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Abstract

For non-uniformly expanding maps inducing with a general return time to Gibbs Markov
maps, we provide sufficient conditions for obtaining higher order asymptotics for the corre-
lation function in the infinite measure setting. Along the way, we show that these conditions
are sufficient to recover previous results on sharp mixing rates in the finite measure setting for
non-Markov maps, but for a larger class of observables. The results are illustrated by (finite
and infinite measure preserving) non-Markov intervals maps with an indifferent fixed point.
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1 Introduction

For infinite measure preserving systems (X, f, i), first order asymptotics of the correlation func-
tion p,(v,w) = f x vw o f"dyu for suitable observables v, w were obtained in [7, 12] via
the method of operator renewal theory. The method and techniques in [7, 12] rely on the ex-
istence of some Y C X such that the first return map f7 : Y — Y (with first return time
7(y) = inf{n > 1: f"y € Y}) satisfies several good properties. In particular, given that . is
the f7-invariant measure, it is essential that i, (y € Y : 7(y) > n) = £(n)n~?, where £ is a
slowly varying function® and 3 € (0, 1]. The strong requirement on the asymptotic behavior of
i (7 > n) originates in the works [4, 2] which provide first order asymptotics for scalar renewal
sequences.

As clarified in [12], in the infinite measure setting, higher order asymptotics of the correlation
function p, (v, w) (for suitable observables v, w) can be obtained exploiting higher order expan-

sion of the tail probability p-(7 > n), which can be estimated when the invariant density of the
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first return map f7 is smooth enough. The work [12] obtains results on higher order asymptotics
of p, (v, w) associated with infinite measure systems that induce with first return to Gibbs Markov
maps (see Section 3 for details); in particular, the results in [12] (and later [16] which improves
on [12]) apply to the LSV family of maps considered in [11]. A return map with smooth invariant
density may be obtained by inducing with a general return, rather than a first return time. More
precisely, even when the first return map is not Gibbs Markov, it might happen that there exists
some general return time ¢ : Y — Nof f to Y, such that f¥ = (f7)” is Gibbs Markov for some
reinduce time p : Y — N. A good example is the class of non-Markov maps with indifferent fixed
points studied in [20, 21]. Higher order asymptotics of the correlation function p,, for the infinite
measure preserving systems studied in [20, 21] has not been addressed yet. It is mainly the ques-
tion of higher order asymptotics of p,, for infinite measure preserving systems that induce with a
general return time to Gibbs Markov maps that we answer in this paper. While focusing on this
problem we also obtain some new results for finite measure preserving systems that induce with,
again, a general return time to Gibbs Markov maps. The method of proof builds on [12] (in the
infinite case) and on the works [15, 5] (in the finite case), which develop operator renewal theory
(via first return inducing) for dynamical systems.

Let (X, 1) be a measure space (finite or infinite), and f : X — X a conservative, ergodic
measure preserving map. Fix Y C X with u(Y) € (0,00) and let 7 be the first return of f to Y.
Let L : LY() — L*(p) denote the transfer operator for f and define

T,v:=1yL"(1yv), n >0, R,v = lyL"(l{T:n}v), n>1.

Thus T, corresponds to general returns to Y and R,, corresponds to first returns to Y. The sequence
of operators 1, = Z;‘L:1 R;T, _; generalizes the notion of scalar renewal sequences (for details
on the latter we refer to [3, 1] and references therein).

Operator renewal sequences via inducing with respect to the first return time were introduced
in [15] to study lower bounds for the correlation function p,, (v, w) (for v, w supported on Y") asso-
ciated with finite measure preserving systems. This technique was later refined in [5, §]. In partic-
ular, under suitable assumptions on the first return map f7, preserving a measure 4., and requiring
that p-(y € Y : 7(y) > n) = O(n=?), > 2, [15, Theorem 1] provides higher order expansions
of T,,, while [5, Theorem 1] shows that [15, Theorem 1] holds for 3 > 1 (see also Subsection 6.1
where we recall the latter mentioned result in a particular setting). An immediate consequence
of these results is that the upper bound | [y, vw o f"du — [y vdp [ wdp| = O(n=F=1) (for
appropriate observables v, w supported on Y') is sharp in the sense that there exists a lower bounds
of the same order.

The work [12] developed a theory of renewal operator sequences for dynamical systems with
infinite measure, generalizing the results of [4, 2] to the operator case. This work obtains first
and higher order asymptotics for the n-th iterate L™ of the transfer operator associated with
f. In particular, under suitable assumptions on the first return map f” (including the assump-

tion that s (7 > n) = ¢(n)n~?, where ¢ is a slowly varying function and i, is f7 invariant)
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it is shown in [12] that for 8 € (1/2,1), lim, ((n)yn*=PL™ = %fvd,u, uniformly
on Y and pointwise on X, for appropriate observables v. Obviously, this type of result im-
plies that lim,, o £(n)n' =P p, (v, w) = % Jvdp [ wdp, for suitable observables v, w and
B € (1/2,1). For results for § < 1/2 under stronger tail assumptions we refer to [7].

An important question is whether operator renewal type results/arguments can be exploited for
(Y,F = f¥), when ¢ is a general return time of f to Y in the sense that f¥ = (f7)”, where
p Y — Nis some reinduce time. Assume that (Y, f¥) is Gibbs Markov preserving a measure
1o- A Young tower over f¥ can be constructed (see [18]) and the first return map on the base of

the tower is isomorphic to (Y, f%, 19) (see Section 3, which recalls this in detail).

In this work we provide sufficient conditions to answer the above question when the general
return map f% is Gibbs Markov. In short, we formulate a tail condition on pio(p > k) that allows
us to work with a decomposition (as in [6, 8]) of the transfer operator on the Young tower over
(Y, po, f¥). Our main result in the finite case Theorem 4.2 provides upper and lower bounds for
the correlation function p,, (v, w) provided that the tails po(¢ > n) and po(p > k) are of the
right form (see (HO) a) and (H1) in Section 2). More importantly, Theorem 4.2 provides upper and
lower bounds of the correlation function for observables v, w supported on the whole space X (so
not just on Y). To deal with observables supported on the whole space, we introduce weighted

norms, with weights inverse proportional to the entrance time to Y (see Section 4).

Our main result in the infinite case Theorem 4.3 provides higher order asymptotics of the
correlation function for observables supported on the whole space. This result is obtained assuming
higher order expansion of yo(¢ > n) (see (HO) b) in Section 2) and again, assuming that the tail
wo(p > k) satisfies (H1) in Section 2. To deal with observables supported on the whole space, we

use the same type of weighted norms used in the finite case (see Section 4).

We illustrate the use of the main results in the setting of non-Markov interval maps with indif-
ferent fixed points, in particular the class of maps studied in [20, 21] (see Section 9). Below, we

recall briefly the previous results on the correlation function in this non-Markov setting.

In the finite measure non-Markov setting (as in [20, 21]), upper bounds for observables sup-
ported on the whole space X have been obtained in [14]. Although not written up yet, the method
in [14] can also be used to obtain lower bounds for the decay of correlations of observables sup-
ported on Y and, most probably, can be extended to deal with observables supported on the whole
space. We also mention that in the same setting, the work [10] provides upper and lower bounds
for the decay of correlations of observables supported on Y. In both works [14, 10] the results
are obtained by exploiting operator renewal type results/arguments as developed in [15, 5] via
inducing with first return times.

In the infinite setting of non-Markov maps f : X — X (asin [20, 21]), first order asymptotics
of L™v, for some appropriate v supported on a compact subset of X’ := X\ {indifferent fixed points}
has been established in [ 2]. This result immediately implies first order asymptotics of p,, (v, w),

again for v, w supported on X’. Again, the underlying scheme relies on inducing with first return
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times. The detailed results are recalled in Section 9.1.

In the setting of finite measure preserving non-Markov interval maps with indifferent fixed
points, Theorems 4.2 gives upper and lower bounds for the decay of correlation of observables
supported on X. In the infinite measure setting, Theorem 4.3 gives higher order asymptotics of
pn(v, w) for v, w supported on X . In checking the required assumptions of the abstract results (i.e.,
(HO) and (H1)) for typical examples in the class considered in [20, 21], we obtain an excellent
estimate on (7 > n). In the infinite measure case, the estimate on (7 > n) enables us
to extend the results of [12, 16] on the higher order asymptotics of L™ to the typical examples

studied here; we refer to Section 9.3 for details.

