Equilibrium States for S-unimodal Maps

Henk Bruin} Gerhard Keller
Mathematisches Institut, Universitat Erlangen-Niirnberg

August 26, 2003

Abstract

For S-unimodal maps f, we study equilibrium states maximizing the free energies F;(u) := h(p) —
t [log|f'|dp and the pressure function P(t) := sup, Fi(u). It is shown that if f is uniformly
hyperbolic on periodic orbits, then P(t) is analytic for ¢ ~ 1. On the other hand, examples are
given where no equilibrium states exist, where equilibrium states are not unique and where the
notions of equilibrium state for ¢ = 1 and of observable measure do not coincide.

1 Introduction

IfT: M — M is an Axiom A diffeomorphism with a unique basic set and if ¥ = log J*T denotes
the logarithm of the Jacobian determinant of 7" in the unstable directions, then a unique equilibrium
state p of T relative to the function — exists (a so called SBR measure (for Sinai-Bowen-Ruelle)).
It is distinguished among all T-invariant measures by the property of being observable in the sense
that %E;‘;S Opry — p weakly for all z € M except a set of points of Riemannian volume zero. An
excellent source for this and related results is Bowen’s book [2].

In nonhyperbolic situations the relation between observable measures and equilibrium states is
less clear. In the case of piecewise C2-maps f : [0,1] — [0, 1] Ledrappier [17] proved that an ergodic
f-invariant measure with positive Lyapunov ezponent A(u) := [log|f'|du and Kolmogorov-Sinai
entropy h(u) is absolutely continuous with respect to Lebesgue measure if and only if h(u) — A(u) = 0.
Under the additional assumption inf |f'| > 0 Takahashi [32] characterized h(u) — A(u) by a variational
principle where the quantity to be maximized depends on Lebesgue measure. These and similar
results, although they share some of the flavour of corresponding results in hyperbolic situations,
neither guarantee the existence of measures maximizing Fj(u) nor do they shed any light on the
properties of measures with A(u) = 0. Also the assumption inf |f| > 0 excludes some prime examples
as logistic maps from consideration. Therefore it is the aim of this paper to explore to which extent
the conceptual framework of the theory of equilibrium states developed for hyperbolic systems carries
over to general one-dimensional unimodal maps with negative Schwarzian derivative.

In uniformly hyperbolic situations the existence of equilibrium states is usually guaranteed by
the upper semicontinuity of the function g — Fi(u) := h(u) — tA(u). In the present setting it
turns out that although there are some classes of maps (including the Fibonacci maps) for which this
function is upper semicontinuous, this seems to be a rather unusual property among S-unimodal maps,
because p — A(p) is never lower semicontinuous for Collet-Eckmann maps (Proposition 2.8). Instead
we formulate a weaker property called the stability of F; in Definition 2.10 which still guarantees
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existence of equilibrium states for F; (i.e. of invariant measures maximizing F;), but which is shared
by many unimodal maps, including Collet-Eckmann maps as we shall see in Section 5. In Section 3
we bound the Lyapunov exponents of measures by the infimum of Lyapunov exponents along periodic
orbits: A(u) > Aper. Recently Nowicki and Sands [27] showed that Ap., > 0 is equivalent to the
Collet-Eckmann condition. In this section we also discuss the Markov extension of f. It is shown that
an invariant measure p for f is liftable to an invariant measure on the Markov extension if and only if
A(p) > 0. In Section 4 we prove the analyticity of the pressure function P(t) = sup, Fy(u) if Aper # 0
(i.e. if f is uniformly hyperbolic on periodic orbits). In Section 5 we show stability of F; for a large
class of functions but also give an example of a logistic map that is not stable and has no equilibrium
state. In the last section we assume that f has a zero dimensional attractor or that F} is stable and
show that each observable measure is an equilibrium state for Fj.
Our main results can be summarized briefly as:

o If A\per # 0 and t = 1, then F; is stable, the pressure function is analytic at ¢, and f has a unique
equilibrium state for F;. The equilibrium state for ¢ = 1 is at the same time the only observable
measure. (Theorems 3.4, 4.1, 5.1)

o If )\, = 0, then none of the above properties needs to be satisfied (Examples 3.13, 4.2, 5.4).

Related results for a class of complex polynomials were obtained by Makarov and Smirnov [21] and
by Smirnov [31].

The results on Collet-Eckmann maps require rather elaborate proofs and we have to rely heavily on
results from especially [16]. For some details only the unpublished reference [29] is available. Therefore
we add an appendix in which some of these details are given.

2 Continuity Properties of the Free Energy

We consider unimodal interval maps f : I := [0,1] — I with negative Schwarzian derivative and
critical point ¢. More precisely: f is C® on I\ {c} with Sf := f"/f' — 3(f"/f')> < 0, and there
are a real number £ > 1 and a continuous, strictly positive function M : I — R such that |f'(z)| =
M(z) |z —c|*~! for all z € I. £ is called the critical order of f.

Let M be the set of all f-invariant probability measures. M is a compact set in the weak topology.
For € M denote by h(p) the entropy of p and by (i) := p(v) := [+ dp the Lyapunov exponent
of p where ¥ = log|f’'|. As ¢ <logsup, |f'(z)| < oo, the Lyapunov exponent is well defined. Even
more holds: Although v has a logarithmic singularity in ¢, it follows from Proposition 3.1 below that

sup e v IA(1)| < sup e [ 1] dp < o0.

2.1 Definition
a) For each y € M and ¢t € R we define the free energy Fy(u) := h(u) — tA(w).
b) The function P(t) := sup, Fi(v) is called the pressure function.

¢) A measure p is an equilibrium state for Fy if Fy(u) = P(t). The set of equilibrium states is
denoted by £(t).

2.2 Remark

a) The pressure function ¢ — P(t) is convex and Lipschitz continuous, because it is the supremum
of affine funtions ¢ — F;(v) with uniformly bounded derivatives.



b) Let v = [ v® dv(z) be the ergodic decomposition of v into ergodic measures v®. As the entropy
is an affine upper semicontinuous function of the measure, we have [ h(v®)dv(z) = h(v), and
for the Lyapunov exponent the analogous identity is obviously satisfied. Therefore P(t) =
sup{F;(v) : v € M, v ergodic}.

Existence of equilibrium states is e.g. guaranteed by the following elementary lemma:
2.3 Lemma If F; is upper semicontinuous on M, then E(t) is nonempty and compact convex.

In our setting, the entropy function p +— h(u) is upper semicontinuous. This is true, because the
partition of I into the two monotonicity intervals of f is a generator “modulo homtervals”, and under
our smoothness assumptions such homtervals are attracted to periodic orbits, see e.g. [24]. The
Lyapunov exponent g — A(u) is in general upper but not lower semicontinuous. Therefore if ¢ < 0,
then Fj} is obviously upper semicontinuous. However, we are mostly interested in the cases ¢ > 0. In
order to explore for which maps F; actually is upper semicontinuous, we make the following definition:

2.4 Definition M is uniformly integrating if lim._,o Sup,,c z4 ote |¢|dp = 0.

c—¢&
2.5 Lemma M is uniformly integrating if and only if p— () is lower semicontinuous.

Proof: Suppose that M is uniformly integrating. Let § > 0 be arbitrary, and let U be a neighbourhood
of ¢ so small that [;,¢dv > -4 for every v € M. Let ¥, = max(—L,v) and take L so large that
¥ = 11, outside of U. Since 4, is continuous, g — w(¢r) is continuous. Let (un) C M, un — u
weakly. Then

liminf oo (1) > liminf pn (1) — 8 = p(eon) — 6 > () — 6.

n—oo n—oo

Since § is arbitrary, also liminf,, u,(¢) > u(y). For the reverse implication, assume by contradiction
that M is not uniformly integrating. Then there exists § > 0 such that for every L € N there exists a
measure puy, € M such that ur, (v —9r) < —0. Assume without loss of generality that ur, — p weakly.
Then for any Lg and all L > Ly,

pr(W) = pr(Wr) + pr(v —¢r) < pr¥r,) — 0.

Therefore liminfr, pr,(v) < p(r,)—4 for all Ly > 0, whence liminfr, pr(¢) < p(p) =4, i.e. p— pu(y)
is not lower semicontinuous. O

2.6 Corollary If M is uniformly integrating, then F} is upper semicontinuous.

In order to check for specific maps whether M is uniformly integrating we need some more notation.
For x € I, write z; = fi(z); in particular ¢; = fi(c). If  # ¢, denote the symmetric point by Z, i.e.
Z # z and f(x) = f(Z). We define the cutting times (S,,) and closest precritical points (z,,) as follows:

So=1and z = f*(c) N(0,c¢),
and for n > 1
S, =min{k > S, 1 : f ()N (2n_1,¢) # 0} and 2z, = £ 5 (c) N (2n_1,¢).

