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Page xvii: Lema«czyk should be spelled with cz, not with zc.

Page 10: For shift-commuting Cantor systems (cellular automata) that are
not continuous, so without a sliding block code given by the Curtis-
Hedlund-Lyndon Theorem, some results are presented in F. Blan-
chard, E. Formenti, P. K·rka, Cellular automata in the Cantor,

Besicovitch, and Weyl topological spaces, Complex Systems 11 (1997),
no. 2, 107�123.

Page 39: Power entropy also appears in the literature under the name of
polynomial entropy. Results exist (among others) by Cassaigne
for subshifts, by Marco for Hamiltonian systems, and by Roth et
al. for general dynamical systems. This latter paper (as an analog
of the existence of horseshoes for systems with positive topological
entropy) presents the notion of one-sided ℓ-horseshoe as su�cient
condition to get log ℓ−1 as lower bound of the polynomial entropy.
For interval maps, this condition becomes close to a necessary con-
dition too.

J. Cassaigne. Complexité et facteurs spéciaux. Bull. Belg. Math.
Soc. Simon Stevin 4 (1997), no. 1, 67�88.

J.-P. Marco, Polynomial entropies and integrable Hamiltonian

systems. Regul. Chaotic Dyn. 18 (2013), no. 6, 623�655.
S. Roth, S. Roth, L. Snoha, Rigidity and �exibility of polyno-

mial entropy. Adv. Math. 443 (2024), Paper No. 109591, 44 pp.
(arXiv:2107.13695v1).

See also the discussion in Petersen's class notes (arXiv:1607.02425).

Page 39: The notion of amorphic complexity from Fuhrman, Gröger &
Jäger was also discussed by Karl Petersen (class notes, published as
preprint arXiv:1607.02425). Later, Baake, Gähler & Gohlke (�Orbit
separation dimension as complexity measure of primitive in�ation
tilings�, arXiv:2311.03541), make the case that amorhpic complex-
ity is a misnomer, because the only systems for which the notion is
useful (i.e., with �nite separation numbers) are those with a pure
point spectrum, so more quasi-crystal than amorphic. Instead, they
suggest the term orbit separation dimension.
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Page 82: Regarding Theorem 3.72: The references B. Li, T. Sahlsten, T.
Samuel, W. Steiner, Denseness of intermediate β-shifts of �nite-

type. Proc. Amer. Math. Soc. 147 (2019), no. 5, 2045�2055 and
B. Li, T. Sahlsten, T. Samuel, Intermediate β-shifts of �nite type.

Discrete Contin. Dyn. Syst. 36 (2016), no. 1, 32300344 are useful
here as well.

Page 96: In the displayed formula at line 3 �containing c� should be �con-
taining cn�.

Page 101: Line 5 in Table 3.1 should read: �period r�, �(1−r)(1−r2) · · · (1−
r2

r−1
)� and �polynomial of degree r − 1�.

Page 108: In Remark 3.102, �Thruston laminations� should be �Thurston
laminations�.

Page 121: In Theorem 3.120 the assumption that P doesn't contain su-
per�uous elements is missing. That is, we need to assume that
XP ̸= XP\{p} for each p ∈ P . Otherwise, Exemple 3.118, i.e.,
P = 2N+ 1, would be a counter-example; since XP = X{1} in this
case, P is e�ectively a �nite set.

Page 131: Useful references for Example 3.135 are S. Saiki, H. Takahasi,
J.A. Yorke, Piecewise linear maps with heterogeneous chaos, Nonlin-
earity 34 (2021) 5744-5761. arXiv:1903.05770 and H. Takahasi, K.
Yamamoto, Heterochaos baker maps and the Dyck system: maximal

entropy measures and a mechanism for the breakdown of entropy

approachability, Preprint 2022 arXiv:2209.04905

Page 136: The period doubling substitution and the resulting Toeplitz se-
quence of Example 4.9 already appears in the book by Gottschalk
& Hedlund [284].

Page 159: Four lines below the last displayed formula, in the formula χn◦χ̃,
the accent is on the wrong substitution: it should be χ̃n ◦ χ that
forces occurrences of 20 to appear at least 3n+1 apart.