Notation: We will use a,, = O(b,) and (to make proofs more readable) also a,, < b, to mean

that there is a uniform constant C' such that a,, < Cb,,.

2 The induced map and main assumptions

Given f : X — X, we require that there exists Y C X and a general (not necessarily first) return
time ¢ : Y — N such that the return map F' := f¥ : Y — Y, preserving the measure i, is a
Gibbs Markov map as recalled below. For convenience we rescale such that 1o(Y) = 1.

We assume that £ has a Markov partition o« = {a} such that ¢|, is constant on each partition

element, and F' : ¢ — Y is a bijection mod . Let p = log d;ng be the corresponding potential.
We assume that there is 6 € (0, 1) and C; > 0 such that
W) < Cypo(a), |eP¥) — ep(y,)\ < C’m(a)&s(y’y,) forall y,y' € a, a € o, (2.1)

where s(y1,y2) = min{n > 0: F™y; and F"y, belong to different elements of a'} is the separa-
tion time. We also assume that inf,c, pio(Fa) > 0 (big image property).
In addition to the Gibbs Markov property above, we assume that the following holds:

(HO0) a) Finite measure case: uo(y €Y : o(y) > n) = O(n=?) for > 1.

b) Infinite measure case: po(y € Y : ¢(y) > n) = cn=P + H(n) for B € (1/2,1), some
¢ > 0 and function H such that H (n) = O(n=29).

The following dynamical assumption will be verified for the class of maps described in Sec-

tion 9 and will play an important role in the proofs of the main results.

(H1) Let 7 : Y — N be the first return time to Y, and 7, the k-th return time to Y, i.e.,, 79 = 0,
Ter1(y) = Te(y) + 7(F*W(y)). Let p be the reinduce time for the general return, i.e.,
©(y) = To)(y). Write {¢ > n} := {y € Y : p(y) > n}. We assume that there exists
C' > 0 such that

/ p(y) dpo < Cuo(p > n)
{e>n}

foralln > 0.
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Remark 2.1. The first return time T may be defined on a larger set than where the general return

time @ is defined, but the difference in domains has measure zero, so we will ignore it.

In order to have the norms in (4.1) below well defined, we need another mild condition on the

inducing scheme.
(H2) Either fi(a) C Y or fi(a)NY =Pforalla € a,0 < i < p(a),

This condition certainly holds for the examples studied in Section 9 (which provides the required
details).

3 The tower over the map F' = f¥
The tower A is the disjoint union of sets ({¢ = j},), j > 1,0 < i < j with tower map

Tal ) = {(Fy, 0) ifi=¢y) -1

This map preserves the measure pa defined as ua(A,i) = up(A) for every measurable set A,
with A C{p=j}and 0 <i < j.

Let Y; = {(y,7) : ¢(y) > i} be the i-th level of the tower, so Y = Y is the base. The
restriction ja|y = po is invariant under 7Y, which is the first return map to the base.

We extend the function ¢ to the tower as

oa(y,1) = p(y) —i. (3.1

Define 7 : A — X by m(y,i) := f(y). Then px = pua om~'is f-invariant, and jx is related to

the F-invariant measure y by the usual formula

px(A)=> > (T nfe=4})=> m(f7An{e>j}).
j=1i=0 Jj=0

Regardless of whether ¢ := [, ¢ dpp is finite (in which case we can normalize jux) or not, j is
absolutely continuous w.r.t. px.
Let vx,wx be observables supported on the original space X; they lift to observables on the

tower which we will denote by vo = vy o m and wa = wx o 7. Then
/ vxwy o frdux = / vawa o TX dpn. (3.2)
X A

To justify (3.2), use the duality formula [, T*vxwadpua = [y vxfwadpx, where T vx =
vx omand fwa = wa o L. To compute fX vxwx o f"dux, it therefore suffices to estimate

the correlation function on the tower.
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4 Results for the map f under the assumptions of Section 2

Throughout we assume that f and F' = f¥ satisfy the assumptions of Section 2. In particular, we
assume that F' is Gibbs Markov and that the relevant forms of (HO) and (H1) hold.

We restrict to the following class of observables. Let
™(x) :=1+min{i > 0: f'(z) € Y}.

Recall that s(z, z’) is the separation time of points z,2’ € Y and let § € (0,1) be such that
(2.1) holds. Let vx : X — R. For & > 0 we define the weighted norm || || as follows:

lox % = supgex [ux (z)|7*(z) e, (4.1)
lux|s = su — M’ o fi(z) — vy o fi(a!)] '
Xl Paca SUP0<i<p(a) SUPz,z'ca gs(e,’) vx &z VX )l

and [Jvx ||} = llvx||i + |vx|;. Note that by (H2), 7* is constant on f*(a), so the factor 7* o fi(a)
in (4.1) is well-defined.

Remark 4.1. If vx is supported on'Y, then the weighted norms || ||5, and || ||;; coincide with
| | oo (o) and || [lg with ||v]lg = ||v]| Loo (uo) + Lip(v), where Lip(v) is the Lipschitz constant of v

w.r.t. the distance dg(z, ') := gs(@.z’)
The main results in the present set-up are stated below.

Theorem 4.2 (finite measure). Assume (HO) a) and (H1). Suppose that vx,wx : X — R are
such that ||vx||; < oo and ||wx ||, < oo. Let dp := %d,ux. Then

[e.e]

1 .
/vaXOfndM—/UXdu/ wxdp=— Y M0(80>J)/deu/ wx dp
X X X ¥ X X

Jj=n+1
+O(llox g - lwx IS - dn),

where
n? if B> 2;
dy:=<n2logn iff=2;
n~(F=2)  ifp <2
Theorem 4.3 (infinite measure). Assume (HO) b) and (HI). Suppose that vx,wx : X — R are
such that ||vx || < oo and |lwx |5, < 0o. Let ¢ = max{j > 0:2(j + 1) > 2j + 1}. Then there

exist real constants* dy, . . . dq—1 such that

/ vxwx o f"dux = (don” '+ ..+ dq_mq(ﬁl))/
X

vx dpix / wx dpx
X X

+ O([loxllp - llwxlls - dn),

where d,, = n—(6-1/2),

“The constants do, . .., d,—1 depend only on 3 and the constant ¢ appearing in (HO) b). For their precise form we
refer to [ 12, Theorem 9.1] and [ 16, Theorem 1.1].
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Remark 4.4. Instead of (HO) b), one can assume a stronger tail expansion of the form used in [ 10,
Theorem 1.1] and as such obtain an improved error term in Theorem 4.3 . This is just an exercise,

which can be solved by the argument used in the proof of Theorem 4.3.

Remark 4.5. The novelty of Theorem 4.2 lies in the fact that the observables are supported on
the whole space, and of course the fact that this result can be obtained by inducing with general

return times. Theorem 4.3 is new, even for observables supported on'Y .

5 Transfer operators on the tower

Let LA be the transfer operator associated with the tower map T A and potential

4.1) i {0 ifi < o(y) — 1,
PV b it = p(y) - 1

Given that L is the transfer operator associated with (X, f, ux ), we have Lam*vx = n*Lux.
Recall that Y = Y| is the base of the tower A and that ' = f% preserves the measure
t10. Choose 6 € (0,1) such that (2.1) holds and put dg(z,z) := 65 where s(x, ') is the
separation time. Let By(Y") be the Banach space of dy-Lipschitz functions v : Y — R with norm
|vllg = ||v]| oo (o) + Lip(v), where Lip(v) is the Lipschitz constant of v w.r.t. dg.
Let R* : L'(u) — L'(p) be the transfer operator associated with I = f%. Under the assump-

tion that I’ is Gibbs Markov, it is known that (see, for instance, [15, Section 5]):

(P1) a) The space By(Y") contains constant functions and By(Y") C L>(uo).

b) 1is a simple eigenvalue for R*, isolated in the spectrum of R*.

LetD = {2 € C: |zl <1}and D = {z € C : |z| < 1}. Given z € D, we define
R*(z) : LY(Y) — L'(Y) to be the operator R*(z)v := R*(z%v). By (P1) b), 1 is an isolated

eigenvalue in the spectrum of R*(1). In addition, we know that (see, for instance, [15, Section 5])
(P2) For z € D\ {1}, the spectrum of R*(z) does not contain 1.