In particular [z,,c] and [c, Z,] are the maximal central intervals on which f~+! is monotone. (In the
sequel we will often use intervals with z, or Z, as boundary points. Although we try to be precise
whether these endpoint belong to the intervals in question, it does not really matter from a measure
theoretical viewpoint. Indeed, when ¢ is not periodic, u(Unezf™(c)) = 0 for every p € M.) It is not
hard to show that S, — S, _1 is again a cutting time which we call Sg(n), see [7] or [24, Section IT 3b].
The map @ : N — N is called the kneading map.



2.7 Lemma
a) If M is uniformly integrating, then lim, _sl_n log |zn, — ¢| = 0.

b) If >, —é log|zn — ¢| < o0, then M is uniformly integrating.

Proof: First note that by nonflatness of f, f'(z) = O(£)|z—c|*~!, where £ < 0o is the critical order. We
can assume that f has no stable or neutral periodic orbit, because otherwise there is a neighbourhood
U > c such that p(U) = 0 for all p € M (If ¢ itself is periodic, then M \ {8,,4(¢)} is uniformly
integrating.) In absence of stable or neutral periodic orbits, f(z,,c) = f(c, %,) contains either
(zn,c¢) or (c, z,) for each n € N. Therefore there exists an S,-periodic point p,, € (zn,2,). If p, is the
equidistribution on orb(py), then [ ¢du, < O(€)g-log|p, — c| < O(f) g-log |z, — c|. Therefore M
can only be uniformly integrating if lim,, Sl—n log |zn, — ¢| = 0. This proves a). For the second statement
note that by definition of closest precritical point, f(z,), fi{(2nt1) € (2n,2n) and fi(2n,2,) 7 ¢ for
0 < i < Sp. Therefore fi(zn,2n+1) N ((zn, 2n41] U [Znt1,2n)) = 0 for all 0 < i < Sy, so that any
measure g € M assigns mass < é to the set (zn, Zny1] U [Znt1, Zn). It follows that

Zk 1
02> / Ydp > O(¢) Z log [zn41 — cf - p((2n, 2n41] U [Zn41, Zn)) > O(C) Z 5 log |zn41 — cl.

n>k n>k "

As Spy1 = Sn + Sg(n) < 285, our assumption gives that sup,,c ff” [|dp — 0 as n — oo. O

2.8 Proposition If f is a Collet-Eckmann map, i.e. if liminf, L log|(f")'(c1)| > 0, then p — A(p)
is not lower semicontinuous.

Proof: If f is Collet-Eckmann, then liminf,, —é log |z, — ¢| > 0, see [26, Corollary 21]. O

In view of the preceding discussion and in view of the well-known strong hyperbolicity properties
of Collet-Eckmann maps we are thus led to the conclusion that upper semicontinuity of the free
energy is not a reasonable assumption for the investigation of equilibrium states of unimodal maps.
Nevertheless we want to mention a prominent example of a unimodal map for which F; is indeed
upper semicontinuous.

2.9 Proposition For S-unimodal Fibonacci maps M is uniformly integrating.

Proof: Let f; be an S-unimodal map of critical order ¢ with Fibonacci dynamics. Topologically, such
a map is characterized by the property that the cutting times S,, coincide with the Fibonacci numbers
1,2,3,5,8,.... Fibonacci maps and their metrical properties have been studied in several papers; the
properties that we need are taken from [20, 15, 5]. ;jFrom those papers we can derive the following
asymptotic behaviour:

le — ¢ > C for some C € (0,1) if £>2,
1%nin 9 ) 9-% if £ =2,
les. — ~ k(5) for some &, € (0,1) ifl1<{<2.
Note that S,, ~ v", where v = # is the golden ratio. Since for Fibonacci maps c¢g, € (2n—2,2n—1)U

(Zn—1, Zn—2), we obtain the following:

o If £> 2, then —g-log|z, —¢| = O(1) & log -
o It £=2, then — log|z, —¢| = — & log [(9(1)2* L] =omz.
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o If 1 < £ <2, then —g-log|zn —c| = O(1)y ™™ XL, v log 1 = O(1)y(r=1n,

In all three cases —é log |z, — ¢| is summable, whence M is uniformly integrating for £ > 1. For the
Fibonacci tent map M is also uniformly integrating, because then v is just a constant. O

In order to guarantee existence of equilibrium states it is sufficient that F} is upper semicontinuous
on those parts of M where equilibrium states might be located. This leads us to the following

2.10 Definition The free energy F; is called stable if for every weakly converging sequence of measures
tn € M such that F;(u,) — P(t) holds: p :=lim,, u,, € E(¥).

The next two lemmas already indicate that stability should be an appropriate notion in the present
context. Let £(t) = {u € M : there exists (u,) C M, p, = p and Fy(u,) — P(t)}.

2.11 Lemma & (t) is nonempty and compact conver. Moreover, the following statements are equiva-
lent:

1) () =E(1).

2) F; is stable.

8) Fy is upper semicontinuous on &(t).

Proof: By definition of P(t) there exists (u,) such that Fy(u,) — P(t). Since M is compact there
exists a subsequence p,, — p € £(t), whence E(t) # 0. Suppose (u,) C £(t) and p,, — p. Let piy
be such that g, — pn, and Fi(u, ) — P(t) as k — oo. Then for a sufficiently rapidly increasing
sequence (ky) also pin, r, — p. Hence £(t) is closed and therefore compact. The convexity is immediate.
Now for the equivalent statements, we first note that £(¢) C £(t) by definition.

1)=3) &) = E(t) and p, = p € £(t), then P(t) = F;(p) > limsup,, Fy(u,). Hence F} is upper
semicontinuous on £(t).

3) = 2) 1If F; is upper semicontinuous on &(t), then for every p,, — p such that lim, F}(u,) = P(t),
we have p € £(t) and hence P(t) = limsup,, F;(n) < Fi(u) < P(t). Therefore u € £(1).

2) = 1) If p, = p € £(t) and Fy(u,) — P(t), then stability implies that u € (). O

2.12 Lemma If F; is stable and p, — p for measures p, € E(t,) and some sequence t, — t, then
e Et).

Proof: Clearly P(t)—F;(pn) = [P(t)—P(tn)]+[P(tn) — (h(ttn) —tnA(ttn))]+(t—tn) A(n). The first term
tends to 0 by continuity of the pressure function, the second term equals 0 because u, € £(t,), and the

third term tends to 0 because A(u,,) is bounded (see Proposition 3.1 below). Hence |P(t)—F;(un)| — 0.
As F; is stable, u, — E(¥). O

In Section 5 we prove stability for various classes of maps, among them Collet-Eckmann maps.

3 Lyapunov Exponents and Liftability Properties

In this section we first give a lower bound for the Lyapunov exponent of measures in M by means of
the Lyapunov exponents along periodic orbits. Later we characterize measures with positive Lyapunov
exponent by their liftability to the Markov extension.

For an n-periodic point p let A, = Llog|(f™)'(p)|- Let

Aper = Inf{\, : p is periodic}.



3.1 Proposition For every p € M, A(p) > Aper-

For the proof we need some more notation. For each z € I and n € N, denote the maximal mono-
tonicity interval of f™ containing x by Z,[z]. Let

ro(z) = d(f"(), 0f" Znx)). (1)

Proof: If p is the equidistribution on a periodic orbit (stable or not), then clearly A(u) > Aper.
Therefore assume from now on that p is not such an equidistribution. Without loss of generality we
may assume that p is ergodic. We divide the proof into two cases.

