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Abstract. We use canonical Markov extensions (Hofbauer towers) to give an explicit
construction of the natural extensions of various measure preserving endomorphisms,
and present some applications to particular examples.

Natural extension and Piecewise affine maps and Hofbauer tower

1. Introduction

A measure theoretical dynamical system is a quadruple (X,B, µ, T ), where (X,B, µ)
is a probability space and T : X → X is a transformation that preserves the measure
µ, i.e., µ(T−1A) = µ(A) for each set A ∈ B. To study the properties of a non-invertible
transformation T , one can use a natural extension. This is a bigger, invertible system
(Y, C, ν, S) that preserves both the original dynamics and the measure structure with
C being the coarsest σ-algebra that makes this possible. Many properties of a natural
extension carry over to the original system. For example, the measure theoretical entropies
of both systems are equal and they have the same mixing properties. In [Roh64], Rohlin
gave a canonical construction of a natural extension for a wide class of dynamical systems
on Lebesgue spaces. He showed that any two natural extensions of the same system are
isomorphic, hence we can speak of the natural extension. Different versions however can
have their own advantages.

As a basic example, consider the angle doubling map T2x = 2x (mod 1) on the unit
interval [0, 1), preserving Lebesgue measure. A geometric version of the natural extension
is given by the baker transformation (Figure 1):

B : [0, 1)2 → [0, 1)2, (x, y) 7→
(
2x (mod 1), (y + b2xc)/2

)
.

Here the dimension of the space Y is one larger than the dimension of X, giving room
to separate preimage branches. We can recover the original system simply by projecting
onto the first coordinate. Bose [Bo89] showed that every ergodic positive entropy en-
domorphism is in fact isomorphic to a generalised version of the baker transformation.
The generality of this isomorphism, however, makes it difficult to use it as an explicit
geometric model of a natural extension.

Such a geometric version of the natural extension can be used for various purposes. For
example, for β-transformations (i.e., x 7→ βx (mod 1)) it yields an explicit expression of
the density of the absolutely continuous invariant measure, see [DKS96, DK09]. In case β
is a Pisot number, certain geometric representations of algebraic natural extensions serve
to identify periodic points (see for example [Aki02, IR06]) and are associated to multiple
tilings of a Euclidean space (see for example [KS10, Sch00]). For the standard continued
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Figure 1. The angle doubling map and a geometric version of its natural extension.

fraction transformation x 7→ 1
x
− b 1

x
c, also called the Gauß map, a geometric natural

extension substantially simplified proofs of results on the quality of the continued fraction
approximation coefficients, such as the Doeblin-Lenstra Conjecture and generalisations of
Borel’s Theorem (see [Jag86, JK89]). For the α-continued fraction map Tα : [α− 1, α)→
[α−1, α), x 7→ | 1

x
|−b| 1

x
|+1−αc for parameter α ∈ [0, 1] a geometric version was recently

used to study the behaviour of the entropy as a function of α in [KSS12]. For higher-
dimensional versions of the Gauß map, explicit constructions of the natural extension
were given by Schweiger [Scw91].

In this paper we present a general method for obtaining geometric natural extensions
of piecewise continuous maps with locally constant Jacobian J(x) = dµ◦T

dµ
(x), which gen-

eralises the piecewise linearity of some of the above1 examples. The construction is based
on the “canonical Markov extension” approach introduced by Hofbauer in [Hof80], com-
monly called Hofbauer tower; see also investigations by Buzzi [Buz99] and Bruin [Bru95].
In short, we apply the above “extend the space with one dimension” approach that works
for the doubling map to the Hofbauer tower. This can be found in Section 2. In Section 3
we show that this natural extension is isomorphic to a countable state Markov shift and
that it has several induced transformations that are Bernoulli. In the last two sections we
give examples of systems to which the construction applies. These include all piecewise
linear expanding interval maps with positive entropy. Other examples are certain higher
dimensional piecewise affine maps, in particular a specific skew-product transformation
called the random β-transformation, and rational maps on their Julia set.

Acknowledgement: The authors want to thank the referee for the useful remarks and
suggested literature.

2. The Construction

In this section we give the construction of the Hofbauer tower and of the geometric
natural extension for the class of maps we consider in this article. We first describe this
class of transformations.

2.1. The class of transformations. Let X be a compact subset of Rn, B the Lebesgue
σ-algebra on X and µ a probability measure on (X,B). Let Z = {Zj}1≤j≤N be a collection
of closed sets giving a partition of X, so µ(Zj) > 0 for all j, µ(Zi ∩ Zj) = 0 for i 6= j and
µ
(
∪1≤j≤N Zj

)
= 1. Let T : X → X satisfy the following conditions.

1but not the generalised continued fraction maps of e.g. [KSS12, Scw91] because there the Jacobian is
not piecewise constant
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(c1) For each Z ∈ Z, the map T can be extended uniquely to a continuous injective

map TZ : Z → T (int Z), where int Z denotes the interior of Z and the bar denotes
the closure.

(c2) For each set A ∈ B, also TA, T−1A ∈ B and if µ(A) = 0, then also µ(T−1A) = 0.
(c3) The partition Z generates B in forward time. In other words,

∨
k≥0 T

−kZ = B,

where
∨
k≥0 T

−kZ denotes the smallest σ-algebra containing all cylinder sets, i.e.,

the elements of common refinements Zn :=
∨n
k=0 T

−kZ.

Thus we assume in (c2) that µ is non-singular w.r.t. T , but not yet that µ is T -invariant.
This assumption will either be made later, or, starting from a reference measure µ[, our
construction will produce a T -invariant measure µ � µ[ for which a geometric natural
extensions will be constructed. The important step is that we acquire a Markov measure
for the Hofbauer tower, which we explain in the following section.

2.2. The Hofbauer tower. Recall that Zn =
∨n
k=0 T

−kZ denotes the collection of (n+
1)-cylinder sets Zj0···jn , defined by

Zj0···jn = Zj0 ∩ T−1Zj1 ∩ · · · ∩ T−nZjn ,
whenever µ(Zj0···jn) > 0. Hence Z0 = Z. To obtain the Hofbauer tower we consider the
n-th images under T of the (n + 1)-cylinder sets and order them in a convenient way.
Indeed, consider the closures of the sets

T nZj0···jn for Zj0···jn ∈ Zn, n ≥ 0,

with the equivalence relation ∼ given by T nZj0···jn ∼ TmZi0···im if the measure of the
symmetric difference µ(T nZj0···jn4TmZi0···im) = 0. Let D denote the set of equivalence
classes under this relation. We will occasionally abuse notation and consider the elements
of D as subsets of X instead of equivalence classes. Note that T nZj0···jn ⊆ Zjn .

Clearly D is finite or countably infinite, so we can take an ordered index set α ⊆
N = {1, 2, 3, . . . } and write D = {Du : u ∈ α}. It is convenient to set Du = Zu for
u = 1, . . . , N , so that the first N elements of D are simply the elements of Z, and we call
X̂0 = tNu=1Du the base of the Hofbauer tower. The full Hofbauer tower X̂ (see [Hof80]) is
the disjoint union of the elements of D,

X̂ =
⊔
n≥0

⊔
j0···jn

T nZj0···jn/∼ =
⊔
u∈α

Du.

Remark 1. There is a choice to define the levels Du as images T (Dv ∩ Zj) as done by
Hofbauer [Hof80] and Keller [Kel89] or as partition elements TDv∩Zj restricted to levels,
as is done by Buzzi, e.g. [Buz95]. This difference has no profound effect on the outcome;

however we follow Buzzi here, as it makes it easier to interpret the dynamics on X̂ as a
one-sided subshift of (αN, σ).