Note that ¢ is the first return time of T'A to the base Y. Define the following transfer operators
that describe the general resp. the first return to the base Y:

Trv:=1yLA(1yv), n >0, Ryv =1y LA (1{p=nv) = R*(1{p=pyv), n > 1.
By, for instance, [15, Lemma 8] there is C' > 0 such that
(P3) [|[R*(14v)]lo < Cuo(a)||lqv]|e for all @ € v and hence || R} |lg = O(uo(p = n)).

As recalled below, (I—R*(z)) ! can be used to understand the asymptotics of the transfer operator
of the Markov tower over the (general) induced map F' = f¥. First, it is easy to see that R*(z)v =

R*(2%v) = 5 (1;,0)2". By (P1) and (P2), when viewed as a family of operators acting on
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By(Y) C L*(p), the function (I — R*(z))~! is bounded and continuous on D \ {1}. By (P3),
R} is bounded, so z — (I — R*(2))~! is analytic on .

Since ¢ is a first return time of T'A to the base Y, we have the renewal equation on the tower
Ty =>" R;T, ; Forze€ D, define T*(2) := > n>0 In 2" and recall R*(2) = 3, - Ry 2"
Since (I — R*(z))~! is well defined on D \ {1}, we have the following equation on D \ {1}:

T*(z) = (I — R*(2))"L. (5.1)

Under both forms of (HO) (i.e., finite and infinite measure preserving) and the rest of the as-
sumptions in Section 2, the asymptotic behavior of T} is well understood ([15, 5, 12]); we also
refer to Subsection 6.1 where we recall these results.

Since va = vx o 7 is in general not supported on Yy, equation (5.1) cannot be used as such to
obtain information on the asymptotic behaviour of the correlation function on the tower given by
Javawa o TR dua = [ LRvawa dua. Hence, one cannot just use (5.1) and (3.2) to estimate
the correlation function f ¥ UXWA © f™dux for the map f : X — X. However, the operators A,
and B,, defined below can be used to deal with precisely this problem.

Following [&, Section 2.1.1], to understand the behaviour of L'} via the behaviour of T};, we
need to define several operators that describe the action of L'} outside Y. Recall from (3.1) that
©a(y,1) = ¢(y) — ¢ and define the operators associated with the end resp. beginning of an orbit

on the tower as

1v L% (1 _ >1
Apv i= LA(L{psnyv), n 20, B,v = { Yy LA(Lgpa=np\yv), n =1,

1YU, n = 0

The operator associated with orbits that do not see the base of the tower is:
Cpv i= LA(L{pp>np\vv), 1 >0.

As noticed in [8, Section 2.1.1], the following equation describes the relationship between T, =
1y LR 1y and L'}.
Lk = Z Ay, T, By, + Ch. (5.2)

ni+nz2+nz=n

6 Proofs of the main results: previous and new ingredients
6.1 Previous ingredients

As already mentioned, T¥ is the first return map for T to the base Y, = Y. Thus, previous
results on renewal theory, in particular [5, Theorem 1] (under (HO) a)-finite measure case) and
[12, Theorem 9.1] (under (HO) b)- infinite measure case), apply to 7,;. We start by recalling these
results, as relevant to the present setting. Let P denote the spectral projection corresponding to the

eigenvalue 1 for R*(1). So, we can write Pv(y) = [,- v dpo.
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Lemma 6.1. [5, Theorem 1] Assume that F' is Gibbs Markov and that (HO) a) holds. Then

P 1 -
Ti=—+— Y, Y PRP+E,
Ly e Y

where E,, is an operator on By(Y') satisfying
n? if B> 2;
[Enllo < {n~?logn  if f=2;
n~(2-2)  irp <2
Lemma 6.2. [/2, Theorem 9.1] Assume that F is Gibbs Markov and that (HO) b)holds. Let
g =max{j > 0:2(j+1)8 > 2j + 1}. Then there exist real constants dy, . .. ,dq—1 (depending

only on the constants and parameters involved in (HO) b))’ such that
¢ = (don '+ ... dgn?" NP+ D,, n>1,

where D, is an operator on By(Y') satisfying || Dy || = O(n~(8=1/2)),

6.2 New ingredients: estimates related to A,,, B,,, C,, under (H1)

In the results stated below we use the norm || ||5 and || ||%, as defined in (4.1). Recall that vA =

vx omand wa = wx o m. The proofs of the following results are postponed to Subsection 6.4.

Lemma 6.3. Assume that (HI) holds. Let vx,wx : X — R such that |vx|5, < oo and
[wx || oo (uy) < 00. Then there exists C > 0 such that for any n > 0,

| /A Covawa dua| < Crio(p > m)l[ox [ lw | o (uy)-

Lemma 6.4. Assume that (HI) holds. Let vy : Y — R and wx : X — R be such that

vy | oo (o) < 00 and |[wx |5, < oc. Then there exists C > 0 such that for any n > 0,

| [ 3 Apovus dua| < Crolio > mloy gl e

jzn
For the statement below we note that by definition, B,,uva is a function supported on the base

Y of the tower A, so || B,val|g makes sense.

Lemma 6.5. Assume that (H1) holds. Let vx : X — R such that ||vx ||}, < oo. Then there exists
C > 0 such that for any n > 0,

> 1Bjvalle < Crole > n)loxlls-
i>n

Remark 6.6. Continuing from Remark 4.1, we note that under the assumption that vx,wx are
supported on'Y', all the statements in this subsection simplify since the weighted norms || ||; and
| % coincide with || |lg and || || oo (,.y). Moreover, under this assumption, the proofs in this sub-
section are simplified, although the assumption (H1) is still required. In Subsection 6.4 we point

out such a simplification for the proof of Lemma 6.3: see Remark 6.8.

SFor the precise form of these constants we refer to [ 12, Theorem 9.1] and [ 16, Theorem 1.1].
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6.3 Proofs of Theorem 4.2 and Theorem 4.3

From the statement of Theorem 4.2, recall that du = édu x is the normalized f-invariant measure
(when ¢ < 00). By (3.2) and the definition of p, in order to estimate the correlation function for

observables on the space X, in the finite measure case it suffices to estimate

1 1
/ vxwy o fdy = / vawp o TR dup = / LRvawa dua. (6.1)
X YJa Y JA

Similarly, due to (3.2) in the infinite measure case we estimate

/ vxwy o ffdux :/ LRvawa dpa. (6.2)
X A

By equation (5.2) and Lemma 6.3,

/A Roawa djia = /A S° AT, Bagvawa dpa + 0ol > m)|ox [ wx = gux))

ni+n2+nzy=n

(6.3)

In order to take advantage of the full force of Lemmas 6.1 and 6.2 along with the estimates related

to A,,, B, in Subsection 6.2 we define
A(z) == Z Apz2",  B(z):= Z Bz", zeD
n>0 n>0

and recall that when viewed as a family of operators acting on By(Y) C L*(up), T%(z) =
ano T*z™ is well defined on D (in fact on D, but we do not use this information below). By
definition, the operator sequences A, : L>®(uo) — L'(ua), By @ L®(ua) — L®(uo), T :
L*>°(p9) — L (pp) are bounded. As a consequence, A(z)T™*(2)B(z),z € D, is well defined as a

family of operators from L>(ua) to L' (ua). Given this we can view

/ GpoawAa dua = / Z A, Ty, Bpgvawa dpa
A A

ni+n2+nz=n
as the n-th coefficient of [, G(2)vawa dua = [, A(2)T*(2)B(z)vawa dpa, z € D.
In the sequel we also use the following statement on A(1) and B(1) that does not require (H1);

the statement on B(1) below relies on the fact that B(1)va is a function supported on Y.
Lemma 6.7. We have

Ja A ywadpa = [ wadpa = [y wxdpx,

Ja B(Wvadua = [ B(1)vaduo = [ vadua = [y vxdpx.
6.3.1 Finite measure case

Let £, : Bg(Y) — Bg(Y') be as in the statement of Lemma 6.1 and put E(z) = >, E,2", z € D.
By Lemma 6.1,

/A G(2)oatwa dpia = Inain(2)(vn, wa) + I5(2) (va, wa) (64)
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for