First assume that u(c —e,c+¢) > 0 for all € > 0. Let = be a typical point of y in the sense
that A(u) = lim,, £ S w(x;) and for each & > 0, orb(z) N (¢ — &, ¢ +¢) # 0. By Birkhoff’s ergodic
theorem this holds p-a.e. Let ng = 0 and n;41 = min{n > n; : &, € (¢n;,%s,;)}. In particular

Tn; € Yni+1*m = {y el: fj(y) ¢ (yag) for j <miy1 —n; and friET (y) € (y,gj)},

cf. [6, 25]. It is not hard to show that for the boundary points of any component of Yy, , _n,,
say p; and g;, holds: p; and §; are (ni;1 — n;)-periodic. Hence |(f+1=")!(p;)| > erver(nisi—ni)
and |(fri+1 ™) (g;)| > Cerrer(i+177)  where C' depends only on the nonsymmetry of f. By the
Minimum Principle for maps with negative Schwarzian derivative (see [24, Lemma IL.6.1]), also
|(frit1=m) (z,,)| > Cerveer(i+17m) By the chain rule |(f™)'(x)| > Cleteer™. Because z,, — c,
whence n;41 —n; = 00 as i — oo, lim; % log |(f79)" ()| > Aper- As A(p) = lim,, 2 7 M 4(a;), also
)\(N) > )\per-

Now assume that p(c —e,c+€) = 0 for some £ > 0. Then for every = € supp (u), orb(z) N (¢ —
g,c+¢) = and by the Contraction Principle (see [19] or [24, page 305]), there exists § > 0 such that
rn(xz) > § for all n € N. Let U be an interval, not containing a neutral or stable periodic point, such
that |U| < $ and p(U) > 0. Let = be a p-typical point in the sense that A\(u) = lim,, 1 Z?z_ol U(x;)
and z visits U infinitely often. Let n; < ns < ... be the numbers n such that =, € U. Because
T, > 0, there exist periodic points p; € U of (not necessarily prime) period n; — ny. Furthermore, by
the Koebe Principle [24, Theorem IV 1.2], there exists K5 > 0 such that

1 1
niy1—ni)/ > Nip1—n1) ()| > Aper(ni—mn1) .
7Y )] 2 (5 ()] 2 e

Hence A(p) = lim, % 3750 9(@i) > limy - [(nj — n1) Aper — log K +log |(f™)'()[] = Aper. This

nj
concludes the proof. O

3.2 Remark It was shown in [27] that the condition Ay, > 0 is equivalent to the Collet-Eckmann
condition. If A\, < 0, then f has a unique stable periodic orbit. The case Ap., = 0 comprises maps
with neutral periodic orbits as well as other nonhyperbolic maps.

The following result is due to Ledrappier [17].

3.3 Proposition If A\(u) > 0, then p € £(1) if and only if p is absolutely continuous with respect to
Lebesgue measure.

Combining Propositions 3.1 and 3.3 we obtain already parts of

3.4 Theorem

a) If Aper < O then E(t) = {dorp(p)} for t = 1 (ie. for t in a neighbourhood of 1). Here Sorp(p)
denotes the equidistribution on the (unique) stable periodic orbit of f.



b) If Aper = 0 and f has a neutral periodic point p, then E(t) = {Sorp(p)} fort > 1.
If Aper = 0 and f is infinitely renormalizable, then E(t) = {pu(c)} for t > 1, where p ) is the
unique probability measures supported by w(c).

¢) If Aper > 0, then E(1) consists of a unique absolutely continuous measure.

In Theorem 5.1 we show that if A, > 0, then £(t) consists of a single measure not only if ¢ = 1 but
also for ¢t =~ 1.

Proof of Theorem 3.4: The last statement follows directly from Propositions 3.1 and 3.3 if one
observes the ergodicity of Lebesgue measure in this case, see [1]. If Aper < 0, and if X denotes the
complement of the basin of the stable periodic orbit, then X is a hyperbolic repelling Cantor set
and m(X) = 0. Proposition 3.3 shows that X cannot support an equilibrium state for ¢t = 1. By
continuity of ¢|x and the fact that 6,,(,) is an isolated point in M it follows that £(t) = {Jorp(p)}
also for t ~ 1. In the case that p is a neutral periodic point, X is not a hyperbolic repelling set.
Indeed, X contains p. Therefore we cannot conclude that A(u) > 0, and Proposition 3.3 does not
apply. However Corollary 3.8 below shows that £(t) = {0,,s(p)} for ¢ = 1 and the case t > 1 is an
immediate consequence. Finally, if f is infinitely renormalizable, there exists no absolutely continuous
invariant probability measure. In fact, w(z) C w(c) m-a.e. Hence Proposition 3.3 shows that p € £(¢)
for t > 1 only if () = 0. Let p,(c) € M be the unique measure supported by w(c). It follows from
Lemma, 3.10 below that A(f,(c)) = h(ty(c)) = 0. Hence pu, () € £(t). Now if p € M, u # p (), then
there exists e > 0 such that supp (1) N (¢ — &,¢ + €) = 0. However, any forward invariant set which
does not contain ¢ or a stable or neutral periodic point in its closure is hyperbolic repelling, see e.g.
[22]. Combining this with the proof of Proposition 3.1 it follows A(u) > 0. Therefore p ¢ £(t), which
concludes the proof. |

In order to study measures with Lyapunov exponent zero, we need the notions of Markov extension
and liftability. To each unimodal map f : I — I, we can construct the Markov extension or tower I
as follows: Let D; = I, and for n > 1,

D | f(Dn) if c¢ Dy,
1~ [ent1,c1] ifc€ D,

An inductive argument shows that for each n, ¢, is a boundary point of D,,. Note also that D, 3 ¢
if and only if n is a cutting time. (See Section 2 for the definition of the cutting times Si.) Let
I = Up>0D,, denote the union of disjoint copies of the intervals D, (henceforth also denoted by D,,),
and define the action f on I as follows: If z € Dy, then

for=swe{ P tzsionl

If x € D, for some n > 2, then

f@) = f(z) € { Doy ifcg[on,3),

Diysyqu, if ¢ €[cn, ) and n =S .

The dynamical system ( fI ) satisfies a Markov property in the sense that whenever f“(w) € Dy, for
some n,k € N, there exists an interval J 5 z such that f” maps J monotonically onto Dy. Denote
the natural projection from I to I by . Clearly mo f = fom.

It would be consequent to give any object attached to the tower a " -accent, but in order not to
overload the notation, we write only measures and maps on I with a "-accent. Points or sets in the
tower are written with a ~-accent only if confusion can arise.



For later use we denote by ng := [¢,¢s,] = Ds, N f~'Ds, 41 that part of Dg, that “climbs up”

in the tower under the action of f and by Dy :=(c,¢s44,] = Ds, N fﬁlDSQ(k)H that part of Dg,
that “jumps down”.

3.5 Remark If 4 € M, then we can construct a measure /i as follows: Let ji; be the measure p lifted
to the level Dy and set ji,, = Z?—ol fir o f~%. Clearly g = i, o w~! for each n. As was shown in
[12], fin converges vaguely. We call the limit measure /i. If p is ergodic, then f is either a probability
measure on I in which case we call pu liftable, or it is identically 0 on I. In this case the mass “has
escaped to 1nﬁn1ty

3.6 Theorem Let pu be an ergodic invariant probability measure. Then p is liftable if and only if p
has a positive Lyapunov exponent.

Proof: The “if” part is proven in [12], using a construction from [17]. For the “only if” part let us
start proving that the equidistribution on a stable or neutral periodic orbit is nonliftable. Indeed, let
p be the central point of this periodic orbit, i.e. orb(p) N (p,p) = . Because f has negative Schwarzian
derivative, the immediate basin of p contains ¢, but no preimage of ¢. Therefore the intervals f"([c, p])
are never cut in the construction of the Markov extension. This means that f™ o i([¢,p]) C D,, for all
n, where i : I — D is the inclusion map. (In particular, if ¢ itself is periodic, D,, degenerates to {c,}
for n sufficiently large.) It follows that orb(p) cannot support a liftable measure.

Let us assume that p is liftable, ji being the lifted measure. We will show that A(x) > 0. Let
n € N be such that i(D,) > 0 and let J C clJ C int D,, be an interval such that fi(J) > 0. Since p
is not the equidistribution on the orbit of a stable or neutral periodic point p, 7Ar(cl J) can be chosen
disjoint from orb(p). Moreover we can chose J such that orb(0J) NJ = (. Let F': J — J be the first
return map to J. By our conditions on J each branch F': J; — J of F' is onto, and by the Markov
property of f , F'|j, is extendable monotonically to a branch that covers D,,. Clearly each branch of 13’,
contains an s-periodic point g. Due to a result by Martens de Melo and van Strien
[23] and also [24, Theorem IV B’], there exists ¢ > 0 such that the |(f*)’ (@)| > 1 +¢, independently
of the branch. If J is sufficiently small, the Koebe Principle yields that [F”(z)| > 1 + 5 forallzel.