When it is important to specify which component a point x̂ in the Hofbauer tower
belongs to, we write x̂ = (x,D) or (x, u) when D = Du. The canonical projection

π : X̂ → X, x̂ = (x,D) 7→ x, maps the Hofbauer tower onto X. Note that B̂ := D∨π−1(B)

is the Lebesgue σ-algebra on X̂.

We extend the dynamics of T to X̂. Let D = T nZj0···jn ∈ D. Then, for each 1 ≤ j ≤ N

such that µ(Zj ∩TD) > 0, also D′ := Zj ∩TD = T n+1Zj0···jnj ∈ D. Define T̂ : X̂ → X̂ by

x̂ = (x,D) 7→ (Tx, Zj ∩ TD) if Tx ∈ Zj,
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and write an arrow D → D′ if this happens. By construction, D is a Markov partition of
(X̂, T̂ ), and π ◦ T̂ = T ◦ π. The arrow relation on (X̂, T̂ ) gives rise to a canonical Markov
graph (D,→). Define the symbol space

(1) Σ := {y = (y0y1y2 . . . ) : yi ∈ α and Dyi → Dyi+1
for all i ≥ 0}

indicating all the one-sided paths on (D,→) and let σ : Σ→ Σ denote the left shift, i.e.,

(σy)i = yi+1. Let η : X̂ → Σ, x̂ 7→ y be given by yi = u if T̂ ix̂ ∈ Du. The system (Σ, σ) is

a factor of (X̂, T̂ ) with factor map η, i.e., η is surjective and η ◦ T̂ = σ ◦ η. A probability
measure µ̂ on (D,→) is called a Markov measure with transition probabilities pu,v if for
all u, v ∈ α

• pu,v ∈ [0, 1], pu,v = 0 when Du 6→ Dv and
∑

v:Du→Dv pu,v = 1,

•
∑

u:Du→Dv pu,vµ̂(Du) = µ̂(Dv).

We can extend the Markov measure µ̂ toD∨T̂−1D by defining µ̂(Du∩T̂−1Dv) = pu,vµ̂(Du).

Repeating this to cylinder sets of any length, and extending to the σ-algebra
∨
k≥0 T̂

−kD,

we automatically get that µ̂ is T̂ -invariant. We can take such Markov measures as starting
point and define µ on X as µ = µ̂ ◦ π−1.

Lemma 1. For any Markov measure µ̂, the projected measure µ = µ̂ ◦π−1 is T -invariant
and satisfies conditions (c1)-(c3) of Section 2.1.

Proof. Conditions (c1), (c3) and the first part of (c2) do not mention a measure and
are just part of the set-up. For the remaining part of condition (c2) we first show that∨
k≥0 T̂

−kD = D ∨ π−1(B). Recall that B =
∨
k≥0 T

−kZ. Hence,

D ∨ π−1(B) =
∨
k≥0

D ∨ π−1(T−kZ).

To show that D ∨ π−1(B) ⊆
∨
k≥0 T̂

−kD, take any cylinder Zj0···jn and suppose that

µ̂
(
π−1(Zj0···jn) ∩ D

)
> 0 for some D ∈ D. Then there is a set D′ ∈ D such that D′ =

T̂ n
(
π−1(Zj0···jn)∩D

)
and hence π−1(Zj0···jn)∩D ∈

∨n
k=0 T̂

−kD. The inclusion then follows
since D∨π−1(B) is the smallest σ-algebra containing all sets of the form π−1(Zj0···jn)∩D.

For the other inclusion, take a non-empty set of the form Du0 ∩ T̂−1Du1 ∩ · · · ∩ T̂−kDuk .
This means that there exists a cylinder set Z = Zj0···jnjn+1···jk such that T nZ ⊆ Du0 and
T n+kZ = Duk . By the first part of (c2) T nZ ∈ B, so

Du0 ∩ T̂−1Du1 ∩ · · · ∩ T̂−kDuk = Du0 ∩ π−1(T nZ) ∈ D ∨ π−1(B).

Hence, the two σ-algebras are equal. The T -invariance of µ then follows since µ̂ is T̂ -
invariant and T ◦ π = π ◦ T̂ . 2 �

Example 1. One example, usually given for finite graphs, but valid for infinite graphs
as well provided they are positive recurrent and hence the eigenvectors mentioned below
belong to `2 (see Gurevič [Gur69]), is the Parry measure, see [Wal82, Section 8.3]. To
construct this measure, we assume for simplicity that the graph (D,→) is primitive, and
we let A = (at,u)t,u∈α be its adjacency matrix given by at,u = 1 if Dt → Du and at,u = 0
otherwise. Let λ be the leading eigenvalue; by the Perron-Frobenius Theorem λ > 0
and its associated left eigenvector v = (vu)u∈α and right eigenvector w = (wu)u∈α can be
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taken strictly positive. We can scale v and w such that
∑

u∈α vuwu = 1, and construct a
stochastic matrix

P = (pt,u), pt,u =
at,uvu
λvt

.

Finally, the Markov measure µ̂(Du) = vuwu for all u ∈ α, and in general,

µ̂({x̂ : T̂ k(x̂) ∈ Duk , 0 ≤ k < n}) = vu0wu0pu0,u1 · · · pun−2,un−1 ,

is called the Parry measure. Extended to the σ-algebra generated by the cylinder sets∨n
k=0 T̂

−kD, it becomes the measure of maximal entropy of (X̂, T̂ ), see [KH95, Chapter
4.4].

2.3. Lifting measures to the Hofbauer tower. The above shows that the Markov
structure of the Hofbauer Tower always gives a measure on the tower. In general we often
have a measure µ on (X,B) that behaves nicely with respect to the map T . We would

like to determine if there exists a T̂ -invariant measure µ̂ on X̂ such that µ̂ ◦π−1 has some
relation to µ. Below we follow two strategies of constructing such a measure µ̂, one in
case µ is T -invariant and one in case µ is not.

Assume that we have a system (X,B, µ, T ) satisfying (c1), (c2) and (c3). First extend

the measure µ to a measure µ̄ on X̂ by setting

(2) µ̄(A) =
∑
D∈D

(µ ◦ π)(A ∩D)

for all A ∈ B̂. Note that µ̄ is not (necessarily) T̂ -invariant, and can in principle be
infinite albeit σ-finite. Since we have assumed that µ(Z) > 0 for each cylinder Z, we have

µ̄(D) > 0 for all D ∈ D. Define a sequence of Cesaro means (µ̂n)n≥1 on X̂ by setting

(3) µ̂n(A) =
1

n

n−1∑
k=0

µ̄(T̂−kA ∩ X̂0).

Here the intersection with base X̂0 guarantees that µ̂n are all probability measures. The
measure µ is called liftable if the sequence {µ̂n}n≥1 from (3) converges in the vague
topology (i.e., weak topology on compacta2) to a non-zero measure µ̂. Conditions un-
der which measures are liftable are extensively studied, see for example [Kel89, BT07,
Buz99, PSZ08]. The main point is that there can be no accumulation of mass on the
boundaries of sets in the Hofbauer tower and mass cannot escape to infinity. Fix Du ∈ D
and let

(4) ∂nDu =
{
Z ∈ Zn : 0 < µ(Z ∩Du) < µ(Z)

}
.

In words, ∂nDu contains all (n + 1)-cylinders Z such that Z and Du have a non-trivial
intersection and the cylinder Z is not completely contained in Du. The capacity of the
map T is defined by

(5) cap(T ) = lim sup
n→∞

1

n
log sup

u∈α
#(∂nDu).

For the proof of Proposition 2 and for later use, define the sets

(6) Bu,n =
⋃

Z∈∂nDu

(Z ∩Du).