Imain( )(UAv wA) =
1— zfA (1? (1_2)2 ( Zk n-+1 Z] k‘—HPR P) >B(Z)UA7~UACZMA,
Ip(2)(va,wa) == [, A( VB(z)vawa dua.
By the above, in order to estimate f A Gruawa dua, we need to estimate the coefficients of the

functions I,,4in(2)(va, wa) and Ig(2)(va, wa), z € D for appropriate va, wa (equivalently for

appropriate vx,wx). Let

V(2)(va,wa) /A Z Z PR;P)z ) (D)vawa dpa 6.5)

0 k n+1j=k+1

and note that

Inain(2) (vA, wA)—l — /A A(l)gB(l)vAwA dua — V(2)(va,wa)

= I"(2)(va, wa) + IP(2)(va, wa) (6.6)
for
TAE)(va,wa) i= [y A (L4 (1= 2) 00 (F it S5t PRiP)2") B(Dvaws dua
I8(2)(va,wa) = [ A( (@ (1= 2) X020 ( & Eiis Sss PRiP)Z) 220w dua

Below we provide the estimates obtained in the sequel for the coefficients of the terms in (6.5)

and (6.6) and as such complete

Proof of Theorem 4.2. By Lemma 6.7,

1 / P 1 -
A(1)=B(1)vawa dua = / UXdMX/ wyx dpx 2"
L=z /A ()<P W ¢ Jx X nzzo

By Lemma 7.1, the coefficients V;,(va, wa) of V(z)(va,wa), z € D are given by

(o)

Vi(va, wa) = % Z o > k)/ vx d,uX/ wx dx.

k=n-+1 X X
We continue with the estimates for the coefficients of the terms in the RHS of (6.6). Lemmas 7.4
and 7.5 together with (HO) a) imply that the coefficients of the functions I4(z)(va,wa) and
15 (2)(va,wa), z € Dare O([Jlux|[§ [lwxI5 to(yp > 1)) = O(n™"[lox|If [lwx||%)-

It remains to estimate the coefficients [, > A, Eny Bpsvawa dua of the func-

ni+nz2+nz=n
tion I5(2), 2 € D. By Lemma 6.5 and (HO) a), || Byvallo = O(uo(e > n)|lvx|lz) = O(n =P |lux||3)-
Hence, the convolution of £, and B, satisfies || >, .. Eny Bngvalle = O([|Enllo - lux||5)-

Next, given that vy is a function supported on the base Y, the definition of A,, and (HO) a) gives

!/AAnUYwA dpa| < po(e > n)wall Lo (ua) 10y |z (uo) < 22 J0x | Lo (ux) 10y |l6-
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Hence,

zn1+n2+n3:n Ay Eny Brgvawa dpal = O(]| Exllg - HUXH; : HwXHLOO(uX))~
Putting the above together and using (6.6) and (6.3),

1 1
/UAwAOTZd,LLA:_/ UXdMX/ wxduX+f2 Z /Lo((p>l€)/ ’UXd/L)(/ wx dux
A ¥ Jx X L N} X X

+ O([[Enllo - lvx g - lwx[15%)-
The conclusion follows recalling that dp = %du x and using equation (6.1). 0

Infinite measure case. Write
[f@mmwrfgmwwmmMmMz%w+mm 67)

for
Ie(2)(vaswa) = [, (A A(1))T*(2) B(1)vawa dpa,

IB.(2)(va, wa) = [ A 2)(B(z) — B(1))vawa dua.
Below, we provide the estimates obtained in the sequel for the coefficients of the terms in (6.7)

and as such complete

Proof of Theorem 4.3. By Lemma 6.2, the n-th coefficient [ [, A(1)T*B(1)vawa dpaln of the
function [, A(1)T*(z)B(1)vawa dpa, z € D, satisfies

[/ A)T*B(1)vawa dpal, = (don! +...+dq1nq(’3_1))/ AL PB(1)vawa dua
A A

+ | AWDBvaws dis.
where || Dy, |lg = O(n=(#=1/2)). By Lemma 6.5, || B(1)vally < C|vx||} for some C' > 0. Hence,
\/AA(l)DnB(l)UAwA dual = O~ flwal| oo up) [ B(L)vallo)
= O(n™ VD x| oo gy [l [15):

By Lemma 6.7, [, A(1)PB(1)vawa dua = [y vx dux [y wx dpx. Putting these together,

[/A A(1)T*(2)B(1)vawa dupl, = (don®~ ' + ... + dq_lnq(ﬁ_l)) /X

+ O™ P YD wx || ooy o [I5)-

vx dpx / wx dpx
X

By Lemma 8.1 the coefficients of the functions I (2)(va, wa) and I5;(2)(va,wa), z € D,

are O(n ™" [lux |3[lwxI%)-
Putting the above together and using equations (6.7) and (6.3),

/vAonTZduA:(don’B_l+...+dq_1nq(5_1))/ de,uA/ wx dpx
A X X
+ O Pllox|f llwx [1%)-

The conclusion follows from the above equation together with equation (6.2). O
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6.4 Proofs of the lemmas in Subsections 6.2 and 6.3

Proof of Lemma 6.3. Recall that 79(y) = 0 and 73 (y) = 7%_1(y) + 7(f*1®)(y)) is the k-th
return time to Y. Compute fory € Y

Tr41(y)—1 ‘ Tr1(y)—Tr(y)—1 ‘
> uaoTi(y,0)| = > lva o TA(T™W)(y,0))|
7=7r(y) J=0

Trr1(Y)—Tr(y)—1

= > Juxo AWy

=0
Te+1(Y)—Tr(y)—1

> [ox |50 (a1 () — 7(y) — 5)" 09 < Cellox 1%, (6.8)
=0

IN

where C; = 37+, §~(+2) Thus,
}/ACnvAwAd,uA) = ‘/ALZ(l{@A>n}\YUA)wAd/‘A’

w(y)—
< / foallwa o TR| dua < wallz=(us) / Z s o T4 duo
{a>n}\Y {o>n}

1Tk+1 —1

< x|z (o) /{ Z Z lva o T4 | dpo
50>n

k=0 j=m1(y)

< wal!LoonX)Cslvxll’ﬁ.o/{ }p(y) dpo < CCepio(p > n)|[oxllse lwx | Loe (ux):
p>n

where the last inequality is obtained using (H1). O

Remark 6.8. Continuing from Remark 6.6 we note the following. If vx is supported on'Y, then
Tk (y)(

the sum Z;’”T; "oa o T A (y,0)| reduces to single term, namely |vp o T

the constant C, appearing in (6.8) disappears, but condition (H1) is still required.

y,0)|. In this case

Proof of Lemma 6.4. Using (6.8) for wa instead of va we find

‘/ ZAjvywA dnA’ = )/ Zl{¢>j}vywA oTi duo‘
IN— Y i

w(y)—1 —17p41(y)—1 '
< / oyl Y Lipsjplwa o T dpo < oyl 2o (u) / Z Z lwa o TA| dpo
{e>n} i=n {e>n} k=0 jem(y)

< HUYHL‘X’(;LO)OEHwXHZo/{ }p(y) dpo < CCepio(p > n)[oy | oo (o) lwx 15
w>n

by (H1). This completes the proof. O
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Proof of Lemma 6.5. For the purpose of the argument below, we define weighted norms on the
tower analogous to (4.1). Let 74 (z) = 14+ min{i > 0 : T (z) € Y} for Y = 7~ 1(Y), and define

lallz co = suPsea va(@)|7A ()1,
|UA‘*A79 = SUPgeq SUPo<i<p(a) SUPz a2/ ca %"UA (JZ’, Z) - 'UA(:I;/v Z)’a

and [[vallA g = [[vallA oo + [valA g- In this way, [lvx || = [[vallA o whenever va = vx o .
Fora € o, 0 < j < ¢(a), define Bj qua := L AL (y,0):yea,itime(y)va ). The definition of pa
implies that for points on level ¢ of the tower, the potential p satisfies ZW(y) i DA oTi(y, i) =
p(y). Writingy = F~1(z) Naand y = F~!(2') N a, we compute using (2.1)

|Bj.avalle = Sugep(y)lvA(y,SO(y)—j)!
xre
- squH‘s(m’””') ‘6”(y)m(y,s0(y)*3)*e”( Doaly (') — )
z,z' €
< po(a)(m* o f297 (@) "M ua A o
+ sup 67 (|0 — 20| (r* o A0 (a)) "4 o3 o
z,z'eY

+ po(a) (7 0 f2O 7 (@)1 us5)
Cruo(a)(7* o F7073(a)) =1+ o4 5.

