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Abstract: Let f: I — I be a C? map with negative Schwarzian deriva-
tive and finitely many non-flat critical points. We generalize an existence
proof of Nowicki & van Strien [10] of invariant probability measures to mul-
timodal maps. More precisely, we show that if either one of the following
two summability conditions hold

F7(c) — @t@—4e 1/£(c)
2 Z(| IDf"C| O] ) =

ceCrit n=1

(with & the critical point closest to f™(c)), or

> YD) <o,

ceCrit n=1

then f admits an acip g with g € L™ for any 7 < €max/(fmax—1). Here £(c)
is the order of the critical point ¢ and £max = max, .yt £(c). In particular,
the second condition holds for multimodal Collet-Eckmann maps and both
conditions generalize the condition in [10] for unimodal maps. Polynomial
growth rates of D, (c) = Df™(f(c)) are sufficient for acips to exist.

1 This paper is dedicated to Floris Takens.
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1.1 Introduction

Let f:[0,1] — [0,1] be a C? map with negative Schwarzian derivative and
a single critical point ¢ of order £. A well known result of [10] states that if

Y IDFFE)TH < oo, (1.1)

then f has an acip, i.e., an invariant probability measure which is absolutely
continuous with respect to Lebesgue measure. In this paper we want to
extend the result to multimodal maps, i.e. maps where the critical set Crit
consists of at least 2, but at most finitely many points.

One issue of importance are the orders £(c) of the critical points. If
all these orders are the same (and finite), then the multimodal case turns
out to bring no new difficulties. The condition is the direct analog of (1.1),
and somewhat weaker than the condition used in [4], in which however
also decay of correlations is addressed. Different critical points with differ-
ent critical orders bring some new phenomena. For example, the forward
Collet-Eckmann condition: there exist C' > 0, A > 1 such that

[Df"(f(c))] = CA" (1.2)

no longer implies the backward Collet-Eckmann condition: there exists
C >0, A > 1 such that

Df™(z) > CA™ whenever f"(z) € Crit. (1.3)

Examples are given in [6] and more explicitly [5]. If all critical points
have the same order, then (1.2) implies (1.3), see [7]. Let us also remark
that (1.2) is invariant under topological conjugacy within the class of S-
unimodal maps, see [9]. For multimodal maps, this is not clear, see [11]
and the remark in [9, page 35].

We have two approaches to deal with the effects of different critical
orders. One consists of including in the summability condition a factor
concerning slow recurrence. Slow recurrence was used in the Benedicks-
Carleson approach [1] of Collet-Eckmann maps in the unimodal setting. For
the other approach we assume that each critical point satisfies the summa-
bility condition with the maximal critical order £, = max{¢(c),c € Crit}.

We remark that there are maps with acip, but not satisfying the
summability condition, see [3]. The same will be true of course in the
multimodal setting. If £(c) = oo for some ¢ € Crit, then no acip needs to
exist. This depends largely on the precise form of the flatness, as is shown
by Benedicks & Misiurewicz [2], and in more generality by Thunberg [12].
It remains an open question whether the summability condition (1.1), or
any multimodal analog, are topological invariants.
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1.2 The Multimodal Summability Condition

Let f : [0,1] — [0,1] a C? mapping with negative Schwarzian derivative,
i.e. |f'|72 is a convex function. We assume that f has a finite set Crit of
critical points, all of which are non-flat. This means that for each ¢ € Crit
there exists £ = £(c) < oo such that lim,_,. |f(x) — f(c)|/|z — c|* exists and
is different from 0.

For each critical point ¢, let D,(c) = |Df™(f(c))|, and

n( _ Al6@)—(c)\ /e
dn(c) = <|f (C)Dnc(|c) ) ,

where ¢ is the critical point closest to f™(c). Obviously 6, (c) = Dy (c)~1/¢
when all critical points have the same order 4.

Let m denote Lebesgue measure. We are interested in finding an acip,
i.e. an invariant probability measure g which is absolutely continuous with
respect to m.

Theorem 1. Let f be a multimodal map with negative Schwarzian deriva-
tive and finitely many non-flat critical points. If

(a) 33 6u(e) < oo,

ceCrit »=1

or

® Y Do) < oo,
ceCrit n=1

then f admits an acip u, and p € L™ for any 7 < lmax/(bmax — 1).

While there are multimodal Collet-Eckmann maps that do not satisfy (a)
(cf. [5]), every non-flat multimodal Collet-Eckmann map satisfies (b). Most
likely, there are maps satisfying (a) but not (b). If all #(c) are the same,
both conditions are of course identical.