2Recall that the space X and also the levels D are compact, so (µ̂n|D)n has a weak accumulation point
for each D
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We use the notation ∂A for the usual boundary of a set A ⊂ Rn. For the liftability of µ
and the construction of the natural extension in the next section we need to make three
additional assumptions on our system.

(c4) For each 1 ≤ j ≤ N there is a constant sj ≥ 1 such that for all measurable sets
A ⊆ Zj, µ(TA) = sjµ(A).

(c5) µ is ergodic, i.e., if T−1A = A for some A ∈ B, then µ(A) = 0 or 1.
(c6) µ

(
∪n T n(∪Nj=1∂Zj)

)
= 0.

Remark 2. (i) Condition (c4) requires that the Jacobian of T (see [Par69]) is locally
constant; thus Jµ,T := dµ◦T

dµ
has zero distortion.

(ii) In (c5) we assume ergodicity without insisting on T -invariance. Ergodicity of µ implies
that each limit point of {µ̂n}n≥1 is either zero, or a probability measure.

The next proposition gives some first properties of limit points of the sequence in (3).

Proposition 1. Let µ̂ be a limit point of the sequence {µ̂n} defined in (3). Then µ̂ is

T̂ -invariant and ergodic. Also, µ̂ ◦ π−1 is ergodic.

Proof. The T̂ -invariance of µ̂ follows since it is a limit of Cesaro means. For ergodicity,
let Û ⊆ X̂ be a measurable set such that T̂−1Û = Û . Write U = π(Û). Then T−1U = U ,
so by (c5) either µ(U) = 0 or µ(X\U) = 0. If µ(U) = 0, then

µ̄(T̂−k(Û) ∩ X̂0) = (µ ◦ π)
(
T̂−k(Û) ∩ X̂0

)
≤ (µ ◦ π)(T̂−kÛ) ≤ µ(T−kU) = 0

for each k ≥ 0. Hence, µ̂n(Û) = 0 for all n and so µ̂(Û) = 0. Similarly, if µ(X\U) = 0,

then µ̂(X̂\Û) = 0. Hence µ̂ is ergodic.
For the last part, let U ⊆ X be a measurable and T -invariant set. Then π−1(U) =

π−1(T−1U) = T̂−1π−1(U) and by the previous, (µ̂ ◦ π)(U) is either 0 or 1. 2 �

Proposition 2 (Theorem 2 from [Kel89]). Assume that (X,B, µ, T ) satisfies (c1)-(c6).
For a T -invariant measure µ the sequence {µ̂n}n≥0 converges and if this limit µ̂ 6≡ 0, then
µ̂ is an ergodic probability measure and µ̂ ◦ π−1 = µ.

Proof. These results follow from Theorem 2 from [Kel89] by Keller, so we only need to
check that the conditions of that theorem are satisfied: T needs to be invariant and ergodic
and there has to be a µ-null set N ⊂ X such that N̂ = π−1N has the properties

(2.2) π−1(A) ∈ B̂ (mod N̂)⇒ A ∈ B (mod µ) for all A ⊆ X,

(2.3) x̂, ŷ ∈ X̂ \ N̂ and π−1(x̂) = π−1(ŷ) imply that ∃n ≥ 0 s.t. T̂ nx̂ = T̂ nŷ.

The ergodicity of T is (c5) and the T -invariance is assumed in the proposition. Property

(2.2) is satisfied since B̂ = D∨π−1(B). Recall the definition of the sets Bu,n from (6) and
set Bu = ∩n≥1Bu,n. Property (2.3) follows from (c6) when we take N = π(∪u∈αBu), since
this implies that the points x̂ = (x,Du) and ŷ = (y,Dv) are not at the boundary of Du

and Dv respectively. Hence, there is some n and some cylinder Zn, such that x, y ∈ Zn
and Zn is contained in the interior of Du and Dv and this implies that T̂ nx̂ = T̂ nŷ. This
establishes the existence of a unique vague limit µ̂. If µ̂ 6≡ 0, then Theorem 2 from [Kel89]
gives the rest of the statement: µ̂ ◦ π−1 = µ and µ̂ is ergodic. 2 �

Theorem 3 from [Kel89] by Keller gives conditions under which µ̂ 6≡ 0 in case of T -
invariance.
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Theorem 1 (Theorem 3, [Kel89]). Assume that (X,B, µ, T ) satisfies (c1)-(c6) and that
µ is T -invariant. If hµ(T ) > cap(T ), where hµ(T ) denotes the metric entropy, then the

sequence {µ̂n}n≥1 converges to an ergodic T̂ -invariant probability measure µ̂ for which

µ̂ ◦ π−1 = µ. Moreover, hµ̂(T̂ ) = hµ(T ).

Proof. Note that T -invariance of µ implies condition (c2). The result by Keller is then
valid under (c1), (c3), (c5) and (c6). 2 �

Invariance of µ is essential in Theorem 1 because otherwise hµ(T ) is undefined, and
µ̂ ◦ π−1 = µ will fail. However, Theorem 1 has a version which applies to measures µ
that are non-singular but not necessarily T -invariant, as long as (c2) holds. This is due
to Keller [Kel90, Theorem 3(a)] for piecewise smooth interval maps, see also [dMvS], and
[BT07] for the setting of complex polynomials. We give one more example for piecewise
affine and expanding maps in Rq. However, it seems fair to say that proving liftability is
not easier than proving the existence of an invariant measure equivalent to Lebesgue.

Proposition 3. Let X ⊂ Rq be compact and assume that T : X → X is piecewise affine
and expanding w.r.t. a finite partition Z such that each Z ∈ Z is a polytope bounded by
(q − 1)-dimensional hyperplanes. Then Lebesgue measure mq lifts to the Hofbauer tower.

Proof. Tsujii [Tsu01] proved that piecewise affine expanding maps as above have an abso-
lutely continuous invariant probability measure µ with bounded density h = dµ

dx
. Moreover,

there are only finitely many Lebesgue ergodic components (only one if T is transitive),
so by passing to a component, we can assume that q-dimensional Lebesgue measure mq

is ergodic.
In short, there is no need to use the Hofbauer tower approach to find µ. We prove the

liftability nonetheless, because it will assist us in creating the natural extension.
Let ρ > 1 be the expansion factor: d(T (x), T (y)) > ρd(x, y) (where d stands for

the Euclidean distance), whenever x and y belong to the same partition element Z.
Let S := mq−1(∂Z) be the (q − 1)-dimensional measure of the hyperplanes forming the
partition Z; this quantity is finite by the assumptions on Z. For η > 0 small, let B(η) be
an η-neighbourhood of ∂Z and let χη be the indicator function of B(η). If d(x, ∂Z) < η,

and y ∈ ∂Z is closest to x, then it takes at most d log η−log d(x,y)
log ρ

e iterates to move x and y

at least η apart. Hence, for the first n iterates in the orbit of x,

n−1∑
j=0

χη(T
j(x)) · log η − log d(T j(x), ∂Z)

log ρ
,

is an upper bound for the number of iterates k that T kx is less than η away from the
image of ∂Z taken along the same branch T k−j as T jx at its previous close visit to ∂Z.
For the remaining iterates k, there is a neighbourhood Uk 3 x such that T k maps Uk
homeomorphically (and in fact affinely) onto an η-ball around T kx. In other words, x has
reached η-large scale at time k.
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By the Ergodic Theorem, for mq-a.e. x,

1

n

n−1∑
k=0

χη(T
k(x)) · log η − log d(T k(x), ∂Z)

log ρ

→ 1

log ρ

∫
B(η)

(log η − log d(ξ, ∂Z)) dµ(ξ)

≤ 2S suph

log ρ

∫ η

0

(log η − log ξ)dξ =
2S suph

log ρ
· η.