Clearly ﬁ is an F-invariant probability measure on J. Let J;, ¢ € N, be the branch- domalns of F,
and let s; be such that F|;, = f*|;,. Since i can be written as ji(p) = Yidise ! [, po fidji, we get

i) = ZZ/ log '] o fidi
- = /g1 y1di =3 [ rogl
> Z/‘ )log(1 ;) () log(1 + %) > 0.
Because f'(m(z)) = f'(z) for all z € I, this concludes the proof. m|

3.7 Corollary Let p € M be ergodic.

a) If p is nonliftable, then Fy(u) = 0 for all t.

b) If u is liftable, then Fy(p) <0 and Fy(p) < (1 — t)A\() with equality if and only if p < m.
In particular, p € E(1) if and only if p < m or u is nonliftable.



3.8 Corollary If f is an S-unimodal map with a neutral or stable periodic point p and u € M, then
either A() > 0 or p is the equidistribution on orb(p).

Proof: We can argue for each ergodic component of p separately. Let therefore y be ergodic. In view
of Theorem 3.6 it suffices to prove that u is either liftable or equal to the equidistribution on orb(p).
Assume that the latter is not the case, and take £ > 0 arbitrary. Let B be the immediate basin of
orb(p) and let U be a neighbourhood of B so small that u(U) < €. Since ¢ € B and 98D,, C orb(c)
for each n > 1, inf{|D, \ B| : D, ¢ B} > 0. Therefore there exists N such that if D, > ¢,
the component of D,, \ {c} that jumps down in the tower, jumps down to some level in Uy,<nDiy,.
Because 0B consists of (at least one-sided) repelling (pre-)periodic points, there exists M such that
whenever z € D, \ 7 1(U), f™(z) jumps down in the tower for some m < M. Because u(U) < ¢, also
fon(Ujsnm4nDj) < € for each fi,, as defined in Remark 3.5. Hence, as ¢ was arbitrary, p is liftable. O

For z € I, let V() denote the set of weak accumulation points of (X %" | 6,,)n. Let conv denote
the closure of the convex hull.

3.9 Proposition If u has only nonliftable ergodic components, then p is contained in convV (c).

Proof: We argue for each ergodic component of p (called p again) separately. Therefore let yu € M
be ergodic nonliftable and let X = {z : V(z) = {u}} be its typical points. We distinguish two cases:
1) There exist z € X and a subsequence (n;); such that for all € > 0

1
lim —card{0 <1 i1 T =0.
Ji}rgo njcar {0<i<nj:ri(x)>e} =0
(From [13, Theorem 4] (see also the proof of [24, Theorem V 5.3]) we can conclude that the accumu-
lation points of (;—J it 84i(z)); are contained in convV(c). But as V(x) = {u}, p € conv V(c).
2) In the other case there exist £, > 0 such that for p-a.e. x € X

lim inf lcaurd{O <i<n:iriz)>e}>6>0.

n—oo N
First assume f has a stable or neutral periodic point p. Then if = d,,4(p), clearly {u} = V(c), while
if 41 # dorb(p), Corollary 3.8 and Theorem 3.6 show that u is liftable.

Therefore we can assume that f has no stable or neutral periodic point and no homtervals either,
see e.g. [24, Theorem II 6.2]. Let Z,, be the partition of I into the maximal intervals of monotonicity
of f™. There exists N = N(g) such that sup{|Z| : Z € Zx} < e. Indeed, otherwise there exist a
nested sequence (Z,,), Z, € Z,, such that N,Z,, a nondegenerate interval. This interval must be a
homterval, which we excluded.

Suppose 7,(z) > € and let (¢1,{2) € Zn be the cylinder containing f"(z). Then f™(Z,[z]) D
(¢1,¢2), where Z,[z] € Z, is the cylinder containing z, and there exist n; < na < N such that
f™(¢;) = c. On the tower this means that for any y € 7 1(z), f**"2(y) € Dp,_n,. It follows that
there exists ¢’ > 0 such that for p-a.e. z € X and every y € 7 1(x),

1 s
lirginf Ecard{O <i<n:f'(y) €Un<nDy} >4

Because of Remark 3.5 this contradicts to p being nonliftable. O



The map f has a persistently recurrent critical point if r,(c1) — 0, where r, is as in (1). For
example, any map for which lim,, @ (n) = oo has a persistently recurrent critical point [4, Proposition
3.1]. In particular, ¢ is persistently recurrent if f is infinitely renormalizable.

3.10 Lemma If ¢ is persistently recurrent, then for every u € M such that supp (u) C w(c) we have
Fy(pn) =0 for all t.

Proof: It was shown in [4, Lemma 3.3] r,,(z) — 0 uniformly on w(c). Take u € M, supp (1) C w(c) and
assume by contradiction that y is liftable. Then there exists n € N and an interval U C clU C int D,,
such that (U) > 0. Let § = d(U,8D,,) > 0. By Birkhoff’s ergodic theorem card{i : fi(y) € U} = oo
fi-a.e., and by the Markov property of f , Tn(m(y)) > 0 whenever f”(y) € U. Since p is supported by
w(c), this gives a contradiction to 7, (xz) — 0. Hence p is not liftable, and by Theorem 3.6 A(u) = 0. It
was shown in [1] that the topological entropy htop(f|u(c)) = 0. Therefore h(u) = 0 and also Fi(u) = 0
for all t. O

The following Corollary applies in particular to infinitely renormalizable maps and to Fibonacci-like
maps, ¢.e. maps whose kneading map is Q(k) = max(0, k — d).

3.11 Corollary Let f be any map with a persistently recurrent critical point and such that f|, ) is
uniquely ergodic with invariant measure v.. Then
a) E(1) contains one or two extremal elequilibrium states, namely v. and (possibly) a liftable, ab-
solutely continuous one.

b) E(t) = {ve} fort > 1.

3.12 Example [Infinitely renormalizable maps]

As infinitely renormalizable maps are uniquely ergodic on w(c) and do not have absolutely contin-
uous invariant measures, £(t) = £(1) = {v.} for t > 1 and V(z) = £(1) for Lebesgue-a.e. .

For t < 1 the situation is more complicated: If f is a map with Feigenbaum dynamics, then
Fy(p) = —tA\(p) for all p € M because f has entropy zero. Therefore £(t) = {v.} again. If f is
an infinitely renormalizable map different from a Feigenbaum map, then f has an ergodic invariant

measure p of positive entropy such that Fy(u) = h(u) — tA(n) > 0 for t < % (Observe that

t < % =: HD(p) is the Hausdorfl dimension of u, see [9].) In particular, P(t) > 0 for ¢t < dD :=
sup{HD(p) : p ergodic, A(p) > 0}, the dynamical dimension of p. If dD < 1 and t € (dD, 1), then

Fy(p) < 0 for all g with A(p) > 0 and hence £(t) = {v.}.

3.13 Example [Fibonacci maps]

Recall from [20] that if f is a Fibonacci map, then f|, () is uniquely ergodic. It is known from [20]
and [15] that there is £y > 2 such that Fibonacci maps with critical order 1 < £ < £y have a unique
absolutely continuous invariant probability measure p;. It is obviously the only observable measure.
Therefore these maps have two extremal equilibrium states for Fi, the observable p; and v, which is
not observable. jFrom Corollary 3.11 it follows that £(¢t) = {v.} if ¢ > 1. For ¢ < 1 the situation is
more complicated: As Fy(p1) = Fi(u1) + (1 — t)A(p1) = (1 — £)A(u1) > 0 by Corollary 3.7b), the set
£(t) contains only liftable measures by Corollary 3.7a), and £(t) # 0 by Proposition 2.9.

In [5] it was proved that there is ¢; > fo such that Fibonacci maps with critical order £ > ¢;
have no absolutely continuous invariant probability measure. Hence £(t) = £(1) = {v.} for t > 1 and
V(z) = £(1) for Lebesgue-a.e. x in this case. For ¢ < 1 we can argue as in the previous example,
because f has positive entropy. Hence P(t) > 0 for ¢t < dD, and if dD < 1 and t € (dD,1), then
Fy(p) <0 for all g with A(p) > 0 and E(t) = {v.}.
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4 Properties of the Pressure Function

The main result of this section is the following theorem which shows that if Aye, # 0 then P(¢) behaves
for t & 1 just as it does for uniformly hyperbolic systems.

