LEBESGUE ERGODICITY OF A DISSIPATIVE SUBTRACTIVE
ALGORITHM

HENK BRUIN

ABSTRACT. We prove Lebesgue ergodicity and exactness of a certain dissipative 2-dimensional
subtractive algorithm, completing a partial answer by Fokkink et al. to a question by
Schweiger. This implies for Meester’s subtractive algorithm in dimension d, that there
are d — 2 parameters which completely determine the ergodic decomposition of Lebesgue
measure.

1. INTRODUCTION

Consider a triple # = 2(®) = (x1, 79, 73) of positive reals, and form a sequence (z(™),,0,
by repeatedly subtracting the smallest of the three from the other two. This dynamical
system emerged from a percolation problem studied by Meester [M]. Although (z(™),>¢ is
clearly a decreasing sequence, > = lim,,_,~, 2™ is different from 0 for Lebesgue-a.e. initial
position. Let us write this more formally as iterations of the subtractive map of increasing
triples 0 < z1 < x5 < x3:

F($1,I‘27$3) = SOI‘t(I‘l,l'z — 1,3 — 1'1),

where sort stands for putting the coordinates in increasing order. It is obvious that
2 = z3° = 0, but also that if 3 > x; + x9, then n := x3 — (x1 + 23) is a preserved
quantity. This means that once x3 > 1 + x5, the third coordinate will always remain the
largest, even under the unsorted subtractive algorithm, and in fact x5° = 7. Meester and
Nowicki [MN] showed that for Lebesgue-a.e. initial vector, there is indeed some n > 0 such
that n = xén) - (:Egn) + a:(2n)) > 0.

Therefore F' is non-ergodic w.r.t. Lebesgue measure A: triples with different non-negative
values of  have disjoint orbits, and thus belong to ‘carriers’ of different ergodic components,
which can be defined in the usual way even though A is non-invariant and in fact dissipative.
Let us recall these definitions.

Definition 1. A transformation (X, B, \;T) is
e non-singular if A\(B) > 0 implies \(T'(B)) > 0;
e ergodic if T~Y(B) = B implies that A\(B) =0 or A\(X \ B) = 0;
e conservative if for every set B € B of positive measure, there is n > 1 such that
ANT"(B)NB) > 0;
e dissipative if it is fails to be conservative, and totally dissipative, if there is no
mvariant subset Xo C X of positive measure on which T is conservative;
o cxact if T~" o T"(B) = B for alln > 0 implies that A(B) =0 or A(X \ B) = 0.
All of these properties can be defined even though X is not T-invariant.
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The result of [MN] was generalised by Kraaikamp and Meester [KM] to dimension d > 3.
They showed that for the map

Fy(xy,...xq) = sort(xy, 0 — x1,...,2q — 21),
and Lebesgue-a.e. initial vector z, the quantity 13 = xén) — (x§”) +xé”)) is eventually positive,
and so is g := x,(gn) — x,gn_)l for kK > 3. Once n3 > 0, all n; are preserved, and, as observed in
[FKN], Lebesgue measure is therefore not ergodic. This answers in the negative a question

posed by Schweiger [S]. The natural question, however, is whether the level sets

k
{xERiO:xZ":Zm for all 3 <k < d}
> g
constitute the ergodic decomposition of Lebesgue measure.
We can rephrase this question by passing from projective space (on which Fj acts) to
a fixed simplex A = {z = (21,...,24) : 0 < 2y < --- < x4 = 1}, by scaling the largest
coordinate to 1. The map F,; then becomes f; : A — A, defined as

' = Fy(x) = sort(xy, 0 — x1,... 24 — x1),
fa:x— ;%’ x.
d

For d = 2, the map F}; reduces to the Farey map
{ if z € [0,
T =

3

if v € [3,1]. (1)

In the next simplest case d = 3, we know that lim,, o f7(x1,22,1) = (0,0, 1) as soon as
T1 + 19 < 1, s0 fy is totally dissipative on the simplex A.

Nogueira [N] used properties of GL(2,7Z) to prove that, although dissipative, the three-
dimensional system is Lebesgue ergodic. In this paper we use a different method (based
on a transient random walk argument with a Lebesgue typical speed of “convergence to
0”, combined with distortion estimates) to reprove ergodicity. Our method also yields
Lebesgue exactness, and is, we hope, adaptable to similar (higher-dimensional) systems as
well, see also Remark 1.