Thus, the limit frequency that Lebesgue typical points reach η-large scale is 1− 2ηS suph
log ρ

≈ 1

for small η. When lifting the orbit of such typical x to the Hofbauer tower, it will spend
a similar proportion of time in a compact part K of the tower, where K depends only

on T and η. In probabilistic terms, the sequence
(

1
n

∑n−1
k=0 m̄

q ◦ T̂−k
)
n

is tight, and this

suffices to conclude that Lebesgue measure is liftable, say to µ̂. Naturally, µ̂ ◦ π−1 = µ.
2 �

The next two examples show that expansion of Jacobian (rather than uniform expansion
in all directions) or having positive Lyapunov exponents can both be insufficient for
liftability.

0 1
2

1

1

2
3

0 1

1
3
5

0 1

1

0 1

1
1
2

0 1

1

3/5
1/2

(a)

0 α α+ 1
2

1

1

1− 2α

(b)

Figure 2. In (a) we see the map from Example 2. (b) shows the map from
Example 3, which is a bimodal interval map with slope ±2 and turning
points α and 1

2
+ α.

Example 2. Consider the skew product T : [0, 1)× [0, 1) defined as

T (x, y) =
(
2x(mod1), a(x)y(mod1)

)
for a(x) =

{
3
5

if x ∈ [0, 1
2
),

3
2

if x ∈ [1
2
, 1),

see Figure 2(a). This map is transitive and the Jacobian of T w.r.t. Lebesgue measure
m2 is expanding and locally constant: Jm2,T (x) = 2a(x). Note that for the omega-limit

set ω(x, y) = ∩n≥0{T k(x, y) : k > n} we have ω(x, y) = [0, 1) × {0} for m2-a.e. (x, y);
this is by a standard argument of skew-products because the Lebesgue typical transversal
Lyapunov exponent is

∫
log a(x) dx = 1

2
log 9/10 < 0. This implies that the unique weak

limit measure of 1
n

∑n−1
k=0 m

2 ◦ T−k is one-dimensional Lebesgue measure on [0, 1) × {0}.
If m2 were liftable, say to µ̂, there must be some level D ⊂ X̂ with µ̂(D) > 0. However,
Proposition 4 below states that µ̂ must have a constant density on D, and this contradicts
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that µ̂ ◦ π−1 is Lebesgue measure on [0, 1]× {0}. Therefore Lebesgue measure m2 is not
liftable.

Example 3. Define the interval map T : [0, 1)→ [0, 1) by

T (x) =


2x+ 1− 2α if x ∈ [0, α),

1 + α− 2x if x ∈ [α, α + 1
2
),

2x− 2α− 1 if x ∈ [α + 1
2
, 1),

see Figure 2(b). For certain values of α, the set of points whose orbits stay in [0, α]∪ [α+
1
2
, 1) form a Cantor set H of zero Hausdorff dimension on which T is semi-conjugate to

a circle rotation. The measure obtained from lifting Lebesgue measure to H is invariant
(hence of Jacobian 1), has zero entropy but Lyapunov exponent log 2. It is not liftable to
the Hofbauer tower. This example was inspired by [HR89], see also [BT09].

2.4. Piecewise constant Radon-Nikodym derivatives. Assumption (c4) implies that
if D → D′ and D ⊂ Zj, then the Jacobian Jµ̄,T̂ = sj on D. The next lemma shows that the

Radon-Nikodym derivative dµ̂
dµ̄

is constant on D as well. We need this for the construction

of the natural extension.

Lemma 2. If (c1)-(c4) hold for the system (X,B, µ, T ), then µ̂n � µ̄ for each n ≥ 1.
Moreover, the densities dµ̂n

dµ̄
are constant on each D ∈ D.

Proof. Fix a level Du ⊂ X̂, write D = π(Du) and take a measurable set A ⊆ Du. Note
that for each (k + 1)-cylinder Zj0···jk ∈ Zk with T kZj0···jk = D, by (c4) we have

(sj0 · · · sjk−1
)µ
(
π(T̂−kA ∩ X̂0) ∩ Zj0···jk

)
= µ

(
π(A)

)
= µ̄(A),

where an empty product sj0 · · · sjk−1
for k = 0 is taken as 1. Hence,

µ̄
(
T̂−kA ∩ X̂0

)
=

∑
Zj0···jk∈Zk:

TkZj0···jk =D

µ
(
π(T̂−kA ∩ X̂0) ∩ Zj0···jk

)

=
∑

Zj0···jk∈Zk:

TkZj0···jk =D

µ̄(A)

sj0 · · · sjk−1

.

Passing to the Cesaro mean, this implies that µ̂n � µ̄. Also, we can write µ̂n(A) =∫
A
ρn(D) dµ̄ with

(7) ρn(D) :=
1

n

n−1∑
k=0

∑
Zj0···jk :

TkZj0···jk =D

(sj0 · · · sjk−1
)−1.

Since ρn(D) only depends on D, we get the lemma with dµ̂n
dµ̄

∣∣
D

= ρn(D). 2 �

Proposition 4. Assume that (c1)-(c4) hold for (X,B, µ, T ), and that µ̂ is a non-zero
vague limit point of {µ̂n}n≥1. Then µ̂ � µ̄ and the density dµ̂

dµ̄
is constant on each set

D ∈ D and given by ρ(D) := dµ̂
dµ̄

∣∣
D

= µ̂(D)
µ̄(D)

.

Remark 3. Note that µ̂� µ̄ implies that µ̂◦π−1 � µ. The previous proposition doesn’t
use T -invariance of µ. Since µ̂ is T̂ -invariant even if µ is not T -invariant, µ̂ ◦ π−1 � µ is
T -invariant and in the sequel we produce a natural extension of (X,B, µ̂ ◦ π−1, T ).
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Proof. Fix D ∈ D and A ⊂ D compact with µ̄(A) > 0. By Lemma 2, ρn(D) is constant,
and since µ̂ is a vague limit point of the sequence {µ̂n}n≥1 along some subsequence {nk}k≥1,
{µ̂nk |A}k≥1 converges to µ̂|A in the weak topology as k →∞. This means that ρnk(D) =
µ̂nk (A)

µ̄(A)
converges to a constant limit density ρ(D). Clearly µ̂(D) = ρ(D)µ̄(D), so ρ(D) :=

dµ̂
dµ̄

∣∣
D

= µ̂(D)
µ̄(D)

follows. 2 �

2.5. The natural extension. From the Hofbauer tower we will obtain a version of the
natural extension of the transformation T . We start from a system (X,B, µ, T ) satisfying
(c1)-(c6) and we assume that the measure µ is liftable, either by satisfying the
requirements of Theorem 1 if µ is T -invariant or by other means (such as Proposition 3).
Let us first give a formal definition of the natural extension.

Definition 1. A measure theoretical dynamical system (Y, C, ν, F ) is a natural extension
of the non-invertible system (X,B, µ, T ) if all the following are satisfied. There are sets
X∗ ∈ B and Y ∗ ∈ C, with µ(X∗) = 1 = ν(Y ∗) and T (X∗) ⊂ X∗ and F (Y ∗) ⊆ Y ∗ and
there is a map φ : Y ∗ → X∗ such that

(ne1) F is invertible ν-a.e.;
(ne2) φ is bi-measurable and surjective;
(ne3) φ preserves the measure structure, i.e., µ = ν ◦ φ−1;
(ne4) φ preserves the dynamics, i.e., φ ◦ F = T ◦ φ;
(ne5) C is the coarsest σ-algebra that makes (ne1)-(ne4) valid, i.e.,∨

n≥0 F
n(φ−1B) = C.