4.1 Theorem
a) If Aper <0, then P(t) = —tApe, fort ~ 1.
b) If Aper = 0, then P(t) > 0 fort <1 and P(t) =0 fort > 1.
¢) If Aper > 0 and if f satisfies some additional regularity assumptions formulated in Remark 4.4
below, then t — P(t) is analytic for t ~ 1, P(1) =0 and P'(1) = —A(u1) where puy € M is the
unique absolutely continuous invariant measure.

4.2 ExampleIf f is a Fibonacci map with critical order 1 < £ < £y and absolutely continuous ergodic
invariant probability measure u; (see Example 3.13), then P(t) = 0 for ¢ > 1 and P(t) > Fy(u1) =
h(u1) =t A(u1) = (L —t)A(u1) for 0 < ¢t < 1. Here A(u1) > 0 because of Proposition 3.9. In particular,
P(t) is not analytic at ¢t = 1.

Proof of the Theorem: If \pe, < 0, then £(t) consists of the equidistribution on the unique attracting
periodic orbit for ¢ &~ 1 by Theorem 3.4. The result is immediate.

If Aper = 0, then there exists a sequence (p,) of periodic orbits such that Fi(p,) — 0. Therefore
P(t) > 0. Because h(u) < A(p), also Fy(u) <0 for t > 1.

The main ingredient of the proof for the case Ape, > 0 consists of showing that exp P(t) equals the
spectral radius r; of a suitable transfer operator. This is a standard technique in uniformly hyperbolic
situations but needs some more care here. In the next section the identity P(t) = logr; also plays an
essential role when we prove stability of F; for Collet-Eckmann maps.

For a weight function & : I - R denote by L; the transfer operator for f acting on functions

: I - C, namely L39(x) =X cf-1z d()g(y)- In [16] the operators L := L ;- for t ~ 1 were

studied. It was proved that there is a suitable Banach space of functions g : I— C, call it B now',
such that each L, t & 1, acts as a quasicompact operator on B and such that these operators depend
analytically on ¢. If f is a nonrenormalizable Collet-Eckmann map, then all £; for ¢t ~ 1 have a
simple positive leading eigenvalue r; which is separated from the rest of the spectrum. By analytic
perturbation theory the eigenvalues r; and the corresponding eigenprojections P; depend analytically
on t. In the appendix we show that there are Borel measures i, on I and densities hy : I — (0, 00)
such that £Lim; = rymy and Prg = ﬁt . f gdmy for all § € B. In Proposition 4.5 below we show that
P(t) = logry. Hence P(t) depends analytically on t and P'(t) = (logry)' = —A(fi¢) where fi; = hy -1,
see [16, Section 5]. O

d(tmiof) «
drng

4.3 Remark Observe that £}, = 7410y is equivalent to r¢|f'|! = locally”, i.e. r¢| f'|! is the

derivative of f with respect to the measure ;. As f'(z) = f'(y) if 7(z) = 7(y) (i.e. if z and y are in
the same “fiber” of I), it is not hard to show that a measure m; on I can be unambiguously defined
by setting m(U) = m;(U) if U C D, for some n and 7(U) = U, see (13) of the appendix.

In fact, m4 is just Lebesgue measure on I. m; is often called the ¢-conformal measure for f. Note
also that m; has no atoms, see (12) of the appendix.

n [16] this space was called BV ;. We point out that B is a space of everywhere defined functions and not just a
space of equivalence classes as in many treatments of transfer operators for piecewise monotonic maps.
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4.4 Remark The results in [16] were in fact proved under weak additional regularity assumptions on
f- These assumptions are satisfied e.g. if f is a polynomial map or if f(z) = a(1 — |2z — 1|*) for some
real £ > 1.

4.5 Proposition If f is a Collet-Eckmann map satisfying the additional regularity assumptions men-
tioned in Remark 4.4, then P(t) = logr; where, as above, r; is the leading eigenvalue of the transfer
operator Elf’l“'

Proof: We restrict to the case of nonrenormalizable maps, from which the result for the general case
can be deduced by passing to a suitable renormalization of f. A

Recall the construction of the Markov extension (I, f) from Section 3 where I = U,>0D, is a
disjoint union of intervals D,,. We are going to study a first return map F on a subset J C I defined
as follows: For k > 0 let Ay := D?;Lk n f‘SQ(’“H)DgHI. Ay, is that subinterval of Dg, that climbs up in
the tower under the next Sgxy1) = Sk+1 — S iterates of f and then jumps down to level Diys,
in the next step. In fact, m(Ay) is the interval (2g(x+1),¢] or [¢, Zg(x+1)) Which is contained in [c, cs, ],
and z, is as defined in Section 2.

Let J = Up>oAr. If © € Ay is not a preimage of ¢, then there is some j > Q(k + 1) such
that 7(z) € (zj,2j4+1), and it is not hard to check that f’( ) & J fori=1,...,5; —1 and that
fSi(z) € A; C J. Hence F(x) = f5 (). Finally note that I\ Un>0f ™ J consists only of preimages
of ¢. In particular, this set supports no finite f invariant measure. Analogously as for f we define
transfer operators E for F' acting on functions § : J — C by L(Pg( T) =Y yeh-1z ®(y)§(y) where
$:J 5 Risa weight function.

Define S : J = N, S(z) = Sy if 7(x) € [zk,zk+1) U (Zkt1, 2. As rt|f [* is the derivative of f with
respect to the measure 7, the function r; S|F'|* is the derivative of F' with respect to 7, and as F
leaves 0 = ﬁﬁtmtp invariant, we have E(rf|F’|‘)—1(ht|J) = ht'.]. In terms of the weight function

SO |
~ & N F
P, = (Tts B —htAo >
hy

this can be rewritten as Eén 1 =1. In particular, 0 < &;(z) < 1 for all .

Suppose now that u € M is ergodic. As A(u) > )\per > 0, there is a unique f—invariant ergodic lift
fi of p to I, see Remark 3.5. As fi(Up>of~"J) = i(I) = 1, it follows that ji(J) > 0. Let & = ﬁ “flg.

As F is the first return map on J, it leaves ¥ invariant and W is the expected return time to J
under . Hence

Soo(A)- Sk o= Y H(FTAR) Sk =Y vom ([zk, zk11) U (Zk41, 2]) - Sk

k>0 k>0 k>0

sap o L
= /Sdl/—ﬂ(J)<oo. (2)

Denote the partition of J into the sets Ay by a. As Sy > k for all k, it follows that

Hy(a) = =Y #(Ag)log D(Ax) < 00

k>0

by taking the sum over those k with D(A;) < e~ k and D(Ag) > e~* separately. As a is a generating
partition for the dynamical system (J,F) we can define the entropy of # under F' to be h p(0) =
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—log ®; di> where &, = k>0 la (Ak|o(Un>1F "a)). Observe that }° 51, &, (y) =1 for v-a.e.

T € I and we may choose a version of &, that satisfies this identity for all x € J. In other words,
L' 1 =1, and it is an easy exercise to show that [ £<I> gdv = [gdp for each g : J — R*. This
is essentlally the same setting as that studied by Ledrappler in [18], except that there shift spaces
over finite alphabets are considered. In our situation the finiteness of the alphabet is replaced by the
condition Hy(a) < oo verified above.

Our next aim is to show that

t/log|ﬁ"|d17:—/log@tdﬁ—/gdﬁ-logrt. (3)

To achieve this we must show that log hh—otF is D-integrable with integral 0. In view of [14, Lemma 2]

N
it suffices to show that (log hhﬁ) is v-integrable. But as
t

~

h £r t
tog " = 1o (&1 7)< 5105 (e sup F @)1 )

this follows from [ Sdi = ﬁ < 0.
Now we can follow the arguments in [18]:

Fi(p) = he(p) = ths(m) = hp() = thp (@) = a(J) - (hp() = tAx(2))

. 5 b, .
5 = a(J) ./,c&,ﬁ ( <i>,;> b +logrs
< /c (% 1) di +logry < fu(J) - (/logﬁ@tldﬁ—/logﬁégldﬁ> +logry

= logry

as [:<i>t 1= ﬁéﬁl = 1. Equality occurs if and only if &, = &, 7-a.s. But as in [18] this is the case for
the measure ji = fig = hyrivg. Hence P(t) = sup{Fi(p) : p € M, p ergodic} = logry. O
The last part of the proof yields at the same time

4.6 Corollary If A\pe, > 0 and if uy = fi ow * denotes the invariant measure constructed in the
appendiz, then p; € E(t).