Page 162: There are too many typos in the proof of Lemma 4.43 to makes
the details comprehensible. So let me give a corrected version. First
of all, for this result it is assumed that the substitutions are taken
from a �nite collection.

Proof. First, recalling N from the de�nition of primitivity, we can
de�ne

K1 := max{|χn−N+1 ◦ · · · ◦ χn(a)| : n ≥ N, a ∈ An}

and

K2 := min{|χn−N+1 ◦ · · · ◦ χn(a)| : n ≥ N, a ∈ An} > 0.
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Write K = K1/K2 and let An−N be the matrix associated to χ1 ◦
· · · ◦ χn−N . Then, for all n ≤ N and a, b ∈ An:

|χ1 ◦ · · · ◦ χn(a)|
|χ1 ◦ · · · ◦ χn(b)|

=
|χ1 ◦ · · · ◦ χn−N (χn−N+1 ◦ · · · ◦ χn(a))|
|χ1 ◦ · · · ◦ χn−N (χn−N+1 ◦ · · · ◦ χn(b))|

≤ ∥An−N (K11)∥
∥An−N (K21)∥

≤ K.

Let u ∈ L(Xρ) such that |u| ≥ mina∈AN
{χ1 ◦ · · · ◦ χN (a)} and

N ′ > N be minimal such that |u| ≤ mina∈AN′ |χ1 ◦ · · · ◦χN ′(a)|. In
particular, |u| > mina∈AN′−1

|χ1 ◦ · · · ◦χN ′−1(a)| and every appear-

ance of u is inside some word χ1 ◦ · · · ◦ χN ′(ab), ab ∈ A2
N ′ . Let w

be a return word to u, see De�nition 4.2. Since each word ab in ρN
′

appears with a gap ≤ D, we have

|w| ≤ D max
c∈AN′

{|χ1 ◦ · · · ◦ χN ′(c)|}

≤ DK min
c∈AN′

{|χ1 ◦ · · · ◦ χN ′(c)|}

≤ DK max
c∈AN′−1

{|χ1 ◦ · · · ◦ χN ′−1(c)|} · min
c∈AN′

{|χN ′(c)|}

≤ DK2 min
c∈AN′−1

{|χ1 ◦ · · · ◦ χN ′−1(c)|} · min
c∈AN′−1

{|χN ′(c)|}

≤ DK2min{|χn(c)| : c ∈ An, n ∈ N}|u|.

Since the lengths of the return words give the gaps between appear-
ances of u, linear recurrence follows with constant

L = DK2max
n≥N

min
c∈An

|χn(c)|.

□

Page 185: The closure bar is missing over {σn(x) : n ≥ 0} in De�nition
4.84.

Page 190: Lemma 4.88 is wrong. For example, the Feigenbaum shift based
on Toeplitz sequence ρ = ρfeig has an asymptotic pair (0ρ, 1ρ), and
asymptotic pairs are not compatible with uniform rigidity. The
proof goes wrong in only applying to the cylinder sets containing ρ
itself; but this su�ces to show that ρ is uniformly recurrent, and
because Xq = orb(ρ), minimality of (Xq, σ) still holds.

Page 197: The result in the second bullet point requires that B contains
in�nitely many coprimes.

Page 197: In the statement of Proposition 4.109, the factor log 2 is missing.
It should read

htop(X
her
B , σ) = htop(X

adm
B , σ) = (log 2)d(FB) = (log 2)δ(FB).
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Page 198: In Example 4.110 a typo in the formula of FB. It should be
FB = {n ∈ Z : µ(|n|) ̸= 0}.

Page 201: In line 7-8, the factors are missing in the product
∏k

j=1. It

should be a
∏k

j=1 bj (0) and a
∏k

j=1 bj (η).

Page 212: In line 3 and at some places later in the next two pages, widetile

should be widehat, so φ(1) = f̂(1), etc.

Page 212: The last statement of Proposition 4.159 is false. From the fact
that f : ωφ(c) → ωf (c) is a homeomorphism, one cannot conclude
that f : ωf (c) → ωf (c) is also a homeomorphism. In fact, if f has
no wandering interval, then f2(c) has two preimages in ωf (c).