If a map φ satisfies (ne2), (ne3), (ne4) and is injective, then the systems (Y, C, ν, F ) and
(X,B, µ, T ) are called isomorphic and φ is an isomorphism.

For the natural extension only the components Du of positive µ̂-measure are important,
but w.l.o.g. we can assume that µ̂(Du) > 0 for all u ∈ α. To define the natural extension
domain Y , extend each Du by one dimension to a set Ru = Du× [0, ρ(Du)], which we will
call the rug of Du. Set Y :=

⊔
u∈αRu and let C denote the Borel σ-algebra on Y . Use

ν to denote the product measure on (Y, C) given by µ̄ ×m on each rug, where m is the
one-dimensional Lebesgue measure. Then by Proposition 4

ν(Y ) =
∑
u∈α

µ̄(Du)ρ(Du) =
∑
u∈α

µ̂(Du) = 1.

Let π̂ : Y → X̂ be the projection onto the first coordinate. Then ν ◦ π̂−1 = µ̂. We
will extend the action of T̂ to the vertical direction, obtaining a new map which we call
F : Y → Y . This is done piecewise as follows. For z = (x̂, y, u) ∈ Ru with π(x̂) ∈ Zj and

T̂ x̂ ∈ Dv, define

(8) Fz = F (x̂, y, u) =

T̂ x̂ , y

sj
+
∑

1≤k≤N

∑
t<u:

π−1(Zk)⊃Dt→Dv

ρ(Dt)

sk
, v

 .

In words, the parts of all the rugs Rt that map to Rv are squeezed in the vertical direction
by a factor equal to the expansion in the ‘horizontal’ direction and are stacked on top of
each other into the rug Rv according to the order relation on D, see Figure 3. Hence,
the image strips in Rv are disjoint. By Proposition 4 the map F is well-defined on a full
measure subset of Y . Since the stretch in the horizontal direction and the squeeze in
vertical direction are the same, F preserves area ν. The next lemma gives (ne1).
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Rt

Ru F
Rv

Figure 3. F maps the coloured regions in Rt and Ru both to Rv, i.e.,
there is a set Zj, such that TDt ∩Zj = TDu ∩Zj = Dv . If t < u, then the
image of Rt in Rv lies below the image of Ru. Also, the image of Rt and
Ru stretch all the way across Rv in the “horizontal” direction.

Lemma 3. The map F is invertible ν-a.e.

Proof. To show that F is surjective, first note that

µ̂(Du) = µ̂(T̂−1Du) =
∑
t∈α

∫
X̂

dµ̂

dµ̄
1T̂−1Du∩Dtdµ̄

=
∑
t∈α

ρ(Dt) µ̄
(
Dt ∩ T̂−1Du

)
.(9)

Thus,

ρ(Du) =
1

µ̄(Du)

∑
t∈α

ρ(Dt) µ̄(Dt ∩ T̂−1Du)

=
1

µ̄(Du)

∑
1≤j≤N

∑
t∈α:

π−1(Zj)⊃Dt→Du

ρ(Dt)
µ̄(Du)

sj
=
∑
t∈α

∑
1≤j≤N :

π−1Zj⊃Dt→Du

ρ(Dt)

sj
.

This shows that every (x̂, y) ∈ Ru is the images of something; the x̂-coordinate because
TD = Du if D → Du, and the y-coordinate because only those Dt with Dt → Du

contribute to the strips of the rug Ru.
For the injectivity of F , first note that for the horizontal boundary of each rug Ru we

have ν
(
Du × {0, ρ(Du)}

)
= µ̄(Du) · 0 = 0. Let M be the union of all these bound-

aries, i.e., M = ∪u∈α
(
Du × {0, ρ(Du)}

)
. Then ν

(
∪n∈Z F nM

)
= 0. Assume that

(x̂1, y1, t), (x̂2, y2, u) ∈ Y \M are such that

F (x̂1, y1, t) = F (x̂2, y2, u) = (x̂, y, v).

Then, by the injectivity of T on each of the elements of Z = {Zj}Nj=1, if x̂1 6= x̂2 with

x̂1 ∈ Dt ⊂ π−1(Zj) and x̂2 ∈ Du ⊂ π−1(Zk), then either t 6= u or j 6= k. By the definition
of F , either one of these inequalities implies that the second coordinates of F (x̂1, y1, t)
and F (x̂2, y2, u) cannot be equal. Hence t = u and x̂1 = x̂2. Since F stacks the rugs on
top of each other according to the ordering on D, this implies that also y1 = y2. Hence,
(x̂1, y1, t) = (x̂2, y2, u) and F is invertible. 2 �

Note that T̂ ◦ π̂ = π̂ ◦ F , where as before, π̂ : Y → X̂ is the projection onto the first
coordinate. Also, ν(π̂−1(B)) = µ̂(B) for all B ∈ B̂. Let φ := π ◦ π̂ : Y → X, see Figure 4.

Since also T ◦ π = π ◦ T̂ and µ̂ ◦ π−1 = µ, φ satisfies (ne2), (ne3) and (ne4).
It remains to show (ne5). Recall the definition of the sets ∂nDu from (4) and the sets

Bu,n from (6). Let Bn =
⊔
u∈αBu,n be the disjoint union of these sets over all u. Then
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(Y, C, ν, F )

(X̂, B̂, µ̂, T̂ ) (X,B, µ, T )
π

π̂ φ

Figure 4. The three spaces involved and the projections between them.

Bn+1 ⊆ Bn and by (c6) and Proposition 4, limn→∞ µ̂(Bn) = 0. We extend the sets Bu,n

to Y by defining

Eu,n =
⋃
Z∈Zn

{
(Z ∩Du)× [0, ρ(Du)] : 0 < µ̄(Z ∩Du) < µ(Z)

}
⊆ Y.

Also, let En =
⊔
u∈αEu,n. Since µ̂ = ν ◦ π̂−1, we have

0 ≤ ν(
⋂
n≥0

En) = lim
n→∞

ν(En) ≤ lim
n→∞

(ν ◦ π̂−1)(Bn) = lim
n→∞

µ̂(Bn) = 0.

We need the following lemma.

Lemma 4. If z ∈ En+1, then Fz ∈ En and hence F nEn+1 ⊆ F n−1En.

Proof. Let z ∈ En+1 and suppose π̂(z) ∈ Zj0···jn∩Du for some set Zj0···jn ∈ Zn+1 and u ∈ α.

Then there is a v ∈ α, such that T̂Du = Dv ⊂ π−1(Zj1) and π̂(Fz) ∈ T̂
(
π−1(Zj0···jn) ∩

Du

)
= π−1(Zj1···jn) ∩Dv. Then,

0 < µ̄
(
π−1(Zj1···jn) ∩Dv

)
= sj0µ̄

(
π−1(Zj0···jn) ∩Du

)
< sj0µ(Zj0···jn) ≤ µ(Zj1···jn),

which gives that Fz ∈ En. 2 �

For points z ∈ En, the first n iterates F kz lie close to the boundary of their rugs. We
will prove (ne5) by showing that the map F separates points. In order to make this work,
we need to exclude points of which all inverse images lie close to the boundary.

Lemma 5. Under condition (c6) the σ-algebra
∨
n≥0 F

n(φ−1B) is equal, up to a set of
ν-measure zero, to the σ-algebra C of Lebesgue measurable sets on Y .

Proof. First we define the exceptional set. Let E =
⋂
n≥1 F

n−1En. Since F is invertible

almost everywhere, ν(F n−1En) = ν(En) for all n ≥ 1. Lemma 4 implies that F nEn+1 ⊆
F n−1En for all n ≥ 1. Therefore

ν(E) = lim
n→∞

ν(F n−1En) = lim
n→∞

ν(En) = 0.