Theorem 1. Partition the triangle A = {(z,y) : 0 <z <y <1} into Ay = {(z,y) : 0 <
2 <y <1}, Ap={(z,y): 0 <z <y<2x<1} andAT:{(x,y):%<x§y§1}.
Then with respect to the map f : A — A defined as

(55,55 if (z.y) € Ar,
f(.fl?,y) = (%7 f ) Zf (l‘,y) € AR)
(15_3;7 ﬁ) Zf (l’,y) € AL?

see Figure 1, Lebesque measure is totally dissipative, ergodic and exact.
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It follows from [KM] that for d > 3 and Lebesgue-a.e. initial vector z, there is n € N
such that for xé") > a;é”) + xﬁ"), so this case reduces to Theorem 1 as well. In fact, we have
the corollary:

Corollary 1. For each n3 > 0 and ng,...,nqg > 0, the map Fy restricted to the invariant
set {x € RL, :ap® = 2?23 n; for 3 <k < d} is ergodic and exact w.r.t. Lebesque measure.
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FIGURE 1. The Markov partition for partition f : A — A consists of the
triangles Ay (to the left of the line g; = {y = 2z}), Ar (between g; and the
line {z = 1}) and Ay (to the right of {# = 1}). Each of these triangles is
mapped onto A by f. Further diagonal lines g, bound the regions where the
first return times to Ag are constant (namely & between g; and gx.1). The
line {z +y = 1} is invariant and separates the part where n > 0 and where
7 is not yet determined.

Proof. Since n3 > 0, we can divide the space {x : 3° = 73} into a countable union U, > X,
where 7 = min{n > 0: F}(z); > FJ(z);+ F}(x)2}. That is, after 7 iterations, the order of
the coordinates FJ (z); for 3 < k < d will not change anymore under further iteration. (In
fact FJ(z), = 2?23 n; + Fj(x)1 + Fj(z)2.) So from this iterate onwards, we can scale so
that FJ(x)s = 1 and restrict our attention to the first two coordinates. Theorem 1 applies
to them. g

Remark 1. Meester and Nowicki’s result was generalised by Fokkink et al. [FKN]| to a
two-parameter setting, called Schweiger’s fully subtractive algorithm, see |S, Chapter 9|:

Fu(xy,...xq) =sort(xy, ..., Ta, Tas1 — Tay -+, Tqg — Tq)-

Analogous quantities i, for k > a + 2 are still preserved as soon as 1,42 > 0, and [FKN]
shows that this happens almost surely. The present paper shows Lebesque ergodicity and
exactness of the level sets of (na,...,na) for Fiqa and all d > 3. It is hoped that the
techniques will be useful to understand Foq for general a € {1,2,...,d — 2}.

2. THE PROOF OF THEOREM 1

2.1. Finding convenient coordinates. To start the proof, it helps to recall from [FKN]
the Markov partition of A that f possesses, see Figure 1. The Markov partition A =
A U Agr U Ar consists of three full branches. In fact, f extends to a diffeomorphism
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f:A; = Afori=L,R,T. The region Y under the line z + y = 1 is invariant; it is here
that n =1—x—y >0, and f™(x,y) — (0,0) for every (x,y) € Y. Clearly f(Ar) DY, and
an additional distortion argument ensures that Lebesgue-a.e. (z,y) eventually falls into Y.
Therefore f is totally dissipative.

The question is whether the convergence to (0, 0) is so chaotic, that |y is in fact ergodic
or even exact. Let us restrict our Markov partition to

{Yo=A,NnY, Yr=ArNY},
and study the first entry map G : Y — Yy in a new set of coordinates. First note that
the lines g, = {(z,y) € Y : y = ka}, k > 1, and go = {(z,y) € Y : © = 0} satisfy
f(gr) = gr—1 for kK > 1 and gy consists of neutral fixed points. Hence the return time to

YR on the region between g1 and gxo is exactly k for k > 1. For fixed ¢ > 0, the lines
Up,t) ={(z,y) €Y :y=p—ta}, 0 <p <1, foliate Y and

flp,t) NYL) = Lp,t +1 = p), f(ﬂ(p,t)ﬂYRFf(Hf_pv Hll_p)-

Therefore, if A, (p,t) C ¢(p,t) N Yg is a maximal arc on which the first return time is n,
then

Go(p.t) == GlAn(p,t)) = (t 2.z *(n - i)a__jj” - ”p) Y.