5 Stability

In this section we will show that when Ay, # 0 (i.e. f is either Collet-Eckmann or has a stable
periodic orbit), F; is stable for ¢ ~ 1. It is shown that stability also occurs for certain nonhyperbolic
maps. At the end of this section we give an example where stability is violated.

5.1 Theorem
a) If Aper < 0, then Fy is stable for all t.
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b) If Aper = 0 and if f either has a neutral periodic point or is infinitely renormalizable, then Fy is
stable for all t.

¢) If Aper > 0, ie. if f is a Collet-Eckmann map, then F is stable for t = 1, and E(t) consists of
the single measure pu; constructed in the appendix.

In Theorem 3.4 we already characterized £(¢) when f has a stable or neutral periodic orbit, and when
f is infinitely renormalizable.

5.2 Remark We conjecture that a more general statement than b) is true, namely that F} is stable
for all ¢ if f has a persistently recurrent critical point. For Fibonacci maps e.g. this is true, see
Proposition 2.9 and Corollary 2.6.

Proof of Theorem 5.1: Suppose that f has a stable or neutral periodic point p. Let X be the
complement of the basin of orb(p). Since f has negative Schwarzian derivative, there exists € > 0
such that (¢ —e,c+¢e)N X = 0. In particular, u(c —e,c+¢) = 0 for all uw € M. Therefore p — A(u)
is continuous, and it follows from Lemma 2.11 that F; is stable.

If f is infinitely renormalizable, there exist n;-periodic points p; such that p;y1 € (p;,p;) and
such that f"([p;,pi]) C [pi,pi]- The intervals [p;,p;] are called restrictive. Fix some p; and let
R; = (pi,p;)- Each measure v € M can be split into v + v*Xi where supp (vXi) C X; := I\

U;f 7 (R;), and supp (v™) C orb([f™(c), f>"(c)]). Because [f™(c), f*"i(c)] C (pi,Ps), there exists
d > 0 independent of v such that d(supp (¢%),supp (vXi)) > 4. Therefore, if (u,) C M and p, — p
weakly, also puff — pfi and pXi — pXi. Assume that also Fy(u,) — P(t), and that u*Xi is not

identically 0. Then because v is continuous on X,, lim,, Ft( (J; )) < Ft(u(; )) < P(t). However,
Fy(pn) = (X )Ft(un(X )) + I\ X3) B (o fhxy (I\X )) and Fy( sy (I\X ) < P(t). Therefore also P(t) <

lim,, Ft( ( e )) As this is true for every restrictive interval, u can be decomposed in equilibrium
states on X;\ X;—1 and a measure p, () on w(c). By Lemma 3.10 () is a nonliftable equilibrium
state. Hence u € E(t).

For the proof of c¢) we need

5.3 Proposition Suppose that f is a Collet-Eckmann map. For g € C(I) and v € R let
k 1
= Zg(f (z)) and B,=<z€el: EEng(x) >y .
k=0

If v € M is ergodic and satisfies [ gdv >~ and A\(v) > 0, then

1
lim inf — log m¢(By) > Fi(v) — P(t)

n—oec N
for t = 1, where my is the t-conformal measure for f, see Remark 4.3.

Proof: 'We combine the large deviations approach that can be found e.g. in the proof of [34, Theorem
1] with some distortion estimates based on negative Schwarzian derivative.
Let 0 <e < [gdv — 7, and for n € N let

1 1
Z = {Z € Z, : 3z € Z such that Ean(x) >v+4¢€ and Elog|(f")'(:v)| < A(v) —I—E}
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where Z,, denotes the family of monotonicity intervals of f". By Birkhoff’s ergodic theorem there is

ng € N such that for all n > ng holds .

8

Recall that Z,[z] denotes that element of Z,, that contains z. The point f"(z) subdivides the interval
f"Z,[z] into two parts, say L,[z] and R,[z]. Let ri(z) = min{m;(L,[z]),m:(Rn[z])}. r(z) is the
“my-distance” of f™(x) to the endpoints of f*Z,[z]. In particular, rl(z) = r,(z) with r,(z) as defined
in equation (1), because m; is Lebesgue measure. For n € N and ¢ > 0 let

U ={xel:ri(x)>8m(f"Z,[x]) > 30} .

As lim,, o SUP z¢ z, mi(Z) = 0 by (12), there is n(5) > 0 such that m.(Z) < £ for each Z € Zn(5)-
Let n = n(d) = min{ml(Z) Z € Zn(5)}- Then each interval of m;-length at least 6 has m;-length at
least 7. In particular, if rf,(z) > § for some z € I, then r,(z) > 7.

We describe U? in terms of the Markov extension introduced in Section 3. Denote by : I — D; C I
the canonical embedding of I into I. Then z € U}, % if and only if f*(i(z)) € V5 where Vj is the set of
points y € I that belong to some Dy C I with r (Dy) > 3§ and have at least /mi;-distance ¢ to the
endpoints of this Dy. If , = £ Y3~ é Do f~F for v € M is as in Remark 3.5, then v(UP) = L (f%(V3))
so that

v(UZ) >

n—1

.1 _
hnrgloréfﬁl; v(UP) = hrnlnfyn(VZ;) (Vs)

because U, — © vaguely, where ¥ is the f invariant lift of v to I. As 7y, has no atoms, the set
I \ U5>0V:5 contains only the countably many endpomts of intervals Dy, and thus cannot support any
finite f-invariant measure. Therefore, given 1 < d < 1, we can fix § > 0 such that #(Vs) > d. It

follows that there is a set I' C N of asymptotic den51ty at least 74 such that v(U3) > 4 for alln € T.
Therefore, if n € T is sufficiently large, then

v(USN(UZL)) >

Z .
Because of the Koebe Principle there exists a constant K, such that for Z € Z,, and z € ZNU} holds
m(f*(Z N U3)) ! / e [t
= S dmy < Ky - |(F . 4
mt(Zng) mt(Zng) ZﬁUfl rt|(f ) | my = n T |(f ) (m)| ( )

Let Z!! = {Z € Z!, : ZNUJ # 0}. Then v(UZ}) > v(US N (UZ])) > 4 for sufficiently large n € T,
and the Shannon-McMillan-Breiman theorem implies that

lim inf —log card(Z])) > h(v) .

I'sn—oco N

As T has asymptotic density at least 2Td and as one can easily check that cardZ,) < cardZ,,; <

it follows that d
hmmf logcard(Z”) > 5=q h(v) .

On the other hand, observing (4), each 7Z € Z! satisfies

m(ZNUS) =my(f(ZNUY)) - (M) -

mi(Z) me(Z N U3)

\Y%

\Y%

(30 — 20) - K, b -y e M)
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Hence,

1 1
liminf —logm(UZ]!) > liminf —log (card(Zﬂ) Kt e_”t(’\(")"'a))
n

n—oo 1, n— 00

d
2 rdh(y)_t)\(y)_log'rt_ta
= F(v)-1 ¢ 2ﬂh()
= t\V) —logry — 1€ — 2_d v).

Ase > 0and % < d < 1 were arbitrary, it remains to show that B, D UZ/. But this is an immediate
consequence of the following observation: As lim,_, sup{mi(Z) : Z € Z,} = 0, we have for each
geC():
1 1
lim su su —Yn9(x) — =% =0. 5
Jmosup o sup 0 ng(@) = —Zng(y) (5)
O

Proof of Theorem 5.1c):  If Aper > 0 and if ¢ & 1, then f has a unique invariant probability measure
p¢ which is absolutely continuous with respect to the conformal measure m;, see the appendix. We
may assume that f is not renormalizable (otherwise we pass to a suitable renormalization). In order
not to overload the notation, we denote y; simply by p in this proof.

Fix g € BV N C(I) where BV denotes the space of functions of bounded variation on I, and let
v > [ gdp. It is proved in [16, Theorem 1.2] that there is some a(y) < 0 such that

1
limsup —logmy(Bn) < a(7)

n—oo

and that (this is the important point) a(y) < 0 provided o2 > 0. * Here

aﬁz/ggdu+22/go-(goof")du
n=1

and go = g — [ gdu. Because of (15) of the appendix the terms of this series decrease exponentially.
Observing that A(v) > Aper > 0 for each v € M by Proposition 3.1, we conclude from the preceding
proposition that

sup{Fy(v) — P(t) : v € M, v ergodic, /gdl/ >y} <aly) <0 (6)

if 02 > 0.

gSuppose now that v, € M, v, — v, and that F;(v,) — P(t). We only must show that v = p,
because F;(u) = P(t) by Corollary 4.6. To this end let J be any open subinterval of I and suppose that
1 I = R, n > 1, is a sequence of nonnegative trapezoidal functions converging to xy monotonously
from below. It is obviously sufficient to show that [ 7,du = [7,dv for sufficiently large n. We
accomplish this in two steps: First we prove that this equality holds for all n for which aﬁn > 0, and
then we verify 02 > 0 for sufficiently large n.