Let z = (x̂, y, u) ∈ Ru\(FE) and z′ = (x̂′, y′, u′) ∈ Ru′ \(FE) be two different points in Y .
It suffices to show that there are sets B and B′ ∈ B and n ≥ 1, such that z ∈ F nφ−1(B)
and z′ ∈ F nφ−1(B′) and moreover F nφ−1(B) ∩ F nφ−1(B′) = ∅.

Note that if x = φ(z) 6= x′ = φ(z′), then there are two disjoint open sets B,B′ ⊂ X,
such that x ∈ B and x′ ∈ B′. Then φ−1(B) and φ−1(B′) are still disjoint and contain z
and z′ respectively.

Now suppose that φ(z) = φ(z′), but u 6= u′. We introduce some notation. For n ≥ 1,
write F−nz ∈ Run and use Z(un) to denote the (n+ 1)-cylinder in which φ(F−nẑ) lies. For
z′, we use Ru′n and Z(u′n) respectively. Suppose that φ(F−nz) = φ(F−nz′) for all n ≥ 1, i.e.,
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Z(un) = Z(u′n) for all n ≥ 1. Since z, z′ 6∈ E, there are k, k′ ≥ 1, such that z 6∈ F k−1Ek and
z′ 6∈ F k′−1Ek′ . By Lemma 4 we have for all n ≥ max{k, k′}, that F−n+1z, F−n+1z′ 6∈ En.
This implies that

µ̄
(
π−1(Z(un)) ∩Dun

)
= µ(Z(un)) and µ̄

(
π−1(Z(u′n)) ∩Du′n

)
= µ(Z(u′n))

and that Z(un) = Z(u′n). Thus,

Du = T n(Z(un) ∩Dun) = T n(Z(u′n) ∩Du′n) = Du′ ,

a contradiction. Hence, there is an n such that φ(F−nz) 6= φ(F−nz′). This means that we
can find two disjoint open sets B,B′ ⊂ X, such that φ(F−nz) ∈ B and φ(F−nz′) ∈ B′.
Then again F nφ−1(B) and F nφ−1(B′) are still disjoint and contain z and z′ respectively.

Finally, if z and z′ are in the same rug with y 6= y′, then, since F is contracting in the
vertical direction, there is an n, such that F−nz and F−nz′ are in different rugs and we
can repeat the argument from above. 2 �

This lemma finishes the proof of the following theorem.

Theorem 2. Let (X,B, µ, T ) be a system that satisfies conditions (c1)-(c6) and assume

µ lifts to a probability measure µ̂ on (X̂, B̂). Then the system (Y, C, ν, F ) is the natural
extension of (X,B, µ̂ ◦ π−1, T ) with factor map φ = π ◦ π̂. In case µ is T -invariant, then
µ̂ is the unique lift and µ̂ ◦ π−1 = µ.

Corollary 1. Let (X,B, µ, T ) be a system that satisfies conditions (c1)-(c6). If µ is
T -invariant and hµ(T ) > cap(T ), then ν is ergodic and hν(F ) = hµ(T ).

Proof. If µ is T -invariant, then µ̂ ◦π−1 = µ. By (c5) µ is ergodic and since ergodicity and
metric entropy are preserved under taking the natural extension (see [Roh64]), the result
follows. 2 �

Remark 4. The fact that the natural extension of (X,T ) in general contains more points,

i.e., more backward orbits, than the natural extension of (X̂, T̂ ) was already observed by
Hofbauer in [Hof79, Section 2]. Buzzi [Buz97, Buz99] showed that the set of points in
the natural extension of (X,T ) that are not represented in the natural extension of the
Markov extension carry no measure of positive entropy (or of entropy near the maximal
entropy for fairly general higher dimensional systems).

3. Bernoulli-like properties

In this section we will discuss Bernoulli-like properties of the natural extension and how
to transfer them from the natural extension to the original system and back. Let us first
recall some definitions.

By a two-sided (resp. one-sided) Bernoulli shift we mean a shift space (AZ, σ) (resp.
(AN0 , σ)) on a finite or countable alphabet A with left shift σ, and equipped with a
stationary product measure based on a probability vector (p1, . . . , pn). An invertible
dynamical system (Y, C, ν, F ) that is isomorphic to a Bernoulli shift is called Bernoulli
itself.

If (X,B, µ, T ) is non-invertible, and isomorphic to a one-sided Bernoulli shift, then it
is called one-sided Bernoulli itself. This is a much stronger property than the natural
extension of (X,B, µ, T ) being isomorphic to a two-sided Bernoulli shift (cf. [BH09]); if
the latter happens, the non-invertible system is called Bernoulli. It is a well-known result
by Ornstein [Orn70] (and [Smo72] and [Orn71] for infinite alphabets) that entropy is a
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complete invariant for two-sided Bernoulli systems with positive or infinite entropy, but
this is not true in general for the non-invertible case.

One theorem for which having a geometric version of the natural extension is useful is
Theorem 3 from [Sal73] by Saleski. To apply this theorem, we first show that the natural
extension F has an induced transformation that is Bernoulli. Consider one of the rugs
Ru, u ∈ α, and define the first return times for z ∈ Ru under F as

τu(z) = inf{n ≥ 1 : F nz ∈ Ru}.

By the Poincaré Recurrence Theorem, τu(z) < ∞ for ν-a.e. z ∈ Ru. Define the induced
map Fu : Ru → Ru by Fuz = F τu(z)z.

Theorem 3. Each map Fu : Ru → Ru, u ∈ α, is Bernoulli.

Proof. Consider the partition P = {P1, P2, . . .} of Du into sets Pn such that

Pn = {π̂(z) ∈ Du : τu(z) = n}.

The map φ from Definition 1 acts as projection φ : Ru → Du. For each z ∈ Ru with
τu(z) = n, there is a corresponding n-path in (D,→) from Du to Du. Hence, there is

an (n + 1)-cylinder Zj0···jn , such that φ(z) ∈ Zj0···jn and T̂ n
(
π−1(Zj0···jn) ∩ Du

)
= Du.

Therefore, each set Pn can be written as a finite union of pairwise disjoint sets:

Pn =
⋃
{π−1(Zj0···jn) ∩Du : Zj0···jn ∈ Zn+1, T

nZj0···jn = π(Du)}.

Note that the value of τu(z) for z = (x̂, y, u) ∈ Ru does not depend on y. Thus, we

can write τu(z) = τu(x̂) for almost all x̂ ∈ Du. Define the map T̂ux̂ = T̂ τu(x̂)x̂. Then

T̂u
(
π−1(Zj0···jn) ∩Du

)
= Du and thus T̂u is Bernoulli.

Using the same arguments as before, we see that (Ru, C ∩ Ru, νu := ν|Ru , Fu) is the

natural extension of (Du, B̂ ∩Du, µ̂|Du , T̂u) with factor map π̂. Since T̂u is Bernoulli, Fu
is Bernoulli as well. 2 �

Theorem 3 combined with Saleski’s result implies the following.

Theorem 4 (Saleski [Sal73]). Suppose (Y, C, ν, F ) is weakly mixing. Fix u ∈ α and
suppose that the following entropy condition holds:

Hνu

(
∨∞k=1 ∨∞n=1F

k
u Yn| ∨∞i=1 F

i
uP
)
<∞,

where Yn = {Ru−∪nj=1F
−jRu, Ru∩∪nj=1F

−jRu} and P is a Bernoulli partition of (Ru, Fu).
Then F is a Bernoulli automorphism and hence T is Bernoulli as well.