Remark 2. The point (0,0) is attracting under G, but not quite under f itself. Namely,
on Yy,

oo =( " 1)

which is a nilpotent shear, whereas on Yg,

D00 =( 7 ¢ ).

which s hyperbolic with stable eigenvalue Ay = %(\/5 — 1) on stable eigenspace Ey =

span(Xs, 1)T (where T stands for the transpose) and unstable eigenvalue A, = —3(V/5+1) <
—1 on unstable eigenspace E, = span(Ay,, 1)T. Therefore, if

(pkv tk) = Gnl---nk = Gnk © Gnk—l ©---0 Gm (pv t)

for successive return times (ny)ren, then ty — (V5 +1) as k — oo and n; = 1 for all
large j, whereas t;, immediately becomes large if ny is large.

Remark 3. For each (p,t), the length of A, (p,t) is 1/n(n+1) times the length of £(p,t)N
YR. Let

Ay (0st) = {x € U(p,t) N YR : the first k return times to Yg are ny, ..., ng}.

Its length is approximately Hle n;?. Each map G* . A, ..(p,t) — Yr acts as the
Gauss map with corresponding uniform distortion control, see Lemma 2. Therefore, the
conditional probability P(ngy1 = n | ny...ng}) ~ n=2, uniformly in k and the history
ni,...,ng. The process (Sk)ren given by Sp(z) = ny + -+ ng if & € Ap,.n, (which
is a cone over A, n.(1,1)) is a deterministic version of the one-sided discrete Cauchy
walk. Taking the difference of two sample paths of such a walk, we obtain a symmetric
two-sided Cauchy walk, i.e., a random walk where the steps are distributed according to
P(X, = n) = P(X}, = —n) ~ cn™2. This walk is recurrent, as follows from more general
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theory on stable laws (see |D, Theorem 2.9|'), so for A\-a.e. pair (z,2') € Y3, there are in-
finitely many k, such that their respective sums Sy = Sy, i.e., f¥(2) and f*(2') both belong
to Ygr. For our proof, however, it suffices to have the somewhat weaker result proved in
Proposition 1.

iy and t = S5
are o« = =1and & = =~ =% = 0. Direct computation gives:

G, <£( > d%t*%’)):

Let us write p = , for integers «, 3, v, &, Bﬁ, so the initial values

~

a+Bt+yp a+ ft+p
YRm£< P 7
at+a+(B+0)t+(y+5-1)p
na+ (n—1)a+ (nf+ (n— 1)B)p—|—(n’y—|—(n— 1)y —2(n—1))p
ata+(B+Bt+(v+5-1p ’

This means that the iteration of G, for initial values p € (0, 1] and ¢ > p, we find that we
can represent the iterations

g+ Bt + 4
(Prs k) = Goyony (s 1) = ( p ay, + B %P) ©)

g + Bt +p | o + Bt + ep

by affine transformations on the integer vectors (o, &, f3, B, v, 4)E:
o 1 1 o o0 0 0 a 0
o) nn—10 0 0 0 Q 0
B 0 0 1 1 0 0 B 0
31710 0 nan-10 o0 g1 0
vy o 0 0 0 1 1 v 1
A o 0 0 0 n n-—1 A 2(n—1)

with initial value (1,0,0,1,0,0)" mapping to (1,n,1,n—1,—1,—2(n—1))T, etc. It is easy
to check by induction that
(a4 Be+e =0+ O+ =1 foral k>0,
Br < ag < 20, for all k£ > 0,
Bk < < QBk, except that Bl =0 (3)
when n, =1,

Lo < ay < 20 when n; = 2.

Therefore, as far as asymptotics are concerned, it suffices to keep track of oy and & (or
just of oy whenever ny = 2), cf. Proposition 1, so it makes sense to focus just on the
recursive relation

{Oék+1 = i+ Qg,

A R 060:1, 6&0:0 (4)

Gky1 = N1k + (Npyr — 1)dy,

In fact, the Cauchy distribution models the position on the horizontal axis where a standard random

walk on Z?, starting from (0,0) returns to the horizontal axis. Since the standard random walk on Z? is
recurrent, the Cauchy walk is recurrent as well.



