).

Therefore, using Lemma 14, there exist R0 > 1 and ε0 > 0 such that for some
γ < λδ

0 and C > 0, #PB,n < Cγn. Therefore we have µδ (Bλ0,R0,n(ε0)) 6

C

(

γ
λδ
0

)n

. Whence, µδ (Bλ0,R0,n(ε0)) → 0 as n→ ∞. Since, by assumption,

we have limn→∞ µδ {z : |Dfn(z)| > λn
0} > 0, there must exist some ε1, α > 0

such that for large enough n > 1,

µδ

{

z :
1

n
#
{

0 6 j < n : f̂ j(i(z)) ∈ ĴR0

}

> ε1

}

> α.

It is now easy to see that for any vague limit µ̂δ of measures obtained as in
(1), we have µ̂δ(Ĵ ) > µ̂δ(ĴR0) > αε1. �
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Appendix

This appendix is devoted to proving Lemma 14. We fix some R > 1 and a
domain D ∈ D, level(D) = R. We say that

• a t–path survives if the path starts in D and never falls into ĴR;
• a domain is surviving at time t if it is the terminal domain of a

surviving t–path;
• a cutpoint z is a surviving cutpoint at time t if it lies in the terminal

domain of a surviving t–path.

Define

Lt(m) := #{surviving m–cutpoints in t–paths starting from D}.

Since for a path D → · · · → D′, each cutpoint in D has only one image in
D′, we have

(4) Lt(m) 6 Lt−l(m− l) for 1 6 l 6 m 6 t,

which is a rule we will apply repeatedly. Moreover, since the terminal domain
of each surviving t–path contains at least one l–cutpoint for R < l 6 R+ t,
we find Lt(j) = 0 for j > t+R and

(5) Lt(1) 6 N · #{surviving t− 1–paths} 6 N





R+t−1
∑

l=R+1

Lt−1(l)



 ,

where N = #P1. Using these rules, we prove the following lemma.

Lemma 16. Suppose that (n− 1)R < t 6 nR, then

(6) Lt(j) 6







2nRnNn+1 if 0 < j 6 t;
N if t < j 6 t+R;
0 if t+R < j.

Proof. Since every terminal domain of an t–path has level 6 t+R, Lt(j) = 0
for j > t+R. This proves the third inequality. Before we prove the remaining
part by induction, let us compute what happens for t 6 R.

t = 0: The maximal number of 1–cutpoints possible in a single domain is
#Cr 6 N . So in particular L0(1) 6 N . By Lemma 2, L0(l) 6 N for
1 6 l 6 R.

t = 1: By rule (4), L1(j + 1) = L0(j) 6 N for 1 6 j 6 R. By rule (5),
L1(1) 6 N .

t = 2: By rule (4), L2(2 + j) = L0(j) 6 N for 1 6 j 6 R. Similarly,
L2(2) = L1(1) 6 N . Also L2(1) 6 N2 by rule (5).

t 6 R: As before

Lt(j) = L0(j − t) 6 N for t < j 6 t+R,
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and

Lt(j) 6 Lt−j+1(1) 6 N#{t− j–surviving paths}

6 N
t−j+R
∑

l=R+1

Lt−j(l) 6 (t− j)N 2 6 RN2 by rule (5),

for 0 < j 6 t.

It follows that if t < j 6 t+R, then Lt(j) = L0(j− t) 6 N . So now we have
proved the second inequality of the lemma for all t, and the first inequality
for t 6 R.

We continue by induction on n. So assume that (6) holds for n and that
nR < t 6 (n+ 1)R and j 6 t. Then

Lt(j) = Lt−j+1(1) 6 N
t−j+R
∑

l=R+1

Lt−j(l) by rule (5)

6 RN2 +N
t−j
∑

l=R+1

Lt−j(l) by the induction hypothesis for l > t− j

6 RN2 +N
t−j
∑

l=R+1

Lt−j−l+1(1) by rule (4)

6 RN2 +N
t−j−R
∑

s=1

Ls(1)

6 RN2 +N
n
∑

d=1

dR
∑

s=(d−1)R+1

Ls(1)

6 RN2 +N
n
∑

d=1

dR
∑

s=(d−1)R+1

2dRdNd+1 by the induction hypothesis

6 RN2 +RN2
n
∑

d=1

(2RN)d
6 RN2

(

1 +
(2RN)n+1 − 2RN

2RN − 1

)

6 RN2

(

(2RN)n

1 − 1
2RN

)

6 2n+1Rn+1Nn+2.

This proves the induction step, and hence the lemma. �

Proof of Lemma 14. Since there cannot be more surviving nR–paths than
surviving cutpoints at time nR we can estimate sR using Lt(j). We use
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rules (4) and (5) as in the previous proof.

sR(nR+ j) = #{nR+ j–surviving paths}

6

nR+j+R
∑

l=R+1

LnR+j(l) by rule (5)

6 RN2 +
nR+j
∑

l=R+1

LnR+j−l+1(1) by rule (4) and Lemma 16

6 RN2 +

(n−1)R+j
∑

s=1

Ls(1)

6 RN2 +
n
∑

d=1

dR
∑

s=(d−1)R+1

Ls(1)

6 RN2 +
n
∑

d=1

dR
∑

s=(d−1)R+1

(2RN)d+1 by Lemma 16

6 C(2RN)n+1,

for some constant C > 0. �
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