If \(Q(x) = ax(1-x) \) is a renormalisable quadratic map on the unit interval, say with non-trivial periodic interval \(J \) of period \(q \), then the inverse limit space \(\lim \left([0,1], Q \right) \) contains subcontinua \(G_i, 0 \leq i < q \), that are homeomorphic to \(\lim \left(J, Q^q \right) \) and are cyclically permuted by the shift-homeomorphism \(\sigma \). In the proof of [1, Theorem 1.2], the step that a self-homeomorphism on \(\lim \left([0,1], Q \right) \) can act isotopically to different powers of \(\sigma \) on different \(G_i \) ([1, p. 999]) is not justified. The existence of arc-components that are dense in the core inverse limit space \(\lim \left([c_2, c_1], Q \right) \) prevents this. Therefore, the large set of entropies mentioned in [1, Theorem 1.2] cannot be realised. Only if \(\lim \left([c_2, c_1], Q \right) \) is decomposable and the renormalisation is within the first period doubling cascade (and hence of period \(q = 2^n \)), the above step holds, but this alone is too restrictive to lead to new values of the topological entropy. The correct statement is therefore the same as for the tent-family, i.e., it has the same form as [1, Theorem 1.1]:

Theorem 0.1. Assume that \(Q \) is a quadratic map with positive topological entropy and \(\log s = h_{top}(Q) \). If \(H \) is a homeomorphism on the inverse limit space \(\lim \left([0,1], Q \right) \), then the topological entropy \(h_{top}(H) = |R| \log s \), where \(R \in \mathbb{Z} \) is such that \(H \) is isotopic to \(\sigma^R \).

This theorem can be proved in an analogous way as [1, Theorem 1.1], using the new result [2, Theorem 5.1], which says that every self-homeomorphism on the inverse limit space of a quadratic map \(Q \) with positive topological entropy is isotopic to \(\sigma^R \) for some \(R \in \mathbb{Z} \), is given.

References