6 HENK BRUIN

In fact, there is A = A(p, t), but independent of k, such that
| < %kt Brt + p b + Bit + Awp

— ’

(6773 Qg

<A, (5)
whenever t > p and ny = 2.

2.2. Distortion results. Given intervals J' C J, we say that J is a d-scaled neighbour-
hood of J" if both component of J\ J' have length > 4|.J’|. The following Koebe distortion
property is well-known, see [MS, Section IV.1]: If g : I — J is a diffeomorphism with
Schwarzian derivative Sg := ¢"/g' — 3/2(¢"/g')? < 0, then for every I’ C I such that J is
a 0-scaled neighbourhood of J' := ¢(I’), the distortion

) w4

Mgbius transformations g have zero Schwarzian derivative, so (6) holds for g and g~ alike.

Lemma 1. The foliation of Y into radial lines
hg = {(rcos®@,rsinf) : 0 <r < (sinf + cosd)~'}

with 0 € [r/4,7/2] is invariant. Moreover, the distortion of G* : hg — hg, is bounded in
the sense of (6) uniformly in 6 € [0,7/2] and k € N.

Proof. Since f preserves lines and (0, 0) is fixed, the invariance of the foliation is immediate.

Let ¢ be as in (2) and 6 the angle of the image of hy under G,, ,,. The line £(1, ;)
and hy, intersect at a point (Rj cos Oy, Ry sinfy,) for Ry = (cos 8y, + tsin ). Using (2)
again, we see that G, ., acts on the parameter r as a Mobius transformation

r
Mk.rr—>Rk 1—|—5k(1—7”)’

which has zero Schwarzian derivative, and so has its inverse. Therefore, within an interval
J € [0, Ry] such that both components of [0, Ro] \ J have length 6|J|, the distortion
Sup,, - es | M;.(ro)| /| M (r1)| is bounded by K () uniformly in k& and ny, ..., n. O

The following lemma is straightforward, using d = 1 in (6).

Lemma 2. The map f preserves the line ¢(1,1) = {(z,y) : « +y = 1} and acts on it like
the Farey map (1). Hence the return map G acts like the Gauss map, and the distortion
of every branch G, ., : Unsn, Ay — (1, 1) is uniformly bounded by K = 4.

2.3. Growth of oy, and &, at different points. Let ay(x) and dg(x) be as in (4). The
first component of the expression (2), together with (5), shows that the ax(z) roughly
dictate the distance between F*(x) and the origin. Hence the following proposition should
be interpreted as: typical pairs of points infinitely often visit regions of similar distance to
the origin.

Proposition 1. There is L > 10 such that for Lebesque-a.e. (x,y) € Y3,
1 alz) ax(x)
L™ aly) duly)

Proof. The heuristics behind proving (7) is that the numbers logay are dominated by
random variables

<L for infinitely many k,l € N. (7)

k
Xy = 2[3 logn;].
j=1
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FIGURE 2. Left: The lines {(pa, 1) and £(pa(l —€),1) encloseHy(A) and
the area of large density near a. Right: The strips Hy4(z) and H;,4(y) must
intersect.

This follows immediately from (4). The probabilities P([3logn;] = t) = O(e™*/3) for all k
and t, so X}, is the sum of k random variables of finite expectation u. Standard probability
theory (see e.g. [D, Theorem 4.1]) gives that 1#{k : X; € [0,7]} = 1/p > 0 as r — oo.
Therefore, almost every sample path of {I'y}xen is a sequence with positive density, and
since log ay, < X}, also for A-a.e. z, the sequence (log oy )ken has positive density. It follows
that there is Lo such that for A x A-a.e. pair (z,y), there are infinitely many integers k,
such that |logag(z) — logay(y)| < Lo. Taking the exponential function, we obtain the
required result for oy in (7). Since &y = npay_1 + (ng, — 1)ag_1 and the event {n;, = 2}
is basically independent of the previous choices of n;, the result for &y in (7) follows as
well. Il

2.4. The main proof. The total dissipativity of f already follows from [FKN]J; it is a
direct consequence of f"(x,y) — (0,0) Lebesgue-a.e. We will now finish the proof of
Theorem 1.