To prove this, �rst observe that 1 ∈ ωφ(c), and therefore f(1) =

φ̂(1) ∈ ωf (c). Next take d := inf ωφ(c) ≥ a. If d = a, then
f(a) = φ(1) ∈ ωf (c). It follows that f2(1) has two preimages in
ωf (c), as claimed.

It remains to prove that d = a. Assume by contradiction that
d > a and let U = (a, d). If there is some n ≥ 1 such that φn(U) ∋ c,
then φn+1(U) ⊃ [a, φn+1(d)) ⊃ [u, d), so φ̄ has an n + 1-periodic
point, which contradicts that its rotation number α /∈ Q. If on the
other hand φn(U) ̸∋ c for all n ≥ 1, then U is a wandering interval,
and by the semiconjugacy, f(U) is a wandering domain for f , but
we asusmed that f has none.

Page 232: Addition to Theorem 5.25: J. Shallit (Numeration systems, lin-
ear recurrences, and regular sets. Inform. and Comput. 113 (1994)
331�347) showed that if the Gn's satisfy a linear recurrence (cf.
(8.1) ) then the corresponding shift is linearly recurrent.

Page 233: The book by Ian Putnam, Cantor Minimal Systems, Amer. Math.
Soc. University Lecture series 70 (2018) should have been men-
tioned for this section.

Page 244: In Theorem 5.44 the asusmption of �nite rank is important; there
are non-expansive in�nite rank Bratteli-Vershik systems that are
not odometers, see Gjerde & Johansen, Ergod. Th. & Dynam. Sys.
20 (2000) 1687�1710.

Page 253: On line 17, �go through ûk exactly once� is better explained as
�return to the minimal path from v0 to ûk at least once every qk+1

iterates�.

Page 260: The caption of Figure 5.15 should read: The Bratteli diagram
for Sk = Sk−1 + Smax{k−3,0}.

Page 307: In footnote 23, µ(A2) should be µ(A)2.
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Page 312: In item (3) ⇒ (4), some µ's need to be ν's: the �rst term in the
above expression tends to µ(A)µ(B)ν(C)ν(D).

Page 330: In Proposition 6.122 it should be (rn(x)+ρn(t(xn))α mod 1 and
rn(x)α mod 1 instead of |||(rn(x) + ρn(t(xn))α||| and |||rn(x)α|||.

Page 383: An extra remark to the Calkin-Wilf function f(x) = 1
2⌊x⌋−x+1 :

The second iterate of this map preserves (0, 1); it is conjugate to
the dyadic odometer and therefore uniquely ergodic. However, the
f2-invariant measure is not equivalent to Lebesgue. Details can
be found in G. Iommi, M. Ponce, Odometers, backward continued

fractions and counting rationals, Preprint 2023, arXiv:2310.08329.

Page 395: Added to the history of the Lagrange spectrum: The notion
was �rst mention by Markov in 1880 (Sur les formes quadratiques
binaires indé�nies, Math. Ann. 17 (1880), no. 3, 379�399). Cusick
proved (The connection between the Lagrange and Marko� spectra.
Duke Math. J. 42 (1975), no. 3, 507�517) in 1975 that the Lagrange
spectrum is closed.

Page 397: Some typos in the proof of Lemma 8.58. In line 19 of page 397
aj =

1
j1E should be aj = 1E . On line 25, th denominator t2 should

be t and d should be d, and on line 2 of page 398, d should d. The
proof of this lemma can also be used to prove in general that the
logarith averages are squeezed in between normal averages:

lim inf
N→∞

1

N

N∑
k=1

ak ≤ lim inf
N→∞

1

logN

N∑
k=1

1

k
ak

≤ lim sup
N→∞

1

logN

N∑
k=1

1

k
ak ≤ lim sup

N→∞

1

N

N∑
k=1

ak.

under mild conditions on the sequence (ak)k≥1.

Page 417: In the soltion of Exercise 3.132, in the displayed formula, 2n
should be (2n!) (three times).

Version of June 23, 2025.