IN

Thus,

pla)=1 7r11(a)

> IBjualla < > Z IBjavallo < Y 1 Bj.avallo

ji>n aca aca k= i=T11.(a)+1
pla)>n playon 0 ITTH

[e=]

pla)=1 Tey1(a)

Z Ciuo(a) Z Z (1 + 71 (a) — )~ HUAHAG

@(Ze)‘;n k=0 j=7k(a)+1
<CiClluallag 3 mlalpla) = CiCelleallsg [ ply)duo
aca {e>n}
p(a)>n
< C1C:C [vallap no(e > n),
where the last inequality was obtained using (H1). O

Proof of Lemma 6.7. By direct computation:

/A(l)lywAd,uA = /ZLA 1{¢,>n} wAd,uA—/ Zl{¢>n}wA oTX duna
A

n>0 n>0
p—1
= /Zonnguoz/ WAAUA.
YnZO A

The statement on A follows. For the statement on B, let v, = Lioa=k)vA for £ > 0 and set

vg; = ly,ur where Y is the j-th level of the tower. Then vy ; have disjoint supports, and for
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each element a € «, there is only one j such that vy ; is supported on fi(a) C Yj, namely,

k+ 7 =¢(a). Let ug(y,0) = vi(y, j) and compute that

LAvk—ZLAvk] ZL LAy, = LRuy, = Rruy, (6.9)
7=1

Recall that B(1)wva is supported on Y. Hence,

/B(l)%dm:/ ZLAUk:d,UO—/ ZR*ukd,UO:/
Y Yk:o

k=0 Y

Zukduo—/ NN

k=1

The conclusion follows since [, va dua = [ vx dpx. O

7 Proofs of Lemmas used in the proof of Theorem 4.2 (finite measure
case)

7.1 Estimating the coefficients of V' (2)(va, wa) defined in (6.5)
Lemma 7.1. Assume the setting of Lemma 6.1. Then the coefficients V,,(va, wa) of the function
V(2)(va,wa), z € D are given by

o0

1
Va(va, wa) = — Z uo(90>k‘)/ UXdMX/ wx dpx.
Ly S— X X

Proof. By Lemma 6.7, [,, B(1)vaduo = [y vx dux. Recalling Rjv = 1y LX (1{p—pn}v), we

compute that

(X5 X X PRIP))Bwa = 55 [ oxdux 3° Y ol > k)"
n=0 ¥ kont1jmkt1 LR n=0 k=n-+1

Thus, using Lemma 6.7 (first, for the statement on B and at the end of the argument for A),

V(z)(vA,wA):/ Al Z Z PR;P ) (Lvawa dua

0 k n+1] k+1

z/vxduxz Z po(p > k)2 /A )lywa dua

n=0k=n+1

1
- UXdNX/deMXZ Z tolp > k)z
X

n=0k=n+1

The conclusion follows. O

7.2 Estimating the coefficients of /*(z)(va, wa) and IZ(2)(va, wa) defined in (6.6)

We begin with some immediate consequences of Lemmas 6.4 and 6.5.
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Lemma 7.2. Assume (HO) a) and (HI). Let wx : X — R such that ||wx |5, < co. Then

/ A2) — A(1)
A

1 — 1YwA dﬂ’A = Z anznv

n>0

where |an| = O(po(p > n)[wx|l3).

Proof. Compute that
A(z) — A1
—/MlywAduA:/ ZZAjleAanMA-
A 1=z Au>0>n

The conclusion follows from the above equation together with Lemma 6.4. 0
Lemma 7.3. Assume (HO) a) and (HI). Let vx : X — R such that ||vx ||}, < oo. Then

/ B(z) — B(1)
A

n>0

where |an| = O(u(p > n)llvx|[5)-

Proof. The conclusion follows by the argument used in the proof of Lemma 7.2, using Lemma 6.5

instead of Lemma 6.4. O

The coefficients of I(z) will be obtained by decomposing this term into 4 (z) = D4(z) +
F4(z), where

Da(z)(va,wa) ::/Azél('ziij(l)];B(l)vAwA dua
and Az) — A1)
Fy(z)(va,wa) ::/Al_ZQ(z)B(l)vAwA dun,
with - - -
Q2)v = (12)2(@12 > 3 PriP): (7.1)

n=0 k=n+1j=k+1

Lemma 7.4. Assume the setting of Lemma 6.1. Assume that (HI) holds. Suppose that vx,wx :

X — R are such that||vx || oo () < 00 and ||wx |5, < co. Then the coefficients D a n(va,wa),

Bx)
Fan(va,wa) of the functions D o(z)(va,wa) and Fa(z)(va,wa), z € D satisfy

= O(po(p > n)l[ox|lzee (ux) llwx %),

{|DA,n(UA7wA)
= O(po(p > n)l[vx | Lo (uy) lwx [I5)-

|Fan(va, wa)

Proof. By Lemma 6.7 (the statement on B),

A(z) — A1)

] lywa dpna.
—z

Da(2)(va, wa) = ;/AUMM/A
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Alz)-A1) — n wi _ *

By Lemma 7.2, [, 5= lywa dua = 32,50 anz™ With [an| = O(uo(e > n)|lwx|5,). The

statement on | D 4 ,,(va, wa )| follows.

Next, by definition,

oo o0

Q(2)B( /B Jua dpa X 1—ZZZM0<P>I€
n=0 k=n-+1

1 = "

= — [ vadua X Z,uo(go >n)z
Yo JA =0

Thus,
1 > A(z) — A(1
Fy(z)(va,wa) = E /AUA dua x Z,uo(go >n)z" X /A (iz()lywA N

n=0
We already know that the coefficients of | thum dun are O(po(p > n)||lwx||%,). The

statement on | F4 »(va, wa )| follows. O

The next result provides estimates for the coefficients of I”(2)(va,wa), z € D defined
in (6.6). Write I”(2) = Dp(z) + Fp(z), where given that Q(z) is as defined in (7.1),

z) :/AA(l)iB(Zi:ZB(l)UA’wAdMA

and
= / A(l)Q(z)B(Zi:B(l)vAwA dun.
A z

Lemma 7.5. Assume the setting of Lemma 7.4. Then the coefficients Dp ,(va, wA), Fpn(va,wa)
of the functions Dp(z)(va,wa), Fp(2)(va,wa), z € D satisfy

{|DB,n(UAawA)| = O(po( > n)llux[l3llwx %),

|FBpn(va, wa)| = O(po(e > n)llvx|;llwx||5)-

Proof. The required argument is similar to the one used in the proof of Lemma 7.4 with Lemma 7.3

replacing Lemma 7.2. O

8 Proofs of Lemmas used in the proof of Theorem 4.3 (infinite mea-

sure case)
Recall that for z € D, the functions IIA (2)(va,wa) == [,(A A(1))T*(2) B(1)vawa dua
and I5,(2)(va,wa) = [ A( 2)(B(z) — B(l))vAwA d,uA were defined in equation (6.7).

Let Imf n(vA, wp) and IB (vA, wA) denote their n-th coefficients. The next result provides

infn

estimates for Imf »(va,wa) and IB. (va,wa) and it was used in the proof of Theorem 4.3.

inf,n
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Lemma 8.1. Assume (HO) b) and (HI). Let vx,wx : X — R such that |lvx ||}, ||wx |5 < oo.
Then

Tt (va, wa)l = O Pllox 5llwx %), 115 n(va, wa)l = O Pllux|f - [lwxll).
The proof of the above result relies on standard continuity properties of the functions Iiﬁf(z)
and IB.(2), z € D which we recall below.
8.1 Continuity properties of //};(z) and I5,(z), 2 € D

First we note some standard consequences of Lemmas 6.4, 6.5 and 8.2 which give the continuity

properties of some quantities involving A(z), B(z), z € D.