We will follow the proof of [10], see also [8, Chapter V 4], in the
sense that we give the main arguments and refer to [8] for some of the
technical details, but in order to prove that (b) is a sufficient condition,
we also need some results from [5]. At several places we need a version
of Koebe distortion estimates, namely the Koebe Principle, the one-sided
Koebe Principle and the expansion of the cross ratio. The exact formulation
and proof can be found in [8, Section IV.1]

Proof: We start with the two main claims. There exists Ky > 0 such that
for each measurable set A and n >0

m(f"(4)) < Kom(A)!/tm, (1.4)
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where lmax = max{{(c);c € Crit}. The invariant measure p is con-
structed as the weak limit of Cesaro means p,(4) = 2 S0 " m(f~H(A)).
Claim (1.4) implies that u(A4) < Kom(A)!/émax 5o absolute continuity
follows, and a fortiori, the Radon-Nikodym derivative 5—7’,‘1 is an L™ (m)-
function for any 1 < 7 < fmax/(fmax — 1), see [8, page 378].

Let B(c,e) be the e-neighbourhood of ¢ € Crit. Then there exists
K7 > 0 such that

m(f "(B(c,e))) < Kie, (1.5)
for all ¢ € Crit, e >0 and n > 0.

Proposition 1.2.1. The claim made in equation (1.5) implies the claim made
in equation (1.4).

For the proof we need some notation and a lemma. Let
En(c,e) = fT(B(c )

Lemma 1.2.1. There exists Ky > 0 such that for any interval I for which
f™|I is monotone, m(f™(I)) < ¢ and one of the boundary points of I is a
critical point of ", we have

1.C Bile Kalgy——5)"/"), (L6)

for some 0 <4 < n and ¢ € Crit. (If i = n, then put D,,_; 1(c) =1.)

Proof: Let a € 81 be such that f™ has a critical point at a. Then f"(a) =
f7(é) for some & € Crit and j < n. If |f/(¢) — Crit| < 3¢, then (1.6) holds
for the ¢ € Crit closest to f7(¢), K2 = 4 and i = n. Assume therefore that
|f(&)— Crit| > 3¢. Let B be the component of f~"((f7(&) -3¢, f/(¢)+3¢))
containing I. Also let

s = max{m < n; f™(B) N Crit # 0}.

say f5(B) 3 ¢c. Asa € 0I, n—j < s <n. Let C be the convex hull of ¢ and
f5(I). By construction, f"’f’l maps a neighbourhood of f5*!(B) mono-
tonically onto (f7(¢) — 3e, f7(¢) + 3¢). By the one-sided Koebe Principle

n—s—1 |fn—s(C)| €
PI @ =00 ey = YWz
Hence non-flatness gives I C E,,_(c, (O(1)e/Dp_s_1(c))/4). [ |

Now we can prove Proposition 1.2.1
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Proof: Let A be any measurable set; we only need to consider the case when
e:=m(A) > 0. Let f*:(a",at) =1 — f*(I) be a branch of f*, and let
I* C I be the maximal intervals such that a* € 8I* and |f™(I*)| < . By
the Minimum Principle (see [8, page 154]), m(f "(A)NI) <m(I~ UIT).
Lemma 1.2.1 yields

It C E. + K € 1/6(c*)
< B (10— D)

where ¢ = fi (a*). By Claim(1.5), |I*| < K1 Ka(e/ Dyt (¢F))/ ).
Thus summing over all branches I, we obtain

n—1 . 1/6(c%)

ceCrit =0

1.3 The Proof of Theorem 1, Part (a)

Division into Three Cases: It suffices to prove Claim (1.5). We will
subdivide the components I of E,(c,¢) into three classes. Given o > 2e,
let I ¢ I' C I" be the components of E,(c,¢), E,(c,2e) and E,(c, o)
respectively.

e T €eR,, the regular case, if f™ has no critical point in I".
e T E€S,, the sliding case, if f™ has a critical point in I" but not in I'.
e I €T, the transport case, if f™ contains a critical point in I'.

We treat these three cases separately.