Proof. Assume that A, A’ C Yy are sets of positive measure such that f~'(A) = A and
f~YA") = A’. To prove ergodicity, we will find some 7, j € N such that f{(A)N fi(A") # 0,
so A and A’ cannot be disjoint.

Use coordinates u € [0,1], v € [0,p] to indicate points below the line ¢(p,1): (x,y) =
(uv,u(p—v)). First take a = (v, pa—va4) a density point of A, where it is not restrictive to
assume that p4 € (0,1). By Fubini’s Theorem, we can find ¢ € (0,1 —p4) such that, letting
Hy(A) be the strip between parallel lines ¢(pa, 1) and ¢(pa(1 —¢),1) (see Figure 2, left),
there is a set V4 € [0, pa| of positive measure such that {u € [1—¢,1] : (uv,u(pa—v)) ¢ A}
has measure < ¢/(10K L) for every v € V4 and K as in (6) and L as in Proposition 1.

Since a 1-scaled neighbourhood of [pa(1—¢), pa] is still contained in [0, 1], we can choose
K = 4 here as the common distortion bound in Lemmas 1 and 2. We can also assume that
v4 is a density point of Vjy.
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We do the same for A’, finding a point pa € (0,1), aset Var C [0, pa] of positive measure
and a density point a’ = (var, par — var) of V.
By Proposition 1, it is not restrictive to assume that a = (v, pa—v4) and o’ = (var, par—
vy) satisfy:
ag(a)  axla)

ay(a’)’ &(a’)
for infinitely many k,l € N. Let Z,, , > a denote the k-cylinder set containing a,
intersected with Hy(A). Then G*(Z,, ) = Hi(A)NYr, where Hy(A) is the strip between
the lines G¥(¢(pa, 1) and G¥(¢(pa(1 —€),1)). Due to the small difference between initial
values ps and ps(1 — ), formula (2) gives that these lines are roughly parallel.

Applying (4) twice we get

{ gz = (i1 + D)o + npgr 6y,

Gpre = (MhgoMpr1 + Npyo — N1 + (M2 — Nigr + 1)y

joN

< <L and np=n; =2

SIE

(8)

For & € Zp,..n,, the variables ay (), d(z), Bi(), Br(z), v(x) and 44(z) are all well-defined
and constant. By choosing x € Z,,, ,,(a) so that ngia(x) = ngpi(x) = 1 (which corre-
sponds to choosing a k + 2-subcylinder 7, ,,11(2)), formula (8) simplifies to

Qpp2 = 204 + g,
Qpyo = o + Oy,

and we have ay,(z) < agya(x) < 2a19(z) for each z in this subeylinder. In view of (2) and
(5), this means that the slope of the strip Hy 2(a) is between A and 1/A. More precisely:

1
I <tpyo(z) <A for each x € Z,,, _n,11-

Similarly for cylinder Z,; . > a’, choosing also n;,; = n;,, = 1 and taking a similar
[ + 2-subcylinder Z,; ./, we find A = AN(pas,e) such that % < treo(y) < A for each

Yy € an...nlll-
Furthermore,
l < 04k+2<x>7 5fk+2(55) <1,
L aa(y) Quga(y)
which implies that
1 Pr+2(T)
— < <AL forall x € Z,,, . dyeZ, 11
AL = pia(y) = orall » 1..my11 ANA Y AR

In other words, Hyo(z) and H;,2(y) are two strips of roughly the same slope and ordinates
Pri2(x) and piio(y) differing by no more than a uniform factor AL.