Lemma 8.2. Let a(z)
on D. Suppose that its coefficients satisfy >

laj|| < Cyn=" for B > 0 and Cy > 0. Then
(ef(ufi(9+h))) _

i>n
there exists Co > 0 such that for all h > 0, all w > 0 and all € (—7, 7|,
a(e=®=0))|| < CyhP,

Proof. This proof is standard. We provide it here only for completeness. Compute that

la(e =)y —a(e= =) < b > jllajll+ > llasll. 8.1)
j<hTt j>h=t
By assumption, the second term is bounded by C;h?. Next, let s, := > j>n |la; and note that
> dllagl= 32 dls—si)= 30 G=Vsi— 3 dsi+ D s
j<h=t j<h=t j<h=t j<h=t j<h=t

< Cy(h7t = DR + CynP Tt <20, RP
Hence, the first term of (8.1) is bounded by 2C; h?, as required. O

Lemma 8.3. Assume (HO) (either a) or b)) and (HI). Let vy : Y — R, wx : X — R such that

vy [[Loo( < o0. Then there exist C1,Co > 0 such that for a > 0,allu>0anda
MO) x hen th C1,Cy > 0 such that for all h > 0, all 0 and all
0e(—m

]/ SO A ) oy daa| < O oy gyl

| (Al — A1)y wn dua| < CalfP oy o ol

Proof. By Lemma 6.4, there exists C' > 0 such that 3322 | [}, Ajoywadua| < Cuo(e >

n)||vy || oo (uo) lwx || %, for all n. > 0. The conclusion follows by Lemma 8.2. O

Lemma 8.4. Assume (HO) (either a) or b)) and (HI). Let wx : X — R such that ||vx||; < oo.
Then there exist Cy,Cy > 0 such that for all h > 0, all w > 0 and all 0 € (—7, 7],

I(B(e~ =) — B(e= = ))uallg < C1hP[lox |,

I(B(e= =) = B(D))oall < C216)7 x5
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Proof. By Lemma 6.5, there exists C' > 0 such that } .-, || Bjva| < Cllux||z, for all n. > 0.

The conclusion follows from Lemma 8.2. O]

The following result was obtained in [12, Lemma 4.1] (see also [13, Lemma 2.4] and its proof

for a different argument).

Lemma 8.5. Assume that F' is Gibbs Markov and (HO) b) holds. Then for all w > 0 and 6 €
(=, ], there exist Cy,Cy > 0 such that |T*(e=“~))||g < Ci|u — i6|P. Moreover, for all
h>0,allu>0andall§ € (—m, 7| (e~ (u=il0+R)y _ x(e=(=i0))||y < CyhP|u — i0) =25,

Combining Lemmas 8.3, 8.4 and 8.5, we obtain

Corollary 8.6. There exist positive constants C, Cy such that for all w > 0 and all § € (—7, 7],
LR (e” 7)) (va, wa)| <
Collvx |Igllwx || ooy ). Moreover; there exist positive constants C3, Cy such that for all h > 0,
allu>0and 6 € (—m, 7],

\Ii‘gf(e*(”*w))(vA,wA)] < ClH’UXH;HU)X”Loo(MX) and similarly,

|(Ling(e™ ") — I (™)) (va, wa) | < C3h®lu— 6]~ ox [[fllwx || o ()

m

|(Ligp(e7 =70 — 183 (™)) (va, wa) | < CabPlu— 6]~ Jox [fllwx || o ()

m

8.2 Proof of Lemma 8.1
The first result below will be instrumental in the proof of Lemma 8.1.

Lemma 8.7. Let b(z) be a function well defined on D. Assume that there exist Cy, Cy > 0 such that
for any h > 0 and for all 6 € (=7, x, |b(e~ )| < Cy and |b(e~#—H0+R)) — p(e~(u=0))| <
CohPlu — 60|75, for B € (0,1). Then the n-th coefficient by, of b(z), z € D is O(n=?).

Proof. We give the standard short proof only for completeness. We estimate the coefficients of
b(z), z € D, on the circle I" = {e‘“ew - <0< 7w} withe ™ = e~/ where n > 1. Write

1L [ b(z) e [T in_iby —ind
by = =— dz=— [ ble7/me?)e=0qg.
omi Jo o102 = g [ bleMeNe
Note that
’b |<< ’/ fl/n 19 —inf d@’ +’/ fl/n 19) —inf do|.
1/n

Since |b(e~1/"e?)| < C} we have | fol/" ble 1 /me?) e~ dg| < Cyn~1. To estimate the second
term, let [ := ffr/n b(e=1/me?)e=" df and note that

m . . T+m/n ‘ ‘
I = / b(e—l/neze)e—me do = _/ b(e—uneze)e—me do.
L/n (14m)/n

Thus,

s ) ) w+7/n } )
oI = / ble e e g — / ble M/meO=m/me= 0 49 — [} + Iy — I,
/n (1+7)/n
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where
w+7/n 0 - (14m)/n 0 ind
L :/ ble e e™ ™ qg, I, :/ ble e e qg,
™ 1/n
I3 = / (b(efl/nei(efﬂ'/n)) o b(efl/neie))efinG de.
(1+4m)/n
Clearly, |I;| < n~' and |I] < n~!. By assumption, |b(e=1/me!0=7/n)) _ p(e=1/mei?)| <
Con~P|1/n — i0|=P. Thus, |I3| < n~" and the conclusion follows. O

We can now complete

Proof of Lemma 8.1. By Corollary 8.6, IA.(e=(“=1))(yx, wa) and I

inf

(e=@=9))(va,wp) sat-
isfy (in ||) the assumptions of Lemma 8.7 (where the involved constants include the product
lvx|l5llwx]lo )- The conclusion follows by applying Lemma 8.7 to I/ (e~ (=) (va, wa) and
1B (e (=) (up, wp). O

9 Non-Markov interval maps with indifferent fixed points

The works [20, 2 1] studied a class of non-Markov interval maps f : [0, 1] — [0, 1], with indifferent
fixed points, called AFN maps, which stands for Finite image, Non-uniformly expanding maps

satisfying Adler’s distortion condition: f”/(f’)? is bounded.

9.1 Known results for f via first return inducing

For infinite measure preserving topologically mixing AFN maps (f, [0, 1], u), with (7 > n) =
n~P4(n) for B € (1/2,1) and £ a slowly varying function, and transfer operator L, [|2, Theorem
1.1] shows that lim,, o £(n)n' P L"v = % J v dp, uniformly on compact subsets of [0, 1]\ ,,
where I, is the set of indifferent fixed points, for all v = w/h, u is a Riemann integrable on [0, 1]
and h(z) = d’fi—g”). In particular, [12, Theorem 1.1] holds in the setting of (9.1) below, for v(z) =
¢ with g8 > 1. For the LSV family of maps studied in [1 1], which induce with first return to a
Gibbs Markov map, the work [12] also obtains higher order asymptotics of L™v, for some suitable
v supported on (0, 1] (we recall that such a map has a single indifferent fixed point at 0); this result
of [12] implies higher order asymptotics for the correlation function p,(v,w) = [vw o f*dpu
associated with the LSV family of maps [11] (for the suitable v and w € L°°). These results on
higher order asymptotics have been improved in [16] and again, they apply to LSV maps [11].
Higher order asymptotics of p, (v, w) in the setting of AFN maps without Markov partition has
not been addressed. The only obstacle in [ 12, 16] was that the invariant density of the induced map
is BV and thus, the arguments used in [12, 16] to obtain higher order expansion of u (7 > n)

(which require smoothness of the induced invariant density) do not apply®.

Higher order expansion of u(7 > n) is required for results which aim to address any type of error term in the
infinite measure set-up: see [12, 16, 17].
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In what follows, in the process of verifying (HO) and (H1) for AFN maps, we obtain excellent
estimates for p-(7 > m). This allows one to infer that the results in [12, 16] on higher order
asymptotics of L" hold in the setting of (9.1), a typical examples in the class of AFN maps [20,

]; we recall that Theorems 4.2 and 4.3 only address the asymptotics of the correlation function
pn(v, w) for appropriate v, w (so a weaker result than higher order asymptotics of L™). For details
we refer to Section 9.3.

In the setting of finite measure preserving non-Markov, non-uniformly expanding interval
maps f : [0,1] — [0,1] with a single indifferent fixed point at 0, the works [14, 10] consider
a first return induced map to Y = [z, 1], z > 0, to obtain upper/sharp mixing rates. The relevant
Banach space in which renewal type arguments are developed or verified is BV. The sharp results

in [10] are for observables supported on Y.