The Regular Case: Let I C R, (c), then f™(I") is an interval of length 20

and it contains a 2-scaled neighbourhood of f™(I). By the Koebe Principle,

there exists a constant K such that
o _|f~a")

— < <K
= I R

=

We choose K so that this holds for all ¢ € Crit. Since the intervals I"
corresponding to the I € R,, are pairwise disjoint,

SH<Kr Y = Y I <Kz (L.7)

IeER ceCrit  I€R(c)
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The Inductive Scheme: Having fixed the constant K'r let us explain the
inductive structure of the proof of Claim (1.5). The induction hypothesis
is

for all € > 0, ¢ € Crit and k < n. This inequality is true for n = 2, because
for o sufficiently small, there are only regular intervals I. Assuming (IH)
for all k¥ < n, we proceed to prove (IH) for n for the sliding and transport
case.

The Function v(o): Let v(o) = min{k > 1; f*(é) € U.B(c, o) for some & €
Crit}. The summability condition implies that that f™(Crit) N Crit = @ for
all n > 1 and therefore v(o) — 00 as 0 — 0. (If f is a Misiurewicz map,
then v(o) = oo for o sufficiently small. This case is harmless; it implies
that all components I belong to R,(c).)

The Sliding Case: Let I € S,,(c). Let T D I be the maximal interval on
which f™ is monotone. We construct a sequence n =mng >mn, > ...ng >0
and intervals 7% O ... T D T° = T as follows.

Let Ty = f™(T°) = f*(T). Because I € S,,, To D Iy := f*(I) =
B(c,¢e). Let Ry and Ag be the components of Tg \ Iy such that |Ro| > |Ao|.
By non-flatness, |Rg| > O(1)|Io|. Let us write T° = (ap,a—1) where ag
is such that f™(ag) € 0Ag. (Throughout the proof, (a,b) is the interval
with boundary points a and b, also if b < a.)
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Figure 1, Construction for the Sliding Case.

We continue inductively as follows, see Figure 1: Given T = (a;,;—1) D I
and n; > 0, let

n;y1 be such that f"+1(q;) € Crit,

ki =n; —niq1,

T*! be the maximal interval of the form T**! = (a;, a1 1) such that
f™+1 is monotone on T*!. So T#! O T and they have the boundary
point a; in common.

Tiy1 = fr+1 (T and I = fri+i(1).

R; 41 is the component of T; 1\ I;11 with the point ¢;41 = f™i+1(e;) €
Crit as boundary point. Let A;;1 be the other component. (It follows
that f* (Riy1) = A;.)

L1 be the subinterval of 4;;; adjacent to I;;; such that f* (L;1,) =
R;.

The construction ends at n, when either ny, = 0 or when |A,| > |R;|.

We write £; for the critical order of ¢;.

Proposition 1.3.1. There exist K4 > 1 such that

s—1

L] < 1D TT Kabri (i),

=0
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where ¢; 1 € Crit is the critical point in OR;41.

Proof: The expansion of cross-ratios,

|5 L )] 15 Rig)] _ |5 T )] [ (Tiga)|
< ;
|Li1] | Rit1] i1l |Tit1

in our case gives rise to

Riy1|l |[AULUR)|  |Lia]

|
Il | < | .
Hial < 15 |Ri| |Liy1ULizs URiy| A4

Using this for s = 1,...,s — 1 we obtain

-1
Ay UL URy| _ Tp |Rital
L <|I x
] < IR 117
s—1
|4 UL U By |Li| |L|
% X . 1.8
Z,:H2|LiUIiUR,~||A,~| |Ls UI, UR;| (1.8)

The last factor is clearly less than 1, and the second last factor is less than

1 because of the inequality fl((‘;izg <lforallw>0anda>1>0.

The factors |R;11|/|R;| can be estimated as follows:

| Rit1] |f (Riga)|'/ 5+
—— < 0O(1)—F—-——(non-flatness)
| R | R
1 ([ 1f(4) )”‘m .
<01)— ({ =———— one-sided Koebe
< O )|R,| (Dk,-(ci+1) ( )
<o |Al Lifliga 1 fat
> ( ) |Rz| Dk, (CH_I)I/ZH_] (non— a ness)
Y 1
< O(1)|Ry| e/ te+0) lm (|4il < |Ri])  (1.9)

<O) 6 (civr). (IRl = |fF(ciy1) — cil)

It remains to estimate

|A1 Ul UR1| |L1U11UR1|
I <|I
| 1| |A1| _| 1| |L1|
|Ri| |[Ao U Io U Ry| .
< |Iy|=———=———— (cross ratio
| R |
<O)|ho| (o] < Aol < |Rol)

|Ao|
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| |f(R1)|1/é1
| Aol

I A /4
< O(l)% (Dlioic)> (one-sided Koebe)
0 ko—1(C1
T ko _ fo—1 1/t
<0Q1) |A0||1(1|1/‘1 <|f (gz (cf())‘ ) (non-flatness)
0
< O@)| o] - dg(er)- (JAo] = [£*0(e1) — col)