Tn

2This was stated explicitly only for ¢ = 1 in [16]. However, once my; and u are constructed, the same proof (that
relies on a representation of Laplace transforms in terms of transfer operators) applies for ¢ ~ 1.
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For the first step we consider any g € BV NC(I) with o7 > 0. Let v, = [ v2 dvy () be the ergodic
decomposition of v, into ergodic measures 2. As the entropy is an affine upper semicontinuous func-
tion of the measure, we have [ h(vZ)dv,(z) = h(vy), and for the Lyapunov exponent the analogous
identity is obviously satisfied. Therefore

/Ft(ug) dv,(z) = Fi(v,) — P(t)

where F;(vZ) < P(t) for each z. Hence, given € > 0, there is ng € N such that for all n > ng there is

A, C I such that v(4,) >1— o7 and such that Fy(v¥) — P(t) > a(y) for each = € A,,. As 03 >0,

it follows from (6) that [ gdvZ <~ for each z € A,, and we can conclude that for n > ng

[ = [ ([oa7) dnate) <+ gl =142

Hence [gdv =lim, ,« [ gdv, <7, and as v > [ gdu was arbitrary, it follows that [gdv < [ gdp.
The same consideration applied to —g yields

/gdl/z/gd/,t, if o7 > 0.

We still have to show agn > 0 for n sufficiently large. Because of (15) of the appendix there are
constants C' > 0 and p € (0,1) such that for bounded measurable g1, g2 : I — R with g € BV holds

‘/91 - (92 Of”)du‘ < C-p™-var(gy) - sup |gz| (7)

provided that [ g1 du = [ g»dp = 0.
Let T: L2 — L2, g = go f, and denote by T* the dual operator of T on L”. Then T*1 =1 as u
is f-invariant, and for each g € BV with [ gdp = 0 holds

2

) oo 1 [
ST gl =" /g-T’“(T*’“g) du‘ <Y | C-p*var(g) - sup|T*g| | <oo.
k=0 k=0 k=0

<sup |g|

Hence goo := Y poo(T*%)g exists in L2, and if 07 = 0, then g = T(T*geo) — T*goo pr-a-e. (see [28] or
[11, Lemma 9.1]).
Suppose now that g = x4 — u(A) for some A C I, and denote G := T*g.,. Then (see [28] for this

argument,)
e27rzG’ ° f — e27nTG — e27rzGe27rzg — e27rzG'e—27rzu(A) ,

and as (f, ) is mixing, this implies u(4) = 0 or u(A) = 1. In particular, if A = J is a proper,
nontrivial subinterval of [ca,¢1] (recall we assumed that f is not renormalizable), then 0 < m(J) < 1
and o > 0. Observe that in this case [|g|lc = 1 and var(g) = 2.

Recall that 7, > 0 are trapezoidal functions converging to xs monotonously from below. Let
9n = Tn — u(J). We are going to show that lim, ,o 07, = lim, .05 = 02 > 0. Observing that
[19]l0os l|gnlleo < 1 and var(g), var(g,) < 2 we find that for any N > 0,

log = 5.
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‘/(92—gi)du+22/(g—gn)-(gOf’“)d/HZZ/gn-((g—gn)Of’“)du
k=1 k=1

2/|g—gn|dﬂ+4N/|g—gn|du+4 > 4oyt
k=N+1

IA

in view of (7). Aslim,_o0 [ |9 — gn| dp = limy, o0 [ [Xg — Tn| die = 0, it follows that liminf,, o 02 >

Gn
2_ % pN*1 and in the limit N — oo we obtain the desired estimate. O

o
5.4 Example We present a map which has no equilibrium state at all and for which, a fortiori,
the free energy is unstable. This example comes from [8, Theorem 2]. Using the technique of al-
most restrictive intervals of [10], a map is constructed which has no absolutely continuous invariant
probability measure. Instead V(z) = 6, for m-a.e. x, where p is the repelling orientation reversing
fixed point. We briefly describe the combinatorics, and then explain why the map has the asserted
properties.

Let (a;) and (8;), a; < Bi < a4 for all i, be integer sequences. Qur kneading map is defined as

0 ifn <oy
2 ifn=aq
Q=91 ifa<n<p

Bi ifBi<n<ai

It is not hard to verify that Q satisfies {Q(n + j)};>1 = {Q(Q?*(n) + j)};>1 for all n and for every
choice of (a;) and ;). According to [8], this means that @ is admissible, i.e. that there exists unimodal
maps, and in particular a quadratic map f,(z) = az(l — ), with precisely this kneading map.

The next step is to show that V(c) = {d,}. We have p € (z1, %), and in general

£57(0) € (2Q(n+1)-15 20(n+1)] U [Z(n+1)> ZQ(n+1)—1)- (8)

Since Q(n) =1 for a; < n < Bi, fi(c) € (z1,%) for all S,, < j < Sp,. By taking B; > 2%a;, we can
at least guarantee that {5,} € V(c). Because Q(n) is large for 8; < n < ajy1, the orbit of f9(c) will
follow the orbit of ¢ closely for these values of n. Therefore 4, is indeed the only measure in V'(c).

The last ingredient is the almost restrictive interval. Since f5» maps either (2,1, 2,) or (Zn, Zn—1)
in a monotone orientation preserving way onto itself, there exist an S,-periodic orientation preserving
point p, € (2n_1,2n) U (Zn, Zn_1)- We call the interval [p,,p,] almost restrictive if f5([p,,py,]) is
only slightly bigger than [p,,pn]. {(From formula (8) one can derive that this is the case if there is
a large number jy such that Q(n +j) = n for 1 < j < jo and Q(n + jo) < n (see also [3, page
95]). In our construction, f has an Sg;-periodic almost restrictive interval whenever a1 — §; is
large. The idea behind almost restrictive intervals is that mass gathered inside (p,,p,) can only
slowly escape from a neighbourhood of Uf:"o_ Y #4([pn, Pn)). Using cascades of these intervals, Johnson
was able to construct maps for which m-a.e. point spends at least a 1 — & portion of its time (¢ >
0 arbitrary) in neighbourhoods of orb(c) of arbitrarily small m-measure. Such maps cannot have
absolutely continuous invariant probability measures. For our purpose we state this result in the
following form:

5.5 Lemma There exists a recursive choice of (a;) (where a; depends only on the family (f,)q and
on o and B; for j < i; once o is fized, B; can be chosen arbitrary), such that the map f, with the
limit kneading map satisfies V(z) = V(c) = {0, }.
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Choosing a; as in this lemma, we obtain a map which has neither absolutely continuous nor nonliftable
equilibrium states. Hence by Propositions 3.3 and 3.9, £(1) = 0. Because for n = 3;, f5* ([pn,Pn]) is
only slightly larger than [p,, pn], the multipliers of pg, are bounded. Therefore, if §; is the equidistri-
bution on orb(pgs;), A(6;) — 0 and F(d;) — 0 as i — co. But pg, follows the critical orbit closely in
the first Sg, iterates, whence d; — J, weakly. This gives a direct argument for the unstability of F} in
this example.

6 Observable measures

We call a measure u € M observable, if %Z?;OI dfiz — p as n — oo for a set of points z of positive
Lebesgue measure. In uniformly hyperbolic situations p is observable if and only if u € £(1). Here
we collect some partial results in this direction. For maps with Ape, # 0 the claim of the following
theorem is well-known.

6.1 Theorem
a) If f has an absolutely continuous invariant probability measure or a zero dimensional attractor
(being a stable or neutral periodic orbit, a solenoidal attractor or a Cantor attractor), then
V(z) C £(1) m-a.e.
b) If Fy is stable, then V(z) N E(1) # O m-a.e.

By a solenoidal attractor we mean the attractor that exists in the infinitely renormalizable case. If
f is finitely renormalizable, but w(c) is a Cantor set which nonetheless attracts m-a.e. point (i.e.
w(z) C w(c)m-a.e.), then w(c) is called a Cantor attractor. It was shown in [5, 4] that certain
unimodal maps have such Cantor attractors.

6.2 Corollary In all cases of the preceding theorem each observable measure belongs to £(1).

6.3 Remark If \,., # 0 then Theorem 5.1 shows that there is a unique measure in £(1) which is at
the same time the unique observable measure.