9.2 Verifying conditions (H0)-(H2)

One can verify the abstract conditions in Section 2, and hence prove Theorems 4.2 and 4.3 for
the general class of AFN maps studied [20, 21]. For simplicity, we restrict here to the following
example:

f(2) = fap(z) = 2(1 + bx”) mod 1, a>0,be(0,1]. 9.1)

We induce on the interval Y = [eg, 1], where eg € (0, 1) is such that f(ep) = 0. The fact that the
orbit of eq is disjoint from the interior of Y implies that eg ¢ f*(a) foreverya € a, 0 < i < ¢(a),
and therefore condition (H2) follows immediately.

Adler’s condition fails at x = 0 if « € (0,1) in (9.1), but the first return map f7 to Y is
uniformly expanding and Adler’s condition does hold for it. This gives a uniform bound on the
distortion of g := f7. Indeed, if g : J — g(J) is a branch of f7 with |¢”(s)/(¢'(s))?| < C, then
forall x,y € J,

et = |[ e
/: ilflgj; ds < C/:/ 9'(s)| ds = Clg(y) — g(=)]. ©-2)

The same bound applies to iterates of g. As a consequence, the proportion of subintervals of the
branch domains of ¢g* doesn’t vary too much under the map g*. This fact will be used throughout
this section.

In general, f is not Markov, but preserves an absolutely continuous measure which is finite if
and only if € (0,1). Set 8 = 1/a. Let zp = e and for n > 1, define recursively z, 1 < x, SO
that f(z,) = x,_1. From [9] (in fact, sharper estimates can be found in [ 16, Section B]) one can
establish the asymptotics

*

B c log(n +1) .
Ty = (n+1)5+0<(n+1)5+1> for some ¢* = c*(a) > 0. 9.3)

For instance the condition || |5, < oo can thus be written as sup,¢ o 1 7~/ Ploy ()] < occ.
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For each k > 1, let e, > e;_; be the right-most point such that f™(¢%)(e,) = eg. Then
f™ maps [ex, 1) monotonically but in general not surjectively into Y. The general return time
is o(y) = m(y) + 7o f=W(y) for y € [ex,err1). The map f¥ has only onto branches and
thus, it is a Gibbs Markov induced map with good distortion properties derived from (9.2), and

{yeY o) =71(y)} = ek, ert).
Lemma 9.1. The family of maps (9.1) satisfy condition (HO).

Proof. Forn > 1,let A, :={y € Y : p(y) = me+1(y) > n} C [ek, ex+1). Let in the remainder
of this section 75, = 75,(1). We first estimate the derivatives A, := D f™%1(¢e;) and lengths | Ay|.
For j > 1, lety; € [eg,e1) be such that f(y;) = x;_1. Hence 7(y;) = j and f7(y;) = e, s0
that {7 > n} = (eo, ¥n). Let o; be the integers such that f7 (1) € [yo, 1, Yo, 1 1) for j >0, see
Figure 1. Then also f™~1(A;) C f™1([ex,1)) C [YoysYo,—1) for each k > 0. Using (9.2) (or

=] er—1 er 1
f } | E—
Ag

ka-fl ///
eo Yoy, FTR=1(1) yop -1

f EE— {

STR=1(Ayp)
ka / l J
Y

e Yn—r1y, Yoy, R 1

L i il Il |

T 1

Tk (Ag)

Figure 1: The points e;_1, e, 1 and set A and their images.

the fact that all branches of f” are convex upwards), we find

|1 - ejJrl‘ < ’ij(l) _y0j+1‘ < ’y0j+1—1 _y0j+1‘ ’ij(l) _y0'j+1‘
’1_6j| N |ij(1)—60| N ‘y(fj+1 _60’ |ytfj+1—1 _y0j+1|

‘yﬂj_;'_l—l*yo'jﬁ»l |
|y0j+1 —eo|
-
7 (Do
|y0j+1 1Yo, 41 |

Using (9.3), we can bound < min(y/oj41,1/A) for some uniform v > 0, A > 1.

We bound the second factor < 1, except for j = k — 1. Taking the product over

j=0,...,k—1gives

1 —_ Tk— 1
‘1 - 60| ‘yUk 1= yo’k’

Remark 9.2. This shows that the reinduced scheme by itself has exponential tails.

Boundedness of distortion of f7* : [y,, , Y, —1) — [€0, 1) together with (9.3) implies

‘kail(]‘) _yak‘ ‘ka(1> —60’ C* 75
< 1 1)). ,
Yo —1 = You,| < 1—eo] — ll—eoya’”l( +0o(1)) 9.5)
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The boundedness of distortion of f™1 : [ex, 1] — [0, f™1(1)] combined with (9.4) and the first
inequality of (9.5) leads to

7<< 1 |1 — ek
f'(eo) [fm™(1) — eo

(1) —yo | 1 eo\
< min{ —, -} <K
|y0k—1 - yak| ka — €0 | H { } H

mwbﬂ%&

As T = Z§:1 oj, the quotients 73, /A, decrease exponentially and are thus summable in .

Define hmax = SUp,¢je, 1] h(7) for the density h = %. Take ng so large that

ko

1 1 Nmax
H ey Y < 5 and Z n5+1 (9.6)
7=1 k=ko

for all n > ng, where kg = ko(n) = min{k > 1: 27415 > n}.

Let gi denote the inverse branch of f**1 : Ay — [0,2,_,,_1]. With the notation )\, =
Dftl(er), X, = D2f™FL(ey) and g = —\),/AZ (which is bounded in k because of Adler’s
condition), we find

oo dk 2 3
i (x) ek—M(x+2x-+om>)

Since the density h is C? smooth, 10(Ax) = h(eg)(gr(Tn—x,) — k) + @(gk(:ﬁn,m) —er)? +
O((gk(zn—r,) — ex)?). Inserting the asymptotics for gi () — ey and for z,,_,, _1 from (9.3), gives

e )c* c* 2 (e
pola) = M 7y L (g + ) (20
+0 (hg\e:) (n — 73,) "B+ log(n — Tk)> .

Applying this for k& < ko and therefore n > 27;, we can use the asymptotics (n — 73,)™# <
n~P(1 + 267, /n). Therefore

po(Ap) = nb’h(i\k)c +0 (:\kn(ﬁﬂ) + p(B+D) log(n) + n25> )
k k

Setc:=c") 150 E\ 1) Because Dors0 ar < ooand [1 —ep,| < [1 - 60|H] IW y
(9.4) for k = kg, we obtain

ko—1 00
_ C
ol >n) —en™| = | > po(Ak) + po(fexy, 1) BZ'
k=0
¢ -
_ max
= S S Y
k=ko

+ O(n~(B+1) logn) +0(n~ By L O(n=2%).

Recalling the choice of ny and hence kg in (9.6), we conclude that |ug(p > n) — en™?| =
O(n=2#,n~B+1) logn), and condition (HO) follows. O
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Lemma 9.3. For the maps given by (9.1) we have %uo(go > n) — pu(r > n)| = O(n=1+H)
and (H1) holds.

we use Lemma A.1. Recall that \, = D f™+1(ey)

and hmax = SUP,¢[e, 1] 7(2). Take again ng and ko = ko(n) as in (9.6) and assume that n > ny,

Proof. To estimate \%,uo(w >n)—p (T >n),

son > 27 forall k < k.

Recall that {¢ = 7511} = [ek,exr1). The set of y € [eg,exs1) such that n — 7, <
(f*®(y)) < nis O(%) due to the boundedness of distortion of f™ : [eg,1] —

[eo, f™(1)]. Using also (9.3) to estimate |y, —

- €k+1 — €k
S My o < bl e [
P=Tht1

k>0 E>1 |y0k+1 - 60|
By boundedness of distortion, H < /\*lk and since ;—’Z is summable by Lemma 9.1, we
Ok+1
conclude
ko—1 -8 -8
n— T -n 1—e
Z/ 1{n27>n—7'k} © ka dMO < hmax( Z ( k + Z ‘ 0’>
k>0 7 {1P=Tr+1} k=1 k>ko
ko—1
28T 1—e
S(hmax > f L - °|) ~(BHD) « (5D, 9.7)
k=1 7k
Tk(1)— -
From (9.3) we derive ‘f|;£kzl)y— :(j‘l' < Usmg (9.4), the second sum in (A.1) can be esti-
mated as
/ Lgsmpo [ dpo = Y po(lerss, 1))
{e>Tk11} Okt1>M
< h Z |f y0k+1‘ H
= max
Ok41>N ’ka - 60’ nax O-]/’Y’ )
<< max
Jkgin]l_[() max UJ/'y A)
ko
hmax 1
<
< T ey 2 I

k>ko,0k+1>n j=ko+1 max U]/’Y’ )

because o1 < n for k < ko by the definition of kg = ko(n) in (9.6), which also gives

Hfozl m < n~(+48) for all n > nyg. Therefore the quantity of the previous displayed
J El

equation is O(n_(f3+2) ), which is clearly negligible compared to the first term (9.7).