Recall the construction of the Markov shift at the end of Section 2.2. The invertibility
of F allows us to associate to F a two-sided countable state topological Markov shift and
to use all the results available for this type of maps. To construct this Markov shift, first
assign to a.e. z ∈ Y a two-sided sequence b(z) = (bk)k∈Z by setting bk = u if F kz ∈ Ru.
Define the map ψ : Y → αZ by ψ(z) = b(z) and let Ω = ψ(Y ). On Ω, let P denote the
product σ-algebra and let σ be the left shift as usual. The Markov measure mv,P is given
by the probability vector v = (vu)u∈α with entries vu = µ̂(Du) and the (possibly) infinite
probability matrix P = (pt,u)t,u∈α defined by

pt,u =
µ̄(Dt ∩ T̂−1Du)

µ̄(Dt)
,
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Proposition 5. The systems (Y, C, ν, F ) and (Ω,P ,mv, σ) are isomorphic with isomor-
phism ψ, i.e., ψ satisfies (ne2), (ne3) and (ne4) and is injective.

Proof. To show that ψ is ν-a.e. injective, note that ψ(z) = ψ(z′) implies that F nz, F nz′ ∈
Dun ⊆ Zjn for some sequence (un) ∈ αZ. Since F is expanding in the horizontal direction,
this is only possible if z = z′. It is immediate that ψ is surjective and bi-measurable
and that ψ ◦ F = σ ◦ ψ. Furthermore, it is straightforward to check that ν ◦ ψ−1 = mv.
Hence, ψ is a bi-measurable bijection that satisfies (ne2), (ne3) and (ne4) and is thus an
isomorphism. 2 �

A (non-invertible) map T is called exact on (X,B, µ) if ∩∞n=1T
−nB = {∅, X}. An

invertible map F is called a K-automorphism on (Y, C, ν) if there is a sub-σ-algebra C0 ⊆ C
satisfying (i) F−1C0 ⊆ C0, (ii) ∩∞n=1F

−nC0 = {∅, Y } and (iii) the σ-algebra generated by
∪∞n=1F

nC0 equals C. An ergodic Markov shift is a K-automorphism if and only if it is
strong mixing (see [Ito87] for example). A result from Rohlin [Roh64] says that a map is
a K-automorphism if and only if it is the natural extension of an exact transformation.
This gives the following corollary.

Corollary 2. If (X,B, µ, T ) satisfies (c1)-(c6) and µ is T -invariant and liftable, then T
is exact if and only if F is a K-automorphism if and only if F is strongly mixing if and
only if the associated Markov shift (Ω,P ,mv, σ) is irreducible and aperiodic.

4. Examples on the Interval

In this section and the next, we apply the construction to various well-known examples
in the literature, but for which explicit constructions of the natural extension are not
always given. This allows us to illustrate how general the method is, but also to draw
attention to aspects that require care in particular cases.

4.1. Piecewise linear expanding interval maps. Let T : [0, 1]→ [0, 1] be a piecewise
linear expanding map. Let the partition Z consist of the closures of all maximal intervals
of monotonicity for T . Then each set D ∈ D is an interval. Conditions (c1)-(c5) are
immediate for Lebesgue measure m. Each set Zj ∈ Z is an interval and thus T n(∪Nj=1∂Zj)

consists of only finitely many points and m
(
T n(∪Nj=1∂Zj)

)
= 0. This implies (c6). Since

T is a piecewise linear expanding interval map Proposition 3 applies and m is liftable.
Hence the construction of the natural extension from Section 2.5 applies.

There always exists an ergodic invariant measure µ� m on [0, 1]. This measure satisfies
all conditions except possibly (c4). Recall the definition of capacity from (5). Note that
#(∂nD) = 2 for all n and hence cap(T ) = 0. Then a T -invariant measure µ is liftable
whenever hµ(T ) > 0. This was first proved by Hofbauer in [Hof79]. Hence, if one can
show (c4) in a particular case, then one could also use the measure µ.

This class of maps includes any piecewise linear expanding map of which the absolute
value of the slope is constant. Here the entropy is equal to the log of the absolute value
of the slope. For such maps, there is an additional result by Rychlik [Ryc83]: If the
natural extension map F is a K-automorphism, then F is weakly Bernoulli, i.e., for each
ε > 0 there is a positive integer N , such that for all n ≥ 1, all sets A ∈

∨n
k=0 F

−kC and

C ∈
∨−N
k=−N−n F

−kC we have

|ν(A ∩ C)− ν(A)ν(C)| < ε,
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where
∨k
i=` F

−iC denotes the smallest σ-algebra containing all elements in F−iC. The
weak Bernoullicity of F implies that of T .

4.2. Positive and negative slope β-transformations. Let 1 < β < 2. The positive
slope β-transformation is defined by Tβx = βx (mod 1). It is a very well studied map with
many interesting properties. It has a unique measure of maximal entropy µ1, equivalent
to m, with entropy hµ1(T ) = log β. Note that the Hofbauer tower gives a T -invariant
measure µ̂ ◦ π−1 by lifting m. By ergodic decomposition this measure is either equal to
µ1 or not ergodic. In Figure 5 we see an example of a positive slope β-transformation for

0 1
β

1

1

(a) The map T

0 1
β

1

(b) The Hofbauer
tower

0 1
β

1 0 1
β

1

(c) The natural extension

Figure 5. In (a) we see the positive β-transformation with β equal to the
real root of x3−x− 1. (c) shows its natural extension. The transformation
F maps the areas on the left to the areas on the right with the same colour.

a specific value of β and its natural extension. In [DKS96], Dajani et al. used a similar
version of the geometric the natural extension of T and showed that it is Bernoulli. Since
all natural extensions of the same system are isomorphic ([Roh64]), the natural extension
given here is also Bernoulli.

Remark 5. Note that we start with Lebesgue measure m on the unit interval. By
Proposition 1 the construction produces an ergodic invariant probability measure µ̂ ◦ π−1

for Tβ. Since µ̂ ◦ π−1 � m, and there is only one measure with these properties, we
automatically have that µ̂ ◦ π−1 = µ1.

The negative β-transformation is defined on the unit interval [0, 1] by Sx = −βx
(mod 1). It has a unique measure of maximal entropy µ2, absolutely continuous with
respect to Lebesgue. Also for this map hµ2(S) = log β.

0 1
β

1

1

(a) The map S

0 1
β

1

(b) The Hofbauer
tower

0 1
β

1
β

1 0 1

(c) The natural extension

Figure 6. The negative β-transformation with β equal to the real root of
x3 − x− 1 and its natural extension.

Note that in general µ2 is not necessarily equivalent to Lebesgue on the unit interval,
see Figure 6 for a specific example. The next proposition answers a question posed by
Liao at the Bremen Winter School on Multifractals and Number Theory in 2013.

Proposition 6. The negative β-transformation S is weakly Bernoulli.



NATURAL EXTENSIONS FOR PIECEWISE AFFINE MAPS VIA HOFBAUER TOWERS 17

Proof. In [LS11], Liao and Steiner showed that S is exact. Hence by results from Rohlin
[Roh64], the natural extension is a K-automorphism. Now the previously mentioned
result from Rychlik [Ryc83] gives that the natural extension of S is weakly Bernoulli and
thus so is S itself. 2 �

Now suppose that 1 has an eventually periodic orbit for both T and S. This happens
for example when β is a Pisot number, i.e., a real-valued algebraic integer larger than 1
with all its Galois conjugates in modulus less than 1 (see [Sch80] for T and [FL09] for
S). Then the natural extensions of both maps contain only finitely many rugs and the
Markov shifts constructed in Section 2.5 have finite alphabets. Let (YT , CT , νT , FT ) and
(YS, CS, νS, FS) denote the natural extensions of T and S.