The next step is to choose a k + 4-subcylinder of Z,, ,,11 and a [ + 4-subcylinder of
Z,..m11 80 that their images Hyi2(7) and Hiyo(y) must intersect. We use (3) and (8) for
k + 4 instead of k + 2 to find

_ Dk+ta Qi + PBrrat + Verop

Pk+a = Pk+2 = Pr42
DPh+2 Qhta + Bryat + Virap

_ Qi + Brrat + Verop ”
— . _ . .
(kg3 + 1) (Qrs2 + Brgat + YrgaP) + Npy3(Qrga + Brtz + Jrt2d)

Pl+2

Nk4+3



LEBESGUE ERGODICITY OF A DISSIPATIVE SUBTRACTIVE ALGORITHM 9

and

ey Qg + Brpat + AsaD Qpro + Brgal + Vet2P
lera = —— lky2 = b2
Lo it + Brral + VisaD Gprn + Briot + Fppop

(MktaTtrs + Nigs — Nits) Qg2 + Brral + Yir2p) +
(Nktaots — Npy3 + 1) (Qga + Brral + Vigop

(Npy3 + 1) (pr2 + Brtot + Vipap) + nirs(Gego + Bk+2t + Vit2p)

- g2 + Bppat + Yeg2p
Qg2 + Prgat + Yppop

Nk+4a

“Trgo

~

Nk43
By interchanging the role of A and A’, we can assume that

pi+2(y) < pre2(®) < ALpria(y)
for and x € Zy, ..y, Y € Zn’l...n;+4~ Next choose 10 < M < 2AL and

/ /
Npp3 = Nksa = 2, Mgy = gz = 8M,

so that Z?Zl Nt j = Z?Zl ny,; = 4+ 8M. Furthermore, for z in the corresponding k + 4-

subcylinder of Z,,, ., and y in the corresponding [ + 4-subcylinder of Z,, .n, we have

1
tera() ~ 57 tialy) ~ 4M.

Let Hy4(x) be entire strip between €(pgi4(), tira(z)) and (pgra(z(1—¢)), trra(x(1—¢))),
and similarly for H; 4(y). By the above estimates on pyi4 and ty,4, we see that Hy ()
and H;,4(y) intersect, see Figure 2, right.

The foliation of Y into radial lines hy is invariant, see Lemma 1. There is an interval
O, depending only on ¢ and M, such that if # € © then the radial line hy intersects
Hya(x) 0 Hiyy(y). More precisely, the length

I .
kaZZ\(J) = 8_Lmln{’h9ﬂHl+4<y)’7 |ho N Hiya(2)[}-

Write h(v) for the radial line intersecting the point (v,ps — v), and similarly for h(w).
If these lines are chosen such that both G*™4(h(v)) and G'**(h(w)) are subset of hg, and
v € Vy, w € Vy, then we derive from the definition of V4 and V), using the distortion
bound K in Lemma 1, that

GFH(h(v) 0 A) N G (R(w) N A) £ 0.

Since v4 and vy are density points of V4 and V) respectively, we can assume that k and
[ are so large that the relative measure of Vi in UpspZy, . om0 l(pa,1) is at least
1—|0]|/2K and similarly, the relative measure of V4 in UnZIan...nk+2n N{4(pa, 1) is at least
1-10|/2K.

Recall that K = 4 is also the uniform distortion bound for iterates of the Gauss map in
Lemma 2, and that G|,1,1) acts as the Gauss map. Thus expressed in terms of polar angle
0 € [r/4,7/2], the distortion bound is similar.

From this we can conclude that for each 6 in a subset of © of positive measure, hy indeed
intersects both G*™4(Hy(A) N h(v)) for some v € V4 and G4 (Hy(A’) N h(w)) for some

|ho N Hypa(x) N Hypa(y)| >
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w € Vu. Therefore hy N GF(A) N G'(A") # 0, proving that f{(A) N fI(A’) # ) for some
1,7 > 0. This concludes the ergodicity proof.

Now to prove exactness, we invoke [BH, Proposition 2.1], which states that a non-singular
ergodic transformation (X, B, \;T) is exact if and only if for every set A € B of positive
measure there is n € N such that A\(T"™(A) N T"(A)) > 0. Choosing a = (v, pa — v4)
for density point v4 € V4 and € € (0,1 — pa) as before, we can assume that (n;(a))en
contain infinitely many k such that ng(a) = ngy1(a) = 1. Let us consider the k + 2-
subcylinder Z,, n,,,1 as the set A" with o' = (va,pa — var) for py = pp and va a
density point of Vy» = V4. Also set | = k + 1. Then the above methods show that
GFH(A") N G7(A) intersect, and since A’ C A, we have verified the above condition for

exactness withn=k+4, n+1=101+4. Il
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