Combining these estimates gives the result. |

<001)| (non-flatness)

The next step is to compare I with a component of E,,(cs,e') for
an appropriate ¢’. Let J C T°® be an interval such that |J| = |I| and
G := f"(J) C I; U R, is adjacent to ¢,. Since |As| > |Rs|, the one-sided
Koebe Principle gives

G ms (]
161 _ o (D1,

71~ |
Because |I| = |J|, Proposition 1.3.1 gives

s—1

G| < K| (D) [] Kade (i),

=0

for some Kgs > 0. Therefore I is a subinterval of a component of the set
E,, (cs,eKs Hf:_é K40, (cit1))- For every s-tuple (ko, ..., ks—1), there are
at most (2#Crit)® intervals I such that f™(I) slides to the same interval
G. Furthermore, all the intervals T; have size < o, so that k; > v(o) for
all 0 < i < s. Therefore,

s—1
VDY > (2#Crit)*| By, (¢,eKs [ ] 0: (civ1))-
1€8a(c) seCrit ki > v(o) i=0

>iki=n—ns<n
(1.10)

The Transport Case: Suppose I € T,(c). Then f™ has a critical point
in I'. Let k < n be maximal such that f*(I') contains a critical point, say
&, in its closure. Let us say that I € 7,%(¢,c) in this case. Clearly fn—*-1
maps f¥+1(I') diffeomorphically into B(c, 2¢).

Proposition 1.3.2. There exists K7 > 0 such that

n—1 n—1
Sy Y < Y S E@EKredai(@)  (111)

IE€TA () k=0 I€Tk (&) E€Crit k=0
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for all ¢ € Crit and n > 1.

Proof: Clearly f(é) € f**(I') C [z,y] where f*~*~1 maps [z,y] monoton-
ically onto B(c,2¢). Because B(c,2¢) contains an 2-scaled neighbourhood
of B(c,e) D f*(I), the Koebe Principle assures that |f™(I)|/|f*T1(I)| =
O(1)D,,_k—1(¢). Therefore there exists K5 such that

o (ptm)

n—k—l(c

Since f* *(¢) € B(c,2¢), the Chain Rule and non-flatness give D,,_1(¢) <
O(¢))D,,_ 11 (6)e¥()=1) Therefore there exists K such that

(0)/ ()

1/¢(@) < |f"(I)|KT5",k(C).

(] <o NNGIAG)

Summing over all such I gives the proposition. |

Conclusion of the Proof: Using [8, Lemma 4.9] one can choose o so
small (and therefore v(o) so large) that for any n > 1

s—1
> > 3Ks [ [ 2#CritKad; (&) < 1, (1.12)
ceCrit ki > v(o) 7=0
2iki=n—ns<n
and
Y Y 3Kra@ <1 (1.13)
¢eCrit k>v(o)

By (1.10) and (1.11), for any ¢ € Crit

[En(c,e)l < D0 M+ Y.+ > |

I€ER,(c) I1€S,(c) I€T(c)
< Kp
7 s—1
+ ) > (2#Crit)*| B, (¢, TKse [ [ Kadi, ()))]
eeCrit i > y(0) j=0

ijjzn—nsgn

n—1
+ 3 > |B(E Kredni(d)]-

EeCrit k=v(o)
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By the induction hypothesis (IH) this is smaller than

s—1

£ EKS . ~
KR; + Z Z 3KRT H 2#Crit K40, (¢5)
eeCrit i > (o) 7=0

Yjjki=n—-ns<n

n—1
+ > Y 3K’R§KT6n—k(5)

¢eCrit k=v(o)

which by formulas (1.12) and (1.13) is smaller than 3Kge/o. This proves
the induction. Therefore Claim (1.5) holds for K; = 3K /0. |

1.4 The Proof of Theorem 1, Part (b)

The proof is an adaptation of the proof of Part (a) combined with a result
from [5]. We indicate the differences.

Proof: We will again prove Claim (1.4), but we change Claim (1.5) into:
there exists Kg such that

m(f " (Ble,e)) < Koel)/tmex, (1.14)

for all ¢ € Crit, ¢ > 0 and n > 0. The proof that Claim (1.14) implies
Claim (1.4) is the same as Proposition 1.2.1. The construction of u € L™
remains the same as well. To prove Claim (1.14), we use the same division
into cases, with the addition that the sliding cases falls into two subclasses.