To check condition (H1), we continue the proof of Lemma 9.1. Boundedness of distortion of

5
Okt - : |Ak| |yn*‘rk_30| Tk+1
f ’ [y”k+1’y‘7’“+1_1) = leo, 1) gives M=ey] < [Yos,y 1 —1—€0 (n—Ty)?"

(9.4) and (9.5) we get

. Combining this with

min 7 1,_1 n g (k+1)7'kﬁ
(b + 1l < ( 5 H { } A ((” - Tk)7k> H;?:l max{%,)\}. -8
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Since n < (n — 71 ) 7k, this gives

k+17’
J o < e D] < o 3 T
p>n

k>0 k>0 11j= 1maX{

Recall that 75, = Z§:1

condition (H1) follows. O

o, so the sum in this expression is finite. Since =% = O(uo(¢ > n)),

9.3 Further results for the infinite measure setting of (9.1)

Recall that p; is the absolutely continuous probability measure preserved by the first return map
fT Y — Y. Lemma 9.3 shows that the tails %,uo(go > n) and p-(7 > n) coincide up to
O(n~(+A)). As shown in Lemma 9.1, (¢ > n) satisfies (HO) b). Thus, ji, (7 > n) also satisfies
(HO) b). Moreover, using sharper estimates of x,, (as in [106, Section B]), one obtains sharper esti-
mates for po(¢ > n); in particular, 1(¢ > n) satisfies condition (H) in [16], and by Lemma 9.3,
wr (T > n) satisfies condition (H) in [16] as well.

As mentioned in Section 9.1, the only obstruction in [12, 16] to obtain higher order asymptotics
of the transfer operator L™ for maps such as (9.1) uniformly on (0, 1], for BV functions supported

n (0, 1], was the higher order expansion of zi-(7 > n). But as shown here p-(7 > n) satisfies
(HO) b) (by Lemmas 9.1 and 9.3) and hence, the required tail conditions of [12, Theorem 9.1,
Theorem 11.4] and [16, Theorem 1.1, Proposition 1.6]. As a consequence, these results apply to
the map (9.1).

Using the fact that [12, Theorem 11.4] and [16, Proposition 1.6] hold for the map (9.1), one
also obtains [12, Corollary 9.10] and [16, Proposition 1.7], which provide error rates for the
arcsine law. ( It is known that arcsine laws hold for the general class of AFN maps, see [19].)
As shown in [21, 19], the Darling Kac law holds for the general class of AFN maps considered
in [21]. Error rates in the Darling Kac law for maps such as the one studied in [1 1], characterized
by good higher order asymptotics of the tail of the first return time, were obtained in [17, Theorem
1.1]. Again, the only obstruction in [17] to show that [17, Theorem 1.1] applies to maps of the
form (9.1), was the lack of knowledge on the higher order expansion of p-(7 > n). Given the
information on pi.- (7 > n) obtained here, one obtains that [17, Theorem 1.1] applies to the setting
of (9.1).

A Comparing general and first returns

In this appendix we prove a result used in Lemma 9.3, namely Lemma A.1. A consequence of
Lemma 9.3, namely Corollary A.2 below, allows for a direct comparison between » i>n é to(p >
J) (the leading term of the correlation decay in Theorem 4.2) and 3/, 11(1 > j) (the leading
term of the correlation decay, possibly, obtained via inducing with respect to first return time); we

refer to Remark A.3 for details in the setting of (9.1).
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Lemma A.1. Suppose that g and . are equivalent measures on'Y that are preserved by the

general return map f¥ and first return map f7, respectively, and p = fy pdug < oo. Then

1 , .
Euo@ > j) — pr (7 > j)

1
==> ( / Lzrsg-ny © S dpo - / Lrsi) offkdzm) . AD
pkzo {P=7k+1} {p>Trs1}

Proof. The set Yy = mI(Y) = ukzoffk = Ug>0{(y,7k) : p > k} can be considered as a

subtower of A with dynamics

TX (g, 75) = (y,1ig1) 0 <i<p(y) —1,
A y o) — P
(Fy,0) ifi=p(y) -1,

see Figure 2. Clearly g is the invariant measure of the return map to the base. Recall that pua
is the “pushed-up” measure from py onto A. Restricted to Y, pA is T'A -invariant, and MA(Y) =
Jy pduo = p < oc. The projection 7 : Y = Y, (y,k) — f™(y) pushes pa down to an f7-

- Y
— Y
Y
Yo
~—~—~
p=71 p=T2 p=T3

Figure 2: The tower A and Y in between with the bold-face levels.

invariant measure, which when normalized has the formula ;- (A) = % > k>0 po(77H(A) N Y;).

Applying this to A = {7 > n} and recalling that ;, = {¢ > 7.} x {7} gives
1
pr(r>mn) = - / Lrsny © [™(y) dpo(y)- (A2)
p k>0 {o>7x}

Next we specify the set {¢ > n}. Foreach y € Y, pick k = p(y) — 1, so that (y, k) is at the top
level of the subtower Y, so ¢ (y) = 73,(y) + 7(f™ (y)). Therefore

po(e>n) = Y polp=mesr ATo [ >0 — 1)
k>0
= Z/ 1{7’>n—7'k} o f™ dpp. (A.3)
k>0 {o="k41}
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Combining (A.2) and (A.3) we get:

1 , .
Euo(sﬁ > j) — pr (7 > J)

2\
= = Tirsjor OkadMO_/ s OkadM())
P%( tomriir) {r>j—m} (o) {r>j}

1 /
= — E leisrsis OkadMO _/ Lo, Okad/L()) :
P k>0 ( {o=Tk+1} {G2r>g=me} (e>Ths1) {r>j}

proving (A.1). O

We have the following corollary in the finite measure setting, for which we recall that ¢ =

[y ¢ dpo and 7 = [;, 7 dyu are finite.

Corollary A.2. Suppose that ug and - are equivalent measures on'Y that are preserved by the
general return map f¥ and first return map f7, respectively. Then

1 , 1 . 1
> Zhole > 3) = —pe(r > )| < — T dpio.

¥ k>1 /{4)0:7'1@+1>”}

j=n
Remark A.3. In the setting of (9.1), we can replace k + 1 with 74 in (9.8) and obtain that
Dkt f{so=7k+1>n} Tk dig = O(po(p > n)). This together with Corollary A.2 implies that the
leading term in Theorem 4.2 applied to (9.1) matches the leading term of the correlation decay

results in [ 10, 12]; although not exactly the same, the difference in the main terms can be absorbed

in the error term.

Proof. Observe that

¢ = /YSOdHOZMA(A):Z

k=0  j=0

Tp41—Tk—1

pal¥) =Y [ rofdua
k=0 " Yk

Therefore the statement of the corollary is equivalent to

1 , . 1

D =wo(e > ) = pe(r > 4)| < _Z/ 7y, dpso. (A4)
j>n p i>1 7 {p=Ter1>n}

Continuing from Lemma A.1, and since 7 is constant on f™ ({¢x > 7Tx11}), there is at most one

J = nfor which 14~ ;4 o f™ = 1. Therefore, using 7411 = 7 o f™ + 7%, we can sum the second

sum of the integrals in (A.1) over 7 > n and compute

ZZ/ Lirsjyo f™ dMOSZMo(SD>Tk+1 > 7 +n)
{p>Tr11}

i>n k>0 k>0

<> hnle = e > ) < Y hnole = >m) =Y [ kdpo,
E>1 E>1 k>1 7 {p=Thr1>n}
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which is definitely less than the first sum of integrals in (A.1), which we will estimate now.
For the first sum of integrals in (A.1), there are at most 73, values of j > n making the indicator
function 1. Using again that 75,1 = 7 o f7* 4 73, we can sum the first sum of integrals in (A.1)

over j > n and compute

SN[ e £ X[ milpago M du
i>n k>0 {o=Tk 41} k>0 {p=Tr11}
<y i .
k>1 {Lp:Tk+1 >n}
This proves (A.4) and hence the corollary. 0
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