6.4 Remark The example in the previous section shows that an observable measure need not belong
to £(1). On the other hand, Fibonacci maps with critical order £ < 2 + ¢, which are known to possess
an absolutely continuous g € M (see [20, 15]), provide examples of nonobservable equilibrium states
in £(1) (cf. Corollary 3.11).

Proof of Theorem 6.1: If f has an absolutely continuous invariant probability measure pu, then by
Proposition 3.3 p € £(1), and Birkhoff’s ergodic theorem implies that {u} = V(z) m-a.e. If f has
an attractor A, then w(z) C A for m-a.e. x, whence supp (u) C A for every p € V(z). But A can
only support equilibrium states. This is clear if A is a stable or neutral periodic orbit or a solenoidal
attractor. If A is a Cantor attractor, then by [1, Lemma 11.1] ¢ must be persistently recurrent. Hence
Lemma 3.10 yields V (z) C £(1).

For the second statement we only have to consider maps without attractor or absolutely continuous
invariant probability measure. By [13, Theorem 3(b)] (see also [24, Theorem V 3.2])

limsup — log |(f")(z)] = 0 m-a.e. )

n—oo T

Because there is no attractor, the action (f , f ) is recurrent m-a.e. in the sense that there exists k and
an interval J, clJ C int Dy, such that

card{n : f"(y) € J} = oo for every y € ' (z) and m-a.e. z € I. (10)
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Choose z satisfying both (9) and (10). Let ny < na < ... be the integers n such that f*(y) € J.
By the Markov property of (I, f), rn,(z) > € for every i, where € := d(J,0D) > 0. Furthermore

there exist periodic points p; € 7(J) of (not necessarily prime) period n; — ny that shadow the orbit
f™(x), fati(z),..., ffY(z). By the Koebe Principle, there exists K. > 1 such that

K%I(f”"‘”l)'(xnl)l S IE™™) (Rl < Kel (f™7™) (@na)-

Because z satisfies (9) and p; is not stable, lim; ——log|(f™ ™ )(p;)| = lim; n%,log|(f"i)’(x)| =
0. Let p be a weak accumulation point of (éwb(pl))z, then by stability of F; we have Fi(u) =
lim; Fy (0orb(p;)) = 0, whence p € £(1). But as (dorp(p,))i and (ni Z”’_l d¢n(z))i clearly have the same
accumulation points, V(z) N E(1) # 0. m]

6.5 Remark We do not know whether stability implies that V(z) C £(1) m-a.e. We want to
mention, however, that Tsujii [33] introduced the following notion of weak regularity: The point
is weakly regular for a mapping f, if the restriction of the mapping A : ¥ — A(v) to the closure of
the set {% EZ;; dpry 1 m > 0} is continuous, and the mapping f is weakly regular, if m-a.e. point
is weakly regular for f. He proves among other things that a C?-map f is weakly regular, if all its
critical values are weakly regular. In our context this means that if (9) holds for a S-unimodal map
f and if f(c) is weakly regular, then V(z) C £(1) m-a.e. This is closely related to the fact (see [13,
Theorem 4]) that if (9) holds, then V(z) C convV (c) m-a.e.

Appendix: Conformal and Invariant Measures for CE-Maps

In this appendix we construct the measures m; and p; for Collet-Eckmann maps satisfying the ad-
ditional regularity assumptions mentioned in Remark 4.4, and we prove the exponential decay of
correlations for p;. We rely heavily on results and proofs in [16], in fact, what follows cannot be read
independently of that paper.

Let BV denote the Banach space of functions of bounded variation on I asin [16, Sect. 2.2], and
let @ : I — (0,00] be the function constructed in [16, Sect. 6.2] which has exactly the singularities
the invariant density for f is expected to have. Consider transfer operators ﬁé acting on functions
§:1—> Cby Lgg(x) =3 ,cj-1, 2()d(y) where & = ¥' - e with ¥ = (|f'|22L)~" and arbitrary
F e BV. Fort ~1andu = 0 this operator acts quasicompactly on BV and if f is a nonrenormalizable
Collet-Eckmann map, then it has the spectral representation E" =ry uPt u+ L7 Pt « Where 7 ,, and
the one-dimensional projection ’Pt,u depend analytically on t,u € C. Fort =1 and v = 0 we have
rio=1and 751,0 = [gdz- | where h := hab is the unique invariant probability density for f , see [16,
Sect. 4.2, Sect. 5 and (2.3)].

Let u =0,t € R, t & 1. In this situation we suppress the subscript u. As ﬁé > 0, also P, > 0,
so P () =n(g) - hy for some positive linear functional +; : BV = R and by = Ty 1P,k is normalized
such that ”yt(ﬁt) = 1. As we tacitly assume that all preimages of the critical point are doubled (cf.
[16, Sect. 3]), all Z € U, Z,, are compact, and the finitely additive measure 7; on UnZn specified by
m(Z) = 7¢(1;) extends to a o-finite Borel measure on I. There are constants C > 0, © € (0, r;) such
that . .

(Z) = n(1) = r "n(L31,) < C(Or )™, (11)

see [16, Lemma 4.1].
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In order to show that [ §din; = v:(§) for all § € BV we follow [29]: Let &, : BV — BV be the
projection on piecewise constant functions defined in [16, Sect. 4.1]. If §|p, = 0 for all except finitely
many k, then &, is a finite linear combination of indicator functions 1, whence f G g ding = v (6n9)-
As | [ angdimg — [ §ding| < var(g) - C (©r;')" — 0 by (11) and as

1e(@nd) — (@) = ri™ (LR ang — L33)] < C(Or) ™ =0

by [16, Lemma 4.2], it follows that [ gdmy; = v(g). For arbitrary g € BV let g, =g - 1y;<,n;- Then
l9 — G|l gy, — 0 by definition of || .|| g, [16, Sect 2.2] so that [ gdm; = limy, [ g dmt = limy v:(gx) =
v¢(§)- Hence [ Lggding = v(L4d) = r17:(9) = 1t [ § ding for all § € BV, and as BV is dense in Ly,
it follows that ﬁ;mt = ryMy.
Let iy, = +m. As - [’,q,(%) = L4(g) (L from Section 4 of this paper), it follows that

Erﬁ‘bt = ’I‘tmt and Ltilt = ’rtilt
and, because of (11), m; has no atoms. In particular

lim sup mt(Z) =0. (12)

Let 2, 7' € Z, for some n. If 17 = WZI, then £71, = L'1,, by definition of £;. It follows that
(2) = ri " (L7 15) = 17" e(LP15) = me(2) (13)
i.e. ™y is level independent and thus gives rise to a measure my on I defined by
myon(U) =1 (U) if U C D, for some n. (14)

Let fi; = hy -1y = h-nig. Then fi; is f-invariant, and g := fi; o ! is f-invariant. Obviously
P K my.

Next we show that (f, u:) has exponentially decreasing correlations in the following sense: There
are constants C' > 0 and p € (0,1) such that for all bounded g;,¢2 : I — R such that g; € BV and
J 91dmy = [ g2 dmy = 0 holds

‘/91 (g2 0 f")du| < C - p" - var(g1) - sup |ga] - (15)

The proof is essentially the same as that in [16, Appendix B] for the case ¢ = 1, except that the
following estimate must be used:

[ ool din < suplgal (D) < Il - sup g
because m¢(D;) = v¢(1p;) < [lnll - (1ol gy = llell < oo

Finally let BV 3 = {0 -§ : § € BV}. BV is in a natural way isomorphic to BV, and it is this
space that we call B in Section 4. In particular, g—rﬁi; = hywy =: hy € BV .

We summarize the main points of this discussion:

6.6 Theorem Let f:I — I be a Collet-Eckmann map satisfying the additional regularity assump-
tions mentioned in Remark 4.4 and denote zts Markov extension by f I 1. Lett=~1. Then there
are a Borel measure m; on I o density ht — (0,00) and a real number ry > 0 such that
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a) L3y = rey, Etﬁt = rtﬁt, and ry depends analytically ont for t ~ 1.

b) The spectral projection Py associated with the eigenvalue T, of L can be represented as Prg =
he - [ g ding.

¢) Denote by m; the measure on I defined in (14). Then py = (ﬁt M) om L = hymy is an
f-invariant measure with density hy(z) = hi(#). It has ezponentially decreasing corre-
lations in the sense of inequality (15).

e 1z
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