The regular Case: Keep the same K as in the proof of part (a). Obvi-
ously (1.7) gives

S < KrE < BR 0
IeRr g g

The Inductive Scheme: We use the induction hypothesis

IH)  m(fH(Blee)) < 2R l)/ e

g

The Sliding Case: Take L > 10 so large that 50L~/¢mex < 1. Keeping
the construction, we divide the case I € S,, into

o I€S8!, ifly <l or|Ag| < L%, and
o T€S8" if bmax = Lo > Ly and |[Ao| > L2e.
o Te8", if bpax > by > s and |Ag| > L.

First the case I € S:



The Proof of Theorem 1, Part (b) 12

Proposition 1.4.1. There exist K7 > 1 such that for every I € S, holds

| |7 (I)|0/ e
= [152s KDy, (cipr) M/’

L

where ¢; 1 € Crit is the critical point in OR;41.

Proof: The proof is the same as the proof of Proposition 1.3.1, except that
we need to estimate the first and second factor in (1.8) a bit differently.
Indeed, now we estimate |R;1| < O(1)Dy, (ciy1) "/ 4+1|Ry|%/%+1 | which
follows immediately from (1.9). Hence

0Q)
< _ lo_1/ls
el = e g e
0Q) o)
< |R._ Lo_a/ls
- | - Dks—Q(csfl)l/[s Dks—l(CS)l/ls
s.—l .1
< |R 1/8s - -
> | 1| il;[1K7Dk;(ci+1)1/es
Hence
1:[ |<|R|(ele)/e H;
Ry v K7Dy, (ci1)1/*

=1

For the remaining factors we find as before

(R (a—t/e ALV LU R
|Il| |R1| |A1|
1o
| Ao

< O (R (non-fatness)

<0Q1)—

|Ry[1/% ( cross-ratio)

[Io| , |Aol%
< 1291
< OW1 2, Dy (o)

1
Lo/ls
Ol ey

)1/4 (one-sided Koebe and non-flatness)

where the last inequality holds because ¢y < £, or |Ag| < L?|Ip|. This
proves the proposition. |
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The same sliding trick now gives an Ks > 1 such that } ;o (o 1] is at
most ’

te)/e(d) i
> > (@#Crit)’| By, (@, ).
Hz o Dk (cip1) /4@

eeCrit k; > v(o)
Ej kj=n—-nys<n

For the case I € S}., we use Theorem 1.2 and Proposition 3.1 from [5]. By
the Mean Value Theorem, there exists £ € I such that [Df"(§)| =¢/|I| <
g(e)/tmax /||, Tn the notation of [5], n is a critical time of type (AP) for &.
Choose £(€) = lyp = lmax- Then there exists Ky independently of &, such
that

s'—1
IDF"(©)] > [ KeDr,(cisa) /==,
i=0
where 0 = ny < ng_1 < ... < ng = n are the critical times of ¢ in the

construction of [5]. Furthermore k; = n; —n;4+1 and as before k; > v(o) for
all 4. Because there are at most (2#Crit)® intervals I € S with the same

critical times ngy,ng_1,...,ng, we find
s’ —1 9 C it
Z |1 < Z Z £(c)/tmax H oy #Cri e
IeS! (c) ¢eCrit k > V(o‘) slUk; C+1 max
E]‘ kj =n

The case S/’ will be dealt with in the conclusion of the proof.

The Transport Case: Proposition 1.3.2 still ensures the existence of
K71 > 1 such that

n—1
Kret(e)/4@)
)ORUED DD SINIESY ZEk N GILGE
I€Tn(c) k=0 I€Tk(2,c) ¢eCrit k=0
for all ¢ € Crit and n > 1.