Proposition 7. The natural extensions of T and S are finitarily isomorphic, i.e., there
is an a.e. continuous isomorphism between (YT , CT , νT , FT ) and (YS, CS, νS, FS).

Proof. Since both T and S have the same entropy and are exact and thus strongly mixing,
also FT and FS have the same entropy and are strongly mixing. The proposition then
follows from results in [KS79] by Keane and Smorodinsky. 2 �

5. Further examples

5.1. Higher integer dimensions. Let T : [0, 1]d → [0, 1]d be a piecewise affine expand-
ing map of the form Tx = Ax (mod Zd). Let Z1, . . . , ZN be the pieces on which T is
continuous. Since T is expanding in all directions, we get (c1) and (c3). The ergodicity
from (c5) is clear for Lebesgue measure md and since T is piecewise affine, (c2) also holds.
For each 1 ≤ j ≤ N and each measurable set E ⊆ Zj we have md(TE) = |det(A)| md(E),
which gives (c4). Condition (c6) follows from the fact that md

(
∪Nj=1 ∂Zj

)
= 0 combined

with (c2) and (c4). Hence, md satisfies conditions (c1)-(c6) and is not T -invariant. Then
by Proposition 3, md is liftable and the construction from Section 2.5 gives the natural
extension.

5.1.1. Random β-transformation. One specific example of a piecewise affine conformal
map we give here is a variation of the random β-transformation, which was first introduced
in [DK03]. If 1 < β < 2, then almost every point has infinitely many different number
expansions of the form

∑∞
k=1

bk
βk

, where bk ∈ {0, 1}. The random β-transformation gives

for each point all possible such expansions in base β and is basically defined as the product
of an independent coin tossing process and two isomorphic copies of the map x 7→ βx
(mod 1) on an extended interval. Consider the space X = [0, 1] ×

[
0, 1

β−1

]
, with the

partition Z = {Zj}6
j=1 given by

Z1 =
[
0, 1

2

)
×
[
0, 1

β

)
, Z2 =

[
0, 1

2

)
×
[

1
β
, 1
β(β−1)

]
, Z3 =

[
0, 1

2

)
×
(

1
β(β−1)

, 1
β−1

]
.

Z4 =
[

1
2
, 1
]
×
[
0, 1

β

)
, Z5 =

[
1
2
, 1
]
×
[

1
β
, 1
β(β−1)

]
, Z6 =

[
1
2
, 1
]
×
(

1
β(β−1)

, 1
β−1

]
.

The transformation T : X → X is defined by

T (x, y) =

 (2x (mod 1), βy), if (x, y) ∈ Z1 ∪ Z2 ∪ Z4,

(2x (mod 1), βy − 1), if (x, y) ∈ Z3 ∪ Z5 ∪ Z6.
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The reasons why (c1)-(c6) hold for md are the same as in the previous example. Propo-
sition 3 gives that md is liftable to a measure µ̂ on the Hofbauer tower. Hence, we can
construct the natural extension of T as outlined in Section 2.5.

Originally the random β-transformation is not defined as a proper skew product, see
[DK03]. Instead of always applying the doubling map in the second coordinate, they only
apply the doubling map in the middle region. Below we give a specific example of the
random β-transformation defined in this way and construct the natural extension for this

value of β. Let β = 1+
√

5
2

be the golden ratio and define the map K : [0, 1] × [0, β] →
[0, 1]× [0, β] by

K(x, y) =


(y, βx), if x < 1/β,
(2y, βx), if (x, y) ∈ [1/β, 1]× [0, 1/2),
(2y − 1, βx− 1), if (x, y) ∈ [1/β, 1]× [1/2, 1],
(y, βx− 1), if x > 1.

Then

Z1 = [0, 1]× [0, 1/β], Z2 = [0, 1/2]× [1/β, 1],
Z3 = [1/2, 1]× [1/β, 1], Z4 = [0, 1]× [1, β].

Since this already is a Markov partition, D = {Z1, Z2, Z3, Z4}. Using the formula from
(7) we get that for each n ≥ 2,

ρn(Z1) =
1

n

(
1 +

n∑
k=2

fk+2

2βk

)
,

where fj is the j-th element in the Fibonacci sequence starting with f1 = 1, f2 = 1. Using
the direct formula for the elements in the Fibonacci sequence gives

ρ(Z1) = lim
n→∞

ρn(Z1) =
β3

2(β2 + 1)
.

By symmetry we get the same value for Z4. Since ρ(Z2) = ρ(Z1)
β

+ ρ(Z4)
β

, we have ρ(Z2) =

ρ(Z3) = β2

β2+1
. In Figure 7 we see the natural extension for this random β-transformation

K.

R1 R3 R4

R2

(0, 0) (0, 1
β
) (0, 1) (0, β)

(1, β)

F

(a)

( 1
β
, 0)

(b)

Figure 7. The natural extension for the random β-transformation with β
equal to the golden ratio. F maps the regions in (a) to the regions in (b)
with the same colour.
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5.2. Balanced measures. We say that T : X → X is d-to-1 if there is a partition
{Zj}dj=1 of X, generating the σ-algebra of measurable sets, such that T : Zj → X is a
measurable bijection and Zi∩Zj is negligible (e.g. countable or of measure zero w.r.t. the
measure used). A measure µ is balanced if the Jacobian J(x) ≡ d. In this case, (D,→) is
the full graph on {Z1, . . . , Zd}, so conditions (c4) and (c6) are trivially satisfied. Therefore
we can construct the natural extension by the method of Section 2.5 if the system satisfies
(c1), (c2) and (c3) and if the measure is ergodic. We give two examples.

5.2.1. Rational maps on the Julia set. Let R : Ĉ→ Ĉ be a rational map of degree d ≥ 2

on the Riemann sphere, i.e., R(z) = P (z)
Q(z)

where P and Q are two polynomials with

no common factor and d = max{degP, degQ}. When restricted to the Julia set, one
can find a generating partition {Zj} w.r.t. which R is d-to-1 giving (c1) and (c3). This
goes back to Mañé [Mañ83] and the corresponding balanced measure is well-defined (i.e.,
independent of the choice of {Zj}) as well as the unique invariant measure of maximal
entropy. This gives (c2). Following conjectures and partial results by Mañé [Mañ85] and
Lyubich [Lyu83], and using techniques of Hoffman and Rudolph [HR02] it was shown that
µ is isomorphic to the (1/d, . . . , 1/d) one-sided Bernoulli shift, see [HH02], and hence µ
is ergodic. Explicit construction for a Bernoulli partitions (for Lattès examples) can be
found in [BK00, Kos02].

5.2.2. Certain endomorphisms on the torus. Let X = Tn = Rn/Zn be the n-dimensional
torus, and T an endomorphism of the form T (x) = h(Ax) (mod Zn), where h : Tn → Tn
is a homeomorphism homotopic to the identity, and A an n × n integer matrix with
det(A) = ±d. If h is the identity, then Lebesgue measure is a balanced measure, see
[DH93] for some intricancies of its natural extensions and factor spaces. A priori, a d-
to-1 partition {Zj}dj=1 need not be unique; more importantly, it is not automatically
generating. For example, if

A =

(
6 4
2 2

)
=

(
3 2
1 1

)
·
(

2 0
0 2

)
with eigenvalues λ± = 4 ± 2

√
3, then the eigenspace of the second eigenvalue represents

a contracting direction, and for this reason the partition of T2 in, say, four quarters, is
not generating in forward time. In fact, there exists no forward time generating 4-to-1
partition because the topological entropy is log(4 + 2

√
3) > log 4. See Kowalski [Kow88]

for some interesting results in this direction.
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