Conclusion of the Proof: Choose ¢ so small that for any n > 1

s—1
2#Crit
> >,  5Ks H L 7D, ()1 <L (1.15)
éeCrit kj Z I/(U)
Ej ki=n—-ns<n
s'—1

C
> X HKS ot )

ceCrit k > v(g) 7=0

e
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and

3 Z Mizmax <1. (1.17)

ceCrit k>1/(o’)

First take ¢ > o/L?; this means that the case S!' does not occur. Then
for any ¢ € Crit,

En(ce)l < D M+ >+ > +I > |

IER (c) IeS! (c¢) I€S!(c) I€Tn(c)
<KR( )Z(c)/fmax
K oct(€)/4@)
+ 3 DN C T6 LI ——

s—1 ~ F
seCrit ki > v(o) [15=0 K7 Dx, ()14

Ej kj=n—-ns<n
s'—1
2#Crit
£(c)/max
te Z Z H KsDk Gs 1/[mx
cECmtk > l/(a' = J
Z ki=n
Ket(e)/4(@)

+ Z Z | E (€, WN

¢eCrit k=v(o)
By the induction hypothesis (IH’) this is smaller than

K
_R[_:l(c)/lmax
g

1
4KR #e)/ o T 24 Crit
+ _Z. Z p H K7Dk (&) 1/4max
ceCrit k-] > I/(J)
2 iki=n—-ns<n
s'—1

)/ o 2#Crit
4 gto)/e Z Z H KsDk erll/émx

ceCrit k > I/ 0' =

E ki=n
n—1 4K,
2R t(c)/ bmax
+ Z Z ‘ D,_ ()1/€max

¢eCrit k=v(o)

which by formulas (1.15), (1.16) and (1.17) is smaller than E= g(¢)/tmax,
This proves (IH’) for n and all € > o/LM+! for M = 1. We continue the
induction in M, so suppose that (IH’) holds for all € > o/LM*1 and take
o/LM*2 < ¢ < g/LM+1. The calculations are as before, except that now
case S, can occur. Suppose therefore that Iy = f™(I) for some I € S})'.
Note that |Ag| < o, otherwise we were in the regular case. Find N < M
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such that
| 4o|

N+

| 4o
IN+2 <eg= |Io| <

Let I D I be such that Iy := f*(I) is an interval of length LNe centered
around Iy. As L > 10, the Koebe Principle gives |I|/|I| < 10|lo|/|Lo|. Let
S,'n be the set of all intervals I € S with this value N. Then

oo <1L Y I <10 Nm(f T (B(c, LNe)).
1€S) 1€S

By (IH’) applied to LVe and since £y = £(c) < fmax — 1, this is smaller
than

1OL—N5KR (LNE)Z(c)/Zmax < 50K L~ N/tmaxt(c) /6~ max_
g g

Summing over all N > 1 we find

50KR N/ bmax 0 /lmax < BR_£(¢) /ma
I < L € < € .
IeS! 7 N>t g

by the choice of L. Thus if we add the term ), s, |I| in the earlier calcu-

lations, we still find |Ey(c, )| < 3= g4e)/émax This proves the induction.
Therefore Claim (1.14) holds for K¢ = 5Kz /0. |

[1] M. Benedicks, L. Carleson, On iterations of x — 1 — az® on (—1,1), Ann.
Math. 122 (1985) 1-25
[2] M. Benedicks, M. Misiurewicz, Absolutely continuous invariant measures for
maps with flat tops, Inst. Hautes Etudes Sci. Publ. Math. 69 (1989), 203-
213
[3] H. Bruin, Topological conditions for the existence of invariant measures for
unimodal maps, Ergod. Th. and Dyn. Sys. 14 (1994) 433-451
[4] H. Bruin, S. Luzzatto, S. van Strien, Decay of correlations in one-
dimensional dynamics, Preprint Warwick (1999)
[5] H. Bruin, S. van Strien, Ezpansion of derivatives in one-dimensional dynam-
ics, Preprint Warwick (2000)
[6] L. Carleson, P. Jones, J.-C. Yoccoz, Julia and John, Bol. Soc. Bras. Mat.
25 (1994) 1-30
[7] J. Graczyk, S. Smirnov, Collet, Eckmann € Hélder, Invent. Math. 133
(1998) 69-96
[8] W. de Melo, S. van Strien, One-dimensional dynamics, Springer (1993)
[9] T. Nowicki, F. Przytycki, Topological invariance of the Collet-Eckmann
property for S-unimodal maps, Fund. Math. 155 (1998) 33-43
[10] T. Nowicki, S. van Strien, Absolutely continuous measures under a summa-
bility condition, Invent. Math. 105 (1991) 123-136



The Proof of Theorem 1, Part (b) 16

[11] F. Przytycki, S. Rohde, Rigidity of holomorphic Collet-Eckmann repellers,
Ark. Mat. 37 (1999) 357-371

[12] H. Thunberg, Positive ezponent in families with flat critical point. Ergod.
Th. and Dyn. Sys. 19 (1999) 767-807

bruin@math.rug.nl strien@maths.warwick.ac.uk



